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Abstract 24 

Probabilistic Neural Networks (PNNs) and Support Vector Machines (SVMs) are flexible 25 

classification techniques suited to render trustworthy species distribution and habitat 26 

suitability models. Although several alternatives to improve PNNs’ reliability and 27 

performance and/or to reduce computational costs exist, PNNs are currently not well 28 

recognised as SVMs because the SVMs were compared with standard PNNs. To rule out this 29 

idea, the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus Doadrio & 30 

Carmona, 2006) was modelled with SVMs and four types of PNNs (homoscedastic, 31 

heteroscedastic, cluster and enhanced PNNs); all of them optimised with differential 32 

evolution. The fitness function and several performance criteria (correctly classified 33 

instances, true skill statistic, specificity and sensitivity) and partial dependence plots were 34 

used to assess respectively the performance and reliability of each habitat suitability model. 35 

Heteroscedastic and enhanced PNNs achieved the highest performance in every index but 36 

specificity. However, these two PNNs rendered ecologically unreliable partial dependence 37 

plots. Conversely, homoscedastic and cluster PNNs rendered ecologically reliable partial 38 

dependence plots. Thus, Eastern Iberian chub proved to be a eurytopic species, presenting 39 

the highest suitability in microhabitats with cover present, low flow velocity (approx. 0.3 40 

m/s), intermediate depth (approx. 0.6 m) and fine gravel (64–256 mm). PNNs outperformed 41 

SVMs; thus, based on the results of the cluster PNN, which also showed high values of the 42 

performance criteria, we would advocate a combination of approaches (e.g., cluster & 43 
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heteroscedastic or cluster & enhanced PNNs) to balance the trade-off between accuracy 44 

and reliability of habitat suitability models. 45 

 46 

1 Introduction 47 

Humans have facilitated species extinctions, invasions, increased soil erosion, altered fire 48 

frequency and hydrology, and incited profound changes in primary productivity and other 49 

key biogeochemical and ecosystems processes (Ellis et al., 2010). Therefore, in the face of 50 

this global change, forecasting future ecosystem states, such as future species geographic 51 

distributions or land-use patterns, is currently a central priority in biogeographical and 52 

ecological sciences (Eberenz et al., 2016; Evans et al., 2016). As a consequence of this 53 

priority, scientists, conservationists and managers are repeatedly compelled to confront 54 

new problems requiring data analysis (LaDeau et al., 2016). 55 

Data analysis is largely classified into two broad categories: unsupervised and supervised 56 

(Olden et al., 2008). The former focus on revealing patterns and structures in data (e.g., 57 

finding groups of co-occurring species), such as the renowned Self-Organising Maps (SOM) 58 

(Kohonen, 1982) or the laureate t-Distributed Stochastic Neighbour Embedding (t-SNE) (Van 59 

Der Maaten and Hinton, 2008). Conversely, supervised approaches, such as decision trees 60 

(e.g., CART; Breiman et al., 1984) or the Generalised Additive Models (GAMs) (Hastie and 61 

Tibshirani, 1990), attempt to model the relationship between a set of inputs and known 62 

outputs (Olden et al., 2008). Based on the nature of the outputs, supervised learning is 63 

likewise classified into two main groups. Therefore, if the outputs are continuous, the 64 
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supervised technique is used to perform regression (e.g., M5; Quinlan, 1992), whereas for 65 

categorical outputs the task is termed classification, although intermediate approaches exist 66 

(i.e., ordinal regression) (Gutierrez et al., 2016). 67 

Currently, a number of different approaches to perform classification are available: from 68 

the simple k-nearest algorithm, which assigns an object to the most common class among a 69 

k number of neighbours; to the complex deep neural networks that have won numerous 70 

contests in pattern recognition thanks to their structure, which consists of a vast number of 71 

interconnected neurons disposed in multiple layers (Schmidhuber, 2015). Recent 72 

applications in ecology and species distribution modelling of both extremes of this range 73 

can be found within scientific literature (e.g., Abdollahnejad et al., 2017; Chen et al., 2014). 74 

However, the most popular approaches (e.g., GAMs) are those of intermediate complexity 75 

located in the middle of this broad spectrum of alternatives (e.g., Muñoz-Mas et al., 2016d). 76 

A multitude of different model categories coexist under the umbrella-term classification, 77 

therefore, classification techniques such as GAMs are considered to be a purely statistic 78 

approach, while others, such as artificial neural networks (e.g., Multi-Layer Perceptrons – 79 

MLPs) (Werbos, 1982; McCulloch and Pitts, 1943), are included within the machine learning 80 

and computer science discipline (Olden et al., 2008). 81 

Currently, machine learning algorithms, which make vast use of techniques from 82 

mathematical programming and statistics (Sousa et al., 2013), are routinely used to address 83 

classification tasks in almost every area of knowledge (Oliva and Cuevas, 2017). Among 84 

them, one prominent classification activity is the development of species distribution 85 

models, or habitat suitability models, to explore species ecology and predict their 86 
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occurrence under different management and climatic scenarios (Bennetsen et al., 2016; 87 

Guisan et al., 2013). However, habitat suitability modelling has several characteristics that 88 

are not present in other environmental classification tasks that may determine the 89 

performance and reliability of the models (Elith and Graham, 2009). Species rarity (Wisz et 90 

al., 2008), which usually conditions the number of independent observations of the target 91 

organism and the close-related data prevalence (i.e., the proportion of presences in a data 92 

set) (Fukuda and De Baets, 2016; Mouton et al., 2009), may eventually compromise the 93 

performance of the models. Moreover, the susceptibility of the modelling technique to 94 

regularisation (i.e., adequate control of parameter tuning and easy selection of variables to 95 

prevent overfitting) (Reineking and Schröder, 2006) can affect the credibility of the 96 

classifier. Nonetheless, each modelling technique has its own unique characteristics; thus, 97 

despite recent advances in Artificial Intelligence (AI), an optimal technique that can be 98 

indiscriminately applied can never be envisaged (Yano, 2016; Crisci et al., 2012). 99 

Since the industrial revolution, worldwide human impacts on landscapes and river systems 100 

have intensified significantly (Habersack et al., 2014). Therefore, one area of research that 101 

has grown steadily in the last few decades is that of ecohydraulics (Casas-Mulet et al., 102 

2016). Ecohydraulics is principally addressed to study the relationship between hydraulics 103 

(e.g., water depth or flow velocity) and biota to perform environmental flow assessments. 104 

In accordance, an enormous number of different techniques have been used to develop the 105 

necessary habitat suitability models for riparian and aquatic organisms, from fuzzy logic 106 

(Mouton et al., 2009; Rüger et al., 2005) to random forests (Vezza et al., 2015; Fukuda et al., 107 

2014). Nevertheless, the aforementioned GAMs and MLPs (R Muñoz-Mas et al., 2016b; 108 
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Jowett and Davey, 2007) are well represented, while papers employing multiple techniques 109 

can no longer be considered a rarity (R Muñoz-Mas et al., 2016a; Fukuda et al., 2013). 110 

Although environmental flow assessment should focus on the different components of 111 

riparian ecosystems (Poff et al., 2010), it has traditionally focused on fish species (Tharme, 112 

2003) because they occupy relatively high trophic levels and a broad set of habitats must 113 

typically be present to complete their life cycle (R Muñoz-Mas et al., 2016c). Consequently, 114 

they have been considered adequate indicators of in-stream habitat constraints (Lorenz et 115 

al., 2013). Furthermore, although freshwater fish can be considered a well-studied group, 116 

new species continue to be described (Tierno de Figueroa et al., 2013). Therefore, 79 new 117 

species of freshwater fishes, such as the Eastern Iberian chub (Squalius valentinus Doadrio 118 

& Carmona, 2006), have been described in the Mediterranean basin since 2000 (Tierno de 119 

Figueroa et al., 2013). In this region, with a high number of endemisms, 70% of the 120 

freshwater fish species are either threatened with extinction or already extinct, which is the 121 

highest proportion anywhere in the world (Maceda-Veiga, 2013). Native fish have suffered 122 

from multiple and recurrent introductions, particularly since 1850, which has been 123 

highlighted as one of the main negative factors affecting their survival (R Muñoz-Mas et al., 124 

2016d; Tricarico, 2012). In accordance, within the Mediterranean basin, new habitat 125 

suitability models are continuously being developed, both for the invasive and the 126 

threatened native species e.g., (e.g., Muñoz-Mas et al., 2016e, 2017; Boavida et al., 2014). 127 

A relatively unknown classification technique within ecological literature in general, and 128 

ecohydraulics in particular, are Probabilistic Neural Networks (PNNs) (Specht, 1989, 1990). 129 
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PNNs are machine learning classifiers that combine the Bayes theorem for decision-making, 130 

which assigns an object to the class that presents the highest value in the corresponding 131 

true posterior Probability Density Function (PDF) (e.g., PDFclass i > PDFclass j), with the Parzen-132 

