Document downloaded from:

http://hdl.handle.net/10251/102339

This paper must be cited as:

The final publication is available at

http://doi.org/10.1016/j.ejor.2017.01.002

Copyright E|sevier

Additional Information

MIP models and matheuristics for the unrelated parallel
machine scheduling problem with additional resources

Luis Fanjul-Peyro, Federico Perea, Rubén Ruiz

Grupo de Sistemas de Optimizacion Aplicada, Instituto Tecnoldgico de Informdtica,
Ciudad Politécnica de la Innovacion, Edifico 8G, Acc. B.
Universitat Politécnica de Valéncia, Camino de Vera s/n, 46021, Valéncia, Spain.
Email: lfpeyro@hotmail.com, perea@eio.upv.es, rruiz@eio.upv.es

Abstract

In this paper we analyze a parallel machine scheduling problem in which the
processing of jobs on the machines requires a number of units of a scarce
resource. This number depends both on the job and on the machine. The
availability of resources is limited and fixed throughout the production horizon.
The objective considered is the minimization of the makespan. We model this
problem by means of two integer linear programming problems. One of them
is based on a model previously proposed in the literature. The other one,
which is based on the resemblance to strip packing problems, is an original
contribution of this paper. As the models presented are incapable of solving
medium-sized instances to optimality, we propose three matheuristic strategies
for each of these two models. The algorithms proposed are tested over an
extensive computational experience. Results show that the matheuristic
strategies significantly outperform the mathematical models.

Keywords: Parallel machine problem, Scheduling, Additional Resources,
Matheuristics, Makespan.

1. Introduction and motivation

In a competitive world, in which many tasks are processed in great part (if
not completely) by machines, the need for intelligent organization is a must.
This need is even more imperative if one considers that the energy upon
which we rely, namely food, fuel and electricity, etc., is limited. In addition
to this, the commercial sector has the objective of making a profit and this

Preprint submitted to Furopean Journal of Operational Research November 11, 2016

profit could be increased if optimal functionality in their production plants
was achieved. The particular problem we address in this paper explores this
area. We assume that a number of jobs are to be processed by a number of
parallel machines or production lines, under certain conditions, and with a
certain objective which will be specified later. This problem is found in many
manufacturing settings, such as car factories and food processing plants, etc.
In this paper we provide algorithms that help in assigning tasks to machines
in an automatized way. A distinction with respect to the majority of papers
dealing with scheduling of parallel machines is that we consider additional
resources (for example plant personnel) that are limited and must be available
to operate machinery. This extra constraint makes the problem much more
complex, as will be explained throughout the paper.

The classical unrelated parallel machine scheduling problem (UPM) consists
of processing a number of jobs on a number of parallel machines. The most
common objective is the minimization of the so-called makespan (maximum
job completion time). Each job has to be processed by exactly one machine,
and processing times need not be the same for all unrelated machines. This
problem has been mathematically termed NP-Hard. As a matter of fact, the
simpler version with two identical parallel machines was already demonstrated
to be N'P-Hard by Lenstra et al. [22]. It should be noted that, in these
problems, the sequence in which the jobs are processed is not relevant, as
opposed to the much more complex problem we deal with in this paper.
The UPM arises in many production systems. [25] can be considered one of
the first papers dealing with this topic. Ever since then, the interest from
the scientific community regarding the UPM has continued to increase. For
general applications and reviews of the UPM, the reader is referred to books
such as [28], [29], [32], or to reviews of parallel machine scheduling problems
such as [I] and [21].

In the scientific literature, most of the scheduling problems treated on
parallel machines do not consider that the machines need an extra resource
to be able to function. This represents a gap between academic research, and
the actual needs of the production sector. Such extra resources could be,
for example, the operators needed to work machines. In this paper we will
analyze the UPM with this additional consideration, where a fixed number of
resources are needed to process the jobs on the machines. More specifically, we
assume that machines need a discrete amount of a scarce renewable resource
to process jobs. This amount depends both on the job and on the machine, so
as to make the problem more realistic. As in [3], [5], and [30], among others,

2

in this paper we assume that the resources are: 1) renewable, because after
the processing of a job, the resources used are again available for other jobs.
2) discrete, because the number of resources needed is a positive integer and 3)
processing, because they are only needed while the job is being processed. We
refer to the resulting problem as the Unspecified Dynamic Unrelated Parallel
Machine Scheduling problem with additional Resources (UPMR). Unspecified,
because there is no pre-fixed job-machine assignment, and dynamic in the
sense that the allocation of resources to machines need not be fixed for the
whole time horizon. The specified and/or static version of this problem has
already been treated in the literature (see Section [2). However, and to the
best of our knowledge, the unspecified and dynamic variant has been seldom
studied.

The UPMR problem takes the following input data: a list of m available
machines (indexed by i and #’); a list of n jobs to be processed (indexed
by j and j'); Rmax units of a certain resource; p;; € Z* units of time and
rij € Z* units of the resource, which needed to process job j at machine 4,
Vi=1,...mj3=1..n.

The objective is the minimization of the makespan (denoted by Ciax),
and the following constraints have to be satisfied: the same machine cannot
process more than one job at the same time; each job must be processed by
exactly one machine; the processing of a job cannot be interrupted before
completion; no more than R,,., units of the resource can be used at any time.

The following example illustrates problem UPMR and the differences
between this problem and the regular and much simpler unrelated parallel
machine scheduling problem (UPM).

Example 1.1. Consider the following instance of an UPMR with two ma-
chines (m = 2), five jobs (n =15), five units of a scarce resource (Ruyax = 5)
and the following processing times and resource needs:

2 1\ R 4 3 3 4 2

3 1) S \2 5 4 2 5)

where P and R are the n X m matrices whose entries are the processing times
pi; and resource needs r;; of the assignment machine i and job j, respectively.
The unrelated parallel machine scheduling problem would have as optimal

makespan Cha.x = 4. The optimal solution is shown in Figure top graph.
As we can see in the bottom graph, the maximum availability of resources is

Machine

Machine
1 h ‘

. Machine
L2

PNWNUO~N®O

PNWAUION®O

(a) Optimal solution without resources. (b) Solution with resources.

