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Abstract

In the �eld of bending-active structures, the complexity of �nding beforehand the equilibrium
con�guration and the non-linearity of the structural response are main issues during the concep-
tual phase. The use of tools based on classical form-�nding procedures as dynamic relaxation
is the main trend today; di�erent mechanical models with 3, 4 or 6 degrees of freedom have
been implemented for modelling the bending e�ect. However, there is a well-established class
of mechanical models which has been speci�cally designed to reproduce the behaviour of very
�exible structures and has not been used so far in form-�nding of bending-active structures.
These are derived from the so-called geometrically exact (or Reissner-Simo) beam theory, and
they are able to treat arbitrarily large rotations and displacements. In this paper, we present
the development of a form-�nding tool based on Reissner-Simo's theory and the dynamic relax-
ation method, in order to �nd the static equilibrium of the system. The choice of form-�nding
parameters as the target curve length and the kinematic constraints at beam ends will de-
termine the shape of the �nal structure in the 'design-oriented' process. Several numerical
examples on a range of structures are tested to validate the formulation.

1 Introduction

1.1 Motivation and background

Nowadays, modern architecture is focused on the search of e�cient uses of technological and
sustainable materials, high-tech concept-design-erection processes and the possibility to produce
lightweight solutions with minimal impact and maximum elegance in shape. These ideas are re-
�ected on bending-active structures, because they are assembled using slender members bent into
attractive lightweight and shaped con�gurations. The term 'active-bending' refers to a category
of structures in which bending is used in the process of shape con�guration, obtaining structural
schemes from elastic members such as beams or rods, which initially are straight and unstressed.
However, the number of realizations is limited. The Mannheim Multihalle designed by Frei Otto,
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which is a pioneering modern application of the bending active principle [1]; the Ephemeral Cathe-
dral of Creteil (Paris, France) by du Peloux et al., gridshell structure made of composite materials
[2]; the temporary ICD/ITKE Research pavilion made of plywood at the University of Stuttgart
and the permanent textile umbrella for Marrakech [3] are some of the built examples.

Due to the non-linearity of the structural response of the active members, the simulation of
the process of deformation of bending-active elements is one of the main di�culties during the
conceptual phase. Moreover, it is often not possible to obtain beforehand the equilibrium description
of the system; its shape has to be determined as a result of a tight interaction between form, forces,
material properties and boundary conditions [4]. Form-�nding methodologies such as �nite element
models with non-linear virtual links that are shortened to reach the �nal form [5], and dynamic
relaxation methods based on beam models with 3 to 6 DoFs have been proposed by several authors
[6, 7, 8, 9, 10, 11, 12, 13, 14].

Despite the availability of di�erent mechanical models to describe the kinematics of �exible
members, most formulations covered in the literature [7, 9, 8, 10, 11, 12, 13, 14] are based on
Kirchho�'s theory [15], in which cross-sections remain almost normal to the centreline of the rod
and almost planar, and seems adequate to handle the speci�city of the mechanical problems posed
by bending-active structures. However, among those mathematical models handling large rotations
and displacements, the so called geometrically exact rod model or Reissner-Simo model has been
speci�cally designed to reproduce the behaviour of very �exible structures.

Reissner [16] and Simo [17] developed a non-linear theory for the deformation of �exible rods
that can be considered as a special case of Cosserat's theory, in which the director vectors attached
to material �bres in a cross-section are constrained to remain inextensible and orthogonal, but not
necessarily normal to the deformed centreline tangents. This theory can be also interpreted as a
non-linear version of Timoshenko's theory for shear deformable beams and o�ers the conceptual
simplicity of the kinematic assumption together with the power of a direct theory for solving non-
linear problems.

The assumptions of the geometrically exact model can be summarized as follows: cross-sections
remain plane without changes of shape or size, although they may experience �nite rotations as
a rigid-body; warping e�ects are not modelled; the centreline can undergo extension, and shear
deformations are allowed. Simo in 1991 [18], extended his previous work incorporating shear and
torsion-warping deformation into the geometrically exact rod model. The consideration of warping
would indeed allow to handle thin-walled open cross-sections and the authors hope to extend their
work in this line. Hence, taking into account the potential of the geometrically exact rod model to
handle arbitrarily large rotations and centreline displacements without limitations of magnitude,
the authors present in this work a form-�nding methodology for bending-active structures based
on this mechanical model.

1.2 Recent trends in form �nding methods for bending active structures

Traditionally, �nite element models have been used for the load analysis and the simulation of
the construction process of structures. In the case of evolutive processes and non-linear response,
implicit resolution methods are often used to �nd equilibrium solutions. However, in the so called
'design-oriented' problems, where the main unknown is the geometrical con�guration and the de-
termination of deformations and stresses is not the main goal, the use of explicit methods has been
reported by some authors [19, 13] as more advantageous for those cases in which prescribed condi-
tions are far from the equilibrium geometry. As a starting point in the conceptual phase, physical
models provide good geometrical approximations (Fig. 1), however, the initial pre-stress induced
by the form-change is unknown. In this case, the development of numerical tools based on explicit
methods as dynamic relaxation is the main trend today.

