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Abstract—This paper describes a multimode equivalent network
(MEN) representation of a finite array of open-ended lossless waveguides
on an infinite ground plane. The derivation is based on an integral
equation formulated at the interface between the waveguides and the
free-space region. The MEN is formulated using the concept of accessible
and localized modes, and includes ports for the free-space plane waves.
The MEN derived can be easily combined with the MENs of other
microwave components, thus allowing for the accurate analysis and design
of more complex systems composed of waveguide elements and radiating
apertures. Both simulated and experimental results are presented showing
very good agreement, thereby fully validating the proposed equivalent
network representation.

Index Terms—Waveguide radiation, integral equation technique, mul-
timode equivalent network representation, plane-wave expansion.

I. INTRODUCTION

Rectangular and circular apertures are commonly used as phased
array antennas in microwave and millimeter-wave radars [1], [2], and
to feed parabolic reflectors in communications satellites [3].

The radiation from a finite number of apertures in an infinite
ground plane is indeed a classic problem that has been studied by
many authors. In 1969 Mailloux described the single or double mode
radiation from two apertures [4], [5]. The result was an impedance
matrix that accounted for the mutual coupling between the different
modes. Later, in 1976, Harrington provided a more general formula-
tion for aperture problems based on the method of moments [6].
In 1990, Bird studied the mutual coupling in arrays of apertures
with different sizes, giving as a result the mutual admittance between
modes in the different waveguides (rectangular [7] or elliptical [8]).

The Multimode Equivalent Network (MEN) formulation was orig-
inally developed for periodic metal strip gratings in 1989 [9], and
later applied to inductive [10], capacitive [11], and general planar [12]
waveguide discontinuities. For the latter case, the concept of accessi-
ble and localized modes, formally introduced in [13], was exploited
to improve the computational efficiency. The MEN formulation has
been used, so far, to study the radiation from an infinite set of
open-ended waveguides, and for frequency selective surfaces [14].
Furthermore, in [15], a MEN representation of a finite array of open-
ended waveguides on a finite ground plane was indeed presented.

None of the aforementioned MEN representations provide access
ports for the free-space modes. However, the industrial design of
a complete antenna system may require the integrated design of
radiating apertures, reflectors, and the complete feeding network [16],
[17], including also the effects of an incident field. In this context,
therefore, it becomes important to have MENs for radiating apertures
assemblies that allow for the inclusion of ports representing plane
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Fig. 1. Generic configuration of 3 radiating, open-ended waveguides: (a) 3D
view of the array, and (b) lateral view of considered regions.

waves in the free-space region, in addition to the feeding waveguide
modes.

A generalized network representation of a finite array of open-
ended waveguides on a planar ground plane with free space ports
has been already described in [18], [19]. In these contributions,
however, the field in the free-space region is expanded in a set
of spherical-wave mode functions. This choice, in turns, requires
the introduction of an additional ”cavity” region, which implies an
additional computational effort.

In this paper we derive a MEN representation for an arbitrary
array of radiating open-ended waveguides on an infinite ground plane
including also network ports for the free-space plane waves. The
derivation itself is general and is applicable to any type of lossless
waveguide by suitably deriving the transverse wavenumbers of the
waveguide and computing the corresponding eigenfunctions [20]. In
case of considering canonical waveguides, e.g. rectangular or circular,
the efficiency of the MEN representation is maximized. In addition
to theory, a number of comparisons between measured and simulated
results is also included. Excellent agreement between measurements
and simulations is demonstrated, thereby fully validating the proposed
multimode equivalent network representation.

II. PROBLEM AND MODES DEFINITION

The problem under investigation is an arbitrary number of open-
ended waveguides on an infinite ground plane. For the sake of
simplicity, we show in Fig. 1 an example with only three radiating
open-ended waveguides.

