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Abstract

This work describes a two-step procedure for the electrochemical coating of reduced 

graphene oxide (RGO) and polypyrrole anthraquinone sulfonate (PPyAQS) onto an 

activated carbon cloth (ACC) by cyclic voltammetry (CV). The textile samples were 

characterized by CV, electrochemical impedance spectroscopy (EIS) and galvanostatic 

charge-discharge measurements using a sandwich-type (electrode/separator/electrode) 

cell designed to operate in three or two-electrode configurations. The presence of RGO 

onto the ACC surface optimized the electrosynthesis of PPyAQS and reinforced the 

stability of the polymer with the number of charge/discharge cycles. A retention 

capacity of 90% after 100 charge-discharge cycles together with an energy density of 

7.8x10-4 W h cm-2 at a power density of 1.8x10-3 W cm-2 were obtained for the 

ACC/RGO/PPyAQS sample. The analyses by field emission scanning electron 

microscopy (FESEM) showed the RGO veils-like and PPyAQS glomerular structures 

covering the ACC-fibers. The Fourier transform infrared spectroscopy (FTIR) analyses 

not only detected the presence of PPy and AQS, but also, the changes in the molecular 
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structure of PPyAQS, depending on its oxidation state, as consequence of the redox 

reactions occurred in the charge/discharge processes in the two-electrode cell.

Keywords: Activated carbon cloth; reduced graphene oxide; polypyrrole; 

anthraquinone sulfonate; electrochemical capacitor.
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1. Introduction

Among all the carbon-based substrates, ACC is a potential cheap material to be used as 

current collector for supercapacitors due to its unique structure, high surface area, good 

chemical stability, electrical conductivity and dimensional versatility [1]. In accordance 

with its high surface area, ACC presents a relatively high performance for the energy 

storage governed by the formation of the electrochemical double layer capacitance 

(EDLC) (non-faradaic mechanism) and in more or less extent, depending of the amount 

and kind of functional groups, by the redox reactions of those groups (faradaic 

mechanism) [2-6]. On the contrary, another group of materials, known as 

pseudocapacitors, based on transition metal oxides (MOx) [7-10] and conducting 

polymers (CPs) [11, 14] show very high capacitance behavior. Polypyrrole (PPy) is an 

intrinsically conducting polymer with high redox and capacitive current, high 

conductivity, high storage ability and good thermal and environmental stability (all 

these in a wide pH range) [15-17]. The main drawback of conducting polymers as 

electrodes for supercapacitors is their poor cycling stability because of swelling and 

shrinkage during doping/dedoping processes. Combinations of conducting polymer with 
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carbon materials have been attempted to reinforce the stability of the polymer as well as 

to improve the capacitance and conductivity of carbon-based supercapacitors [18]. 

Graphene is considered a unique material due to its electronic properties (high electron 

mobility at room temperature and ability to sustain high electric currents densities), 

mechanical properties, high specific surface area, etc. [19-21]. Moreover, reduced 

graphene oxide (RGO) possesses a large number of conjugated rings which can interact 

with porous carbon materials, but also many functional groups that can chemically 

interact with conducting polymers [22]. A number of composite materials based on PPy 

combined with graphene compounds [23-27] or carbon fibrous structures [28-31] have 

been demonstrated, showing highly stable capacitive performance. This is mainly 

attributed to the enhanced conductivity and/or redox behavior of the CPs-composites by 

carbon material integration. The electrical properties of PPy also depend on the size of 

the counter-ion. To prevent the expulsion of the counter-ion from the polymer structure 

(dedoping), organic anions with high molecular size such as anthraquinone sulfonate 

acid (AQSA), dodecylbenzene sulfonic acid (DBSA), naphtalensulfonic (NSA) acid, 

naphtalendisulfonic (NDSA) acid and p-toluene sulfonic acid (PTSA) have been used 

[32,33]. Moreover, it has been demonstrated that AQS dopant can significantly improve 

the pseudocapacitive performance of PPy [34,35].

On the basis of the above, in the present study, the surface of an ACC was modified by 

coating of RGO and PPyAQS using an environmentally friendly technique such as CV. 

The use of textiles as substrate for electrodes brings significant advantages related to 

their high surface/weight and surface/volume rates and dimensional versatility for the 

design of electrodes for electrochemical cells. The electrochemical behavior and the 

capability for energy storage of the modified textile electrodes were evaluated using a 

three or two-electrode cell configuration. The CV, EIS and the charge/discharge tests 
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were used for this purpose. FESEM and FTIR analyses were used to observe the 

morphology of different samples and to relate the molecular structure of PPyAQS with 

its oxidation state, respectively. 