Figure 1: Optimal solution for the example without resources and after considering resources.
The top graphs are Gantt diagrams representing the solutions, and the corresponding
bottom graphs show the use of resources (vertical axis) per time unit (horizontal axis).

violated by four units, between time 0 and time 1, and by three units between
time 1 and time 3. Constructing a resource-feasible solution from the optimal
solution without resources and keeping the jobs assigned to the same machines,
results in the solution of Figure[Il Resources are not overused now but the
makespan has increased to seven units and both machines incur in idle-times.

If we calculate the optimal solution considering resources for the same
problem we obtain the solution given in Figure[d As can be observed, resources
are better used, machines are now always busy, and the makespan has only
increased one unit with respect to the resource-unconstrained solution, Cpay =
5. This new solution is, however, completely different from the solution
without resources as no job is assigned to the same machine. The sequence of
jobs has also changed in both machines. This example shows that the sequence
for the problem without resources might yield a suboptimal solution when the
resource constraint is added.

As has been shown in Example the unrelated parallel machines
problem with resources is different from the problem without resources. The
regular parallel machines problem is just an assignment problem, and the only
decision to be made is which machine each job must be assigned to. Assigned
jobs are processed in any order until completion, and the machines are never
idle in between jobs. The version with resources is much more complex as the

Machine

Machine
2

g
PNWROO N O

Figure 2: Optimal solution considering resources.

assignment, and also the starting and completion times, must be determined.
Moreover, at times machines might be unable to process the next job due to
resource shortages and idle times might appear.

The rest of the paper is structured as follows: Section [2] presents an
overview of the literature related to the problem studied. Section |3]introduces
two different mixed integer linear programming (MILP) models, which are
used later on as a basis for several matheuristic strategies in Section [d All
these algorithms are computationally tested in Section [5| The paper closes
with some conclusions and pointers to future research.

2. Literature review

Although not as old as the version without additional resources, the UPMR
(or close variations of it) have been studied in the literature for the last three
decades. Back in the eighties, [4] studied a simplified UPMR problem in
which all machines are identical, and therefore requirements for additional
resources and processing times only depend on the job in order to minimize
the flow time. The authors showed that unless the resource needs are unitary,
the problem is N'P-Hard in the strong sense. Also in relation to identical
parallel machines, [34] proved that the problem is polynomially solvable, when
there is only one type of resource, the jobs need either zero or one unit of
this resource to be processed and the objective is the minimization of the
deviations of the completion times with respect to a given due date.

The static version of the problem, which assumes that the allocation of
resources to machines is given and fixed during the whole time horizon, has
already been proposed and studied in the literature. For instance [7] studied
the static identical parallel-machine flexible-resource scheduling problem with
unspecified job assignment, for which MILP programs and heuristics were
proposed. Some dynamic versions have also been studied. For example,
[16] and [I7] studied the problem in which the processing times depend on
the number of resources allocated. [I§] proposed a (3.5 + ¢)-approximation
algorithm for a simplified version of the same problem, in which all machines
are identical.

Similarly to the static version of the UPMR, but with less strict constraints,
is that of the dedicated machines. This problem assumes that the sets of
jobs are divided into m groups, and the members of group ¢ can only be
processed on machine 4. [19] and [20] studied the complexity of this problem
and proposed several algorithms, for the case of one type of resource and
more than one respectively.

More recently, [8] studied another simplified version of the UPMR, in
which the number of resources needed to process a job does not depend on
the machine on which the job is to be processed. The aim is to minimize
the total completion time of the jobs (different from makespan), and the
authors applied a Lagrangian-Based constraint programming approach. [11]
proposed an integer programming model, a constraint programming model
and a combined IP/CP model for a UPMR problem with machine eligibility
constraints (not all jobs can be processed on all machines). These models
are later applied to a real instance by the same authors in [12], in which
two different resources are present: machine operators and a certain tool to
process jobs.

Our research is novel as it consists of an in-depth study of two mathematical
models for the more complex unspecified and dynamic variant of the UPMR.
One of them is an adaptation of that presented in [9] and [L0], whereas the
other one is an original contribution of this paper, based on packing problem
models. Several matheuristics are proposed which are able to solve moderately
sized instances.

3. MILP modelling

In this section, two different MILP formulations are proposed. The first
one is based on a model previously introduced in the literature. The second

one models the UPMR problem as a special packing problem. To the best
of our knowledge, this second model is original and the main theoretical
contribution of this paper. Some other models based on adaptations of UPM
models were tested. However, they yielded worse results and for the sake of
brevity, they are not detailed in this paper.

3.1. A MILP based on previous research

In this section we adapt the MILP program introduced by [9] (page 441,
constraints (43) to (48)) to the UPMR studied in this paper. Another and
(perhaps) more similar generalization of the resource constrained parallel
machine scheduling problem is given by [10] (page 452, constraints (12) to
(16)). The model presented in [9] assumes that the number of resources
assigned affects the processing times. This is different from the UPMR
presented here, which assumes that a fixed amount of resources are needed
for processing jobs on machines, and this number may not be changed. As
well as index ¢ for machines and index j for jobs, we need index k to denote
the time. As opposed to ¢ and j, which are clearly bounded by m and n,
respectively, the maximum time in which a job can be processed, denoted by
Kihax, is not trivial to obtain. Further discussions about K., are given in
the experimental section.

The first MILP program for the UPMR (denoted by UPMR-S) uses the
following variables:

e 1, = 1 if job j is assigned to machine ¢ and completes its processing
at time k, and zero otherwise. Note that this variable only exists for
k> pij.

e (ax is the makespan.

Model UPMR-S consists of minimizing Ciax, subject to the following
constraints:

Z Z k$ijk S Cmaxa V]a (1)

i k>pij

Z Z Tie =1, V J, (2)

i k>pij

Z Z Lijs S 1av i) k? (3)

J se{max{k,pi;},....k+p;;—1}

ZZ Z TijTijs S Rmaxav k. (4)

v J se{max{k,pi;},...k+p;j—1}

Constraints determine the makespan. Constraints dictate that
each job is assigned to exactly one machine, and finishes at exactly one time.
Constraints ensure that the same machine does not process more than
one job at any time. Constraints require that no more than R, units of
resource are used at any time.