Rosenblatt window method (Parzen, 1962; Rosenblatt, 1956) to estimate the empirical PDF 133 

from a finite data sample (Jin et al., 2002). Although PNNs have been traditionally 134 

considered to be a kind of artificial neural network (Bishop, 1995), they differ substantially 135 

from other artificial neural networks, such as MLPs; thus, optimising PNNs requires the 136 

optimisation of very few parameters (typically only one). This parameter can be set 137 

manually (Muñoz-Mas et al., 2014). Therefore, the PNN has been considered to be a one-138 

pass learning approach (Specht, 1990). 139 

PNNs have been proven to be proficient in various tasks, such as: risk assessment (Adeli and 140 

Panakkat, 2009), bacterial growth prediction (Hajmeer and Basheer, 2002), fault detection 141 

(Chang et al., 2009) or cancer diagnosis (Berrar et al., 2003). Conversely, to the best of our 142 

knowledge, there are very few examples of their use in ecology, despite their having 143 

demonstrated great performance (Muñoz-Mas et al., 2014; Siira et al., 2009; Corne et al., 144 

2004) and stability over various prevalence datasets (Muñoz-Mas et al., 2014). Nonetheless, 145 

the latter is an advantage over other approaches that require case weighting (Platts et al., 146 

2008) or resampling (Allouche et al., 2006). In addition, PNNs have displayed great flexibility 147 

in encompassing the hydraulic niche (i.e., discriminating the suitable microhabitats) 148 

compared to other approaches that have been considered to be excessively rigid (Muñoz-149 

Mas et al., 2014). 150 

https://en.wikipedia.org/wiki/Murray_Rosenblatt
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Another machine learning approach that showed great flexibility in general (Belousov et al., 151 

2002), and in particular with determining suitable microhabitats (R Muñoz-Mas et al., 152 

2016a), is that of Support Vector Machines (SVMs) (Vapnik, 1995). Habitat suitability 153 

models developed with SVMs proved very accurate when compared with other machine 154 

learning classification approaches (R Muñoz-Mas et al., 2016d; Fukuda et al., 2013). As with 155 

PNNs, SVMs only require the optimisation of very few parameters (Fukuda and De Baets, 156 

2016; Huang and Wang, 2006). Previous comparisons between PNNs and SVMs typically 157 

judged SVMs as the preferable option (e.g., Modaresi and Araghinejad, 2014; Muniz et al., 158 

2010; Öğüt et al., 2009). However, since their inception, PNNs have been the subject of 159 

scientific research to improve their performance (Ahmadlou and Adeli, 2010) and/or reduce 160 

the computational burden (Kusy and Zajdel, 2015; Miguez et al., 2010; Li and Ma, 2008; 161 

Berthold and Diamond, 1998). Consequently, the conclusions of these comparisons may 162 

have varied if any of the aforementioned methods to improve PNNs had been employed. 163 

In order to scrutinise the real capabilities of PNNs, we compared four different approaches 164 

to develop PNNs with standard SVMs and demonstrated that SVMs do not mandatorily 165 

outperform PNNs. The paper is structured as follows: section 2 describes the fundamentals 166 

of PNNs and the four different approaches followed to develop PNNs, the theory and 167 

settings of SVMs, the optimisation approach for PNNs and SVMs, the training dataset and 168 

the comparison performed. In section 3, the accuracy of the four different approaches and 169 

the SVM and the reliability of the modelled habitat suitability are presented. In section 4, 170 

the results are discussed and integrated with current literature. Finally, the conclusions are 171 

provided in section 5. 172 
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 173 

2 Methods 174 

2.1 Probabilistic Neural Networks – PNNs 175 

Following the precepts of the Bayes theorem, PNNs classify a given input pattern (i.e., a 176 

string encompassing one record of each of the p input variables) to the class that presents 177 

the highest value among the posterior PDFs (Zhong et al., 2007). However, these PDFs are 178 

typically unknown (Hajmeer and Basheer, 2002); thus, PNNs circumvent this limitation by 179 

employing the Parzen-Rosenblatt window method (Parzen, 1962; Rosenblatt, 1956), or 180 

kernel density estimation, to calculate empirical PDFs based on the training patterns (i.e., 181 

the strings encompassing, each one, one record of each of the p input variables) included in 182 

the training dataset (Jin et al., 2002). The main idea behind the Parzen-Rosenblatt method is 183 

approximating the PDF by a sum of continuous distribution functions or kernels centred at 184 

each training pattern (Adeli and Panakkat, 2009), which have smoothing parameters (𝜎𝜎𝑗𝑗) 185 

that control the degree of influence (i.e., the window) of each training pattern towards each 186 

coordinate (Fig. 1). 187 

 188 

https://en.wikipedia.org/wiki/Murray_Rosenblatt
https://en.wikipedia.org/wiki/Murray_Rosenblatt
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 189 

Fig. 1. Example of the classification of an unknown input pattern (?) based on the Bayes theorem 190 
and the Parzen-Rosenblatt method to calculate the Probability Density Function (PDF) as the sum of 191 
Gaussian kernel functions centred at the training patterns. 192 
 193 

Although the kernel function can be chosen from a number of alternatives (e.g., uniform, 194 

triangular or Epanechnikov), the bell-shaped normal Gaussian kernel is the most common 195 

choice (Kusy and Zajdel, 2015; Modaresi and Araghinejad, 2014; Jin et al., 2002). In 196 

accordance, the formula used to calculate the multivariate PDF that combines all the input 197 

patterns and variables for each class m is: 198 

 199 

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚(𝑥𝑥) = 1
(2𝜋𝜋)𝑝𝑝 2⁄ ∏ 𝜎𝜎𝑗𝑗𝑛𝑛

𝑝𝑝
𝑗𝑗=1

∑ 𝑒𝑒𝑥𝑥𝑒𝑒 �−∑
�𝑥𝑥𝑗𝑗−𝑋𝑋𝑗𝑗

𝑖𝑖�
2

2𝜎𝜎𝑗𝑗
2

𝑝𝑝
𝑗𝑗=1 �𝑛𝑛

𝑖𝑖=1 ; (Equation 1) 200 

 201 

where 𝑥𝑥 is the input pattern to be classified and 𝑥𝑥𝑗𝑗 its 𝑗𝑗𝑡𝑡ℎ element (corresponding to the 𝑒𝑒 202 

input variables included in the training dataset), and 𝑋𝑋𝑛𝑛 is the 𝑖𝑖𝑡𝑡ℎ  training pattern belonging 203 

to the class for which the PDF is being calculated, whereas 𝑋𝑋𝑗𝑗𝑖𝑖corresponds to its 𝑗𝑗𝑡𝑡ℎ element 204 
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(also corresponding to the 𝑒𝑒 input variables) with 𝑛𝑛 equal to the number of training 205 

patterns for class m (i.e., the total number of training patterns for the class m). The 𝜎𝜎𝑗𝑗 are 206 

the window or smoothing parameters, which determine the window of the kernel around 207 

the mean of the p input variables. Therefore, small values of 𝜎𝜎𝑗𝑗 produce spiked PDFs with 208 

the maxima narrowly centred at the training patterns, whereas large values of 𝜎𝜎𝑗𝑗 produce 209 

smooth PDFs with the maxima instead centred at the region that gathers the maximum 210 

number of training patterns (i.e., the region of maximum density of several training 211 

patterns) (Fig. 2). 212 

 213 

 214 

Fig. 2. Effect of the kernel window or smoothing parameter σ on the probability of presence, in a 215 
presence-absence classification task, rendered by an homoscedastic Probabilistic Neural Network 216 
(PNN) where the smoothing parameter is equalled for each input variables or coordinate (i.e., 217 
𝜎𝜎𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑐𝑐𝑖𝑖𝑡𝑡𝑉𝑉 = 𝜎𝜎𝐷𝐷𝑉𝑉𝑝𝑝𝑡𝑡ℎ). 218 
 219 
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The novelty of the method proposed by Specht (1990, 1989) consisted of breaking up the 220 

entire process into a large number of simple processes implemented in a four-layered feed-221 

forward network topology that first calculates the PDFs, following the Parzen-Rosenblatt 222 

approach, and then assigns the input pattern to the corresponding class (i.e., solves the 223 

inequality of the Bayes theorem) (Fig. 3) (Berrar et al., 2003). The input layer is merely used 224 

to supply the input patterns to the pattern layer. The pattern layer has as many nodes as 225 

available training patterns and computes the value of each Gaussian kernel function at the 226 