Dynamic relaxation provides a straightforward way to obtain the static equilibrium of the struc-
ture from a given arbitrary and inaccurate initial con�guration. Moreover, the possibility of using
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�ctitious sti�ness, massess and time steps contributes to the fast convergence of the numerical
solution. Several approaches for this method have been suggested over the years, being reduced
models with only three translational DoFs the most used. Douthe et al. [8], focusing on the pre-
vious work done by Adriaenssens and Barnes [7] proposed to calculate the magnitude of bending
moments through estimates of curvatures obtained from the positions of groups of three consecutive
nodes. Bending moments are transformed into equivalent forces, acting on the actual geometry of
the beam. This model is valid for initially straight beams with axisymmetric cross-section. The
problem of torsion and bending for dynamic relaxation modelling of spatial curved beams was ap-
proached by Barnes et al. [9] few years later, extending Douthe's work; their assumption accounts
for both torsion and transverse (out of plane) bending e�ects; this model is valid in cases where
cross-sections are isotropic.

Figure 1: A physical model subject to bending and torsion e�ects. (Bending of developable surfaces has
been studied in [20].)

The �rst proposal to handle the problem of slender beams in large displacements using dynamic
relaxation was introduced by Wake�eld in 1980 [21]; he implemented a formulation taking into
account 6 DoFs. As reported by Adriaenssens [22], Williams developed a more precise resolution
scheme, assuming local reference frames at nodes and cubic shape functions to simulate the sti�ness
of the rod. Few years ago and based on Williams's work, D'Amico et al. [10] built a numerical
framework aimed to the design of gridshells. Senatore and Piker [12] used a corotational approach
to compute the resultant �eld of displacements and the e�ect of large deformations. The use of 6
DoFs per node has the advantage of providing a complete description of the mechanical response.
However, Adriaenssens and Barnes mention in reference [7] that the coupling between translational
and rotational DoFs can cause conditioning problems in explicit methods.

In recent years, the study of thin �exible rods has also been developed in the �eld of computer
animation and games since this industry requires fast simulation techniques. For example, Bergou
et al. [23] present a discrete treatment based on the study of adapted framed curves and the
topological concepts of parallel transport and holonomy. In contrast to typical simulation techniques
relying on a kinematic description, they treat the centreline as dynamic and the material frame as
quasi-static de�ned by its angular deviation from the natural Bishop frames, that are torsion-
free trihedrons related to Frenet's trihedrons by a rotation around the tangent vector. Thereby,
solutions are formulated with a minimal number of degrees of freedom: the explicit description
of the centreline of the rod (three DoFs) and the orientation of material frame using a scalar
variable (one additional DoF). The authors claim that using this procedure, numerical instabilities
are avoided in the dynamic relaxation algorithm. Based on these developments in the �eld of
computer animation, du Peloux et al. [11], D'Amico et al. [13] and Lefevre et al. [14] have recently
presented alternative approaches to model elastic rods with 4-DoFs. These formulations allow to
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deal with general cases of structures with anisotropic cross-sections and torsional sti�ness e�ects
by means of Bishop frames. In the beam model developed by D'Amico et al., the de�nition of
boundary conditions is not straightforward and pre-processing is necessary, de�ning extra-nodes or
constraints.

Di�erent strategies have been carried out to perform dynamic relaxation in order to obtain
accurate and fast simulations, having in common Kirchho�'s model as kinematic model. However,
the authors propose the use of a mechanical model speci�cally designed to deal with large displace-
ments and rotations. An additional advantage of the model is that it is appropiate for modelling
structures in which shear deformation is not negligible. In the realm of bending-active structures,
it could be applied to structures formed by two o more layers of laths, considering them as unitary
structural elements with large shear deformations (e.g. the Mannheim Multihalle). Therefore, this
work presents a form-�nding method based on the geometrically exact rod model with 6 DoFs,
aimed to achieve powerful numerical solutions thanks to the conceptual simplicity of the underlying
mathematical theory and its speci�c design for �exible structures.

1.3 Assumptions and starting points

The proposed form-�nding method is based on the following considerations:

• Explicit solution search using dynamic relaxation.
• The geometrically exact rod model as underlying mechanical model.
• Translations and rotations are updated by means of 6 DoFs per node.
• Anisotropic cross-sections can be modelled. Thin-walled open cross-sections are precluded.
• Initial speci�cations of the geometry do not need to be close to the equilibrium solution.
• Boundary conditions are de�ned by nodal positions and cross-section orientations (optionally)
of the beam ends. Additional numerical constraints or nodes are unnecessary.

1.4 Outline of the paper

The outline of the paper is as follows: In section 2, the principles of the dynamic relaxation method
as well as the fundamentals of the geometrically exact model are reviewed. Furthermore, the
description of the numerical framework proposed by the authors is detailed. Numerical examples
showing the ability of the form-�nding method to reproduce the behaviour of active members are
included in section 3.

