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Abstract 4 

In order to minimize the total expected cost, bridges have to be designed for safety and durability. 5 

This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned 6 

concrete box-girder road bridges. The deck is modeled by finite elements based on problem 7 

variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-8 

tensioning steel. An integrated multi-objective harmony search with artificial neural networks 9 

(ANNs) is proposed to reduce the high computing time required for the finite-element analysis and 10 

the increment in conflicting objectives. ANNs are trained through the results of previous bridge 11 

performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction 12 

towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results 13 

show that the harmony search parameters should be progressively changed in a diversification-14 

intensification strategy. This methodology provides trade-off solutions that are the cheapest ones 15 

for the safety and durability levels considered. Therefore, it is possible to choose an alternative that 16 

can be easily adjusted to each need. 17 
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1. Introduction 20 

Optimization methods provide an effective alternative to structural designs based on experience. 21 

Metaheuristic or stochastic algorithms use a combination of rules and randomness to effectively 22 

search large discrete variable spaces to find an optimal solution. Reviews on non-heuristic and 23 

heuristic algorithms applied to structural optimization can be found, respectively, in Sarma and 24 

Adeli (1998) and Hare et al. (2013). Regarding multi-objective optimization, Zavala et al. (2013) 25 

presented a survey of multi-objective metaheuristics applied to structural optimization. There are 26 

numerous examples of heuristic algorithms that have been applied to civil and structural 27 

engineering, such as Genetic Algorithm (GA) (Cai and Aref 2015), Memetic Algorithm (MA) 28 

(Martí et al. 2015), Simulated Annealing (SA) (Quaglia et al. 2014; Martí et al. 2016), Particle 29 

Swarm Optimization (PSO) (Sreehari and Maiti 2016), Glowworm Swarm Optimization (GSO) 30 

(García-Segura et al. 2014b; Yepes et al. 2015b), Harmony Search (HS) (Martini 2011; García-31 

Segura et al. 2015), among others. Alberdi and Khandelwal (2015) performed a thorough 32 

discussion in the light of the results of a comparison of ACO, GA, HS, PSO, SA, and TS and three 33 

improved variants. The best results were obtained in the design-driven HS. The algorithm was 34 

shown to be robust in optimization problems with large and poorly organized variable spaces. In 35 

addition, these authors highlighted the importance of diversification and intensification. 36 

Traditionally, engineers have aimed at reducing the weight and cost of structures. However, 37 

concerns regarding building a more sustainable future have led to the incorporation of criteria like 38 

environmental impact, durability, and safety level, among others. García-Segura et al. (2014a) 39 

studied the life-cycle greenhouse gas emissions of concrete columns, taking into account 40 

carbonation and durability. Paya et al. (2008) considered that reinforced concrete (RC) building 41 

frames should be studied according to the economic cost, the constructability, the environmental 42 
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impact, and the overall safety. Similar criteria were used to design RC bridge piers (Martinez-43 

Martin et al. 2012), and pavements (Torres-Machi et al. 2015). Yepes et al. (2015a) incorporated 44 

the prediction of service life as a criterion in the design of a high-strength RC I-beam. García-45 

Segura and Yepes (2016) found designs of the post-tensioned concrete box-girder road bridge that 46 

represent optimal trade-offs among the cost, CO2 emissions, and overall safety factor.  47 

Multi-objective optimization is used as a tool to find multiple trade-off solutions. However, a large 48 

computational time is required to evaluate solutions to certain problems. This is due to the existence 49 

of many decision variables or the evaluation procedure, like the use of the finite element method 50 

or a network flow computation (Deb and Nain 2007). Meta-models for objective functions and 51 

constraints have been developed for this purpose (Deb 2011). Giannakoglou (2002) claimed that 52 

optimization methods based on stochastic require huge time and demonstrated the usefulness of 53 

surrogate or approximation models. Emmerich and Naujoks (2004) presented various metamodel-54 

assisted multi-objective evolutionary algorithms based on Gaussian field (Kriging) models. Deb 55 

and Nain (2007) studied the possibility of using approximate models like artificial neural networks 56 

(ANNs) in multi-objective optimization.  The results showed a saving in exact function evaluations 57 

of about 25 to 62%.  58 

ANN is a machine learning method based on artificial neurons. The ANN learns from the training 59 

examples and provides a response or output by approximating non-linear functions of their inputs. 60 