As shown in Fig. 1 (b), the structure is divided into two regions:
Region (1), composed of T waveguides, and Region (2), the free-
space region. The objective of this paper is to develop a multimode
equivalent network (MEN) representation for the structure in Fig. 1
in the form shown in Fig. 2. The MEN shown in Fig. 2 is similar
to the MENs first introduced in [9]-[12] for modelling waveguide
obstacles, with two important differences. First, the ports in region (2)
denote free-space plane waves instead of waveguide modes. Second,
the proposed representation does not add a static admittance (or
impedance) in parallel (or in series) to each of the transmission
lines representing the modes connected to the MEN matrix. The
removal of these static terms results in a simpler network formalism
that increases the computational efficiency. The improvement in
computational efficiency may be small for each single mode, but may
become significant when complex structures, with a large number of
accessible modes, are analyzed and optimized. This aspect, however,
goes beyond the scope of the present work and will be fully explored
in future research activities.
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Fig. 2. Multimode equivalent network for the structure in Fig. 1.

To start our formulation we write the electromagnetic fields in
region (1) as [21]:

E
(1)
t (x, y, z) =

∞∑
p=1

V (1)
p (z)e (1)

p (x, y) (1)

H
(1)
t (x, y, z) =

∞∑
p=1

I(1)p (z)h (1)
p (x, y) (2)

where V (1)
p (z) and I(1)p (z) are the modal voltages and currents of the

modal expansion, and e
(1)
p (x, y) and h

(1)
p (x, y) are the normalized

electric and magnetic vector functions for the waveguides modes
corresponding to region (1). The index p summarizes in a single
notation the mode index (m,n), and the TE or TM mode type
associated to each waveguide τ (τ = 1 . . . T in our structure).

Region (2), representing the free space, may also be considered
as a uniform waveguide having an infinite cross section (x and
y directions), with propagation in the z direction [21]. From this
point of view, therefore, the electromagnetic fields in free space may
also be written with a modal formalism that is similar to the one
of closed waveguides. The difference, however, is that the modal
spectrum for the free-space region is continuous instead of discrete.
The expressions for the transverse electric and magnetic fields in
region (2) can therefore be written as follows:

E
(2)
t (x, y, z) =

∫ ∞
−∞

∫ ∞
−∞

V
(2)
i (z)e

(2)
i (x, y)dkxdky (3)

H
(2)
t (x, y, z) =

∫ ∞
−∞

∫ ∞
−∞

I
(2)
i (z)h

(2)
i (x, y)dkxdky (4)

where V (2)
i (z) and I

(2)
i (z) are the modal voltages and currents of

the plane-wave expansion, and e
(2)
i (x, y) and h

(2)
i (x, y) are the

normalized electric and magnetic vector mode functions in the free-
space region, respectively. The index i summarizes in a single term
the free-space spectral wavenumber (kx,ky), which may also be TE
or TM.

The far-field radiation pattern of the apertures (EFF ) can be
computed from (3) and (4) by solving the integrals with the method of
the stationary phase [22, Appendix VIII]. The result can be expressed
as:

Fig. 3. Region (2) integration limits: (a) accessible Racc and localized Rloc
regions, and (b) set of plane waves within Rloc.

EFF (r, θ, φ) = jk
e−jkr

r
(V

(TM) (2)
i θ̂ − cos θV

(TE) (2)
i φ̂), (5)

where the modal voltages are split into TE and TM modes, and the
relationship between the direction (θ, φ) and the index i ≡ (kx, ky)
is given by kx = k sin θ cosφ and ky = k sin θ sinφ, where k is the
wavenumber.

The explicit expressions for the orthonormal mode functions in the
waveguides region and in the free-space region can be found in [21,
Ch. 2].

III. INTEGRAL EQUATION TECHNIQUE

The first step in the formulation is to write the transversal magnetic
field in the waveguide region in the following form:

H
(1)
t (x, y, z) =

N(1)∑
p=1

I(1)p (z)h (1)
p (x, y)+

∞∑
p=N(1)+1

I(1)p (z)h (1)
p (x, y) (6)

where the concept of accessible modes (those that interact with
other junctions) and localized modes (those that are relevant in
the characterization of the aperture, but do not contribute to the
interactions with other junctions) has been used [13], so that N (1) is
the number of accessible modes in all waveguides.