2 Dynamic relaxation using the geometrically exact model

2.1 The geometrically exact rod model

The geometrically exact rod model was formulated by Simo [17] starting from the work of Reissner
[16]. It allows to reproduce arbitrarily large displacements and rotations of rods using an exact
kinematic description of �nite rotations of cross-sections. In this section, a brief summary of the
fundamentals of Reissner-Simo theory is given. The notation we use is based, although not the
same, as the one introduced by Simo. It follows more closely the one used by Ritto-Corrêa and
Camotim in their summarizing reference [24].

2.1.1 Basic kinematics

A �xed reference system {x,y,z} in space is chosen. Three con�gurations are considered (Fig. 2): a)
The reference (ideal) con�guration, in which the rod is straight, the line of centroids is aligned with
the x -axis, and cross-sections are oriented in such way that principal axes of inertia are parallel
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to y and z -axes. Unit vectors A2 and A3 are attached to the principal axes and A1 is normal
to the cross-sections; they form an orthogonal system. S is the (arc-)length coordinate along the
centreline in the reference con�guration. X2 and X3 are coordinates in each cross-section. b)
The initial (undeformed) con�guration: the rod centreline can be a spatial curve. Cross-sections
are normal to the curve and are de�ned by a01, a02, a03, the unit directors in the underformed
con�guration, being a01 tangent to the curve. These directors are the result of a rigid-body rotation
of A1, A2, A3. c) The actual (deformed) con�guration at an instant t : during the deformation
every cross-section is assumed to undergo a rigid-body motion. Directors a1, a2, a3 remain unitary
and orthogonal, but a1 is not necessarily tangent to the centreline. If the components with respect
to the �xed space frame of a1, a2 and a3 are written in columns, they form an orthogonal matrix
Λ of determinant 1, which is only a function of S and the time t. The position vector of a material
point can be expressed in terms of its relative location into the section r∗, the position of the
centroid of the section x and the rotation of the cross-section Λ as follows:

x∗
(
S,X2, X3, t

)
= x (S, t) + r∗

(
S,X2, X3, t

)
(1a)

r∗
(
S,X2, X3, t

)
= Λ (S, t) R∗

(
X2, X3

)
(1b)

Figure 2: Kinematics of Reissner-Simo's model [25].

Section points rotate from an ideal reference con�guration (described by R∗) to the deformed
(actual) con�guration. x(S,t) and Λ(S,t) are the con�guration functions of the geometrically exact
model. The 1D deformation gradient can be written as [25]:

∂x∗/∂S = x′ + Λ′ΛT r∗ = γ + κ̂ r∗ (2)

The hat over a variable denotes a skew-symmetric matrix. The same variable with no hat refers
to its axial vector. Capital letters refer to material variables (variables expressed in the system
of reference attached to the cross-sections). Lowercase letters refer to spatial variables (variables
expressed in the �xed reference system {x, y, z}). Transformations between spatial and material
forms is performed through the action of Λ. Given a vector v, the operation v = ΛV is called
push-forward, and the operation V = ΛTv is called pull-back.
γ and κ are the generalized deformations expressed in spatial form. Their counterparts in
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material form, Γ and K, allow to de�ne the physical deformations Γd and Kd as:

Γd = Γ− Γ0 (3a)

Kd = K−K0 (3b)

K̂0 =ΛT
0 Λ′0 represents the curvature and twist of the initial centreline, and Γ0 is the material

form of the tangent vector to the initial centreline. Γ0 is precisely the vector A1 of the section
frame in the reference con�guration, with components {1,0,0}. Therefore:

Γd = Γ−A1 = {Γ1 − 1,Γ2,Γ3} (4)

The �rst component of Γd is a measure of the elongation of the centreline and the other two
components are the distortions along the axes of the cross-section. It is worth remarking that K0

= 0 when the rod is initially straight, something usual in the initial de�nition of geometries in
form-�nding problems.

2.1.2 Variation of the generalised deformations

The variation of the con�guration can be computed as:

δx∗ = δx+ δΛ′ΛT r∗ = δx+ δω̂ r∗ (5)

δω, the axial vector of δω̂, is referred to as the incremental rotation or spin. Because γ and κ
are mathematical objects related to the (moving) cross-section, their variation requires a special

de�nition: given a vector v, the corotational variation
5
δv is de�ned as the variation from the point

of view of an observer located at the section reference system as:

5
δv = Λ δ

(
ΛTv

)
= δv− δω × v (6)

therefore, the co-rotational variations of the generalized deformations are:

5
δγ = δx′ + γ × δω and

5
δκ = (δω)

′ (7)

2.1.3 Equations of static equilibrium

First, the expression of the internal virtual work is manipulated. Introducing the Eqs. (7) in
the term corresponding to the internal forces n and moments m in the spatial description, the
expression reads:

δWint =

∫ Sj

Si

(
n ·
5
δγ +m ·

5
δκ

)
dS (8)

and integrating by parts: ∫ Sj

Si

(−n) · δx dS +

∫ Sj

Si

(−m′ + n× γ) · δω dS

+ [n · δx]
Sj

Si
+ [m · δω]

Sj

Si
(9)

The virtual work of the external forces qn and qm is:

δWext =

∫ Sj

Si

(qn · δx+ qm · δω) dS (10)