ANN has been performed to analyze several topics related to civil engineering. Authors aim to 61 

predict structural behavior (Sanad and Saka 2001; Marti-Vargas et al. 2013), to analyze the effects 62 

of the input parameters on the output (Zavrtanik et al. 2016; Shi 2016), and to study the sensitivity 63 

of parameters (Cao et al. 2015). Chatterjee et al. (2016) employed ANN for structural failure 64 
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prediction. In this line, Protopapadakis et al. (2016) presented a neural detector aimed at identifying 65 

the structural defects in concrete piles. 66 

As mentioned previously, structures are designed according to the appropriate criteria for each 67 

particular case. In this case, multi-objective optimization is applied by simultaneously minimizing 68 

the cost and maximizing the overall safety factor and the corrosion initiation time. Cost 69 

optimization is essential to achieve a good design with the minimum economic resources. Safety 70 

can be analyzed when the structure is expected to be under increased loads or the deterioration 71 

process may cause a reduction in structural safety. Corrosion initiation is included as objective 72 

function for further deepening in the durability requirements. Despite durability is a more common 73 

criterion when the management phase is studied, aspects related to future performance are gaining 74 

increased attention in the design and assessment of structures (Dong et al. 2013). In this regard, 75 

this paper considers the durability objective in the design phase with the aim of designing for 76 

longevity and reduced long-term impacts. Note that designers sometimes need to analyze the same 77 

structure with different criteria and the computing time increases with the number of objectives 78 

studied.  79 

In this paper, ANN is integrated in a multi-objective HS to reduce the high computational cost 80 

needed to evaluate the constraints of a real bridge optimization problem. This methodology is 81 

applied to a post-tensioned concrete (PSC) box-girder road bridge located in a coastal region. The 82 

bridge design is defined by 34 variables which determine the cross-section geometry, the concrete 83 

grade, the reinforcement and post-tensioning steel. The deck is evaluated by using finite elements. 84 

Shell elements are used to generate the finite element model. The trained ANN is used to predict 85 

the structural response in terms of the limit states based on the design variables, without the need 86 

to analyze the bridge response. After this process, the Pareto set is actualized and improved through 87 
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exact analysis. Finally, the multi-objective optimization provides bridge managers with a complete 88 

set of alternative trade-off solutions with respect to cost, overall safety factor, and corrosion 89 

initiation time.  90 

2. Bridge design optimization 91 

Bridge optimization is formulated to minimize the cost and maximize the overall safety factor and 92 

the corrosion initiation time by providing the optimum PSC box-girder cross-section bridge design 93 

according to the variables and parameters. In this paper, bridge design optimization is studied. The 94 

bridge has three continuous spans with a main span (L1) of 44 m and external span (L2) of 35.2 m. 95 

The deck has a width of 11.8 m. The bridge is located in a coastal region. Figure 1 shows the bridge 96 

elevation. A total of 34 variables define the cross-section geometry, the concrete, and the 97 

reinforcing and post-tensioning steel of the bridge. The depth (h), the width of the bottom slab (b), 98 

the width of the web inclination (d), the thickness of the top slab (es), the thickness of the external 99 

flange section (ev), the thickness of the internal flange section (eva), the thickness of the bottom slab 100 

(ei), the thickness of the webs (ea), and the concrete cover (cc) form the geometric variables. Note 101 

that the web inclination is determined according to the web slope, which takes values between 2 102 

and 4, and the minimum concrete cover is fixed at 30 mm. Other dimensions, like t1, t2, t3, and t4 103 

(see Fig. 2), depend on the values of the variables (Eqs. (1–4)). 104 

𝑡1 = 𝑒𝑣𝑎 − 𝑒𝑠  (1) 105 

𝑡2 =
𝑏+2∗𝑑

5
  (2) 106 

𝑡3 = 𝑒𝑖  (3) 107 

𝑡4 =
𝑏

10
  (4) 108 
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The concrete strength (fck) takes values from 35 to 100 MPa. Post-tensioning is applied by the use 109 

of post-tensioning tendons, which form a parabolic layout symmetrically distributed through the 110 

webs. Three variables define the post-tensioning system: the eccentricity in the external spans (ep) 111 

as a percentage of half of the depth, the distance from the piers to the point of inflection (Lpi) as a 112 

percentage of the span length, and the number of strands (NS). The eccentricity in the supports and 113 

the midspan of the central span are the maximum allowed. Likewise, the prestressing force in each 114 

strand is specified as 195.52 KN. Regarding the duct placement, while the ducts are allocated in a 115 

line over the piers, they are placed in rows of two in the lower points of the layout.  116 

The last variables deal with the reinforcement. The longitudinal reinforcing steel is defined by the 117 

diameter (LR1, LR2, LR3, LR4, LR5, LR6, LR7, LR8, LR9, LR10) and the number of bars (NLR) per meter 118 

which is the same for all the bars. The deck is divided into two zones: the piers (L/5 on both sides 119 

of the piers) and the rest of the span. An extra reinforcement is placed in the top slab (LR7, LR8) 120 

and in the bottom slab (LR9, LR10) along the two zones. Similarly, the diameter (TR1, TR2, TR3, TR4, 121 

TR4´, TR5, TR6, TR7, TR8) and spacing (STR) determine the transverse reinforcement. TR4´ is an extra 122 

reinforcement placed at the same position as TR4 to covers the support zone (L/5 on both sides of 123 

all supports). TR8 is an extra reinforcement over the flanges. TR9 is not a variable, since it is fixed 124 

as 12 mm. 125 

Once the values of the variables have been defined, the bridge design is completed and the 126 

verification module can check the feasibility of the structural constraints. Spanish codes for actions 127 

(Fomento 2011) and concrete evaluation (Fomento 2008), which are based on the Eurocode 128 