The same separation can also be introduced in region (2). However,
accessible and localized modes are now located in different 2D
spectral regions: Racc for accessible modes, and Rloc for localized
modes, as illustrated in Fig. 3 (a). Consequently, the transverse
magnetic vector field for region (2) is written as follows:

H
(2)
t (x, y, z) =

∫∫
Racc

I
(2)
i (z)h

(2)
i (x, y)dkxdky+∫∫

Rloc

I
(2)
i (z)h

(2)
i (x, y)dkxdky. (7)

However, in the case in which we are only interested in a set of
accessible plane waves, as illustrated in Fig. 3 (b), (7) can be rewritten
as:

H
(2)
t (x, y, z) =

N(2)∑
i=1

I
(2)
i (z)h

(2)
i (x, y)+

∫∫
Rloc

I
(2)
i (z)h

(2)
i (x, y)dkxdky (8)
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where N (2) is the number of accessible planes waves, and Rloc now
covers the complete spectral domain. The location of the accessible
plane waves (kx,ky) is directly determined from the spatial directions
(θ,φ) in which the radiation pattern must be computed, as stated
above. Note that the accessible plane waves are discrete points whose
area is null. Thereby, Rloc in (8) can be extended to the whole plane-
wave spectrum domain without altering the final result.

To continue, we note now that the apertures are located at z = 0
and, therefore, voltages and currents for the localized modes can be
simplified to:

I(γ)n = −I(γ)−n = −Y (γ)
n V (γ)

n (9)

where (γ) indicates region (1) or (2), and Y
(γ)
n are the modal

admittances and I(γ)−n the reflected waves.
Taking into account the formalism introduced, we can now write

the following expression for the continuity of the transversal magnetic
fields at z = 0:

N(1)∑
p=1

I(1)p h (1)
p (x, y)−

∞∑
p=N(1)+1

Y (1)
p V (1)

p h (1)
p (x, y) =

−
N(2)∑
i=1

I
(2)
i h

(2)
i (x, y) +

∫∫
Rloc

Y
(2)
i V

(2)
i h

(2)
i (x, y)dkxdky,

(10)

where the modal voltages for regions (1) and (2) may be expressed
as:

V (γ)
n =

∫∫
Sγ

(
ẑ ×Et(x

′, y′)
)
h (γ)∗
n (x′, y′)dS′ (11)

being ẑ×Et(x
′, y′) the unknown of the problem under investigation,

S1 the cross-section of waveguide τ associated to mode n, and S2

the union of all the aperture cross-sections (ST ).
Introducing (11) into (10), ẑ × Et(x

′, y′) is now expressed in
terms of an integral equation. Note, however, that since the problem
is linear, ẑ × Et(x

′, y′) can be written as a linear combination of
accessible modes in both regions. Furthermore, defining a new set of
magnetic-current functions (M (1,2)

q (x′, y′)) as the unknown of the
problem, we can write the transverse electric field at z = 0 in the
form:

ẑ ×Et(x
′, y′) =

N(1)∑
q=1

I(1)q M (1)
q (x′, y′) +

N(2)∑
j=1

I
(2)
j M

(2)
j (x′, y′).

(12)
Using now (11), and (12), in (10), and equating like terms, we can

obtain a set of integral equations for the unknown magnetic-current
functions:

h (γ)
n (x, y) =∫∫
ST

M (γ)
n (x′, y′)

[
∞∑

q=N(1)+1

Y (1)
q h (1)

q (x, y)h (1)∗
q (x′, y′)+

∫∫
Rloc

Y
(2)
j h

(2)
j (x, y)h

(2)∗
j (x′, y′)dkxdky

]
dS′ (13)

where n indicates any accessible mode of regions (1) or (2).
Once the integral equation is solved, the impedance matrix Z(β,γ)

mn

can be computed by substituting the magnetic-current M (γ)
q (x′, y′)

into (11). The resulting final expression is as follows:

Z(β,γ)
mn =

∫∫
ST

M (γ)
n (x′, y′)h (β)∗

m (x′, y′)dS′ (14)

where β and γ denote the region (1 or 2) to which modes m and
n belong, respectively, and where the impedance matrix elements in
(14) relate the modal voltages and currents as follows:

V (β)
m =

N(1)∑
n=1

I(1)n Z(β,1)
mn +

N(2)∑
n=1

I(2)n Z(β,2)
mn . (15)

IV. SOLUTION OF THE INTEGRAL EQUATION: MULTIMODE

EQUIVALENT NETWORK REPRESENTATION

The set of integral equations in (13) can be solved using the
method of moments [23]. To do so, the unknown magnetic-currents
M

(γ)
n (x′, y′) in the apertures are expanded as a series of magnetic

basis functions in region (1) as follows:

M (γ)
n (x′, y′) =

Q(γ)∑
q=1

α(n,γ)
q h (1)

q (x′, y′) (16)

being the coefficients of this expansion (α(n,γ)
q ) the unknowns of the

problem. Using Galerkin’s Method [23] in (13) we then obtain:

Bpqα
(n,γ)
q = C(n,γ)

p (17)

where the system matrix and the independent vector are defined as:

Bpq = Y (1)
q Fqδpq + Ipq (18)

C(n,γ)
p =

{
δnp, if γ = 1

Anp, if γ = 2
(19)

with

Ipq =

∫∫
Rloc

Y
(2)
i A∗iqAipdkxdky, (20)

and where Y (2)
i is the admittance of the free-space mode i, and Fq

is 0 for accessible modes and 1 for localized modes. The coupling
integral Anp is defined as:

Anp =

∫∫
Sp

h (2)
n (x, y) · h (1)∗

p (x, y)dS, (21)

being Sp the transverse area of the waveguide associated to mode p.
By solving (17), the weights of the expansion (α(n,γ)

q ) are deter-
mined and, with these weights, the unknown magnetic basis functions
M

(γ)
n (x′, y′) can be easily obtained through (16). These functions

can be used, in turn, to compute the elements of the impedance matrix
using (14), so that:

Z(β,γ)
mn =


α
(n,γ)
m , if β = 1

Q(γ)∑
q=1

α(n,γ)
q A∗mq, if β = 2.

(22)

V. EXPERIMENTAL RESULTS

In this section we present several results to validate the MEN
derived, which has been implemented using the FORTRAN program-
ming language. For the sake of simplicity, we will use rectangular
radiating apertures. It is also important to stress that, in contrast to
previous MENs formulations (such as [15]), which requires additional
far field projections, the method described in this paper is able to
provide directly the radiation pattern as the voltages of the modes
(i.e., plane waves) in region (2) can be obtained.
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Fig. 4. S11 parameter in the square (central) aperture of the three-aperture
array shown in the inset. Measurements are from [7].
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Fig. 5. Coupling coefficient between aperture 1 and apertures 2 and 3 (see
the inset) with 21 modes on each aperture. Measurements are from [7].

A. Three apertures configuration

The MEN derived has been tested first with the configuration
introduced in [7], where measured results of a fabricated prototype
were also included for comparison. The structure, shown in the inset
of Fig. 4, is formed by three apertures on an infinite ground plane.
The central element is a square aperture with side A=22.8 mm,
whereas the other elements are rectangular apertures with dimensions
B=15.7 mm and C=7.7 mm. The separation between apertures
(center to center) is 30 mm.

The structure has been simulated with 7 and 21 magnetic basis
functions on the apertures (Q(γ) in (16)). The S11 parameter of the
central square aperture is compared to the measured result extracted
from [7] in Fig. 4. Whereas the result with 7 modes is quite similar
to the simulated parameter given in [7], the 21-modes solution is
more similar to the measured S11 parameter since convergence has
been reached within the frequency band of interest. Observe that
a preliminary convergence study is always mandatory in order to
guarantee the correctness of the result.

Fig. 5 shows the mutual coupling between the central element and
the rectangular apertures with 21 modes on each aperture (see labels
inside each aperture to identify each S parameter). Again, measured
and simulated results coincide over the whole frequency range.