input pattern (i.e., at the evaluated point) accounting for the selected smoothing 227 

parameters. The summation layer computes the value of the PDF at the input pattern for 228 

each class m. It is carried out by adding up the outputs of the preceding pattern layer and 229 

taking into account the class of the pattern neurons. Consequently, each neuron of this 230 

layer is exclusively connected to the pattern neurons corresponding to the same class while 231 

the final value is divided by the number of patterns of the corresponding class (n) impeding 232 

the immediate assignment of the assessed pattern to the outnumbering class (i.e., PNNs are 233 

insensitive to data prevalence) (Muñoz-Mas et al., 2014). This is an advantage of PNNs over 234 

other machine learning approaches (Muñoz-Mas et al., 2014). Finally, the decision layer 235 

compares the values of the PDFs and employs the arguments of the maxima (arg max) to 236 

assign the input pattern to the class that presents the highest value among the PDFs. The 237 

values of the PDFs are previously standardised by dividing them by the sum of the values of 238 

each PDF; thus, the probabilistic outputs are rendered (adding up to one) in addition to the 239 

winning class. 240 

 241 

https://en.wikipedia.org/wiki/Murray_Rosenblatt
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  242 
Fig. 3. General architecture of a Probabilistic Neural Network (PNN) where a given input pattern 𝑥𝑥 is 243 
classified within a set of m classes. The multi-stemmed architecture is reduced to the two coloured 244 
branches depicted on the left when two class problems (e.g., presence-absence) are addressed. 245 
 246 

2.1.1 Homoscedastic PNN 247 

This approach is by far the most common way to develop PNN models (e.g., Modaresi and 248 

Araghinejad, 2014; Muniz et al., 2010; Öğüt et al., 2009) because it corresponds to the very 249 

basic implementation of PNN (Specht, 1989, 1990). The smoothing parameter is equalled 250 

for each input variables (i.e., 𝜎𝜎1 = 𝜎𝜎2 = ⋯ = 𝜎𝜎𝑝𝑝); thus, the influence of each pattern on 251 

each coordinate coincides (Fig. 4 – Upper left panel). In accordance, a single scalar σ 252 

requiring optimisation is used for all pattern neurons (Kusy and Zajdel, 2015). The tested 253 

values of the smoothing parameter σ ranged between zero and one (Table 1) (Muñoz-Mas 254 

et al., 2014; Muniz et al., 2010). 255 

 256 

2.1.2 Heteroscedastic PNN 257 

Although homoscedastic PNNs demonstrated great performance, a single global smoothing 258 

parameter 𝜎𝜎 may be insufficient to achieve the desired accuracy (Chang et al., 2009). By 259 

adapting separate smoothing parameters for each coordinate or variable (i.e., 𝜎𝜎1 ≠ 𝜎𝜎2 ≠260 
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⋯ ≠ 𝜎𝜎𝑝𝑝), the classification accuracy can be greatly improved (Specht and Romsdahl, 1994), 261 

as has been corroborated by a number of studies (e.g., Kusy and Zajdel, 2015; Li and Ma, 262 

2008). This type of model is a more elastic classifier, since, in such a case, the influence of 263 

each variable on neighbouring points differs (Fig. 4 – Upper right panel) (Kusy and Zajdel, 264 

2015). Thus, the number of smoothing parameters requiring optimisation equalled the 265 

number of input variables, and the tested ranges for these parameters (𝜎𝜎𝑗𝑗) also ranged 266 

between zero and one (Table 1) (Muñoz-Mas et al., 2014; Verma, 2008). 267 

 268 

2.1.3 Cluster PNN 269 

One of the major disadvantage of PNN stems from the fact that it requires one node or 270 

neuron for each training pattern, which increases the computational burden (Specht, 1992). 271 

Therefore, promptly after their inception, researchers offered various improvements to 272 

reduce the number of pattern neurons and hence the computational costs (e.g., Berthold 273 

and Diamond, 1998; Burrascano, 1991; Yang and Chen, 1998). Among these improvements, 274 

those based on data clustering stood out (Specht, 1992). Nonetheless, depending on the 275 

clustering approach, they can be very efficient compared to other approaches that may be 276 

inefficient because they need several iterations to converge (e.g., Berthold and Diamond, 277 

1998). Consequently, these approaches rely in a sequential use of unsupervised (clustering) 278 

and supervised (PNNs) techniques; thus, cluster PNNs can be homoscedastic, 279 

heteroscedastic or enhanced. 280 

Currently, a number of different clustering algorithms have been used as pre-treatments 281 

prior to the development of cluster PNNs, such as global k-means (Chang et al., 2009) or j-282 
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means (Li and Ma, 2008) (Fig. 4 – Lower left panel). However, over the last 50 years, 283 

thousands of clustering algorithms have been published; thus, a number of alternatives are 284 

available (Jain, 2010). We advocated the k-medoids algorithm (Kaufman and Rousseeuw, 285 

1987) as implemented within the R package cluster (Maechler et al., 2016). This algorithm 286 

clusters data around k representative objects or prototypes, named medoids, by minimising 287 

the distance between the input patterns and them; thus, it represents a more robust 288 

version of k-means (Maechler et al., 2016). In addition, they proved to be fast and the 289 

actual implementation within the cluster package allows one single cluster to be rendered. 290 

Therefore, with regard to the example problem of presence-absence, the selection of one 291 

single presence pattern and a number of absence patterns surrounding it will fit well the 292 

theory around the use of convex hulls (Cornwell et al., 2006) to determine the n-293 

dimensional hypervolume to describe the ecological niche (sensu Hutchinson, 1957). To 294 

better illustrate the capabilities of clustering as a pre-treatment, the optimal number of 295 

clusters for each class was sought simultaneously with one single smoothing parameter 296 

(i.e., homoscedastic PNNs). Therefore, three parameters required optimisation. The 297 

maximum number of clusters allowed equalled the maximum number of patterns of the 298 

class with the smallest sample size, which for the presence-absence example problem 299 

coincided with the sample size of the presence class whereas the single σ ranged between 300 

zero and one (Table 1) (Muñoz-Mas et al., 2014; Muniz et al., 2010). The number (#) of 301 

clusters was obtained by rounding up the real values (ℝ) given by the optimisation 302 

algorithm. Therefore, for the specific example, the # clusters were Classpresence = ‖𝑣𝑣1���⃗ ‖ and # 303 
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clusters Classabsence = ‖𝑣𝑣2����⃗ ‖ where �⃗�𝑣  is the optimal solution, which encodes the best 304 

parameters in a vector or chromosome (see below). 305 

 306 

2.1.4 Enhanced PNN 307 

In both the aforementioned approaches (homoscedastic and heteroscedastic PNNs) the 308 

selected smoothing parameter is used as a global parameter without considering any 309 

probable local densities or heterogeneity in the training data (Ahmadlou and Adeli, 2010). 310 

To overcome this limitation, a method to improve standard PNNs – named enhanced PNNs 311 

– was proposed (Ahmadlou and Adeli, 2010). Enhanced PNNs incorporate local information 312 

and existing inhomogeneity, modifying the smoothing parameter of each training pattern in 313 

accordance with the proportion of data for the corresponding class within a predefined 314 

hypersphere (local circle) of radius r (i.e., calculating the proportion of cases of each class 315 

and for each pattern below a Euclidean distance r) (Fig. 4 – Lower right panel). As a 316 

consequence, the smoothing parameter for each training pattern varies as follows: 317 

 318 

𝜎𝜎𝑚𝑚𝑖𝑖 = 𝛼𝛼𝑚𝑚𝑖𝑖 × 𝜎𝜎; (Equation 2) 319 

 320 

where, 𝜎𝜎 corresponds to the base smoothing parameter, 𝛼𝛼𝑚𝑚𝑖𝑖 the proportion of training 321 

patterns within the local circle for the training pattern i that belongs to the class m. Finally, 322 

𝜎𝜎𝑚𝑚𝑖𝑖 corresponds to the resulting smoothing parameter. In this regard, enhanced PNNs can 323 

be viewed as an extension of the heteroscedastic PNNs, where each training pattern 324 

presents its own smoothing parameter (Kusy and Zajdel, 2015). However, only two different 325 
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parameters (𝜎𝜎 and r), require optimisation. The smoothing parameter σ ranged between 326 

zero and one and the radius of local circles r between zero and two, which for the example 327 

problem, with four rescaled variables, coincided with the maximum possible distance 328 

between two training patterns (Table 1) (Ahmadlou and Adeli, 2010). The R code to 329 

implement the four approaches, which is based on the R package pnn (Chasset, 2013), can 330 

be found in Appendix A. 331 
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Table 1. Range of the tested parameter settings for the four alternative methods to develop Probabilistic Neural Networks (PNNs) (smoothing 332 
parameters σj, number of cluster centres and radius of the local circles r) and the Support Vector Machine (SVM) (radial basis kernel function 333 
width γ and regularisation parameter C) for the example presence-absence problem. 334 

  Homoscedastic 
PNN 

Heteroscedastic 
PNN Cluster PNN Enhanced 

PNN SVM 

σj 
Min. 0 0 0 0  
Max. 1 1 1 1  

# clusters 
Min.   1   
Max.   Min{Nclass pres., Nclass abs.}   

r 
Min.    0  
Max.    Max. Euclidean dist.  