3.2. A packing problem based model

In this section, we use the ideas obtained from bin-packing formulations
to model UPMR as a mixed integer linear programming program. In 2D
bin-packing problems, the objective is to place a set of rectangular items into
a rectangular case. For a survey of two-dimensional packing problems see
[23]. When one of the dimensions of the case is fixed, the problem is known
as a strip packing problem. In this problem, the objective is to place a set of
rectangles into the case so that the length of the other dimension is minimized.
Given its resemblance to the Gantt diagrams of the scheduling problems (see
figures (1| and , we will consider that the height of the case (denoted by H,
which represents the units of resource) is fixed, and the width (denoted by
W, which represents the makespan) is to be minimized so that all items fit in
the case.

In the strip-packing problem, the n rectangles to be placed in the strip
have width w; and height Ay, for £ = 1,....,n. For the sake of notation, and
without loss of generality, we will denote the items as ij (since they correspond
to machine-job assignments) instead of k. If we consider each rectangle to be
a job-machine assignment (previously fixed), we have that the width of ij is
w;; = pij, and its height is h;; = r;;. In strip-packing problems, the objective
is to find the location of each rectangle, whose top-right corner coordinates
can be denoted by variables z;; and y;; (the xz-axis will represent time and

the y-axis will represent the resources). Therefore, the height of the case H
represents the maximum allowed units of resource Ry.y, and its width W
represents the makespan Cl,.x, to be minimized. Figure [3| shows a graphical
representation of these ideas.

y
§ ______________________________
g (xml'le)
[
Il
s
M, (xmzrymz)
M.
(kuYR) 2
hm = riljl
W = piljl
W = Cmax X

Figure 3: Strip Packing: new rectangle M can be set in positions M7 or My, among other
possibilities, with no overlap in x-axis or y-axis with the previously set rectangle K.

In the UPMR problem, jobs are not pre-assigned to any machine. There-
fore, we need to define a set of m cases for each job: one for each machine.
Because jobs are processed by only one machine, for each job we must select
only one case out of this set. Therefore, for the UPMR problem model
based on strip-packing (denoted by UPMR-P), we need the next set of binary
variables:

e s;; = 1 if job j is assigned to machine 7, and zero otherwise.

The reader should note that, for any pair of rectangles ij and i'j’, we
need to ensure that they do not overlap. We therefore define two kinds of
no-overlap constraints:

e Horizontal-axis no-overlap constraint
Tij — Tty 2 Dij- (5)

9

Note that this constraint imposes that j finishes its processing p;; units
of time after 7’ is processed. In order to prevent overlap on the horizontal
axis we impose either this constraint, or the one exchanging ij with ¢’j’.

Vertical-axis no-overlap constraint
Yij — Yirjr = Tij- (6)

Note that this constraint imposes that the rectangle corresponding to
job j is located r;; units above the rectangle of job j'. In order to
prevent overlap on the vertical axis we impose either this constraint, or
the one exchanging ij with ¢'j'.

We should note that, if i = ¢/ we only need to impose the horizontal-axis
no-overlap constraints (i.e. jobs are assigned to the same machine, and they
will finish one after the other, so they do not share resources), whereas if
i #1', we need to impose both constraints. In order to decide which of these
constraints are activated, for each pair of rectangles ij and i’j’ we define the
following two sets of binary variables

e u;;; = 0 if the horizontal-axis no-overlap constraint is activated
for pairs of jobs ij and i'j’, and takes value one otherwise (i.e. job j
finishes processing later than j’).

e vy = 0 if the vertical-axis no-overlap constraint (6]) is activated for
pairs of jobs ij and #'j’, and takes value one otherwise (i.e. job j is
located above job 7).

Therefore, the MIP model (denoted by UPMR-P) for our problem is:

10

. 1
min Chay + i Z ZZ: Tij (7)

J

s.t.: Zsij =1V, (8)
SijPij S L5 S Cmaxa v iaja (9
575 < Yij < RmaxSij, V1,7, 1

(
Muiji/j’ + Tij — Tirjr 2 Pij, Vi, J, i/aj/ >J+1, (11
Muijrij + xijr — Tij > pjr, ¥V i,5,7, 5 > 5+ 1, (
Uijiry + Uirgrig < 14+ (L= s55) + (1= sp50), Vi, 5,0, j' > j+1i=17,

(13)
Muvijirgr + yiz — yirjr > 145, ¥ 1, 7, i' g > g+ 1, 7 A, (14)
Muvyjiij + Yiryr — yig = 1oy, Vi, 5,0, 5 > 5+ 1, 4 #1, (15)
wigirt + Wi + Vi + vijrig <3+ 2((1 = si5) + (1= i),
Vi, g, >+ 1, 8 £ (16)

The objective function minimizes Cyax and forces x;; to zero when-
ever this is possible (if job j is not assigned to machine 7). Out of several
possibilities tested to achieve this (among others, the natural constraints
xi; < Ms;;), the one that demonstrated the best performance is the one
aforementioned. Constraints ensure that each job j is only assigned to
one machine. Constraints @ and , respectively, set the bounds for the
horizontal and vertical axis, setting this bound for the vertical axis to zero
if s;; is zero. Constraints (11)) and are the horizontal-axis no-overlap
constraint. Constraints nsure that, if j and j’ are processed by the
same machine 4, then either j finishes p;; units of time after j' has finished
(wijijy = 0) or j finishes p;; units of time after j has finished (u;;;; = 0). Note
that are relaxed if s;; = 0 or if s; = 0. Constraints and are
the vertical-axis no-overlap constraints. Finally, constraints impose that
if j and j' are processed by two different machines i and ', then at least one
of the four binary variables w;j; s, Wi, Vijirjr, Virjrij should be equal to zero.
It should be noted that this implies that there is no overlap in, at least, one
dimension. Note that are relaxed when s;; or sy are zero. The main
strength of this model is that it does not rely on a time index, as opposed to
UPMR-S, with the consequent reduction of the number of variables.