(European Committee for Standardisation 2003; European Committee for Standardisation 2005), 129 

are used. Actions considered are the traffic loads defined in the code, the self-weight, the parapet 130 

(5 KN/m) and asphalt (24 KN/m3) loads, the thermal gradient of the code, differential settling in 131 
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each support (5 mm), and the post-tensioned steel effect. The constraints check the ultimate and 132 

serviceability limit states of flexure, shear, shear between web and flanges, torsion, stresses, and 133 

deflection. As the bridge is located in a coastal region, the decompression limit state checks that 134 

the concrete located 100 mm above and under the strands is not in tension (European Committee 135 

for Standardisation 2005). Two deflection verifications check whether the instantaneous and time-136 

dependent deflection with respect to the pre-camber is smaller than 1/1400 of the main span length 137 

for the characteristic combination (Fomento 2008) and whether the frequent value for the live loads 138 

is smaller than 1/1000 of the main span length (Fomento 2011). Besides, geometrical and 139 

constructability requirements are also considered. 140 

Bridge dimensions and loads are modeled in CSiBridge©(Computers and Structures Inc). A linear 141 

analysis by finite elements is carried out. The PSC box-girder is represented by shell elements that 142 

contain an embedded reinforcement grid. The prestressed tendons are also incorporated into the 143 

model. The study considers the instantaneous and deferred losses, which are used to evaluate the 144 

prestressing force at the tensioning stage and at final life. Diaphragms are assigned over each 145 

support. The finite element mesh considers a maximum segment length for discretization 146 

information of 3 m and a maximum submesh size of 1.5 m. Besides, a section cut is always applied 147 

over supports and every change in thickness of the transverse section is a condition for a finite 148 

element division. 149 

CSiBridge© is linked with Matlab© to create the model with the bridge information and extract 150 

the results of the structural analysis. CSiBridge© has an Open Application Programming Interface 151 

(OAPI) to allow other software to be integrated with it. CSiBridge© is used for the finite-element 152 

analysis. Matlab© is used to control the finite-element analysis, check the limit states and evaluate 153 

the objective functions. The program is comprised of eight modules. Module 1 updates the design 154 
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variables based on the algorithm strategy. Module 2 completes the design with the variable and 155 

parameter information. In addition, this module evaluates the section properties required for the 156 

limit state checking. Module 3 writes a $br document with the structure information. Module 4 157 

imports the $br document and runs the model. Module 5 extracts the results by OAPI functions. 158 

Module 6 processes the previous analysis results, evaluates the bridge resistance, and checks the 159 

limit states. Module 7 evaluates the objective functions. Finally, Module 8 obtains the Pareto 160 

optimum solutions. This is repeated for each iteration of the optimization process.  161 

2. 1. Objective functions 162 

2.1.1. Cost  163 

The cost (C) is evaluated as: 164 

𝐶 = 𝐶𝑐 ∙ 𝑉𝑐 + 𝐶𝑟𝑠 ∙ 𝑊𝑟𝑠 + 𝐶𝑝𝑠 ∙ 𝑊𝑝𝑠 + 𝐶𝑓 ∙ 𝐴𝑓 (5) 165 

where Cc is the unit cost of concrete, Vc is the volume of concrete, Crs is the unit cost of reinforcing 166 

steel, Wrs is the weight of reinforcement steel, Cps is the unit cost of prestressing steel, Wps is the 167 

weight of prestressing steel, Cf is the unit cost of formwork, and Af is the area of the formwork. The 168 

unit cost of the materials includes raw material extraction, manufacture, and transportation. More 169 

details are included in Garcia-Segura et al. (2015). Table 1 summarizes the unit costs for each 170 

material.  171 

2.1.2. Safety 172 

The overall safety factor (S) calculated according to the Spanish code (Fomento 2008; Fomento 173 

2011) and Eurocode (European Committee for Standardisation 2003; European Committee for 174 

Standardisation 2005), is as follows: 175 

𝑆(𝑥⃗) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝛾𝑗(𝑥⃗), j = 1, … , n (6) 176 
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where γj is the safety coefficient of ultimate limit states, n is the number of ultimate limit states 177 

considered and the vector x contains the design variables. This coefficient (γj) is obtained as the 178 

ratio between the factored ultimate resistance of the structural response and the factored ultimate 179 

load effect of actions considering the partial safety factors in the codes (Fomento 2008; Fomento 180 

2011). A safety coefficient of one represents strict compliance with the code. Torsion, flexure, 181 

transverse flexure, and shear limit states are all taken into account. Therefore, the number of 182 

ultimate limit states (n) is four.  183 

2.1.3. Corrosion initiation time 184 

The corrosion initiation time (tcorr) is the time required for the chloride concentration on the surface 185 

of the reinforcing steel, which coincides with the concrete cover, to reach a critical threshold value 186 