The radiation pattern of the structure on the 45◦ plane has also
been calculated at 12.5 GHz. To do so, only the square aperture has
been fed, whereas the rest of apertures have been terminated with
a matched load. The copolar (vertical) and crosspolar (horizontal)
components obtained on the 45◦ plane (MEN) are compared in Fig. 6
to the pattern simulated with HFSS [24]. A very good agreement
between both simulated results can be observed, thereby verifiyng
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E
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Ecross HFSS
Ecop MEN
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Fig. 6. Radiation pattern of the 3-apertures configuration on the 45◦ plane
at 12.5 GHz when only aperture 1 is fed (see inset) and 21 modes on each
aperture are considered.

Fig. 7. Open-ended waveguide filters with inductive irises: (a) isolated 3D
view of a filter, and (b) lateral view of the four filters.

the proposed MEN formulation.

B. Open-ended waveguide filters

Even though the previous example fully confirms the validity of
the new MEN formulation, the usefulness of the method can only be
tested with a more complex example. To this aim, we present in this
section the results for a structure formed by four 3-pole filters with
the last waveguide section radiating in the free-space region.

Fig. 7 (a) shows a sketch of an isolated filter composed of
sections of rectangular waveguides coupled to each other by inductive
irises. The dimensions of all the rectangular waveguide sections are:
wg =10.668 mm and hg =4.318 mm, and the thickness of all
the inductive irises is t =1 mm. Only the length of the waveguide
sections (lij) and the width of the inductive irises (wij) have been
optimized to get the desired filtering response.

The optimization has been carried out by considering all four
filters simultaneously to account for the mutual coupling between the
apertures. The filters are set along the y axis, as shown in Fig. 7 (b),
with a separation of s = 7 mm. The central filters (F2 and F3) and
the outer filters (F1 and F4) have the same dimensions. The filters
have been optimized to have a return loss better than 20 dB between
19.75 GHz and 20.25 GHz. The obtained dimensions for F1 and F2
are: l11=8.708 mm, l21=9.541 mm, l31=8.914 mm, l41=1.991 mm,
l12=8.709 mm, l22=9.535 mm, l32=8.902 mm, l42=1.982 mm,
w11=5.521 mm, w21=3.691 mm, w31=3.694 mm, w41=5.070 mm,
w12=5.515 mm, w22=3.693 mm, w32=3.703 mm and w42=5.065 mm.

The same structure has been simulated with HFSS [24] to verify
the accuracy of the results. For this example we have used 300 basis
functions and 100 accessible modes in the apertures and in the filter
interfaces. This combination gives an error in the S parameters below
0.01 dB. A meshing with a similar threshold for the S parameters
has been used for the HFSS simulations.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 5

19 19.25 19.5 19.75 20 20.25 20.5 20.75 21
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

−250

−200

−150

−100

−50

0

50

100

150

200

Frequency (GHz)

M
ag
n
it
u
d
e
(d
B
)

P
h
ase

(d
eg
)

Mag. HFSS
Mag. MEN
Phase HFSS
Phase MEN

Fig. 8. S11 parameter at any input port of the four open-ended filters with
inductive irises.

19 19.25 19.5 19.75 20 20.25 20.5 20.75 21
−70

−60

−50

−40

−30

−20

−10

0

Frequency (GHz)

S
1
n
(d
B
)

S12 HFSS S12 MEN
S13 HFSS S13 MEN
S14 HFSS S14 MEN

Fig. 9. Mutual coupling between different the input ports of the four open-
ended filters with inductive irises.

Fig. 8 compares the S11 parameter computed with our MEN
and the one obtained using HFSS. Note that only one reflection
parameter is shown, since all filters have been optimized to have
the same response. This comparison shows good agreement between
both simulations, especially in the position of the reflection zeros.

The mutual coupling between filter F1 and filters F2, F3 and F4
is shown in Fig. 9. The S12 and the S13 parameters match the HFSS
response quite well. However, the discrepancy in the S14 parameter
between the MEN and HFSS is caused by the treatment of the infinite
ground plane in HFSS that is known to have some computational
limitations.

The directivity of the four-filters configuration on the XZ and YZ
planes at 20 GHz is shown in Fig. 10. To obtain this pattern, all
filters have been fed with the same amplitude and phase. As can be
observed, the MEN results and the HFSS results agree quite well.
Again, the non-perfect characterization of the infinite ground plane
in HFSS slightly alters the results, giving a small difference at high
visibility angles (θ > 75◦).