2. Experimental

2.1. Chemicals

Monolayer graphene oxide (GO) from Nanoinnova Technologies S.L. (Spain), lithium 

perchlorate and sulphuric acid from Merck, Pyrrole (98%) and sodium anthraquinone 

sulfonic salt (97%) from Sigma-Aldrich, were used as supplied. The solutions were 

prepared with ultrapure water (18.2 mΩ cm) from an Elix 3 Millipore-Milli-Q 

Advantage A10 system and deoxygenated by bubbling nitrogen gas (N2 premier X50S).

2.2. Preparation of electrodes from ACC

The Zorflex® FM10 activated carbon cloth (0.5 mm thick with a surface density of 120 

g m-2) was provided by Chemviron Carbon. ACC strips of 1 cm x 3 cm were glued to 2 

mm diameter copper rods with CircuitWorks® conductive epoxy resin. The resin was 

hardened at 85 ºC. Afterwards, the joint (ACC/resin/copper) was sealed with Teflon 

tape and glued with epoxy resin to isolate it from the solution. The copper rod was 

passed through a hollow glass rod.  The electrodes so prepared were named with the 

abbreviation WE-ACCs.

2.3. Electrochemical cells

The CV syntheses with WE-ACCs were carried out using a voltammetric cone-shaped 

cell. The counter electrodes (CEs) were a Pt cylindrical mesh (6 cm height and 3 cm 

diameter) for the RGO-synthesis and a stainless steel cylindrical mesh (4 cm height and 



5

3 cm diameter) for the polymerization of Py. The reference electrode was Ag/AgCl (3 

M KCl). The WE-ACCs were put in the center of the cylinders and 3 cm2 (geometric 

area) was introduced into the solutions of synthesis. The 3 g L-1 GO/0.1 M 

LiClO4·3H2O and 0.2 M Py/0.03 M AQS solutions were prepared by sonication for 30 

and 40 minutes to disperse the GO monolayer powders and to dissolve the AQS salt, 

respectively. 

During the synthesis the RGO, the GO solution was gently agitated with the aid of a 

magnetic stirrer to avoid the precipitation of GO.  

For the electrochemical characterization of the textile samples (modified or not), small 

pieces of 0.5 cm x 0.5 cm were accurately cut from the WE-ACCs. A test-cell 

(Swagelok-type cell) ECC-Aqu from EL-CELL was employed. The electrical parts of 

the cell are made of gold. The samples (0.5 cm x 0.5 cm) were positioned on both sides 

of a glass fiber filter (2 cm diameter, 0.3 cm thick and 1.2 µm nominal pore size) 

soaked with a 0.1 M H2SO4 solution. Two circular gold discs (2 cm diameter) act as 

current collectors. For the experiments carried out in the three-electrode configuration, a 

gold metal pin, positioned between the two collectors, was used as the reference 

electrode (RE). The RE potential was +0.4 V vs. Ag/AgCl (3 M Ag/AgCl) under the 

experimental conditions. For the two-electrode configuration, the Au-pin terminal was 

unconnected and the RE-cable of the Autolab PGSTAT302 was connected to that of the 

counter electrode (CE).  

2.4. Procedures: Synthesis and characterization

As the WE-ACCs presented a certain internal resistance and experienced a fast drop of 

current during both RGO and PPyAQS syntheses, CV was chosen with the purpose of 
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coating a significant amount of RGO and PPyAQS onto the ACC surface. The ohmic 

drop of the WE-ACCs was measured and introduced in the software of the Autolab. 

The voltammetric parameters for the synthesis of RGO were established from a 

previous study [36] (not included) using a glassy carbon (GC) as working electrode 

since the voltammogram for WE-ACC did not show characteristic peaks. Accordingly, 

a potential range from -1.60 V to 0.60 V for 15 cycles at a scan rate of 10 mV s-1 was 

selected. The presence of an effective and significant amount of RGO was demonstrated 

by electrochemical and FESEM analyses.

The syntheses of PPyAQSn (where n is the number of cycles) with WE-ACC were 

carried out between 0.2 V and 1.3 V or 1.6 V vs. Ag/AgCl (3 M Ag/AgCl). A range 

from 0.2 V to 1.6 V vs. Ag/AgCl (3 M Ag/AgCl) was selected for WE-ACC/RGO15. 