γ 
Min.     0 
Max.     1 

C 
Min.     0 
Max.     500 
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 335 

Fig. 4. Example of the differences in the final probability of presence, in a presence-absence 336 
classification task, obtained with the four alternative types of Probabilistic Neural Networks (PNNs). 337 
The example is based on a random data sample. The upper left panel corresponds to a 338 
homoscedastic PNN with one single smoothing parameter (σ), the upper right panel to a 339 
heteroscedastic PNN with one smoothing parameter per input variable (𝜎𝜎𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑐𝑐𝑖𝑖𝑡𝑡𝑉𝑉& 𝜎𝜎𝐷𝐷𝑉𝑉𝑝𝑝𝑡𝑡ℎ), the 340 
lower left panel to a cluster PNN with four clusters per class and one single smoothing parameter 341 
(σ) and the lower right panel to an enhanced PNN with local decision circles (𝛼𝛼𝑖𝑖 × 𝜎𝜎). 342 
 343 

2.2 Support Vector Machines – SVMs 344 

Support Vector Machines (SVMs) is a machine learning approach that employs discriminant 345 

hyperplanes to classify the input data (Vapnik, 1995). The fundamental of SVMs, addressed 346 

to two-class problems, is to construct an Optimal Separating Hyperplane (OSH), which 347 

corresponds to one of the infinite number of existing separating hyperplanes that lie 348 

furthermost from both classes, and hence maximises the margin. The margins of the OSH 349 

are determined by some cases (i.e., training patterns) which are the so-called support 350 
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vectors (Fig. 5) (Moguerza and Muñoz, 2006). If the discriminant function between classes is 351 

not linear, then the data is projected into a higher-dimensional space (i.e., the feature 352 

space) where these data can be linearly separated. This projection is carried out by 353 

employing a class of functions called kernels, which perform a nonlinear transformation of 354 

the original data. Among these kernel functions, the most popular are polynomial, radial 355 

basis and sigmoid (R Muñoz-Mas et al., 2016d; Howley and Madden, 2005). However, in 356 

practice, Gaussian Radial Basis Functions (RBFs) have demonstrated to be sufficient to 357 

accurately model many real problems (Wu et al., 2012), including habitat suitability 358 

modelling (R Muñoz-Mas et al., 2016a; Fukuda et al., 2013). The RBFs exclusively require the 359 

optimisation of the kernel width (i.e., the γ parameter), which is related to the variance of 360 

the data, and thus determines the radius of influence of samples selected by the model as 361 

support vectors. If the problem remains not linearly separable after the kernel 362 

transformation, then the misclassified observations can be penalised by a regularisation 363 

parameter (C), which defines the trade-off between margin maximisation and error 364 

minimisation. 365 

  366 
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  367 

Fig. 5. Optimal Separating Hyperplane (OSH) and selected support vectors in a presence-absence 368 
toy example. 369 
 370 

The SVMs were developed in R (R Core Team, 2015) with the function svm implemented 371 

within the package e1071 (Dimitriadou et al., 2011). The selected mapping function was the 372 

RBF; thus, the parameters C and γ required optimisation. The tested ranges of the 373 

parameters were based on Huang and Wang (2006) and ranged from 0 to 500 and 0 to 1 for 374 

C and γ respectively (Table 1). Data prevalence affects the performance of SVMs; thus 375 

unbalanced datasets may tip the balance towards the outnumbering class (Osuna et al., 376 

1997). In accordance, as with previous studies (R Muñoz-Mas et al., 2016d), each class was 377 

weighted by the complementary of its class prevalence (i.e.,1 − 𝑒𝑒𝑝𝑝𝑒𝑒𝑣𝑣𝑝𝑝𝑝𝑝𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚 ). 378 

Therefore, the weights used in the example presence-absence problem were 0.06 for the 379 

absence class and 0.94 for the presence class (see below for a detailed description of the 380 

training dataset). 381 

 382 
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2.3 Parameter optimisation with Differential Evolution (DE) 383 

Although the parameter requiring optimisation could have been set by employing grid 384 

searches (Öğüt et al., 2009), the use of population-based algorithms (e.g., evolutionary and 385 

genetic algorithms or particle swarm optimisation) is the most popular approach (Narimani 386 

and Narimani, 2013; Miguez et al., 2010; Jin et al., 2002). Therefore, in order to decrease 387 

computational cost, a metaheuristic population-based algorithm – the Differential Evolution 388 

(DE) algorithm (Storn and Price, 1997) – was used to optimise: the smoothing parameters, 389 

the best number of clusters for each class, the radius of the local decision circles and the C 390 

and γ parameters of the SVM. The DE algorithm is an evolutionary algorithm inspired by 391 

Darwin’s process of natural selection and particularly suited to optimise real-valued 392 

functions of real-valued parameters (Ardia et al., 2011; Mullen et al., 2011). A user defined 393 

number of potential solutions (population) are encoded in vectors (chromosomes or agents) 394 

of real-values, and the associated performance (fitness) is calculated for each of these 395 

potential solutions (Ardia et al., 2011). Each generation consists of evolving (i.e., creating) a 396 

new population from the former population members by mutating and crossing the former 397 

population through arithmetic operations, such as addition and subtraction, whose 398 

frequency and intensity depends on the parameter settings (Mullen et al., 2011). At each 399 

generation, once the entire population has been evolved, only those child vectors that 400 

present better fitness substitute their parents (Ardia et al., 2011). The algorithm stops after 401 

a specified number of generations, or after the objective function value associated with the 402 

best member has been reduced below a specified value (Mullen et al., 2011). 403 
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The DE implementation used was that of the R package DEoptim (Ardia et al., 2011; Mullen 404 

et al., 2011) and the optimisation took place following a repeated k-fold scheme. 405 

Specifically, it followed a three times threefold cross-validation scheme ( 3 ×406 

3𝑐𝑐𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐−𝑣𝑣𝑐𝑐𝑐𝑐𝑖𝑖𝑣𝑣𝑐𝑐𝑡𝑡𝑖𝑖𝑉𝑉𝑛𝑛) because it proved to be adequate to induce genetically optimised habitat 407 

suitability models (Rafael Muñoz-Mas et al., 2016; Stein et al., 2005). In addition, every fold 408 

presented similar prevalence to the original dataset (i.e., similar proportion of training 409 

patterns for each class). The models were optimised based on a fitness function (equation 410 

3) encompassing several indices arising from the confusion matrix (Table 2) and especially 411 

addressed to stimulate over-prediction (Specificity ≤ Sensitivity) (R Muñoz-Mas et al., 412 

2016d, 2016b) because it has been affirmed to be more reliable – from an ecological 413 

viewpoint – than under-prediction (Mouton et al., 2010): 414 

 415 

𝑃𝑃𝑖𝑖𝐹𝐹𝑛𝑛𝑒𝑒𝐹𝐹𝐹𝐹 = 1
3×3

∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖3×3
𝑖𝑖=1 + 𝑚𝑚𝑖𝑖𝑛𝑛{0, 𝑇𝑇𝑛𝑛𝑖𝑖 − 𝑇𝑇𝑒𝑒𝑖𝑖}; (Equation 3) 416 

 417 

where Sn (Sensitivity) corresponds to the ratio of presences correctly classified (i.e., 𝑇𝑇𝑛𝑛 =418 

 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

), 𝑇𝑇𝑒𝑒 (Specificity) corresponds to the ratio of absences correctly classified (i.e., 𝑇𝑇𝑒𝑒 =419 

 𝑇𝑇𝐹𝐹
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹

) and 𝑇𝑇𝑇𝑇𝑇𝑇 (True Skill Statistic) to the sum of sensitivity and specificity minus one (i.e., 420 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑛𝑛 + 𝑇𝑇𝑒𝑒 − 1) (Mouton et al., 2010). In addition, these indices and Correctly 421 

Classified Instances or 𝐶𝐶𝐶𝐶𝐶𝐶  (i.e., 𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹

) were used to evaluate the 422 

performance of the different models. 423 

 424 



24 
 

Table 2. Confusion matrix for a two-class problem (e.g., presence-absence). The acronyms 425 
correspond to: True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN). 426 

 
Observed 

Presence Absence 

Pr
ed

ic
te

d Presence TP FP 

Absence FN TN 

 427 

The entire process was fully parallelised employing the 7 cores of an Intel® CoreTM i7-428 

4702MQ 2.20GHz with 8GB of RAM while the parameter settings of the optimisation were 429 

based on the recommendations described in Mullen et al. (2011) and the package vignette 430 

(Table 3), although these parameter settings may also require optimisation to address 431 

problems of higher complexity (see e.g., Gibbs et al., 2008). Once the best parameters had 432 

been determined, a single model for each alternative approach to develop PNNs and the 433 

SVM was trained to perform the subsequent analyses (R Muñoz-Mas et al., 2016d; Fukuda 434 

et al., 2013).  435 
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 436 

Table 3. Differential Evolution (DEOptim) parameter settings. Default values were used in the 437 
unlisted arguments. 438 

DEoptim (DE) 
Operator Argument name Setting Function 

Value to be 
reached VTR 1 The optimisation stops when this value is 

achieved. 