(Cr). The chloride content at a distance x from the outer surface of concrete at time t is calculated 187 

based on Fick´s second law as:  188 

𝐶(𝑥, 𝑡) = 𝐶𝑜 [1 − erf (
𝑥

2√𝑡𝐷
)]  (7) 189 

where Co is the chloride concentration on the surface, D is the apparent diffusion coefficient, and 190 

erf is the error function. The uncertainties related to the surface content, apparent diffusion 191 

coefficient, concrete cover, and critical threshold value are considered through random variables 192 

shown in Table 2. The parameters of random variables are those used by Vu and Stewart (2000), 193 

except for the coefficient of variation (COV) of the surface chloride content, which is considered 194 

0.3 due to the reduction of the variability of the surface chloride content in a particular bridge 195 

compared to a group of bridges. The surface chloride content depends on the distance to the coast. 196 

The mean value is 2.95 kg/m3  for a distance of up to 1000 m from the coast (McGee 1999). 197 

The diffusion coefficient (D) depends on the concrete permeability.  198 
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𝐷 = 𝐷𝐻2𝑂0.15 ∙
1+𝜌𝑐

𝑤

𝑐

1+𝜌𝑐
𝑤

𝑐
+

𝜌𝑐
𝜌𝑎

𝑎

𝑐

(
𝜌𝑐

𝑤

𝑐
−0.85

1+𝜌𝑐
𝑤

𝑐

)
3

 (8) 199 

Vu and Stewart (2000) suggested the model developed by Papadakis et al. (1996) (see Eq. (8)), 200 

which depends on the chloride diffusion coefficient in an infinite solution (DH20 = 1.6*10-5 cm2/s 201 

for NaCl), the mass density of cement (ρc, assumed to be 3.16 g/cm3), the mass density of the 202 

aggregates (ρa, assumed to be 2.6 g/cm3), the aggregate-to-cement ratio (a/c), and the water-cement 203 

ratio (w/c). Table 3 shows the values according to the concrete grades. The corrosion initiation time 204 

distribution is obtained by Monte Carlo simulation. This method randomly selects values of the 205 

variables associated with corrosion and calculates the output using Eq. (7) and (8). This process is 206 

repeated during 10000 iterations. The mean value of the lognormal distribution is given as the 207 

representative value.  208 

2.2. Optimization method 209 

The proposed method encompasses two models. The first is an approximate model to guide the 210 

optimization process and provide a near-optimum Pareto front. An ANN is integrated in a multi-211 

objective HS for this task. The ANN is trained using data collected from previous studies. The 212 

trained ANN is used to predict the limit state coefficients from the design variables, as the large 213 

computational time of a multi-objective bridge optimization is due to the structural analysis. The 214 

limit state coefficients evaluate the ratio between the factored resistance of the structural response 215 

or the permitted limit value for the limit state and the factored load effect of actions for this limit 216 

state. Secondly, a multi-objective optimization with a complete bridge analysis and verification 217 

actualizes and improves the Pareto set through exact evaluation. This combination of models aims 218 

to reduce the computing time while achieving a good performance. Trade-offs between cost, safety, 219 

and corrosion initiation are obtained through this method.  220 
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The ANN consists of many processing elements or neurons that use a backpropagation algorithm. 221 

The model learns from the input elements by adjusting the weights through an iterative process in 222 

which the model outputs are compared with measured outputs and the errors are back-propagated. 223 

The multilayer feedforward network is formed by one hidden layer of sigmoid neurons followed 224 

by an output layer of linear neurons. Neurons of the hidden layer are connected to all neurons in 225 

the input and output layers (see Fig 3). The number of neurons in the input and output layers 226 

corresponds with the number of input and output parameters. Inputs (xi) are multiplied by weights 227 

(wi,j) and combined linearly with an independent term or bias (b). Each hidden neuron follows this 228 

equation (∑xi·wi,j +b). Then, each neuron of the hidden layer produces an output by applying a  tan-229 

sigmoid function to the linear combination. The output layer follows the same procedure, but 230 

applying a linear function. The mean square error (MSE) and the coefficient of determination (R2) 231 

are used to check the accuracy of the network. 232 

The HS algorithm was proposed by Geem et al. (2001) based on the process of searching for the 233 

perfect musical harmony; equivalently, the heuristic algorithm searches for the best solution. This 234 

algorithm uses the following parameters: the harmony memory size (HMS) or number of solution 235 

vectors, the harmony memory considering rate (HMCR), and the pitch adjusting rate (PAR). Later, 236 

a multi-objective version of the HS algorithm was proposed by Xu et al.(2010). Ricart et al. (2011) 237 

presented two proposals for the multi-objective HS. This paper uses the second proposal, as Ricart 238 

et al. (2011) found that the algorithm is competitive even when compared to NSGA-II (Non-239 

dominated Sorting Genetic Algorithm II). In addition, the crowding distance criterion is considered 240 

to select solutions with the same ranking. This criterion benefits the diversification, since the 241 

solutions with greater crowding distance are those further from other solutions. The crowding 242 
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distance measures the perimeter of the cuboid formed by the nearest neighbors in the objective 243 

space as the vertices. This algorithm was explained in detail in García-Segura and Yepes (2016). 244 