Both syntheses were carried out at scan rates of 5 mV s-1. The influence of the scan rate 

on the electrochemical response of PPyAQS has been proven. Low scan rates between 1 

and 5 mV s-1 permit the charge transfer between substrate/polymer interface and along 

the PPy chains [32]. 

For the characterization by CV of the different samples in the three-electrode cell, a 

potential range between -0.9 V and 0.3 V vs. Au (0.1 M H2SO4), at a scan rate of 2.5 

mV s-1, was used. To establish the voltage of the cell in the two-electrode 

configuration, the potential range established for the working electrode in the three-

electrode configuration was taken into account. According to this, the potential of the 

two-electrodes was individually measured with the help of two digital multimeters, one 

of which was connected to WE:Au-pin terminals and the other to CE:Au-pin terminals. 

This procedure was carried out to know the variation of the potential of each electrode 

during the scanning of the cell voltage. Accordingly, a cell voltage between -1.25 V and 

0.5 V was chosen for the experiments with the cell in the two-electrode configuration. 
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The charge/discharge currents of 1 mA (4 mA cm-2) and 0.5 mA (2 mA cm2) for the 

three and two-electrode cells, respectively, were obtained from the stabilized 

voltammograms in the Figs. 2b and 6. Two density currents of 8 and 4 mA cm2 were 

also tested but a significant a loss of performance for the PPyAQS samples was 

observed. The low cyclability rate of PPyAQS-samples is a characteristic behavior of 

PPyAQS [32]. For the characterization by EIS of ACC, ACC/RGO15, ACC/PPyAQS8 

and ACC/RGO15/PPyAQS4, the three-electrode configuration was chosen and a 

frequency range from 105 to 10-2 Hz was established.

2.5. Surface morphology and chemical structure characterization 

For the FESEM analyses a Zeiss Ultra 55 microscope at a voltage of 3 kV was used. 

The FTIR-spectra were recorded after 400 scans at 4 cm-1 with a spectrophotometer 

FTIR NICOLET 6700 equipped with a horizontal-ATR accessory of zinc selenide.

3. Results and discussion

3.1. Characterization of ACC/RGO (three-electrode configuration)

Fig. 1a shows the CV curve for an ACC/RGO15 sample. No characteristic peaks are 

easily distinguished. Thus, in order to confirm the presence of RGO, two FESEM 

micrographs are shown in Fig. 1b and c. In these figures, the RGO structures are shown 

as veils that completely cover the ACC-fibers. It is also possible to observe the 

characteristic wrinkled and kinked morphology of RGO structures.
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3.2. Synthesis and electrochemical characterization of ACC/PPyAQSn samples (three-

electrode configuration)

Fig. 2a shows the CV curves corresponding to the fourth and eighth cycles recorded 

during the synthesis of PPy onto WE-ACC and WE-ACC/RGO15 between 0.2 and 1.6 

V, respectively. No noticeable plot changes were observed when the upper limit of 

potential was 1.3 V. Fig. 2b shows the CV curves obtained for the characterization of 

different samples after the PPyAQS synthesis. Two peaks ascribed to the reduction-

oxidation of the polymer backbone are clearly identified [18,26,35]. The increment of 

the current peak for ACC/PPyAQS2 (1.3 V), ACC/PPyAQS4 (1.3 V) and 

ACC/PPyAQS8 (1.3 V) is easily noted. Smaller differences are observed for 

ACC/PPyAQS8 (1.3 V), ACC/RGO15/PPyAQS4 (1.6 V) and ACC/PPyAQS8 (1.6 V) 

which could indicate that a limit in the effective amount of polymer that has been 

synthesized is reached. When comparing these CV curves with that for ACC, it can be 

concluded that PPyAQS is effectively coating the fibers of ACC, even with only two 

cycles of synthesis. Thus, the voltammetric response from ACC/PPyAQSn samples 

should be mostly due to the redox processes concerning the polymer. In Fig. 2c, the CV 

curve for an ACC sample soaked with a 0.03 M AQS and 0.1 M H2SO4 solution is 

shown. Two characteristic peaks corresponding to the reduction-oxidation of the AQS 

are observed. Considering the position of these peaks, it is safe to assume that in the CV 

curves for the PPyAQS samples, the two AQS peaks appear overlapped with those for 

the reduction-oxidation of PPy backbone [18,26,35]. In Fig. 2d, the charge-discharge 

curves, obtained at charge/discharge currents of ±1 mA, for ACC, ACC/PPyAQS4 (1.3 