11

4. Matheuristic strategies

Matheuristics can be broadly defined as algorithms in which metaheuristic
techniques are combined with mathematical programming models. Although a
relatively new concept, it has been gaining more and more attention over recent
years and it has recently been applied to many combinatorial optimization
problems. To cite two examples, a project scheduling problem is solved using
matheuristics in [33], and some location problems in [31]. Within scheduling,
[2] and [6] use matheuristic approaches for single machine scheduling problems.
However, for as far as we know, there are no matheuristic approaches for
many parallel machine scheduling problems, and none with the consideration
of additional resources.

In this section, three matheuristic strategies based on the MILP models
introduced in Section [are shown.

e The first matheuristic, called machine-assignmet firing, assigns jobs to
machines by solving the UPM problem, to later on solve the UPMR
problem in which the job-machine assignment is the one given by the
UPM solution. We then solve the UPMR having such an assignment
fixed. We used this strategy because both the UPM and specified
UPMR problem are much faster to solve than the unspecified UPMR.

e The second one, called job-machine reduction, reduces the set of potential
job-machine assignments by discarding, for each job, those machines
that yield the largest processing times. This strategy was chosen because
of the good results obtained in the UPM (see [14]).

e The third one, called greedy-based fixing, is a greedy strategy, in which
the problem is sequentially solved for small subsets of jobs, keeping
the assignments found in the previous iterations fixed. This strategy
was chosen both for its simplicity and for the extensive, and mainly
successful, use that greedy algorithms and their variants have had in
the scheduling literature.

These methods are further detailed in the following sections.

4.1. Machine-assignment fixing

This algorithm firstly solves the regular unrelated parallel machine problem
minimizing the makespan (UPM problem without the resource constraints),
which can be done very rapidly in a solver, as shown in [13]. We will see

12

in the experimental section that all instances tested can easily be solved to
optimality if the resources are ignored. The solution to this problem, referred
to as =¥, gives an assignment of jobs to machines without specifying when
jobs are processed (note that this is irrelevant in the UPM with the makespan
criterion). In a second phase, the MILP program of the UPMR is relaxed in
such a way that the variables that assume any job-assignment other than the
one obtained by UPM are fixed to zero.

For example, assuming that job j is assigned to machine 7, z7; = 1 in
the UPM model, only those variables in the UPMR model are considered
for every job j. In the UPMR-S model, those variables are x;;;, and in the
UPMR-P model are z;; and y;;. This means that, for variables z;j;, the ¢ and
j indexes are fixed as per the optimal values in x* and only the k£ subindex
needs to be found. The procedure is similar for the model UPMR-P. We
have named this matheuristic machine-assignment fixing (M AF), of which a
pseudocode in shown in Algorithm [I}

Name: M AF

Define z;; = 1 if machine ¢ processes job j, zero otherwise;

Let x* be a solution to the UPM problem;

Solve UPMR-S considering only z;;; such that z}; = 1;

or

Solve UPMR-P considering only z;; and y;; such that xj; = 1;
Algorithm 1: Machine-assignment fixing algorithm (M AF).

4.2. Job-machine reduction

This algorithm aims at reducing the large amount of variables present
in the MILP models defined before. This is done in such a way that for
every job 7, only the “best” machines can be used. By best, we mean here
those machines with the shortest processing times for each job. The number
of potential machines selected for each job, here denoted as ¢ € Z*, is a
parameter of the algorithm, and will be tested in the experimental section.

For example, for each job j we set variables to zero for all machines
¢ so that the processing time p;; is not among the ¢ smallest in the list
{pij,i =1, ...,m}. Actually, these variables are not even defined in the final
model. This method is referred to as job-machine reduction (JM R), of which
a pseudocode is given in Algorithm

13

Name: JMR({)
for j=1,...,n do
Let {i1, .o, im} Pivg < Pinj < oo < Pinss
(in UPMR-S) Remove z;j; ¥V @ ¢ {i1, ..., 9¢};
or
(in UPMR-P) Remove z;; and y;; V @ ¢ {i1, ..., % };
end
Solve UPMR-S or UPMR-P;
Algorithm 2: Job-machine reduction algorithm (JM R) for a fixed value
of 4.

4.3. Greedy-based fixing

This sequential algorithm, referred to as GBF', works as follows. At each
iteration, a group of g € Z™ jobs are selected, solving the UPMR. problem
for these jobs only. Then, the UPMR problem for other g jobs is solved
taking into account the solution obtained before. The process continues until
all jobs have been assigned to machines and has a scheduled starting time.
This strategy closely resembles the K-greedy algorithms, used to solve some
combinatorial problems, like data association in [27].

Initial experiments quickly showed that it was beneficial to consider
previously scheduled jobs and to include them in the next iteration. There-
fore, GBF first solves the UPMR with ¢ unscheduled jobs. Then, at each
subsequent iteration, the job scheduled last on the machine generating the
makespan and g — 1 new unscheduled jobs are added to the problem. Then
the UPMR model is solved considering that the previously scheduled g — 1
jobs are fixed for the rest of the algorithm. Therefore, there is one first
iteration with g unscheduled jobs. Then we have L%J iterations, each one
with one previously scheduled job and g — 1 new unscheduled jobs, where ||
denotes the integer part operator. There might be a final iteration with the
((n —g) mod (g — 1)) + 1 final unscheduled jobs, where “mod” denotes the
module operator.

The GBF matheuristic firstly requires jobs to be sorted according to some
criterion. Jobs are sorted in a decreasing order of the sum of their fastest
machine processing times. More specifically, for each job we first sort the
processing times on the m machines and obtain a list {1,149, ... %y}, so that
Pirj < Dinj < ... < Pij- Then we add up the first [% | of these processing

times, Pj. ., = Z}fﬂ pi,j- Jobs are then sorted in decreasing order of P, .

14

When selecting, at each iteration, the job scheduled last on the machine
generating the makespan, there might be ties, i.e., two machines with the
same maximum completion time equaling the makespan value. In this case,
the job with the largest resource consumption is selected. In the rare event in
which there is also a tie in this second criterion, the last job among the tied
ones in the list of jobs sorted by P;, , is selected. The G BF matheuristic is

expressed as a pseudocode in Algorithm

Name: GBF(g)
Solve UPMR-S or UPMR-P for jobs 1, ..., g;
Let d* be a solution;
Let j be the job yielding the makespan;
(in UPMR-S) Fix z;; according to d* V j € {1,...,g}\ {i};
or
(in UPMR-P) Fix z;; and y;; according to d* ¥V j € {1,...,g} \ {j};
h =1,
while hg < n do
Solve UPMR-S or UPMR-P for jobs {hg,...,(h +1)g — 1} U {j};
Let 5* be the job yielding the makespan ;
Let d* be a solution;
(in UPMR-S) Fix ;5 according to
@ j € ({hg, .. (h+1)g— 1} UG\ {71
or
(in UPMR-P) Fix z;; and y;; according to
@ j € ({hg, . (h+1)g =1} UGN\ {7
Update j = 5" and h = h + 1;
end

Algorithm 3: Greedy-based fixing algorithm (GBF).