6



Static equilibrium is equivalent to the equality of internal and external virtual work δWint = δWext

for any compatible set of virtual movements of the system. Therefore, the spatial form of the
equations of static equilibrium are:

n′ + qn = 0 (11a)

m′ + γ × n+ qm = 0 (11b)

with the boundary conditions at the start:

[n (Si) + ni] · δx (Si) = 0 (12a)

[m (Si) +mi] · δω (Si) = 0 (12b)

and the boundary conditions at the end:

[n (Sj) + nj ] · δx (Sj) = 0 (13a)

[m (Sj) +mj ] · δω (Sj) = 0 (13b)

On the other hand, the internal virtual work in the spatial con�guration can be expressed in matrix
form as:

δWint =

∫ Sj

Si

5
δ ε · f dS =

∫ Sj

Si

(5
δγ · n+

5
δκ · m

)
dS

=

∫ Sj

Si

{δ xT δωT δ x
′T δω

′T }


0 0

−γ̂ 0

1 0

0 1

{ nm
}
dS (14)

2.1.4 Equations of dynamic equilibrium

To account for dynamic e�ects, Simo [17] introduced the equations of motion expressed in terms of
forces and moments:

n′ + qn = ma (15a)

m′ + γ × n+ qm = i ω̇ + ω × iω (15b)

where m is the mass matrix, i the inertia tensor, a is the translational acceleration vector, ω is the
angular velocity vector and ω̇ the angular acceleration vector, all of them expressed in spatial form.

2.1.5 Constitutive equations

The material form of the constitutive equations relates the static variables N and M with the
physical deformations of the model Γd and Kd as follows:{

N
M

}
=

[
CΓ 0

0 CK

]{
Γd
Kd

}
(16)

Assuming that the centroid and the centre of torsion of the cross-section coincide, CΓ and CK are:

CΓ =

EA 0 0
0 GAQ2 0
0 0 GAQ3

 (17a)

CK =

GJ 0 0
0 EI2 0
0 0 EI3

 (17b)
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The spatial description of the internal forces is obtained pushing-forward the corresponding material
variables: {

n
m

}
=

[
Λ 0

0 Λ

]{
N
M

}
(18)

2.2 The dynamic relaxation method

The dynamic relaxation method (DR) was introduced in the 60s by Day [26] and Otter [27]. It
was developed to determine the equilibrium con�guration of a system considering it as a �ctitious
dynamic system; the initial speci�cation of the geometry can be far from the equilibrum solution.
The equilibrium con�guration is obtained tracing step-by-step the motion of each node of the
structure for small time increments ∆t using Newton's second law, until the equlibrium state is
reached [19]. In order to achieve rapid convergence, several approaches can be considered, for
example the use of viscous damping. When the structure has large motions, additional damping
strategies (as kinetic damping) must be implemented. Being an explicit method, DR does not
require assembling any sti�ness matrix and it is quick to build the system, providing powerful and
reliable results for non-linear structural problems.

2.3 Fundamentals of the method

This section shows the fundamentals of the implementation of the geometrical exact rod model into
the dynamic relaxation method.

An elastic rod is modelled by a discrete set of nodes xi, which are referred to the �xed Cartesian
coordinate system (global reference system {x, y, z}) These nodes are linked in pairs, being at the
same time, the ends of beam elements that constitute the whole rod.
A local reference frame is associated to each node. The unit vectors of the frame de�ne the orien-
tation of corresponding cross-section. At the start of the process, nodal frames can be arbitrarily
chosen at free nodes.
In addition to kinematic constraints, the parameter L0, target length of the curve in the equilibrium
state, must be prescribed. The sum of distances between nodes is near the prescribed target length
of the elements when the state of equilibrium is reached.

2.3.1 Application of D'Alembert's principle

qn,qm

fmIj fnIj

fmiJ

fniJ

-fmiJ

-fniJ

-fnJk

-fmJk

J 

i

j

Figure 3: Scheme of forces and moments acting on the element ij and the node J

The fundamental of the method is based on D'Alembert's principle. Dynamic equilibrium is
expressed using Eqs. (15a) and (15b), where out of balance forces f̃nJ

and out of balance moments
f̃mJ

at node J are equal to the derivative of the linear momentum ṗJ and the derivative of the
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angular momentum ḣJ acting on this node:

f̃nJ
= ṗJ = mJ aJ (19a)

f̃mJ
= ḣJ = iJ ω̇J + ωJ × iJ ωJ (19b)

On the other hand, the out of balance forces/moments are the resultant of the external loads and
the internal forces/moments caused by elements attached to node J :

f̃nJ
= −fniJ − fnJk (20a)

f̃mJ
= −fmiJ − fmJk (20b)

Evaluating iteratively the equations of the dynamic equilibrium at nodes, the update of the geometry
is provided by the motion associated to each set of out of balance forces/moments. The state of
equilibrium is reached when the structure comes to rest; the sum of all forces/moments is zero at
each node.
Internal forces/moments at element ends are computed according to D'Alembert's principle: using
the notation of Fig. 3, the following equation holds for any consistent set of virtual displacements
δx and spins δω: ∫ Sj