V), ACC/PPyAQS8 (1.3 V), ACC/RGO15/PPyAQS4 (1.6 V) and ACC/PPyAQS8 (1.6 

V) are shown. The capacitance was calculated by the equation C = It/V where I is the 

discharged current (A), t is the discharge time (s) and V is the potential change during 
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the discharge process (V). The results of the capacitance, which are summarized in 

Table 1, are expressed in terms of geometric area (0.25 cm2), that is, areal capacitance 

CA (F cm-2). The reasons to carry this out was based on the fact that it was not possible 

to accurately determine the weight of PPyAQS which is, as it can be seen in Fig. 2b, 

primarily responsible of the electrochemical response of ACC/PPyAQSn samples.

Table. 1. Summary of the areal capacitances for a current density of 4 mA cm-2 in the 

three-electrode cell.

Accordingly, it can be observed that increasing the charge of synthesis during the Py 

polymerization resulted in higher amounts of polymer and increasing values of CA 

although the initial capacitance of ACC could be reduced due to the blocking of certain 

percentage of porosity by the coating. It is interesting to note the high value of CA 

obtained for the sample containing RGO at a lower charge of synthesis. This result 

could be due to the morphology of RGO/PPyAQS which improves its capacitive 

Loaded synthesis charge ( C ) CA (F cm-2)

ACC 0.0 2.6

ACC/PPyAQS4 (1.3 V) 6.8 2.7

ACC/PPyAQS8 (1.3 V) 15.8 3.4

ACC/RGO15/PPyAQS4 (1.6 V) 9.5 4.8

ACC/PPyAQS8 (1.6 V) 30.7 5.8
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properties. To verify this result, samples of ACC/PPyAQS8 (1.3 V), and 

ACC/RGO15/PPyAQS4 (1.6 V) were analyzed by FESEM. 

Figs.  3a-c show the Nyquist and Bode plots for ACC, ACC/RGO15, ACC/ PPyAQS8 

(1.3 V) and ACC/RGO15/PPyAQS4 (1.6 V). A very different behavior between samples 

with and without PPyAQS is clearly appreciated. The samples without PPyAQS show a 

characteristic capacitive behavior. In the Nyquist diagram (Fig. 3a) the vertical lines are 

indicative of such behavior. Accordingly, in the Bode diagram (Fig. 3b) the phase angle 

at the lowest frequencies appears around -75 degrees. On the other hand, the PPyAQS 

samples show a significant diffusive behavior. This fact can be justified by the near 45 

degrees slopes observed for PPyAQS8 (1.3 V) and ACC/RGO15/PPyAQS4 (1.6 V) in 

the Nyquist diagram of Fig. 3a. On that basis, the phase angle in the Bode diagram (Fig. 

3b) is around to -50 degrees. It can be concluded that PPyAQS8 (1.3 V) and 

ACC/RGO15/PPyAQS4 (1.6 V) present a significant diffusion impedance in 

comparison with the samples without PPyAQS. As it can be seen in the Bode plot (Fig. 

3c), the impedance module (lowest frequencies) increased an order of magnitude in the 

PPyAQS samples in relation to the samples non-polymerized. In the Fig. 4a, an 

enlarged image of the Nyquist plot of Fig. 3a is shown. The capacitive loops 

correspond, probably, to charge transfer resistances and inner resistances (Rctin) of the 

electrodes. It can be noted that although there are a significant variation among the 

electrolyte resistance values, the Rctin values remain around 1-2 ohms (quite low 

resistance). Therefore, the interfacial and inner resistances were approximately the same 

for ACC, ACC/RGO15, ACC/ PPyAQS8 (1.3 V) and ACC/RGO15/PPyAQS4 (1.6 V). 

Since the PPyAQS samples show high diffusion impedance, it was considered 

appropriate to perform EIS at a potential where PPyAQS was in an oxidized state. The 

Fig. 4b shows the Nyquist plots for ACC, ACC/RGO15, ACC/ PPyAQS8 (1.3 V) and 
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ACC/RGO15/PPyAQS4 (1.6 V) (the same as in Fig. 3a) but in the oxidized state at a 

potential of -0.485 V. It can be clearly observed how the diffusion impedance values 

decrease by an order of magnitude approximately when PPyAQS is in oxidized state. 