5. Computational experiments and statistical evaluation

In this section we show the results obtained in an exhaustive computational
experiment with instances of small and medium sizes. All these results are
comprehensively analyzed through statistical techniques.

The solver used has been IBM ILOG-CPLEX 12.6. (Another alternative
state-of-the-art solver, Gurobi 6.0, did not yield, in some limited experiments,
better results and was disregarded). All experiments have been carried out

15

in a computational cluster formed by 30 blade servers. Each server contains
two Intel XEON E5420 processors running at 2.5 GHz and 16 GBytes of
RAM memory. However, the specific tests are performed on virtual machines
running on this cluster. Each virtual machine runs Microsoft Windows 7 64
bit operating system and has one single virtual processor and 2 GBytes of
RAM. Therefore, there is no parallel computing, just a random distribution
of model-instances to virtual machines in order to speed-up the experiments.
The platform used for the codes employed is Microsoft Visual Studio 2010
and the programming language Visual Basic .NET.

5.1. Instance generation

In order to generate the instances, several factors are considered. Apart
from the number of jobs n and the number of machines m, the magnitude
and dispersion of the processing times is of paramount importance, as shown
n [I3]. The last aspect to consider is the units available of the resource and
the consumption of these by the jobs. Following [13], the processing times
are generated in five different ways: three are purely at random, the fourth
assumes that the processing times heavily depend on the job, and the fifth
assumes that the processing times heavily depend on the machine:

1. p;; = U(1,100), which is the most commonly used distribution in the
scheduling literature about parallel machines, where U(a,) is a random
integer uniformly distributed between a and b (both extremes included).

2. p;; = U(10,100), very common in recent years in unrelated parallel
machine scheduling problems, see [15], 24] 26] .

3. p;; = U(100,200), introduced by [13] so that the relative difference
between the minimum and maximum processing times is leveled out
and the result is a more realistic instance.

4. Correlated jobs. Each job is assigned a p; = U(1, 100), plus an additional
time as p;; = U(1,20), having p;; = p; + pj;-

5. Correlated machines. Each machine is assigned a p; = U(1,100), and
the processing of each job in this machine is increased by p;; = U(1,20),
having pi; = p; + pi;.

With these five different intervals that control the processing times of the
jobs, we consider the following factors for the instances:

1. The number of jobs n considered is 8, 12, 16, 20, 25 and 30. 8, 12 and
16 are considered small-size, whereas 20, 25 and 30 are deemed to be
medium-size.

16

2. The number of machines m considered is 2, 4, and 6.
3. The number of resources needed by each job at a given machine has
been randomly generated in two different ways:
(a) iy = U(]., 9)
(b) By intervals. In this case, the number of resources r;; needed by
each machine-job pair increases with the processing times, following
the next formula:

| Diyg — Usnin
rij = T

Upax and Uy, are the theoretical maximum

J + R, + U(-3,3),

Umax - Umin
Rup _Rlo +17

and minimum processing times, and R,,, and R;, are the theoretical
maximum and minimum number of resources needed by a job-
machine assignment. Note that this expression is truncated to lie
in the interval [1,9] if necessary.

where d =

The R.. is computed so that all instances are feasible. Since the number
of resources required varies between r,;, = 1 and ry.c = 9, we compute the
number of maximum available resources as:

T'max + T'min 9 + 1 o

Rypyox =m——— =m

5
2 2 e

where m is the number of machines available.

To summarize, four factors are considered when designing the instances,
with the following levels: p;; € {U(1,100), U(10,100), U(100,200),
CorrJob, CorrMach}, n € {8,12,16,20,25,30}, m € {2,4,6},r; € {U(1,9),
Intervals}. We replicate all possible combinations of these four factors five
times. Therefore, the total number of instances to be tested is (5 x 6 x 3 x
2) x 5 =900 (450 small, 450 medium).

5.2. Kpnax in the experiments

For the MILP program UPMR-S and the matheuristic JMR the maximum
value of the time index k allowed was set to a trivial upper bound equal
to the makespan value assuming only one machine is available, that is,
Kiax = min; >-; p;;. Although not reported here due to space limitations, we
tried other much tighter bounds with mixed results, as CPLEX had difficulty
finding feasible solutions.

17

In the M AF method, the K.« used to solve the UPMR-S model was set
equal to the sum of the processing times of the job-machine assignments fixed
by the solution of the corresponding UPM, that is, Kyax = >, j pijz;;, where
x* is an optimal solution to the UPM problem, as the K., firstly defined
might be infeasible when the job-machine assignment is fixed.

There are also some specific details for the K, used in the GBF method
when paired with the UPMR-S model. Since at each iteration only a fraction
of the jobs are considered, the K., is updated accordingly. For example, in
the first iteration, the UPMR-S model is solved with the K., calculated only
with the first g jobs involved. For subsequent iterations, the time index (k) is
defined only from the makespan value of the previous jobs to the calculated
K ax considering also the g — 1 new jobs to be assigned. By doing so, the
UPMR-S model to be solved at each iteration of the GBF method is much
smaller, having a significantly reduced number of variables, which results in a
much faster execution.

5.3. Experimental settings

All proposed algorithms are run in the aforementioned virtual machines
with a maximum stopping time of 3600 seconds. This is the maximum allowed
time for the UPMR-S and UPMR-P mathematical models. Some additional
details are needed for the other tested matheuristics.

The Machine-assignment fixing (M AF’) procedure first solves the UPM
model and then uses either the UPMR-S or UPMR-P models with fewer
variables, as explained before. The CPU time in solving the UPM model is
ignored as it is, on average, negligible. Therefore, the M AF" procedure itself
is run for one hour.