Evolving strategy strategy 2 

Method employed for mutating and crossing 
the former population; strategy = 2 
corresponds to a uniform mutation 
operator. 

Population size NP 10 × # 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝐹𝐹𝑒𝑒𝑝𝑝𝐹𝐹 Number of population members. 
Maximum 
iterations allowed itermax 10 × # 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝐹𝐹𝑒𝑒𝑝𝑝𝐹𝐹 Maximum number of generations. 

Crossover 
adaptation c 0.7 Parameter controlling the crossover. Higher 

values upweight child vectors. 
Relative 
convergence 
tolerance 

reltol 0.0005 
The algorithm stops after steptol 
generations if the absolute improvement of 
the fitness is lower than reltol. 

Step tolerance steptol 5 × # 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝐹𝐹𝑒𝑒𝑝𝑝𝐹𝐹 See reltol. 
Crossover 
probability CR 0.5 Fraction of the parameter values that are 

copied from the mutant. 
 439 

2.4 The training dataset 440 

Although the use of virtual species or in silico datasets is gaining adepts (e.g., Fukuda and 441 

De Baets, 2016), we employed a real dataset encompassing the difficulties enumerated in 442 

the introduction. The occurrence data for the Eastern Iberian chub were collected at the 443 

microhabitat scale (i.e., few m2 with homogeneous depth, velocity, substrate and cover) 444 

during summer low flows (2006) in two separated river stretches of two perennial rivers of 445 

the Jucar River Basin District (Fig. 6). The first was located in the Cabriel River (main Jucar 446 

River tributary), and the second in the Serpis River. 447 

The Eastern Iberian chub is a small cyprinid (maximum body length = 17.5 cm) (Alcaraz-448 

Hernández et al., 2015) that inhabits the Spanish Levantine region (Perea and Doadrio, 449 

2015). This vulnerable species, whose populations showed marked decreasing trends (IUCN, 450 
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2016), occurs principally in streams with clear waters and gravel bottom and prefers 451 

moderate flowing stretches (Doadrio and Carmona, 2006). 452 

 453 

 454 

Fig. 6. Location of the sampling sites for Eastern Iberian chub (Squalius valentinus Doadrio & 455 
Carmona, 2006) within the Cabriel (main Jucar River tributary) and Serpis River basins. 456 
 457 

In order to diminish the bias derived from an unbalanced sampling effort over habitat units 458 

of fast-flow (e.g. rapid or riffle) and slow-flow (e.g. glide or pool) nature, we selected similar 459 

areas (approximately 250 m2) of these two gross categories (Muñoz-Mas et al., 2012). 460 

Following common procedures (see Muñoz-Mas et al., 2014, 2012), the microhabitat study 461 

was conducted by underwater observation (snorkelling). The depth, velocity, substrate and 462 

cover for the presence data were measured at fish locations, whereas the absence data 463 

were collected following a systematic sampling approach (Bovee, 1986). Particularly, these 464 

variables were measured in a uniform grid, of approximately 1.5 m2 per cell, completely 465 

covering the sampled habitats. Velocity (m/s) was measured with an electromagnetic 466 

current meter (Valeport®, United Kingdom) and depth (m) was measured with a wading rod 467 
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to the nearest cm. The percentage of each substrate class (i.e., bedrock, boulders, cobbles, 468 

gravel, fine gravel, sand, silt and vegetated silt) was visually estimated following the 469 

guidelines used in previous studies (e.g., Muñoz-Mas et al., 2012), and these percentages 470 

were converted into the substrate index (-) (Mouton et al., 2011) that presents values from 471 

zero (vegetated silt) to eight (bedrock). In addition, the presence-absence of cover in the 472 

form of: aquatic vegetation, caves, log jams, shade or rocks, was also recorded. These types 473 

of cover summarise the concept of structural cover (e.g., boulders, log jams) (Bovee et al., 474 

1998) and escape cover (e.g. vegetation, caves) (Raleigh et al., 1986) and, based on the 475 

maximum body size of the species, they were considered present (i.e., one) when any of 476 

them occupied an area larger than 0.5 ×  0.5 𝑚𝑚. 477 

In the end, the Eastern Iberian chub was observed in 40 microhabitats (14 in the Cabriel 478 

River and 26 in the Serpis River), whereas the absence data were collected at 607 different 479 

microhabitats (304 in the Cabriel River and 303 in the Serpis River). Therefore, the training 480 

dataset presented a prevalence of 0.06. The Eastern Iberian chub occurred more frequently 481 

at intermediate velocity and depth, when compared with the absence data, it occurred at 482 

finer substrates (substrate index = 4) (Fig. 7). Finally, the presence data collected at 483 

microhabitats with cover outnumbered the data collected at those with no cover. 484 

The input data involved different units and spanned different ranges, which may lead some 485 

variables to dominate the classification (Li and Ma, 2008). Therefore, following previous 486 

studies (e.g., Ben-Hur and Weston, 2010; Hajmeer and Basheer, 2002), the input dataset 487 

was rescaled between zero and one. This rescaled dataset was used to train the different 488 

PNNs and the SVM. 489 
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 490 

 491 

Fig. 7. Violin plots of the data on Eastern Iberian chub (Squalius valentinus Doadrio & Carmona, 492 
2006) presence and absence collected in the Cabriel and Serpis Rivers. 493 
 494 

2.5 Model evaluation 495 

Developing ecologically reliable habitat suitability models requires balancing the accuracy 496 

and complexity of the model via regularisation (Reineking and Schröder, 2006). Otherwise 497 

the developed models may violate the ecological gradient theory, which states that species 498 

responses to environmental variables are likely to be monotone or unimodal with different 499 

degrees of skewness (Austin, 2007). 500 

In order to scrutinise the modelled relationship between the input variables and the 501 

probability of presence, partial dependence plots (Friedman, 2001) – based on the code 502 

implemented within the package randomForests (Liaw and Wiener, 2002) – were developed 503 

for each model. Partial dependence plots depict the average of the response variable (i.e., 504 

probability of presence) vs a gradient of the inspected predictor variable and accounting for 505 

the effects of the remaining variables within the model by averaging their effects 506 

(Friedman, 2001). The standard implementation, which consist of first substituting the 507 

inspected variable with values along its range to then calculate the mean effect on the 508 



29 
 

response variable (i.e., probability of presence), has been demonstrated to be a useful tool 509 

in a number of studies (e.g., Muñoz-Mas et al., 2016b; Shiroyama and Yoshimura, 2016; 510 

Vezza et al., 2015). However, averaging the effects of the remaining variables may mask 511 

variables interactions (Zurell et al., 2012; Evans et al., 2011). Therefore, instead of one 512 

single line chart depicting the mean value vs the gradient of the inspected variable (𝛺𝛺𝑧𝑧), 513 

every 100-quantil or percentile (𝑄𝑄𝑧𝑧(𝐹𝐹)) was depicted for every value in 𝛺𝛺𝑧𝑧  to get a better 514 

insight of the modelled habitat suitability. The partial dependence was computed for each 515 

of 50 equally spaced values over the range of each examined variable (𝑚𝑚 = 50) except for 516 

cover, which is a dichotomous variable (𝑚𝑚 = 2). Therefore, for each predictor (𝑧𝑧) within the 517 

original training dataset (𝑋𝑋) several values along the inspected gradient were calculated 518 

following Equation 4: 519 

 520 

𝛺𝛺𝑧𝑧 = �min(𝑋𝑋𝑧𝑧) + �max(𝑋𝑋𝑧𝑧)−min(𝑋𝑋𝑧𝑧)
𝑚𝑚−1

× 𝑘𝑘� � 𝑘𝑘 = 0, … ,𝑚𝑚 − 1�; (Equation 4) 521 

 522 

where min (𝑋𝑋𝑧𝑧)  and min (𝑋𝑋𝑧𝑧)  correspond respectively to the minimum and maximum 523 

entries of the inspected variable (𝑋𝑋𝑧𝑧) included in 𝑋𝑋 with 𝑧𝑧 ∈ {1, … ,𝑒𝑒} and 𝑒𝑒 equalling the 524 

number of predictor variables included in the training dataset (in the example problem 𝑒𝑒 =525 