The values of the impedance module at lowest frequency (figure not shown) for ACC, 

ACC/RGO15, ACC/ PPyAQS8 (1.3 V) and ACC/RGO15/PPyAQS4 (1.6 V) were 47, 41, 

42 and 32 Ω, respectively. 

3.3. FESEM characterization

The FESEM micrographs of ACC/PPyAQS8 (1.3 V) and ACC/RGO15/PPyAQS4 (1.6 

V) are shown in Figs. 5a-d. Figs. 5a and b, show the yarns of ACC coated uniformly by 

PPyAQS8 (1.3 V), which shows a glomerular structure. In Figs. 5c and d, PPyAQS4 

structures coat uniformly the surface of ACC/RGO15. The size of the spherical particles 

of PPyAQS4 onto RGO15 (see Fig. 5d) appears reduced by roughly 50% in comparison 

to those onto the bare ACC surface (see Fig. 5b). According to this result, it can be 

concluded that RGO creates a more efficient distribution of PPyAQS which means an 

increment in the effective area of the ACC/RGO15/PPyAQS4. This result is coherent 

with the CA values discussed in the above section.

3.4. Electrochemical study in a symmetric electrochemical capacitor (two-electrode cell 

configuration)

For the study in a real electrochemical capacitor, samples of ACC/PPyAQS8 (1.3 V) 

and ACC/RGO15/PPyAQS4 (1.6 V) were chosen to be tested in the symmetrical two-

electrode cell. In a real storage device, the same material works in different potential 

ranges [37]. The stabilized voltammograms for ACC/PPyAQS8 (1.3 V) and 

ACC/RGO15/PPyAQS4 (1.6 V) are shown in Fig. 6. In accordance with these 
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voltammograms, it could be concluded that during the charge/discharge of the cell, 

faradic and non-faradaic processes are involved: the first ones are the faradaic reactions 

related to the oxidation/reduction of PPy; the second, the non-faradaic mechanism due 

to the formation of the double layer capacitance (EDLC). In Fig. 7a, the charge-

discharge curves of ACC, ACC/PPyAQS8 (1.3 V) and ACC/RGO15/PPyAQS4 (1.6 V) 

are shown. These curves were obtained for a charge/discharge current of ±0.5 mA. The 

results expressed in terms of geometric area are summarized in the Table 2. The energy 

density was calculated according to the equation ED = C(ΔV)2/2 where C is the specific 

capacitance of the two-electrode cell and ΔV is the operating potential range. The 

averaged power density was calculated as PDaverage = ED/Δt where ED is the specific 

energy density and Δt the time of discharge of the cell.

Table. 2. Areal values of capacitance (CA), energy (EDA) and power densities (PDA) 

obtained with the two-electrode cell at 2 mA cm-2.

According to the above, when the areal capacitance of the cell CA (F cm-2) is calculated, 

the contribution of PPy-oxidation/reduction reactions is less than that for the three-

electrode cell. For the three-electrode cell, the stabilized voltammograms were obtained 

for a range of potential which cover mainly the PPy-faradic reactions. That is why the 

differences between the CA values for non-modified and RGO/PPyAQS-modified 

CA (F cm-2) EDA (W h cm-2) PDA (W cm-2)

ACC 1.3 5.5·10-4 1.8·10-3

ACC/PPyAQS8 1.5 6.5·10-4 1.8·10-3

ACC/RGO15/PPyAQS4 1.8 7.8·10-4 1.8·10-3
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samples are smaller for the two-electrode cell. Nevertheless, increments of 15% and 

38% were obtained for ACC/PPyAQS8 and ACC/RGO15/PPyAQS4, respectively. It is 

interesting to note that the areal power densities of ACC, ACC/PPyAQS8 (1.3 V) and 

ACC/RGO15/PPyAQS4 (1.6 V) have about the same values, that is, same power output 

of the energy based on them. This result is in accordance with the fact that the charge 

transfer and inner resistances (Rcint) of these samples show similar values, around 1-2 

ohms, which is a quite low value. The specific energy density for 

ACC/RGO15/PPyAQS4 (1.6 V) is higher than that for ACC/PPyAQS8 (1.3 V) which 

was synthesized at a higher loaded charge (see Table 1). In order to compare these 

results with those reported in the literature for textile supercapacitors, the Ragone plot 

reported by Changsoon Choi et al. [38] was taken as a reference. In this plot, the EDA 