For the job-machine reduction (JM R), the reduced model after fixing ¢ is
also run for one hour as a maximum stopping time. After some calibration,
the value given to ¢ in the experiments is set to |m/2]| + 1, for each instance,
i.e., for the instances with 6 machines, the variables corresponding to the
fastest 4 machines for each job are defined. For instances with 4 machines, 3
are selected. Note that for 2 machines, both machines are selected so in all
instances with 2 machines, JM R is no different from the regular models for
this value of /.

For the Greedy-based fixing (GBF') method the parameter g is set to
8 after some calibrations. Notice that 8 is the same size as the smallest
instances. Therefore, for these instances, GBF will obtain the same results
as the mathematical models. The details of the calibration are not given due

18

n Cumax(z*) LB(UPMR-P) LB(UPMR-S)

8 88 147 137
12 109 52 2
16 139 9 56
20 149 2 21
25 150 0 6
30 150 0 1

Table 1: Absolute frequencies of best lower bound found.

to reasons of space, but suffice to say, simple analyses of variance experiments
were carried out on some calibration instances (different from the final test
instances). The maximum CPU time given for each iteration is 3600 seconds
divided by the number of iterations in the GBF' algorithm.

After all these explanations, we now test the two mathematical models
proposed, UPMR-S and UPMR-P, and the three matheuristic methods, each
one tested with the two MILP models. Therefore, we test M AF-S, M AF-P,
JMR-S, JMR-P, GBF-S and GBF-P. All methods are tested over the 900
aforementioned instances, which results in 8 x 900 = 7200 results. The total
CPU time needed to do all the experiments was 3550 hours or equivalently,
almost 148 days.

5.4. Response variables measured

The response variable is the relative percentage deviation (RPD) over a
calculated lower bound. The lower bound considered (LB) is the maximum
among the optimal solution to the problem without resources UPM, (denoted
by Chax(z*)), the MIP lower bound when solving UPMR-S (denoted by
LB(UPMR-S)), and the MIP lower bound when solving UPMR-P (denoted
by , LB(UPMR-P). Therefore,

LB = max{Chux(z*), LB(UPMR-S), LB(UPMR-P)}.

The number of instances in which each of the three lower bounds considered
was the best (i.e., the maximum) is summarized in Table [I], for each value of
n. One can see that, specially when the number of jobs considered increases,
the lower bound obtained by solving the instance without considering the
additional resource (denoted by Ciax(x*)) is the best one.

19

All UPM models for the small and medium instances are quickly solved
with CPLEX in a few seconds. As a matter of fact, the average CPU time
used by CPLEX for solving the UPM models among the 900 instances is just
0.24 seconds, 8.92 seconds being the maximum recorded for one of the largest
instances in the medium set with 30 jobs and 6 machines. This response
variable for any of the tested instances is therefore measured as:

Methodg,; — LB
RPD = 100 - 5 ,
where Methods, is the solution obtained by the algorithm tested. It should be
noted that LB is a hypothetical lower bound, and therefore we will sometimes
be comparing our algorithms with values that cannot be reached.

The first important result to be mentioned after the experimentation
is that not all models and matheuristics are capable of obtaining feasible
solutions in all cases, even for the small instances of 12 jobs. This is in stark
contrast with the results of the regular UPM model which, as mentioned,
needs less than 9 seconds in the worst case to obtain an optimal solution.
A first salient conclusion is that adding resources to the unrelated parallel
machine problems results in a problem that is significantly more complex to
solve. This was a somewhat expected result as the UPM model is basically an
assignment problem where the processing order of the jobs at the machines is
not important when minimizing the C\,.. In the UPMR problem however,
the sequence of the jobs on each machine is important, as it also represents the
start and finish times in order to satisfy the resource availability constraint.
Table [2| shows, for each tested method, and grouped by the number of jobs
n, a summary of the results. For the two MIP models tested, (MIP Gap
= 0) is the number of instances solved to optimality within the time limit.
For all methods, column (Opt.) shows the number of instances in which the
solution returned is optimal. This fact is checked by comparing this solution
with the guaranteed optimal solution provided by one of the MIP models,
or by comparing it with the solution to the UPM problem. Note that, for
the MIP models, a solution that satisfies MIP gap = 0 is optimal, but the
contrary is not always true. (Feas.) is the number of instances in which a
feasible but non-optimal result is given (MIP gap strictly positive after the
time limit for the mathematical programming models), and (No Sol.) is the
number of instances in which no solution was returned. For the MIP models,
the sum of the columns (MIP Gap = 0), (Feas) and (No sol.) is 150. For the
matheuristic algorithms, the sum of (Opt.), (Feas) and (No sol.) is 150. It

20

should be highlighted that there are 150 instances for each value of n.

As we can see, the UPMR problem is hard to solve optimally. Only the
smallest instances can be solved to optimality and not in all cases. The
model UPMR-S obtains more optimal solutions than model UPMR-P but
at the same time it also has a large number of no solutions. The model
UPMR-P always gives a solution, which is a much desired trait. As regards
the matheuristics, the only ones that are not always able to find solutions
are M AF-S and JM R-S, both based on UPMR-S. Of particular interest is
M AF-P, which is able to find solutions that are later proved to be optimal in
almost 50% of the cases. In this scenario it is hard to compare methods when
not all of them have given solutions for all instances as we risk comparing
apples with oranges. Therefore, in the following experiments we carry out two
measurements both based on the RPD. In the first case we remove all cases in
which one or more methods failed to give a solution from the comparison, i.e.,
if for an instance all methods except one provided a solution, this instance is
removed from the comparison. This measurement is denoted as RPD;. In
the second case we consider all instances, but substitute all results in which
there is no solution, for the K., value. This is to say that, when a method
is not able to give a solution, we assume this solution has a makespan equal
to the K .. This measurement is denoted as RPD;. We now describe the
values of these two measurements both for the set of small instances and for
the set of medium instances.

5.5. Small instances results

The Average Relative Percentage Deviation (RPD) calculated for both
measurements and grouped by the different values of n for the small instances
(8, 12, 16), is given in Table . We also show the number instances considered
(Count), the maximum RPD (Max RPD) and the average CPU time in
seconds (Av. Time).