Si

(−n− qn + ma) · δx dS

+

∫ Sj

Si

(−m′ + n× γ − qm + i ω̇ + ω × iω) · δω dS

+
[
nIj − fnIj

]
δxi +

[
mIj − fmIj

]
δωi

+
[
niJ − fniJ

]
δxj +

[
miJ − fmiJ

]
δωj = 0 (21)

Assuming that masses and inertias are lumped at the nodes, angular velocity and acceleration terms
vanish from the integrals. Rewriting the boundary conditions in matrix form, we have:

∫ Sj

Si

(−n) · δx dS +

∫ Sj

Si

(−m′ + n× γ) · δω dS

−
∫ Sj

Si

(qn · δx+ qm · δω) dS

=
{
δxi δωi δxj δωj

}
fnIj
fmIj
fniJ
fmiJ

 (22)

2.3.2 Determination of element end forces

In Eq. (22), the �rst line is coincident with the expression of the internal virtual work in static
equilibrium. Introducing a Lagrangian linear interpolation in Eq. (14), the contribution of each
element to the internal virtual work can be discretized. Considering two-node beam elements and
using an intrinsic coordinate ξ, which takes ξ = −1 when S = Si and ξ = 1 when S = Sj , internal
forces and moments can be evaluated at their ends as follows:

δWint = δφT
∫ 1

−1


N0 1 0 1

JN
′
0 1 0

0 N0 1 0 1
JN
′
0 1

N1 1 0 1
JN
′
1 1 0

0 N1 1 0 1
JN
′
1 1



0 0

−γ̂ 0

1 0

0 1

{nm
}
J dξ (23)
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where N0 and N1 are the shape-functions for two-node beam elements based on Lagrange polyno-
mials and N′0 and N′1 their derivatives:

N0 =
1

2
(1− ξ) and N1 =

1

2
(1 + ξ) (24)

δφT is
{
δxi δωi δxj δωj

}
and J is the Jacobian of the transformation that relates S and ξ, where

S ∈ [0, Le]. (Not to be confused with the node nomenclature.):

J (ξ) =
dS

dξ
=
[
N′0 (ξ) N′1 (ξ)

]{Si

Sj

}
=
Le
2

(25)

Finally, the out of balance forces/moments (disregarding external forces) are obtained computing
the previous equation in the elements connected to node J :{

f̃nJ

f̃mJ

}
= −

{
fniJ

fmiJ

}
−
{
fnJk

fmJk

}

= −
∫ 1

−1

[
N1 1 0 1

JN
′
1 1 0

0 N1 1 0 1
JN
′
1 1

]
0 0

−γ̂ij 0

1 0

0 1

{nijmij

}
J dξ

−
∫ 1

−1

[
N0 1 0 1

JN
′
0 1 0

0 N0 1 0 1
JN
′
0 1

]
0 0

−γ̂jk 0

1 0

0 1

{njkmjk

}
J dξ (26)

2.3.3 Deformations associated to rotations

The next step is to calculate the change of orientation in each element. Following Cris�eld and
Jelenic [28, 29], a spherical interpolation of rotations throughout the element will be used for that
purpose:

Λh (S) = Λi

(
ΛT
i Λj

)S/Le

(27)

For a 2-node element with nodes i, j and actual length Le, the local rotation Θij , between i and j

is computed as follows:
exp Θ̂ij = ΛT

i Λj (28)

The rotation Λr at the midpoint of each element is used as element's reference rotation (Fig.
4); it is de�ned as:

Λr = Λ|ξ=0 = Λi exp

(
1

2
Θ̂ij

)
(29)

Spherical interpolation is de�ned through the local rotation Ψ̂e = 1
2Θ̂ij and the reference rotation,

for ξ ∈ [−1, 1] as follows:

Λ (ξ) = Λr exp
(
ξ Ψ̂e

)
(30)

Making use of the de�nition of curvature K:

K̂ (ξ) = ΛT d

dS
Λ = ΛT d

dξ
Λ
dξ

dS

= exp
(
−ξ Ψ̂e

)
ΛT
r Λr

d

dξ
exp

(
ξ Ψ̂e

) 2

Le

= T
(
ξ Ψ̂e

)T
Ψ̂e

2

Le
(31)
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The operator T acts on θ̂ as follows [24]:

T
(
θ̂
)

= 1 +
1− cos θ

θ2
θ̂ +

θ − sin θ

θ3
θ̂

2
(32)

where θ̂ is a skew-symmetric matrix and θ is the modulus of the associated axial vector. Assuming
that the deformation is constant in each element and evaluating it at ξ = 0, the change of orientation
K through the local rotation Ψ̂e is calculated as:

K =
2

L0
Ψe (33)

and

Kd =
2

L0
Ψe −K0 (34)

where L0 is the prescribed target curve length for each discretization.

Figure 4: A typical element showing the nodal frames and the reference frame. Λr is computed through
spherical interpolation between Λi and Λj.