(W h cm-2) values are established between 10-8 and 10-4 while the PDA (W cm-2) values 

are ranged from 10-6 to 10-2. A novel cable-type flexible supercapacitor with excellent 

performance was fabricated using 3D PPy-MnO2-CNT-cotton thread multi-grade 

nanostructures as electrodes by Nishuang Liu et al. [39]. The supercapacitors showed an 

areal energy density of 33 μW h cm-2 at a power density of 0.67 mW cm-2 and a high areal 

power density of 13 mW cm-2 at an energy density of 14.7 μW h cm-2. From high 

capacitive MnO2–PPy–carbon fiber and V2O5–PANI–carbon fiber composites, a flexible 

wire-shaped fiber asymmetric supercapacitor (WFASC) was fabricated by Weijie Liu et al. 

[40]. For a wide potential window of 2.0 V a high areal capacitance of 0.613 F cm-2 at a 

discharge current density of 1.5 mA cm-2 and a high energy density of 0.340  mW h cm-2 at a 

power density of 1.5 mW cm-2 were obtained. Thus, promising values of both areal energy 

and power densities are obtained in the present work. 

In Fig. 7b the plot of the retention capacity versus number of charge/discharge cycles is 

shown. The stability of the sample with RGO is clearly visible, retaining 90% of its 
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capacitance. This result is coherent with the fact that the combination of conducting 

polymer with carbon materials reinforces the stability of the polymer as well as 

improving the capacitance of carbon-based supercapacitors [16]. A density current of 4 

mA cm2 was also tested. The values of CA (F cm-2) resulted in a significant loss of 

performance for ACC, ACC/PPyAQS8 and ACC/RGO15/PPyAQS4 of 5.0%, 12.5% and 

14.5%, respectively.

3.5. FTIR-analysis

The FTIR-spectrum of ACC was compared with the spectra of ACC/PPyAQS8 (1.6 V) 

and ACC/RGO15/PPyAQS4 (1.6 V) in Fig. 8a. The assignment of the bands is described 

below:

 The band centred at 708 cm-1 is associated to C-S stretching of the sulfonic 

group of AQS [41]. This band clearly appears in both samples coated with 

PPyAQS and RGO/PPyAQS

 A strong band between 1140-1080 cm-1 attributed to the stretching vibration of 

C-O bonds [42] appears clearly visible in the ACC-spectrum. The presence of 

PPyAQS and RGO/PPyAQS contributed to the modification of this band. 

 The band centred at 1288 cm-1 is identified with the C-N bonds stretching 

vibration [42]. A more intense band is observed in the RGO/PPyAQS spectrum.

 A band centred at 1510 cm-1 attributed to C-C bonds stretching vibration in 

PPyAQS ring [42] is observed for both ACC/PPyAQS8 (1.6 V) and 

ACC/RGO15/PPyAQS4 (1.6 V) samples.

 An intense absorption band at around 1740 cm-1 is identified with the stretching 

vibration of the C=O bonds of anthraquinone group [43]. 
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In Fig. 8b, the spectra of two 0.25 cm-2 samples of ACC/RGO15/PPyAQS4 (1.6 V), 

used in the stability tests with the two-electrode cell, are shown. Since the FTIR spectra 

are similar to these shown in Fig. 8a, it can be concluded that PPyAQS still remain on 

the surface of the electrode after the stability tests. On the other hand, according with 

the spectra, it is possible to observe their different redox state. In the sample 

ACC/RGO15/PPyAQS4 (1.6 V)ox, the band centred at around 1740 cm-1, which is 

identified as the stretching vibration of the C=O bonds of the anthraquinone group, is 

visible. On the contrary, in the spectrum for ACC/RGO15/PPyAQS4 (1.6 V)red, this 

band has disappeared because of the reduction of the C=O bond and, consequently, a 

new band at 1117 cm-1 [42]. This band could be associated with the stretching vibration 

of the C-O bond from the reduction of the anthraquinone group. So, FTIR analysis not 

only detect the presence of PPy and AQS onto the ACC yarn after its synthesis and after 

100 charge/discharge cycles, but also it is possible to monitor the PPy 

oxidation/reduction associated with the charge/discharge processes.