In column Count, within group RP D1, the reader may note that in 20 of
the 450 small instances, at least one of the methods did not find a solution in
the allowed computation time which affects the RPD; measurement. However,
the distribution of these unsolved instances depends on the n values: for
n = 8 all methods found a solution, for n = 12 there is one instance (which
represents 0.67%) in which at least one method could not find a feasible
solution, and this number increases to 19 (which represents 12.67%) when
n = 16. As we can see, both mathematical models are very capable in relation
to the smallest instances of 8 jobs with UPMR-P having a slight advantage.

21

UPMR-S UPMR-P

n MIP Gap =0 Opt. Feas. No Sol. MIP Gap =0 Opt. Feas. No Sol.

8 137 147 13 0 146 150 4 0

12 84 97 65 1 47 85 103 0

16 53 65 78 19 1 26 149 0

20 21 45 108 21 0 7 150 0

25 6 18 114 30 0 1 150 0

30 1 5 106 43 0 0 150 0

Total 302 377 484 114 194 269 706 0
MAF-S MAF-P

n Opt. Feas. No Sol. Opt. Feas. No Sol.

8 75 75 0 75 75 0

12 72 78 0 72 78 0

16 64 85 1 71 79 0

20 64 85 1 67 83 0

25 48 99 3 60 90 0

30 50 98 2 76 74 0

Total 373 520 7 421 479 0
JMR-S JM R-P

n Opt. Feas. No Sol. Opt. Feas. No Sol.

8 123 27 0 126 24 0

12 81 69 0 86 64 0

16 51 93 6 31 119 0

20 37 93 20 13 137 0

25 17 103 30 2 148 0

30 9 108 33 0 150 0

Total 318 493 89 258 642 0
GBF-S GBF-P

n Opt. Feas. No Sol. Opt. Feas. No Sol.

8 147 3 0 150 0 0

12 36 114 0 55 95 0

16 8 142 0 18 132 0

20 3 147 0 9 141 0

25 0 150 0 5 145 0

30 0 150 0 3 147 0

Total 194 706 0 240 660 0

Table 2: Study about the solutions given by the methods proposed for all instances.

22

RPD; RPD»

Method n Count RPDy Max RPDy Av. Time Count RPDs Max RPDs Av. Time

UPMR-S 8 150 0.02 1.99 482.74 150 0.02 1.99 482.74
12 149 11.43 526.24 1907.38 150 14.86 526.24 1918.66

16 131 19.52 332.79 2443.81 150 73.70 628.31 2590.26

430 9.92 526.24 1573.84 450 29.53 628.31 1663.89

UPMR-P 8 150 0.00 0.00 254.11 150 0.00 0.00 254.11
12 149 2.40 31.93 2770.52 150 2.38 31.93 2776.05

16 131 7.82 39.18 3594.08 150 8.28 64.66 3594.85

430 3.21 39.18 2143.60 450 3.55 64.66 2208.34

MAF-S 8 150 10.92 89.77 238.88 150 10.92 89.77 238.88
12 149 1271 98.60 812.98 150 12.62 98.60 807.84

16 131 19.53 99.27 1650.78 150 19.86 247.88 1621.26

430 14.16 99.27 867.95 450 14.47 247.88 889.33

MAF-P 8 150 10.92 89.77 1.07 150 10.92 89.77 1.07
12 149 10.48 71.56 268.16 150 10.41 71.56 266.38

16 131 12.02 69.42 1299.44 150 11.54 80.86 1303.49

430 11.10 89.77 489.17 450 10.95 89.77 523.65

JMR-S 8 150 1.30 31.13 484.96 150 1.30 31.13 484.96
12 149 5.23 121.81 1656.52 150 5.20 121.81 1655.83

16 131 18.36 299.62 2399.24 150 52.85 591.08 2554.71

430 7.86 299.62 1474.11 450 19.78 591.08 1565.17

JM R-P 8 150 1.27 31.13 117.08 150 1.27 31.13 117.08
12 149 2.71 31.93 2250.08 150 2.69 31.93 2245.54

16 131 6.45 39.18 3539.47 150 6.60 64.66 3547.15

430 3.35 39.18 1898.82 450 3.52 64.66 1969.92

GBF-S 8 150 0.02 1.99 482.74 150 0.02 1.99 482.74
12 149 4.48 32.15 884.00 150 4.46 32.15 894.24

16 131 9.05 44.83 666.65 150 8.98 65.03 880.92

430 4.32 44.83 677.81 450 4.49 65.03 752.63

GBF-P 8 150 0.00 0.00 254.11 150 0.00 0.00 254.11
12 149 3.74 31.93 480.56 150 3.74 31.93 478.58

16 131 7.67 39.18 614.72 150 7.54 64.91 756.67

430 3.63 39.18 442.44 450 3.76 64.91 496.45

Table 3: Average Relative Percentage Deviation (RPD, two measurements) for the tested
methods in the small instances. Time in seconds and best values highlighted in bold.

23

However, the performance for n = 12 and n = 16 is much worse and the
average deviations quickly escalate to two digits. For the second measurement,
RPDy, UPMR-S deviates 73.70% from the lower bounds when n = 16, with
too large maximum RPD deviations. The reformulation carried out in the
UPMR-P model really shows its worth. First of all, both measurements
yield similar results for this model and the average and maximum values
of RPD, are one order of magnitude lower than those of UPMR-S (3.55%
and 64.67% versus 29.53% and 628.31%, respectively). The CPU times are,
however, larger than those of UPMR-S, especially for n = 16. This is due
to the fact that, UPMR-S closes the gap more often than UPMR-P, and
therefore the average CPU time is lower. However, we want to highlight that
UPMR-P finds feasible solutions more often than UPMR-S. As regards the
matheuristic methods, JM R-P, GBF-P and GBF-S are competitive with
UPMR-P. Actually, for the larger instances of this set, n = 16, JM R-P is
better, having CPU times comparable to those of UPMR-P. Therefore, this
first analysis shows that some of the proposed matheuristics are competitive
or better than their corresponding mathematical models in our set of small
instances. The best CPU times correspond to M AF-P and GBF-P.