4). Then, for each value included in 𝛺𝛺𝑧𝑧  a modified dataset (𝑋𝑋𝑧𝑧(𝐹𝐹)) is obtained, with 𝑧𝑧 ∈526 

{1, … ,𝑒𝑒} and 𝐹𝐹 ∈  𝛺𝛺𝑧𝑧, by substituting 𝑋𝑋𝑧𝑧 in 𝑋𝑋 by the corresponding value of 𝛺𝛺𝑧𝑧. Then, the 527 

resulting dataset 𝑋𝑋𝑧𝑧(𝐹𝐹) is evaluated with the model for which the partial dependence plots 528 

are being calculated (i.e., 𝑔𝑔(·) that can be one of the four different PNNs or the SVM) and 529 
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the percentiles of the cumulative distribution function 𝑄𝑄𝑧𝑧(𝐹𝐹), as defined by Gumbel (1939), 530 

are calculated (𝑃𝑃(·)) following Equation 5: 531 

 532 

𝑄𝑄𝑧𝑧(𝐹𝐹) = 𝑃𝑃(𝑔𝑔(𝑋𝑋𝑧𝑧(𝐹𝐹))); (Equation 5) 533 

 534 

3 Results 535 

3.1 Performance 536 

The DEOptim algorithm rendered values for the smoothing parameters 𝜎𝜎𝑗𝑗 for three out of 537 

four of the models in a relatively narrow range (i.e., σ from 0.091 to 0.364). Conversely, the 538 

parameter for variable velocity in the heteroscedastic PNN presented the smallest (σvelocity = 539 

0.030) (Table 4). The latter value contributed to the ecologically unreliable partial 540 

dependence plot for this variable (see below). 541 

 542 

Table 4. Best parameters obtained for the four different approaches to develop Probabilistic Neural 543 
Networks (PNNs) and the Support Vector Machine (SVM). 544 

Model Optimal parameters 
Homoscedastic PNN σ = 0.106 
Heteroscedastic PNN σvelocity = 0.030; σdepth = 0.091; σsubstrate = 0.211; σcover = 0.187 
Cluster PNN # clusterspresence =22; # clustersabsence =20; σ = 0.136 
Enhanced PNN σ = 0.364; r = 0.196 
SVM C = 24.789; γ = 0.163 

 545 

Enhanced PNN and heteroscedastic PNN achieved the highest values of the fitness function, 546 

although the enhanced PNN presented lower variability (Table 5). Regarding the 547 

performance criteria used for model evaluation, Heteroscedastic and cluster PNNs 548 
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presented the best accuracy (CCI) but heteroscedastic PNN presented the highest True Skill 549 

Statistic (TSS). Finally, enhanced PNN rendered the best Sensitivity (Sn) whereas the best 550 

Specificity (Sp) was obtained with cluster PNN. Looking at the probability of presence 551 

rendered in addition to the winning class, the four methods to develop PNN rendered 552 

outputs covering the entire feasible output range (i.e., from zero to one) whereas the 553 

maximum value obtained with SVM, which alters the classification threshold, was only 0.1 554 

(see also Fig. 9). 555 

The optimisation of the SVM took the shortest time and the heteroscedastic PNN the 556 

longest, which was in line with the number of pattern neurons of the PNN and the searching 557 

effort, which rose in accordance with the number of optimised parameters (Table 5). The 558 

SVM presented the smallest ratio between the number of parameters optimised vs time, 559 

whereas among the four approaches to develop PNN, the homoscedastic PNN (tight 560 

followed by cluster PNN) presented the smallest ratio and the heteroscedastic PNN the 561 

highest. 562 

  563 
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 564 

Table 5. Model performance and confidence interval to evaluate the four different approaches to 565 
develop Probabilistic Neural Networks (PNNs) and the Support Vector Machine (SVM): Fitness (Eq. 566 
3), Correctly Classified Instances (CCI), True Skill Statistics (TSS), Sensitivity (Sn), Specificity (Sp) and 567 
minimum (Min.) and maximum (Max.) values of the probability of presence obtained during the 3 ×568 
3 cross-validation (nine models) and the lapse of the optimisation (Optimisation was parallelised in 569 
an Intel core i7). The best results are in bold. 570 

 
Cross-validation Time 

(min) Fitness 𝑪𝑪𝑪𝑪𝑪𝑪����� 𝑻𝑻𝑻𝑻𝑻𝑻����� 𝑻𝑻𝑺𝑺���� 𝑻𝑻𝑺𝑺���� Min. Max. 
Homoscedastic PNN 0.34±0.17 0.65±0.05 0.39±0.10 0.75±0.13 0.64±0.06 0.0 1.0 6.10 
Heteroscedastic PNN 0.45±0.12 0.68±0.04 0.47±0.07 0.80±0.09 0.67±0.05 0.0 1.0 73.04 

Cluster PNN 0.39±0.14 0.68±0.04 0.44±0.08 0.76±0.11 0.68±0.05 0.0 1.0 22.52 
Enhanced PNN 0.45±0.09 0.65±0.04 0.46±0.08 0.82±0.09 0.64±0.05 0.0 1.0 32.60 

SVM 0.33±0.15 0.67±0.04 0.38±0.07 0.71±0.1 0.67±0.05 0.0 0.1 3.85 
 571 

3.2 Partial dependence plots 572 

The four tested approaches (Fig. 8) and the SVM (Fig. 9) modelled similar habitat suitability 573 

(i.e., similar habitats that would be classified as presence) with the exception of 574 

heteroscedastic PNN, which rendered a multimodal mean partial dependence plot for the 575 

variable velocity (in black). However, in accordance with the maximum probabilistic values 576 

obtained for the SVM (Table 5), the partial dependence plots for this technique presented 577 

lower values for all plots (Fig. 9). Nevertheless, SVMs modify the classification threshold; 578 

thus, the microhabitats being considered suitable did not change substantially, which 579 

maintains the interpretation of these plots. 580 

Setting apart the mean partial dependence plot (in black) for velocity obtained with the 581 

heteroscedastic PNN, Eastern Iberian chub presented the highest suitability in microhabitats 582 

with low flow velocity (approx. 0.3 m/s) and intermediate depth (approx. 0.6 m), and with 583 

mild coarseness – the optimal substrate index was approx. 4, which corresponds to fine 584 

gravel (64–256 mm) – and with cover present (i.e., cover = 1). Suitability decreased at the 585 
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extremes of the range of variables, with the exception of the cover variable. This decrease 586 

was especially relevant for high velocity and low depth, and for fine substrate and no cover. 587 

Nevertheless, the depicted quantiles revealed that the Eastern Iberian chub is a versatile 588 

species that can select a microhabitat when some variables compensate for the low quality 589 

of others. In accordance, mean unsuitable conditions at the extremes of the range of 590 

variables (in black) presented high values of the probability of presence under particular 591 

circumstances (coloured quantiles), which were caused by these infrequent occurrences of 592 

the species. As a consequence, some microhabitats with high depth and coarse substrate 593 

were evaluated positively, as well as some without cover, in the partial dependence plots of 594 

the enhanced PNN. 595 

According to the low σvelocity, the heteroscedastic PNN exacerbated the mathematical effect 596 

of the these infrequent occurrences; thus, the presence of four presence data within 0.730 597 

and 0.856 m/s raised the probability of presence to the maximum. The opposite occurred 598 

between 0.467 and 0.730 m/s, where the absence of presence patterns reduced the 599 

probability of presence as far as zero. Enhanced PNN also presented relevant irregularities, 600 

in spite of the reasonably smooth mean partial dependence plots (in black). It rendered 601 

extreme values (i.e., zero and one) in almost every value of the evaluated range. From the 602 

mathematical viewpoint, the occurrence of isolated presence data reduced the value of 𝛼𝛼𝑚𝑚𝑖𝑖 603 

for these patterns and consequently, the PNN rendered extreme values of the PDF when 604 

approximating them. On the contrary, cluster PNN reduced such irregularities due to the 605 

shrinkage in the number of training patterns, presenting smooth partial dependence plots. 606 