Two important components of most stochastic search algorithms are diversification and 245 

intensification (Alberdi and Khandelwal 2015). Diversification makes it possible to explore the 246 

entire design space and avoids trapping in local optima. However, intensification is also needed to 247 

improve the convergence. This paper checks several intensification-diversification strategies by 248 

changing the algorithm parameters. HS generates new designs from parts of other good designs 249 

registered in the harmony memory (HM). Fixing the memory consideration to a unique random 250 

HM solution, instead of combining solutions, is studied. Besides, HMCR is modified to vary the 251 

choice of the values of the variables randomly. Increasing the value of HMCR reduces the random 252 

selection. When HMCR is equal to one, the algorithm just perturbs parts of existing designs 253 

according to PAR. The cases studied are explained in Section 2.2.2.  254 

Moreover, the use of penalty functions is studied. When ANN is integrated in a multi-objective 255 

HS, approximate solutions are obtained. In this context, unfeasible solutions can be feasible after 256 

the exact evaluation. Thus, penalties are studied for the unfeasible solutions to worsen their 257 

aptitude. This approach transforms the constrains related to the limit states in penalized objective 258 

values, which are small for light lacks of compliance and strong for larger ones. A review of penalty 259 

functions can be found in the study of Coello (2002). The penalty function used is Fp = (Kp/f )·F, 260 

where Fp is the penalized cost; F is the non-penalized cost; f  is equal to the minimum limit state 261 

coefficient, and Kp is an extra coefficient. Other penalty functions were tried without improving 262 

the convergence to the minimum. As f is a coefficient of unfeasibility with a value of less than one, 263 

the objective functions are penalized according to degree of compliance. In addition, an extra 264 

coefficient Kp worsen the value of unfeasible solutions. This coefficient reduces the divergence 265 



13 
 

caused by the high sensitivity of the unfeasible prestressed concrete structures. Two options for the 266 

Kp coefficient are studied (see Table 4).  267 

This paper uses the hypervolume measure to compare different Pareto fronts and establish a 268 

termination criterion. The hypervolume measure is a frequently applied quality measure for 269 

comparing the results of multi-objective optimization algorithms. Coello et al. (2006) reported a 270 

variety of indicators to measure the quality of Pareto front approximations. Among them, the 271 

hypervolume measure or S-metric is of outstanding importance (Beume et al. 2007). This quality 272 

indicator rewards the convergence towards the Pareto front as well as the representative distribution 273 

of points along the front. The hypervolume measure was originally proposed by Zitzler and Thiele 274 

(1998), who called it the size of dominated space. Then, it was described as the Lebesgue measure. 275 

To evaluate the hypervolume, the values are firstly normalized. As the problem is established as a 276 

minimization of the cost and the negative value of corrosion initiation time and the overall safety 277 

factor, the values are divided by (20x10^6, 500, 2) and the utopia and antiutopia points are (0, –1, 278 

–1) and (1, 0, 0).  279 

The proposed method is divided into four steps, as Fig. 4 shows. 280 

2.2.1 Step 1. ANN training 281 

The neural network is trained using 4500 data, which comprise the 34 input variables and one 282 

output variable. The output variable refers to the limit state coefficients. These data are obtained 283 

through the exact method. CSiBridge© is used for the finite-element analysis and Matlab© verifies 284 

the limit states based on the load effects obtained from CSiBridge© and the bridge resistance 285 

evaluation. As there are 17 limit states or output variables, the process is repeated 17 times and 17 286 

ANNs are obtained. The data are divided into training (70%), validation (15%), and test (15%) 287 

sets. The ANN uses a Levenberg-Marquardt backpropagation algorithm with 10 neurons. The 288 
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number of neurons was adjusted to provide the best performance. This process is finalized when 289 

the number of iterations reaches 1000, or the performance function drops below 10-8, or the 290 

magnitude of the gradient is less than 10-10, or the maximum number of validation failures exceeds 291 

50.   292 

2.2.2 Step 2. Approximate Pareto set. 293 

A multi-objective HS is combined with ANN to minimize the cost and maximize the corrosion 294 

initiation time and the overall safety factor while complying with the constraints. ANN is used to 295 

obtain the coefficient of the limit states from the design variables. Each simulation is carried out 296 

nine times and the average value is obtained. These values are used to evaluate the constraints and 297 

the overall safety factor. The constraints check whether the coefficients of the limit states are 298 

greater than one. The overall safety factor is obtained according to Eq. (6). This process is 299 

performed for 20000 iterations, since the hypervolume of the Pareto front tends to stabilize around 300 

this value (see Fig. 5). Besides, to improve the efficiency of the algorithm, different cases regarding 301 

diversification-intensification strategies and penalty functions are considered (see Table 4). Note 302 

that these values have been selected based on the results of García-Segura et al. (2015). These 303 

authors used a Design of Experiments methodology to propose HMS=200, HMCR=0.7 and 304 