2.3.4 Deformations associated to translations

In contrast to the change of orientation, the deformation associated to the traslations is computed
in a straightforward way, only taking into account the spatial position of the nodes i,j :

γ =
1

L0
(xj − xi) (35)

where xi,xj are the position vectors of the nodes i,j in spatial form. For rewriting it in material
form, γ will be pre-multiplicated by the transpose of the reference rotation matrix of the element:

Γd = ΛT
r

1

L0
(xj − xi)− {1, 0, 0}T (36)

2.4 Numerical implementation

The numerical solution of the dynamic equations is carried out via an one-step explicit algorithm
based on Newmark's algorithm [30]. According to the laws of motion Eqs. (19a) and (19b), the
dynamic equations in spatial con�guration for node J at time t are:

f̃
t

nJ
= mJ a

t
J + cJ

(
ẋtJ + atJ

1

2
∆t

)
(37a)

f̃
t

mJ
= iJ ω̇

t
J + ωtJ × iJ ω

t
J + cJ ω

t
J (37b)
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Matrices mJ and iJ represent the �ctitious nodal masses and inertias. Matrix cJ represents
damping. The obtention of mJ and iJ is based on the relation between the mechanical properties
of the rod and the timescale ∆t of the dynamic process; it ensures fast stability and avoids slow
simulations. Based on reference [19], the following expressions in the material form are given:

MJ =
∆t2

2


∑k
ne=1

(
EA
L0

)
0 0

0
∑k
ne=1

(
GAQ2

L0

)
0

0 0
∑k
ne=1

(
GAQ3

L0

)
 (38a)

IJ = β
∆t2

2


∑k
ne=1

(
GJ
L0

)
0 0

0
∑k
ne=1

(
EI2
L0

)
0

0 0
∑k
ne=1

(
EI3
L0

)
 (38b)

Moreover, an additional coe�cient β can be introduced to increase the damping related to the
bending e�ect and prevent non-convergence. Pulling back material variables, the spatial description
of the �ctitious nodal properties is:

mJ = ΛJ MJ ΛT
J (39a)

iJ = ΛJ IJ ΛT
J (39b)

Manipulating equations (37a) and (37b), it is possible to assess the translational atJ and rotational
ω̇tJ accelerations of the nodes xJ at time t :

atJ =

(
mJ + cJ

1

2
∆t

)−1 (
f̃
t

nJ
− cJ ẋ

t
J

)
(40a)

ω̇tJ = i
−1
J

(
f̃
t

mJ
− ωtJ × iJ ω

t
J − cJ ω

t
J

)
(40b)

With the obtained translational accelerations, positions xt+∆t
J and translational velocities ẋt+∆t

J

are updated as:

xt+∆t
J = xtJ + ẋtJ ∆t+

1

2
atJ ∆t2 (41a)

ẋt+∆t
J = C1 ẋ

t
J + C2 a

t
J ∆t (41b)

where C1 and C2 ∈ [0, 1] are the terms of viscous damping used to avoid large oscillations in the
free nodes, which can produce numerical instabilities [10]. Angular velocities ωtJ and ωt+∆t

J are not
additive because they belong to di�erent frames. To overcome this problem, a strategy based on
the one proposed by Ibrahimbegovic [31] to represent the change of orientation of sections is used:

ωt+∆t
J = T

(
∆ω̂tJ

)
∆ω̇tJ + exp

(
∆ω̂tJ

)
ωtJ (42)

with:

∆ωtJ = ωtJ ∆t (43a)

∆ω̇tJ = ω̇tJ ∆t (43b)

The operator T has been de�ned in Eq. (32) and exp (∆ω̂) can be calculated using Rodrigues's
formula:

exp (∆ω̂) = 1 +
sin ∆ω

∆ω
∆ω̂ +

1− cos ∆ω

∆ω2
∆ω̂2 (44)

12



where ∆ω is the incremental nodal rotation vector, ∆ω is its modulus and ∆ω̂ is the antisymmetric
matrix associated to ∆ω. The update of the nodal rotation is therefore:

Λt+∆t
J = exp

(
∆ω̂J

t)Λt
J (45)

2.4.1 Criterium for convergency

The dynamic relaxation algorithm must iterate up to reach the criterium for convergency, based on
the evaluation of translational and rotational kinetic energies:

KtJ =
1

2
ẋTJ mJ ẋJ (46a)

KrJ =
1

2
ωTJ iJ ωJ (46b)

KtJ and KrJ are the kinetic energies corresponding to node J. When all energies reach a prescribed
limit value, the solution is regarded as a static equilibrium con�guration and the algorithm stop.

2.4.2 Boundary conditions

The choice of the geometrically exact rod model allows to de�ne kinematic constraints in a straight-
forward way, since neither �cticious extensions of the rod nor additional constraints [13] are required.
The authors understand the concept of form-�nding as a 'design-oriented' procedure [13], in which
equilibrium is found after de�ning a target curve length and the corresponding kinematic con-
straints. In other words, the proposed form-�nding method is based on geometrical restrictions.
The algorithm has been designed to deal with two possibilities: either positions and rotations at
the beam ends are �xed, or positions are �xed and rotations are free.