4. Conclusions

An ACC was successfully modified with RGO and PPyAQS by CV. EIS showed 

significant results for the supercapacitors based on PPyAQS and RGO/PPyAQS. The 

role of RGO in the synthesis of the polymer and the capacitance of the system has been 

demonstrated in the electrochemical and morphologic analyses. Thus, the combination 

of RGO with PPyAQS optimized the electrosynthesis of PPy, increased the areal 

capacitance and the energy density and reinforced the stability of the polymer with the 

number of charge/discharge cycles. The values of areal energy and power density of 

7.8x10-4 W h cm-2 at 1.8x10-3 W cm-2 obtained in the present work are comparable to 
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those reported in the literature. So, promising results for capacitive applications in 

which electrodes with a high surface/low-volume rate is needed, have been achieved. 
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Figure Captions

Fig. 1. (a) CV curve for ACC/RGO15 at a scan rate of 2.5 mV s-1. (b) and (c) FESEM-

micrographs for ACC/RGO15 at 5 Kx and 15 Kx.

Fig. 2. (a) CV curve for the PPy synthesis on WE-ACC and WE-ACC/RGO15 recorded 

in 0.2 M Py and 0.03 M AQS solution at 5 mV s-1. (b) CV curves of ACC, 

ACC/PPyAQS2 (1.3 V), ACC/PPyAQS4 (1.3 V), ACC/PPyAQS8 (1.3 V), 

ACC/RGO15/PPyAQS4 (1.6 V) and ACC/PPyAQS8 (1.6 V) recorded at a scan rate of 

2.5 mV s-1 for the three-electrode cell configuration in 0.1 M H2SO4 aqueous medium. 

(c) CV curve for an ACC soaked with the 0.03 M AQS and 0.1 M H2SO4 solution at 2.5 

mV s-1. (d) Charge/discharge curves for ACC, ACC/PPyAQS4 (1.3 V), ACC/PPyAQS8 

(1.3 V), ACC/RGO15/PPyAQS4 (1.6 V) and ACC/PPyAQS8 (1.6 V) obtained at 

charge/discharge currents of ±1mA.

Fig. 3. (a) Nyquist and (b, c) Bode plots for ACC, ACC/RGO15, ACC/PPyAQS8 (1.3 

V) and ACC/RGO15/PPyAQS4 (1.6 V). Frequency range from 105 to 10-2 Hz. The open 

circuit potential was -0.1 V.
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Fig. 4. (a) Enlarge image of Nyquist plot of Fig. 3a and (b) Nyquist plot for ACC, 

ACC/RGO15, ACC/PPyAQS8 (1.3 V) and ACC/RGO15/PPyAQS4 (1.6 V) in the 

oxidized state at -0.5 V. Frequency range from 105 to 10-2 Hz.

Fig. 5. (a) and (b) micrographs for ACC/PPyAQS8 (1.3 V) at 500 x and 15 Kx. (c) and 

(d) micrographs for ACC/RGO15/PPyAQS4 at 500 x and 15 Kx.

Fig. 6. Stabilized CV curves for ACC/PPyAQS8 (1.3 V) and ACC/RGO15/PPyAQS4 

(1.6 V) recorded at a scan rate was 2.5 mV s-1 using the two-electrode configuration.

Fig. 7. (a) Charge/discharge curves for ACC, ACC/PPyAQS8 (1.3 V) and 

ACC/RGO15/PPyAQS4 (1.6 V) obtained at charge/discharge currents of ±0.5 mA. (b) 

Retention capacity versus cycle number for ACC, ACC/PPyAQS8 (1.3 V) and 

ACC/RGO15/PPyAQS4 (1.6 V) during 100 cycles (for 72 hours).

Fig. 8. (a) FTIR-spectra for ACC, ACC/RGO15/PPyAQS4 (1.6 V) and ACC/PPyAQS8 

(1.6 V). (b) FTIR-spectra for two samples of ACC/RGO15/PPyAQS4 (1.6 V), in their 

oxidized or reduced state, taken after the 100 cycles stability test in the two-electrode 

cell. The spectra were recorded after 400 scans and a resolution of 4 cm-1.

Tables

Table. 1. Summary of the areal capacitances for a current density of 4 mA cm-2 in the 

three-electrode cell.

Table. 2. Areal values of capacitance (CA), energy (EDA) and power densities (PDA) 

obtained with the two-electrode cell at 2 mA cm-2. 


