PAR=0.4 as the algorithm parameters. 305 

2.2.3 Step 3. Updated Pareto set 306 

Step 3 involves the update of the Pareto set. The solutions registered in the HM are updated, with 307 

the Pareto set of solutions being among them. HM is formed by approximate solutions, which are 308 

actualized to depart from exact solutions. To this end, CSiBridge is used for the finite-element 309 

analysis and Matlab verifies the limit states based on the load effects from CSiBridge and the bridge 310 

resistance evaluation. After this process, a new actualized Pareto front is presented. These solutions 311 
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must be feasible. Therefore, HS solutions belonging to the Pareto set in the previous steps can have 312 

another ranking after this step. And on the contrary, HS solutions with ranking greater than one 313 

can constitute the Pareto set. 314 

2.2.4 Step 4. Exact Pareto front 315 

The last step carries out a multi-objective optimization through an exact method. This process starts 316 

with the actualized HM. A new harmony memory with HMS solutions is generated based on the 317 

HS strategy. Each new harmony or solution generated is analyzed and verified. Only feasible 318 

solutions are saved. The harmony memory is updated with the solutions of highest ranking. Note 319 

that when the number of solutions with ranking equal to one that is, belonging to the Pareto front, 320 

is greater than the value of HMS, the HMS value is increased to the number of Pareto solutions. 321 

The optimization process finishes after ten consecutive harmony memory updates with a difference 322 

in hypervolume value of less than 0.0005. 323 

3. Results  324 

3.1. Results of ANN  325 

The results of the ANNs are summarized in Table 5. The coefficient of determination R2 and the 326 

MSE analyze, the relation between the output and targets and the network's performance. Values 327 

of R2 vary between 0.912 and 0.999 and MSE takes values between 0.0001 and 0.088.  328 

3.2. Results of approximate Pareto set 329 

ANN was combined with the multi-objective HS to obtain an approximate Pareto set. Ten different 330 

cases were studied regarding the algorithm parameters and the coefficient of penalty function (see 331 

Table 4). The hypervolume was used as a metric to compare the results. This metric evaluates a 332 

combination of convergence and spread of solutions. The results in Table 6 show that Case 10 333 
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presents the greatest hypervolume. This case corresponds to the progressive diversification-334 

intensification strategy. Note that Cases 1–3 present increasing values of HMCR, as do Cases 4–6. 335 

In all of them, the case with the greatest hypervolume is the last one. Therefore, it is worth noting 336 

that the greatest HMCR value performs better for this structural problem.  When HMCR is equal 337 

to one, the random selection of the value of the variables becomes unlikely. Regarding fixing the 338 

memory consideration to one solution, Cases 4–6 have better results than Cases 1–3. This means 339 

that combining variables from different solutions is less effective than taking only one solution and 340 

perturbing some members. However, Case 10, which allows the combination of solutions and 341 

random selection in the beginning, has the best results. Concerning the penalty function, Cases 7-342 

9 analyze a higher value of Kp coefficient. The hypervolume is smaller when increasing the cost of 343 

unfeasible solutions with Kp equal to 1.1. As this parameter worsens the solutions, the hypervolume 344 

is expected to have a smaller value. Thus, Case 8 was also studied in the next step to determine 345 

whether this case is definitely worse than Case 10.  346 

3.3. Results of the updated Pareto set 347 

When the approximate Pareto set is actualized, the limit state coefficients are modified. In turn, the 348 

objective values and the hypervolume change. This step is carried out in Cases 8 and 10. The 349 

hypervolume of Case 8 was reduced from 0.6589 to 0.6499 and the hypervolume of Case 10 varied 350 

from 0.6748 to 0.6520. Unsurprisingly, the hypervolume difference of Case 8 is smaller, since this 351 

case imposes a higher penalty on unfeasible solutions. Even so, after the updating, the hypervolume 352 

remains smaller in Case 10. Therefore, Case 10 is used to carry out the following step. 353 

3.4. Results of exact Pareto front 354 

The last step improved the Pareto performance from a hypervolume of 0.652 to 0.668 (see Fig. 5). 355 

The results show a percentage of exact function evaluations of about 37% when the exact 356 
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evaluations for ANN training are taken into account. However, if the ANN training data are not 357 

considered, the percentage of exact function evaluations is 27%. It is worth noting the importance 358 

of this result, since the average time for obtaining an exact feasible solution is about 1500 s, while 359 

obtaining a solution through ANN takes about 4 s. In addition, it should be noted that the ANN 360 

training for the 17 neural networks consumes about 7 min. The total computation time depends on 361 

the computer, the software and the technique used, among others. In our case, the personal 362 

computer has an INTEL® CoreTM i7-3820 CPU processor and 3.6 GHz. It should be noted that 363 

82% of the computation time for obtaining an exact feasible solution is spent in the finite element 364 

analysis and exporting of results. 365 

The Pareto set (see Fig. 6) contains the solutions that cannot be improved without worsening the 366 

value of one objective. This set provides trade-off solutions from which the designer can select the 367 

most desirable one. Some solutions require higher cost of production of materials and construction 368 

of the bridge, but these solutions have a longer lifetime thanks to the higher corrosion initiation 369 

time and improved safety. Consequently, they will incur lower maintenance and repair costs. Codes 370 

recommend the same service life target and safety level for all road bridges. However, this paper 371 

gives multiple alternatives that can easily be adjusted to each need.  372 

The relationship between the cost and the overall safety factor presents a parabolic fit. This relation 373 

is maintained for each corrosion initiation time. Note that the corrosion initiation time is limited to 374 