The computation time of the complete four-filters structure using
the MEN derived is 0.5 s per frequency point. The simulation in HFSS
with the required accuracy took 3 minutes per frequency. In both
cases, the computer used had an Intel R© CoreTM i7-4790K@4.00GHz
processor and 32 GB of RAM memory. A considerable improvement
in the computation time has been clearly achieved. It is important
to note also that this result clearly shows the efficiency of the MEN
formulation for the analysis and optimization of complex antenna
systems composed of several waveguide components, and radiating
apertures. In this case, in fact, the MEN formulation is about two
order of magnitude faster than commercial software.

−90 −60 −30 0 30 60 90
−50

−40

−30

−20

−10

0

10

20

θ (deg)

D
(d
B
i)

XZ plane with HFSS XZ plane with MEN
YZ plane with HFSS YZ plane with MEN

Fig. 10. Directivity of the four open-ended filters with inductive irises on
the XZ and YZ planes at 20 GHz. All filters are fed with the same amplitude
and phase.

Fig. 11. Discrete-step horn antenna: (a) picture of the prototype, and (b)
side view sketch.

C. Discrete-step horn antenna

The MEN formulation proposed is also suitable for simulating horn
antennas composed of a number of waveguide sections. Fig. 11 (a)
shows a horn antenna formed by 5 waveguides that sequentially open
from a WR-42 waveguide (with dimensions 10.668×4.318 mm2) to
a square aperture with dimensions 10.668×10.668 mm2.

Fig. 11 (b) shows a side view of the horn. Two prototypes have
been fabricated, one with a length l =10 mm, and another one with
a length l =15 mm. In both cases, the size of the ground plane is
11.5×11.5 mm2. The corners of the different waveguides that form
the horn have a radius of 1.5 mm.

The S11 parameter for both configurations (l =10 mm and
l =15 mm) is shown in Fig. 12 (Magnitude) and Fig. 13 (Phase). In
both cases, the experimental (MEAS) and simulated results (MEN)
agree quite well. It is worth noting that the MEN computation takes
0.8 s per frequency (including the time required to compute the modal
spectrum of rectangular waveguides with rounded corners), whereas
the simulation in HFSS (considering the same accuracy in both cases)
takes 30 s per frequency.

The radiation pattern of the longer horn (l =15 mm) has been also
measured and simulated at 20.45 GHz. Fig. 14 compares both results
and, as can be observed, a good matching between both patterns is
obtained. Note that oscillations in the measured prototype are caused
by the finite size of the ground plane.

VI. CONCLUSION

In this paper we present a new formulation for the characteri-
zation of open-ended waveguides based on a multimode equivalent
network (MEN) representation. The most important advantage of
the formulation proposed lies in the fact that the MEN obtained is
fully compatible with the network representation of other waveguide
junctions. As a result, more complex structures composed of power
dividers, filters, and other passive devices connected to radiating
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Fig. 12. Magnitude of the S11 parameter of the discrete-step horn antenna
with two different lengths and the same aperture size (10.668×10.668 mm2).
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Fig. 13. Phase of the S11 parameter of the discrete-step horn antenna with
two different lengths and the same aperture size (10.668×10.668 mm2).
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Fig. 14. Radiation pattern on main planes of the long discrete-step horn
antenna at 20.45 GHz.

apertures can be easily analyzed and optimized as a whole, thereby
simplifying considerably the engineering design task.

Furthermore, the MEN provides explicit access to the free-space
modes, and this facilitates the determination of the far-field radiation
pattern. In addition, the MEN can also be connected to other MENs
through the free-space port to include in the global simulation other
structures in free space like reflectors or polarising grids.

Examples shown in this paper fully confirm the validity of the
formulation proposed, showing also a considerable reduction of the
computation time with respect to commercial software.

The main application of the proposed formulation is in the design
of complete antenna systems. Future work is planned for the use of
the MEN representation for the analysis and optimization of complete

front end of modern microwave systems for both ground and space
applications.
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