3 Numerical tests

3.1 The elastica and the circular beam

The �rst example is a beam clamped at both ends; the distance between them is 10 m. The
mechanical properties of the beam are shown in table 1 and correspond to a rectangular cross-
section with 2 cm width and 0.5 cm depth; only I2 and AQ3 are relevant because the weak axis is
assumed to be the bending axis. The modulus of elasticity is E = 104 MPa, the relation E/G is 2.5
and the time increment is ∆t = 0.0001 s. The additional imposed kinematic boundary condition is
the cross-section orientation at beam ends where the centreline of the curve forms an angle of 30o

with the x -axis. Non-�xed nodal frames are initially de�ned by spherical interpolation.
Among the wide range of possible curves with di�erent prescribed target lengths L0 that ful�l

the established constraints, the elastica is de�ned by L0 = 10.725 m and the circular beam with
radius R = 10 m is de�ned by L0 = 10.47 m. Fig. 5 shows the equilibrium geometries in both cases
using 10 elements. The errors registered for the y-coordinate at the midspan of the elastica and
the circular beam are 0.05 % and 0.04 % respectively. Another straightforward way of validating
these models is to assess curvatures κ of the beams. Fig. 6 shows an excellent correlation between
numerical and analytical curvatures in both tests. The circular beam has a constant curvature
of value κ = −0.1 m−1 de�ned by the relation 1/R whereas the curvature of the elastica can be
calculated analitically [32][6]. It is worth remarking that curvatures are computed at the Gauss's
point of each element (at the middle of the element), not at nodes, as outlined above. For this
reason, in the elastica, curvature values at elements 1 and 10 are very low but non-zero, since they
do not correspond with the beam end nodes. Fig. 7 shows how the curve lengths grow to the target
value L0 during the form-�nding process.
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A AQ2 AQ3 J I2 I3
(cm2) (cm2) (cm2) (cm4) (cm4) (cm4)

1 0.8333 0.8333 0.4621 0.0208 0.3333

Table 1: Section properties of the elastica and the circular beam.

30º

Figure 5: Form-�nding of the elastica and the circular beam de�ned by the same local reference frames at
the beam ends.

Figure 6: Curvatures for the elastica (Elas.) in blue and curvatures for the circular beam (Cir.) in brown.
Form-�nding (F.F.) and theoretical solutions (T.).
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Figure 7: Evolution of the curve lengths for the elastica and the circular beam during the form-�nding
process.

In parallel, Fig. (8) shows the form-�nding process at di�erent stages, indicating both the
number of the step and the actual curve length. Finally, this example allows to show that the
method also works when the orientations of the beam ends are not restricted: allowing free rotations
at both ends and establishing L0 = 10.725 m (length of the elastica), the start/�nal angle of the
curve in the equilibrium state is 30.05o, practically the exact solution. In other words, allowing free
rotations at both ends of the rod, the obtained curve is the elastica associated to the prescribed
target length L0.

3.2 Bathe and Bolourchi cantilever beam

The second example is well-known in the �nite-element literature [33]. The original problem is a
circular cantilever beam clamped at the origin and subject to a force at its free node (Fig. 9). The
units of the original problem have been kept for consistency. Initially, the curved beam is contained
within the plane z = 0, the curve has a radius of 100 in comprising an angle of 45o and the material
and section properties are shown in the table 2. Bathe and Simo solved this problem taking into
account a transverse force of 600 lb at the free end of the beam using 8 two-node elements in their
models.

Knowing the solution by means of a implicit numerical tool based on Simo's model [17], it
is possible to transform a load analysis example into a 'design oriented' form-�nding problem by
imposing the target kinematic constraints at both beam ends. Fig. (10) shows the evolution of the
translational and rotational kinetic energies in the form-�nding process. Moreover, three captures
of the geometry at di�erent stages show how initially the beam is practically straight (a) whereas
and at the end of the process, when the kinetic energies are close to zero, the equilibrium geometry
is reached according to the imposed orientations at both beam ends (c). Fig. (11) shows the high
correspondency between the nodal coordinates of the obtained solution by the implicit and the
form-�nding method using 8 two-node elements.
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(a) Step 0; L = 10 m. (b) Step 100; L = 10.17 m.

(c) Step 890; L = 10.69 m. (d) Step 1780; L = 10.725 m.

Figure 8: Evolution of the form-�nding process of a elastica curve and its length (L) at di�erent stages.

Figure 9: Original problem of the Bathe and Bolourchi cantilever beam.

A AQ2 AQ3 J I2 I3 E E/G
(in2) (in2) (in2) (in4) (in4) (in4) (lb/in2)

1 1 1 1/6 1/12 1/12 107 2

Table 2: Material and section properties of the Bathe and Bolourchi cantilever beam.
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Figure 10: Evolution of the kinetic energies for the Bathe and Bolourchi cantilever beam. Figure a) shows
the initial geometry. Figure b) corresponds to the geometry at step 100. Figure c) shows the
�nal equilibrium geometry.