500 years. Each of these solutions is the cheapest for the safety and durability level. Likewise, 375 

when choosing a safety and durability target, it is possible to know the best cross-section geometry, 376 

concrete grade, reinforcement, and post-tensioning steel. Note that there are solutions whose cost 377 

is smaller than €500000 that have an overall safety factor of around 1.5 and a maximum corrosion 378 
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initiation time. This means that with a small cost increment, the safety and durability can be greatly 379 

improved. 380 

Fig. 7 shows the Pareto front, highlighting the concrete grade of these solutions. Just solutions that 381 

use 35, 45, 55, 70 and 90 MPa concrete are highlighted. The variables with influence over the 382 

corrosion initiation time are the concrete strength and the concrete cover. On analyzing the results 383 

according to the concrete strength, Fig. 7 illustrates a tendency towards increasing corrosion time 384 

with increasing concrete strength. The average corrosion initiation times are 36.3, 88.3, 343.7 and 385 

500 years for 35, 45, 55, 70, and 90 MPa, respectively. However, the concrete strength and overall 386 

safety factor do not present a clear relationship. The same safety range can be obtained with 387 

different concrete grades.   388 

Regarding the concrete cover effect (see Fig. 8), solutions with concrete cover of 30, 35, 60 and 75 389 

mm are analyzed. It is worth noting that an increment in concrete cover has an effect on the 390 

corrosion initiation time that depends on the value of concrete strength. This relationship is 391 

represented in Fig. 9. Considering a linear relation between corrosion initiation time and concrete 392 

cover, both the slope and y-intercept increase with the concrete strength. Therefore, for low grades 393 

of concrete, an increment in concrete cover has less effect on the corrosion initiation time, 394 

compared to high-strength concrete. Likewise, Fig. 9 shows big differences between the corrosion 395 

initiation time of low and high-strength concrete. As concrete strength generally has more 396 

economic impact than concrete cover, increments in concrete strength favors strategies of higher 397 

service life targets and increments in concrete cover favors strategies of lower service life targets. 398 

Thus, there are optimum bridge solutions with the maximum corrosion initiation time that use high-399 

strength concrete with the minimum cover. However, the opposite case is not obtained. In 400 
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conclusion, an optimum selection of a concrete cover and concrete strength can achieve the 401 

durability and cost goals. 402 

4. Concluding remarks 403 

In this paper, post-tensioned concrete box-girder road bridges are optimized, considering the cost, 404 

the overall safety factor, and the corrosion initiation time as objectives. The durability is 405 

transformed from a constraint to an objective with the aim of designing for longevity and reduced 406 

long-term impacts. In this regard, this study gives the opportunity to explore new designs without 407 

limiting the design by predefined constraints on durability measures. The multi-objective 408 

optimization aims to find designs with lower cost, longer corrosion initiation time and improved 409 

safety. Pareto front provides trade-off solutions with a little cost increment but these solutions have 410 

a longer lifetime and improved safety, compared to the minimum cost solution. However, as the 411 

number of objectives increases, the problem becomes more complex and the computing time 412 

increases. In addition, the bridge analysis is carried out through a finite-element program with a 413 

substantially increased time. This paper proposes a methodology to reduce the number of exact 414 

evaluations by using ANN. 415 

The methodology implements four stages. Firstly, the ANN is trained by the limit state data of 416 

previous evaluations of the same bridge problem, even though the objective functions are different. 417 

The aim is to learn about the relationship between the variables and the limit state coefficient, since 418 

this part is the most computationally intensive. Secondly, a multi-objective HS is combined with 419 

ANN to obtain an approximate Pareto front that provides a good search direction. In this step, 420 

several cases are considered to study the algorithm parameters and the penalty function. Then, the 421 

third step actualizes the Pareto set of solutions with a finite-element analysis, limit state 422 
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verification, and objective evaluation. The unfeasible solutions do not proceed to the next step. 423 

Finally, the multi-objective optimization problem is solved with exact evaluations. 424 

The results of ANN give values of the coefficient of determination R2 between 0.912 and 0.999. 425 

The study of the algorithm parameters shows the best results for the combination of parameters 426 

that follow a transition from diversification to intensification. The progressive elimination of the 427 

combination of solutions and the random selection achieve the highest hypervolume measure. 428 

Finally, the methodology show a percentage of exact function evaluations of about 37% or 27%, 429 

depending on whether or not the training data are taken into account. This takes on far greater 430 

significance when the computational time is reduced from about 1500 s when obtaining an exact 431 

feasible solution to 4 s when using ANN. The findings indicate that ANN is a good tool to 432 

reproduce the structure response and reduce the time cost. However, the last steps need finer 433 

models to converge closer to the true Pareto front.  434 

Pareto front provides a trade-off between the cost, the overall safety factor, and the corrosion 435 

initiation time. The designer can select the cheapest solution for the safety and durability target. 436 