34 
 

Nevertheless their plots largely coincided with those for the homoscedastic PNN and SVM, 607 

although SVM presented the smoothest plots of these three models (Fig. 9). 608 

 609 

 610 

Fig. 8. Partial dependence plots, for the four approaches to develop probabilistic neural networks 611 
(homoscedastic, heteroscedastic, cluster and enhanced), depicting the marginal relationship 612 
between the suitability (i.e., probability of class presence) and the four microhabitat variables. 613 
  614 
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 615 

 616 

Fig. 9. Partial dependence plots, for the Support Vector Machine (SVM), depicting the marginal 617 
relationship between the suitability (i.e., probability of class presence) and the four microhabitat 618 
variables. The dashed line depicts the modified classification threshold. 619 
 620 

4 Discussion 621 

Four different approaches to develop PNNs have been successfully compared with SVMs 622 

demonstrating that SVMs do not outperform every kind of PNN. Nonetheless, the SVM did 623 

not present the best value in any of the calculated criteria. In addition, we obtained 624 

relevant information about the microhabitat suitability for the Eastern Iberian chub. 625 

 626 

4.1 Model characteristics 627 

These four alternative PNNs span the two major contemporary approaches to improve 628 

PNNs, which include the smoothing parameter optimisation and pattern neuron reduction 629 

(Kusy and Zajdel, 2015; Ahmadlou and Adeli, 2010; Miguez et al., 2010; Li and Ma, 2008). 630 

 631 
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4.1.1 Smoothing parameter optimisation 632 

Among the group of smoothing parameter optimisations, two of the most common 633 

approaches have been tested, although other alternatives exist, such as different smoothing 634 

parameters for each class (homoscedastic and heteroscedastic) (Zhong et al., 2007), which 635 

can be extended to the extreme of one smoothing parameter per training pattern at the 636 

expense of increasing the computational burden (Kusy and Zajdel, 2015). The former could 637 

certainly be interesting, although it can be also tackled by employing prior probabilities or 638 

uneven misclassification costs (discarded for this study) that may favour the desired class by 639 

increasing the final value calculated for the corresponding PDF. In accordance, we 640 

considered that the use of different smoothing parameters for each class may require a 641 

dedicated study. Regarding the latter, from the ecological viewpoint heteroscedastic PNN 642 

may potentially lead to unreliable models (Austin, 2007), although this approach rendered 643 

one of the best performances. Therefore, we considered the optimisation of one smoothing 644 

parameter per training pattern inappropriate because of the number of parameters and 645 

thus increasing risk of overfitting. As a consequence, we would neither advocate 646 

heteroscedasticity nor one smoothing parameter per training pattern without the adequate 647 

scrutiny of the modelled habitat suitability. 648 

This concern is also extendable for enhanced PNN, although it is indubitable that varying 649 

the smoothing parameter to account for local densities and data inhomogeneity improves 650 

model performance. Nonetheless, enhanced PNN achieved one of the highest mean values 651 

of the fitness function by exclusively optimising two parameters. Enhanced PNNs modify 652 

the value of the smoothing parameter based on the proportion of cases within the local 653 
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circle that are from the same class. However, the use of local circles to account for the data 654 

inhomogeneity do not solve the impact caused by the presence of rare or infrequent data, 655 

such as the presence data observed between 0.730 and 0.856 m/s, which appears isolated 656 

in the input space (see violin plots in Fig. 7). Thus, even the result of a careful cross-657 

validation (e.g., repeated k-fold or leave-one-out) could be biased if the source data set is 658 

insufficiently representative as a whole or if a relevant proportion of rare samples are 659 

present (Grim and Hora, 2010), resulting in spiked PDFs, as observed in the corresponding 660 

partial dependence plots. 661 

With regard to the SVM, the γ parameter of the Gaussian kernel can be seen as the 662 

smoothing parameters of the PNNs and, taking into account that they are constant across 663 

the input space, the approach followed may resemble that described for the homoscedastic 664 

version of the PNN. However, several variants of SVMs exist, which may render different 665 

results. Although other authors disregarded this option (Wu et al., 2012), the most basic 666 

one consists of varying the kernel function (R Muñoz-Mas et al., 2016d). Nevertheless, with 667 

regard to the PNNs, different kernel density functions can also be selected to calculate the 668 

PDFs (e.g., triangular, Epanechnikov or Gaussian). Consequently, the number of 669 

combinations would be large; thus, we consider that such appealing comparison may also 670 

require a dedicated study. 671 

Interestingly, clustering has also been successfully applied as a pre-treatment for SVMs in 672 

several ways. For instance, there are studies that tested the impact of different clustering 673 

algorithms on accuracy and computational burden (e.g., Wang et al., 2007). Conversely, 674 

although methodologically appealing, to the best of our knowledge SVMs did not present 675 
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any modelling approach analogous to the heteroscedastic and/or the enhanced variants of 676 

the PNNs where each axis or each pattern presents its own smoothing parameter σ. Thus, 677 

the equivalent to the enhanced approach for an SVM would be the local optimisation of a 678 

separate SVM for the neighbourhood of each training pattern. Although this strategy still 679 

needs to be the subject of dedicated research to be formally mathematised (e.g., the radii 680 

of the neighbourhood may also vary across the input space), it can be ventured that 681 

accounting for local densities or inhomogeneity in the training data should also lead to 682 

improved outcomes for SVMs. Consequently, we considered the ideas involving the 683 

enhanced variant and its stand-alone use, or in combination (e.g., cluster & enhanced 684 

PNNs), to be appealing. 685 

On the other hand, the SVM rendered the most ecologically reliable partial dependence 686 

plots, although they could be considered deficient if outputs covering the entire feasible 687 

range are desired (R Muñoz-Mas et al., 2016a). For instance, SVM will render misleading 688 

results of the renowned Weighted Usable Area (WUA) (Bovee et al., 1998). The WUA is 689 

calculated for a given flow as the product of the habitat area (e.g., pixels) and habitat 690 

suitability of the hydraulics of this area and summed across a river reach (R Muñoz-Mas et 691 

al., 2016a). However, given the mathematization of the WUA, a huge amount of low quality 692 

habitat may render similar total value as a small area of highly suitable habitat (Person et 693 

al., 2014). This is not the case of the Suitable Area (SA), which is the sum of the areas where 694 

the models predicted presence (Person et al., 2014). Therefore, the SVM proved only 695 

competent to calculate the SA (R Muñoz-Mas et al., 2016a). Previous experiences indicated 696 

data overlapping and prevalence as the main causes of this deficiency (R Muñoz-Mas et al., 697 
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2016d, 2016a); thus, this study corroborated that Platt’s approach for probability 698 

calculation is unable to render proper probabilistic results for class-overlapped and low-699 

prevalence datasets (Platt, 2000). Nevertheless, this deficiency could be addressed by 700 

employing clustering approaches to balance the data prevalence or alternative routines to 701 

train SVMs that are particularly indicated to render reliable probabilistic outputs. Currently, 702 

the most promising approach for the latter case is the routine implemented in the R 703 

package probsvm (Zhang et al., 2013), which combines ideas from a number of sources 704 

(Shin et al., 2014; Wang et al., 2008; Wu et al., 2004). However, it does not allow case 705 

weighting. Consequently, in the end, it may require the use of resampling strategies or 706 

balancing algorithms (e.g., SMOTE Chawla et al., 2002) that are unnecessary for PNNs. 707 

 708 

4.1.2 Pattern neuron reduction 709 

Clustering as a pre-treatment has been demonstrated to be proficient for the rapid training 710 

of accurate PNNs. Nonetheless, taking into account the larger number of fitness function 711 

evaluations performed, which was governed by the parameters NP and steptol/reltol (i.e., 712 

10 × # 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝐹𝐹𝑒𝑒𝑝𝑝𝐹𝐹 and 5 × # 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝐹𝐹𝑒𝑒𝑝𝑝𝐹𝐹), the lapse of the optimisation for cluster PNN 713 

should not be considered different than that for the SVM. However, other alternatives exist 714 

(e.g., Kusy and Zajdel, 2015; Berthold and Diamond, 1998). Among the group of approaches 715 

for pattern neuron reduction one popular approach with a number of examples (e.g., 716 

Narimani and Narimani, 2013) is the Dynamic Decay Adjustment (DDA) (Berthold and 717 

Diamond, 1998). DDA adds sequentially each training pattern to the PNN, but exclusively 718 

retains those patterns that are not redundant and/or in conflict with the remaining classes 719 
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(Berthold and Diamond, 1998). Based on the latter, DDA could be more accurate than our 720 

cluster approach because it takes into account the distribution of every input class during 721 

PNN growth. Nevertheless, it requires several epochs to converge, typically five (Berthold 722 

and Diamond, 1998), which may lead to increasing computational costs. On the contrary, 723 

compared to the remaining approaches, optimising a different number of cluster centres for 724 

each class rendered high performance criteria; cluster PNN rendered the highest accuracy 725 