Figure 11: Coordinates X-Y-Z using the form-�nding method (F.F.) and the implicit numerical solution
based on Simo's theory (I.M.) for the Bathe and Bolourchi cantilever beam.
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90º

30º

x

y

P

Figure 12: An initially straight rod is bent up to reach vertical tangents at supports and then twisted by
rotating 30o its ends.

A AQ2 AQ3 J I2 I3
(cm2) (cm2) (cm2) (cm4) (cm4) (cm4)

2400 2000 2000 91.147 32 72

Table 3: Section properties for the case of bending and torsion e�ects.

3.3 Combined bending and torsion

This example simulates the behaviour of a 10 m bent beam when its ends are clamped at a distance
of 4.56 m and twisted 30o. For that purpose, the kinematic constraints at both ends are speci�ed
by setting the orientation of each cross-section through the de�nition of the corresponding reference
frames (see Fig.12). By means of two elemental rotations, �rstly, the tangent vectors are rotated
an angle of 90o for simulating bending e�ects. When convergence is reached, a second form-�nding
step is carried out rotating the end frames about the tangent vectors an angle of 30o to evaluate
twisting e�ects. Cross-section properties are shown in the table 3. The modulus of elasticity is
E = 104 MPa, the relation E/G is 2.5 and the selected time interval is ∆t = 0.0001 s. To assess
the reliability of the method, the form-�nding solution is compared with the obtained results by
the same numerical implicit tool used in the example 2, based on Simo's procedure. Both models
are discretised into an increasing number of elements (from 8 to 20) and ratios between coordinates
corresponding to the node 'P' and the beam length are shown in Table 4. The algorithm stops
when both translational and rotational kinetic energies are under 10−7 kN·m, after approximately
100.000 steps. As it can be seen in table 3, the form-�nding method provides reliable results; the
error diminishes as the number of elements increases.
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∆yp/L ∆zp/L

Num. of elements I.M. F.F. I.M. F.F.

8 0.3796 0.3876 -0.0357 -0.0390
16 0.3795 0.3862 -0.0343 -0.0365
20 0.3795 0.3861 -0.0341 -0.0355

Table 4: Vertical and horizontal relative de�ection for the bent and twisted beam taking into account di�er-
ent number of elements in both form-�nding method (F.F.) and implicit method based on Simo's
theory (I.M.).

A AQ2 AQ3 J I2 I3
(cm2) (cm2) (cm2) (cm4) (cm4) (cm4)

1 0.5 0.5 0.0137 2.0416 0.0416

Table 5: Section properties of the beam used in the shear deformability test.

3.4 Shear deformability test

This example is intended to study a case where shear e�ects are not negligible and can be simulated
by the form-�nding method presented in this work. The benchmark for this shear deformability
test is the elastica of the �rst example with the same prescribed target length (L0 = 10.725 m) and
distance between beam ends (10 m). The modulus of elasticity is E = 104 MPa, the relation E/G
is 2.5 and the selected time interval is ∆t = 0.0001 s. The mechanical properties of the beam under
study are shown in table 5. Such properties have been chosen to get a lower ratio between the shear
sti�ness and the bending sti�ness than in the case of the elastica, being both cross-sectional areas
equivalent. The relation between shear factors α = 12EI2

/
(GAQ3L

2
0) in both cases is:

αshear test

/
αelastica = 163.5 (47)

Fig. 13 shows the transverse shear deformations corresponding to both, the elastica case (blue) and
the shear deformable case (brown). As expected, shear deformations are much larger than in the
elastica case. Therefore, this example highlights the ability of the proposed form-�nding method
to reproduce shear deformable cases.
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Figure 13: Shear deformations for the elastica and a beam where transverse shear is not negligible.

4 Concluding remarks

A form-�nding method for bending-active structures implementing the so-called geometrically exact
rod model into a dynamic relaxation procedure has been developed. The geometrically exact beam
model was designed by Reissner, Simo and other authors to handle mechanical problems of slender
rods undergoing large displacements and rotations, therefore it has been selected as underlying
mechanical model in our implementation. The use of 6 DoFs per node to update translations
and rotations provides a complete description of the kinematics and allows for a straightforward
de�nition of rotational boundary conditions. Key points in the specialization of Reissner-Simo's
model to the dynamic relaxation procedure have been: the derivation of element end forces from
the internal virtual work equation (sect. 2.3.2); the derivation of the expression of the change
of orientation in the element (sect. 2.3.3); the de�nition of the numerical step using Newmark's
algorithm and the full expression of the inertial torques (Eq. 37b); and the update of angular
velocities considering that nodal frames are changing (Eq. 42). Dynamic relaxation provides
realiable results in terms of accuracy and computation time, as well as the possibility of monitoring
the numerical process through di�erent parameters: curve length, kinetic energies, number of steps
or residual forces.

In contrast to the work of other authors, in the studied examples the form-�nding process is
driven by kinematic constraints, de�ning restrictions at end nodes and using the beam length as a
design parameter. We showed that di�erent lengths or end restrictions lead to meaningful solutions
of the form-�nding problem. The numerical examples also illustrated the ability and accuracy of
the method to reproduce the con�guration of active members starting from an initial geometry far
from the equilibrium solution.
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