Both the effect of increasing the concrete strength and concrete cover is not the same for each 437 

concrete grade. For low grades of concrete, an increment in both variables has less effect on the 438 

corrosion initiation time, compared to high strength concrete. While increments in concrete 439 

strength favors strategies of higher service life targets, increments in concrete cover favors 440 

strategies of lower service life targets. A good combination of both concrete strength and concrete 441 

cover could achieve the durability and cost goals. 442 
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Table 1. Unit prices 574 

Unit measurements Cost (€) 

Square meter of formwork 33.81 

Kilogram of steel (B-500-S) 1.16 

Kilogram of prestressing steel (Y1860-S7) 3.40 

Cubic meter of concrete 35 MPa 104.57 

Cubic meter of concrete 40 MPa 109.33 

Cubic meter of concrete 45 MPa 114.10 

Cubic meter of concrete 50 MPa 118.87 

Cubic meter of concrete 55 MPa 123.64 

Cubic meter of concrete 60 MPa 128.41 

Cubic meter of concrete 70 MPa 137.95 

Cubic meter of concrete 80 MPa 147.49 

Cubic meter of concrete 90 MPa 157.02 

Cubic meter of concrete 100 MPa 166.56 

  575 
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Table 2.  Parameters of the random variables associated with corrosion 576 

Random Variables Model type 

Model error (D) Normal (µ = 1, COV = 0.2)  

Co Lognormal (µ = 2.95, COV = 0.3)  

Cr Uniform (0.6–1.2)   

Cover Normal (µ = cc, COV = 0.25)   

  577 
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Table 3.  Aggregate-to-cement ratio and water-cement ratio for each concrete grade 578 

Concrete grade a/c w/c 

Concrete 35 MPa 6.45 0.54 

Concrete 40 MPa 6.03 0.5 

Concrete 45 MPa 5.47 0.45 

Concrete 50 MPa 4.66 0.4 

Concrete 55 MPa 3.92 0.35 

Concrete 60 MPa 3.64 0.33 

Concrete 70 MPa 3.56 0.31 

Concrete 80 MPa 3.55 0.3 

Concrete 90 MPa 3.52 0.3 

Concrete 100 MPa 3.22 0.3 

  579 
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Table 4. Algorithm parameters for each case of Step 2. 580 

  HMS PAR HMCR Fix memory consideration Kp 

Case 1  200 0.4 0.7 No 1 

Case 2  200 0.4 0.85 No 1 

Case 3  200 0.4 1 No 1 

Case 4  200 0.4 0.7 Yes 1 

Case 5  200 0.4 0.85 Yes 1 

Case 6  200 0.4 1 Yes 1 

Case 7  200 0.4 0.7 Yes 1.1 

Case 8  200 0.4 0.85 Yes 1.1 

Case 9  200 0.4 1 Yes 1.1 

Case 10 Phase 1: 2500 iterations 200 0.4 0.7 No 1 

Phase 2: 2500 iterations 200 0.4 0.7 Yes 1 

Phase 3: 15000 iterations 200 0.4 1 Yes 1 

  581 
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Table 5. ANN results  582 

Limit state MSE R2  

Stresses during prestressing 0.0213 0.976  

Serviceability stresses 0.0039 0.996  

Deflection (Fomento 2008) 0.0036 0.996  

Deflection (Fomento 2011) 0.0001 0.999  

Flexure 0.0574 0.942  

Minimum flexure reinforcement 0.0704 0.930  

Shear 0.0063 0.993  

Minimum shear reinforcement 0.0116 0.988  

Shear between web and flanges 0.0384 0.960  

Torsion: longitudinal reinforcement 0.0096 0.990  

Torsion: transverse reinforcement 0.0270 0.973  

Minimum torsion reinforcement 0.0407 0.959  

Torsion combined with shear 0.0012 0.999  

Torsion combined with tension 0.0408 0.958  

Transverse flexion 0.0479 0.952  

Minimum transverse reinforcement 0.0877 0.912  

Transverse shear 0.0627 0.937  

  583 
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Table 6. Results of approximate Pareto set for each case 584 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 

Hypervolume 0.6286 0.6322 0.6373 0.6504 0.6612 0.6744 0.6225 0.6589 0.6583 0.6748 

 585 

586 
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587 

Fig. 1. Bridge elevation and post-tensioned steel  588 
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 589 

Fig. 2. Geometric and reinforcing steel variables  590 
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 591 

Fig. 3. Multilayer feedforward network  592 
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 593 

Fig. 4. Basic steps of the integrated multi-objective harmony search with artificial neural networks   594 
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 595 

Fig. 5. Evolution of Pareto front through hypervolume evaluation  596 
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597 

Fig. 6. Pareto optimal solutions for cost, overall safety factor and corrosion initiation time  598 
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 599 

Fig. 7. Pareto optimal solutions according to the concrete grade  600 
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 601 

Fig. 8. Pareto optimal solutions according to the concrete cover  602 
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 603 

Fig. 9. Corrosion initiation time according to concrete cover and concrete strength 604 