(CCI) and Specificity (Sp). In addition, the partial dependence plots were ecologically reliable 726 

because the clustering approach as a pre-treatment reduced the influence of rare data, 727 

which typically compromises the reliability of the PNNs (Grim and Hora, 2010; Yang and 728 

Chen, 1998). Furthermore, the approach followed to develop the cluster PNN could be 729 

combined with heteroscedastic and/or enhanced PNNs (Chang et al., 2008; Yang and Chen, 730 

1998). Therefore, we consider the combination of cluster PNN with other methods to be the 731 

most promising approach for ecological studies. Accordingly, we expect these ideas to be 732 

the subject of further research. 733 

 734 

4.2 Habitat suitability for the Eastern Iberian chub (Squalius valentinus) 735 

In spite of the ecologically unreliable partial dependence plots rendered by heteroscedastic 736 

and enhanced PNNs, the five models largely converged on the optimal microhabitat for the 737 

Eastern Iberian chub. Therefore, the species will preferentially occur in microhabitats with 738 

low flow velocity – but not stagnated – of intermediate depth and substrate, and with cover 739 

fundamentally present. This description broadly matches the general preferences of the 740 

species suggested by Doadrio and Carmona (2006) who stated that the species prefers 741 
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moderate flowing reaches with clear water and gravel bottom, which in addition may fit the 742 

habitat requirements of a number of Iberian species of the genus (e.g., Martelo et al., 2014; 743 

Martínez-Capel et al., 2009; Santos and Ferreira, 2008). However, flexible microhabitat use 744 

strategies are common among fishes inhabiting Mediterranean streams due to the long-745 

term adaptations to irregular flow regimes (Martelo et al., 2014). Thus, any comparison 746 

with others species or studies should be made cautiously, as similarities may be due to 747 

particularities, either spatial or temporal. 748 

The optimal values for Eastern Iberian chub showed remarkable similitudes with those 749 

obtained for S. pyrenaicus, perhaps the closest relative (Doadrio and Carmona, 2006), which 750 

was studied in several river reaches of the central Iberian Peninsula (Martínez-Capel et al., 751 

2009). Thus, the only difference was the optimal value of depth for large individuals (> 10 752 

cm), which tended to occupy deeper microhabitats (0.49 to 1.40 m) (Martínez-Capel et al., 753 

2009). Eastern Iberian chub also occurred in microhabitats similar to those occupied by S. 754 

torgalensis, S. carolitertii and S. aradensis, all of which have been sampled in other 755 

Mediterranean and temperate small streams of the Iberian Peninsula (Martelo et al., 2014; 756 

Santos and Ferreira, 2008; Santos et al., 2004). This coincidence was especially relevant for 757 

depth, substrate and, to a lesser extent, for cover – which was used less frequently by these 758 

species – but the most remarkable difference occurred for velocity (Martelo et al., 2014; 759 

Santos and Ferreira, 2008; Santos et al., 2004). However, this is most probably caused by 760 

differences in the available microhabitats, which, in these studies, were dominated by 761 

shallow and moderate-to-fast flowing riffles and runs (Martelo et al., 2014; Santos and 762 

Ferreira, 2008). Taking into account that Eastern Iberian chub rarely exceed 20 cm (Alcaraz-763 



42 
 

Hernández et al., 2015; Doadrio and Carmona, 2006) such a discrepancy can be caused by 764 

the relatively small size of the species, which may lead to inferior natatorial capacity, as has 765 

been demonstrated for other Iberian species (i.e., S. carolitertii) (Romão et al., 2012). 766 

Nevertheless, while velocity may certainly be a limitation in the occurrence of Eastern 767 

Iberian chub, we consider that depth is not. Nonetheless, in Vezza et al. (2015) different 768 

results were obtained for what was originally classified as S. pyrenaicus based on the 769 

morphologic characteristics of the specimens captured in the upper Cabriel that did not 770 

match those described in Doadrio and Carmona (2006). However, in light of the information 771 

contained in contemporary studies that performed genetic analyses (Perea, 2016 personal 772 

communication; Perea and Doadrio, 2015), it is currently suspected that the Squalius 773 

inhabiting the upper Cabriel is also S. valentinus. Therefore, following this supposition, in 774 

Vezza et al. (2015) Eastern Iberian chub occurred principally in low gradient and depth 775 

(from 1.25 up to 3.5 m) mesohabitats (i.e., pools) of intermediate granularity whereas the 776 

presence of macrophytes (one of the considered cover types) presented an unequivocal 777 

positive influence on the occurrence of chub. Therefore, we believe that, in further 778 

microhabitat studies, Eastern Iberian chub will select deeper microhabitats if they present 779 

some elements of cover. Such an asseveration will be supported by the aforementioned 780 

ontogenetic shifts of habitat preferences towards deeper microhabitats (Martelo et al., 781 

2014; Martínez-Capel et al., 2009; Santos and Ferreira, 2008) and the generalised use of 782 

cover elements observed in other species of the genus (Martelo et al., 2014; Pander and 783 

Geist, 2010; Santos et al., 2004). Thereby, based on the experience gained in previous 784 

studies, where the species is either certainly present (R Muñoz-Mas et al., 2016d; Costa et 785 
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al., 2012) or suspected to be present (Muñoz-Mas et al., 2017; Vezza et al., 2015), and 786 

compared to other Mediterranean species of chub, such as the Peloponnesian S. keadicus 787 

(Vardakas et al., 2017) or the native Iberian S. pyrenaicus (Martínez-Capel et al., 2009), we 788 

consider that the Eastern Iberian chub is apparently one of the Squalius species least prone 789 

to venture into mid-channel microhabitats. In accordance, despite the fact that distance to 790 

shore was not measured, which is a common variable in studies performed at the 791 

microhabitat scale (e.g., Vardakas et al., 2017; Martínez-Capel et al., 2009), we consider the 792 

Eastern Iberian chub to be the Squalius species that is most likely to remain near banks the 793 

majority of the time. Moreover, based on studies on other species of chub (Watkins et al., 794 

1997), this behaviour could in turn be caused either by the lack of cover typical of mid-795 

channel microhabitats or by the maximum body size achieved by the species, which is 796 

inferior to that of other species. Nevertheless, these asseverations will require 797 

confirmation, since there is evidence that, on the one hand, shoal and individual sizes 798 

(Martelo et al., 2013) and, on the other hand, season (i.e., temperature and illumination), 799 

affect Squalius activity (Santos and Ferreira, 2008; Baras and Nindaba, 1999). 800 

Finally, although the species may be claimed to present a certain tendency towards 801 

limnophilia, from the microscale point of view, our results corroborate the eurytopic nature 802 

of what we suspect were Eastern Iberian chubs (Vezza et al., 2015). Consequently, although 803 

the spread of the quantiles indicated the presence of remarkable interactions between the 804 

four input variables, which could better be scrutinised with modelling approaches more 805 

transparent, for instance, fuzzy logic or generalized additive models (see e.g., Muñoz-Mas et 806 

al., 2016d, 2017), this study sheds novel insights on the habitat requirements of the species. 807 
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Therefore, we consider it will contribute to enhance environmental flow assessment and 808 

the adequate implementation of management actions focused on habitat restoration and 809 

species conservation (Martelo et al., 2013; Martínez-Capel et al., 2009; Santos et al., 2004). 810 

 811 

5 Conclusions 812 

This study compared four PNNs and a SVM for assessing habitat suitability of the Eastern 813 

Iberian chub. Whereas heteroscedastic and enhanced PNNs achieved the highest accuracy, 814 

these models exhibited ecologically unreliable partial dependence plots. In contrast, 815 

homoscedastic and cluster PNNs rendered ecologically reliable partial dependence plots. 816 

This could be explained by the inherent trade-off between model performance and 817 

interpretability of partial dependence plots. Based on the results of cluster PNNs, we would 818 

advocate combinations of approaches (e.g., cluster & heteroscedastic or cluster & enhanced 819 

PNNs) to balance the accuracy-interpretability trade-off. From the partial dependence plots, 820 

the Eastern Iberian chub proved to be a eurytopic species as it preferentially occurred, and 821 

hence presented the largest probability of presence, in microhabitats with cover present, 822 

low flow velocity (approx. 0.3 m/s) and intermediate depth (approx. 0.6 m) while the 823 

optimal substrate corresponded to fine gravel (64–256 mm). This ecological information on 824 

the Eastern Iberian chub should help the adequate implementation of management and 825 

restoration actions for this vulnerable species. Although several aspects require further 826 

research, we expect this study, and the annexed code, to promote the use of PNNs among 827 
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scientists in general, and among ecologists and conservationists in particular for species 828 

distribution modelling and habitat suitability assessment. 829 
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