Although not shown here due to reasons of space (the interested reader
can download all detailed results and tables from the on-line materials ac-
companying this paper), there are some interesting results if we group by
other instance factors. For example, model UPMR-S performs very badly
in instances where processing times follow the distribution U(100,200). The
explanation is that the processing times calculated this way are on average
larger than when calculated using the other methods proposed, which means
many more variables due to the time-index k in the variables. However, model
UPMR-P is not affected by the distributions since the amount of variables of
this model does not depend on this time index.

While tables with average results are useful for analyzing and comparing
the performance of algorithms, they are insufficient for ascertaining if the
observed differences in the averages are statistically significant. We therefore
analyze the results with the Analysis of Variance (ANOVA) technique, a
simple but powerful parametric statistical tool. All instance characteristics
(n, m, distribution of processing times —referred to as type of instance—,
distribution of resource requirements —res—) are considered as non-controllable
blocking factors in a full factorial experiment. Additionally, the type of
algorithm is another factor with 8 levels (all tested algorithms). The response
variables are the two RPD measurements. Being parametric, there are three

24

25 F n]
[=8]
201 | - 12]
: .]
15 | 1
S 100 8
10 F .
r L i
5¢]
0r .]
5F] J

%Q%Q%Q%Q
o S FFSS

(a) RPD; measure. (b) RPD, measure.

Figure 4: Interactions between the proposed methods and number of jobs n. All means with
Tukey’s Honest Significant Difference (HSD) 95% confidence intervals. Small instances.

hypotheses that must be checked. These are normality, homoscedasticity and
independence of the residuals. These were all checked and met. The complete
results of the ANOVA are not given due to space considerations, but some
multiple pairwise comparison plots are shown. Figure [4] shows the means
plots for the methods proposed and the number of jobs n for both measures.
The intervals have the observed average RPD in the center and are calculated
according to Tukey’s Honest Significant Difference (HSD) method, with 95%
confidence level. Overlapping intervals between any two means imply not
statistically significant differences.

As can be seen in Figure [4, the proposed mathematical models are only
statistically better than some proposed matheuristics for the smallest instances
of 8 jobs. For 12 jobs most matheuristics can be considered statistically
equivalent. UPMR-P is shown to be statistically better than UPMR-S for
the larger instances as well.

5.6. Medium instances results

The results for the medium instances (n = {20, 25,30}) are reported in

Table [l
Note that for the RPD; measurement, 100 out of the 450 instances tested

25

RPDy RPD;

Method n Count RPD Max RPD Av. Time Count RPD Max RPD Av. Time

UPMR-S 20 128 32.10 293.20 3197.14 150 89.87 592.86 3256.25
25 117 106.49 553.07 3530.17 150 155.08 586.78 3545.56
30 105 216.01 1508.86 3610.25 150 259.38 1508.86 3607.19

350 112.14 1508.86 3432.40 450 168.11 1508.86 3469.67

UPMR-P 20 128 11.92 48.54 3600.21 150 11.86 48.54 3600.28
25 117 21.20 72.88 3600.45 150 19.74 72.88 3600.47

30 105 33.10 117.75 3600.85 150 34.92 129.74 3600.88

350 21.38 117.75 3600.48 450 22.17 129.74 3600.54

MAF-S 20 128 24.14 146.20 2123.61 150 32.60 461.45 2164.94
25 117 35.88 292.00 2429.80 150 67.68 450.82 2583.92

30 105 52.45 435.46 2151.21 150 96.34 486.15 2513.37

350 36.56 435.46 2234.24 450 65.54 486.15 2420.74

MAF-P 20 128 11.30 72.92 2528.08 150 10.47 72.92 2401.75
25 117 11.88 63.26 2850.54 150 11.79 69.58 2922.33

30 105 7.90 57.70 2916.03 150 8.46 57.70 2901.68

350 10.47 72.92 2752.26 450 10.24 72.92 2741.92

JMR-S 20 128 30.07 312.77 3212.05 150 88.08 592.86 3270.72
25 117 81.64 514.34 3525.09 150 135.69 586.78 3541.59

30 105 120.86 637.85 3584.31 150 191.31 640.83 3591.93

350 74.55 637.85 3428.37 450 138.36 640.83 3468.08

JMR-P 20 128 9.54 38.38 3600.08 150 9.21 38.38 3600.08
25 117 17.16 60.71 3600.20 150 15.95 60.71 3600.19

30 105 23.15 52.07 3595.52 150 22.35 67.21 3597.06

350 16.17 60.71 3598.75 450 15.84 67.21 3599.11

GBF-S 20 128 9.80 39.89 735.06 150 9.24 39.89 860.77
25 117 12.01 59.33 629.38 150 11.97 59.33 1144.47

30 105 11.52 37.28 717.40 150 12.20 79.22 1210.75

350 11.05 59.33 694.44 450 11.14 79.22 1072.00

GBF-P 20 128 7.83 38.18 788.76 150 7.18 38.18 926.57
25 117 10.39 58.55 1074.18 150 10.17 58.55 1263.48

30 105 9.07 39.05 1020.02 150 9.13 39.05 1391.58

350 9.06 58.55 953.55 450 8.82 58.55 1193.87

Table 4: Average Relative Percentage Deviation (RPD, two measurements) for the tested
methods in the medium instances. Time in seconds and best values highlighted in bold.

26

280 C n] 300 n 7
r = 20 1 i L = 20 1
, < 25] Foo < 25 1
230 -] |]
r q —— 1 \ — 30
i E 30] 220 .
180 - |] \ i]
L \ \\ I\
< r N \ 7\
Q 130 L 1 8140 \ [\ |
o Fox @ | /AN
80 | : \ % 1A\
F 60 \\ / X / \\ i
20 F] -20 }
5 S R S s R
S RE3 $7
o5 @ y & e @ & B @‘x\ ROy @%‘b &

(a) RPD; measure. (b) RPDsy measure.

Figure 5: Interactions between the proposed methods and number of jobs n. All means with
Tukey’s Honest Significant Difference (HSD) 95% confidence intervals. Medium instances.

are not considered, as one or more methods did not provide a solution. This
explains the large variation in results for the medium instances when both
measurements are compared. The first and probably most important result is
that for the medium instances the mathematical models, in particular UPMR-
S, are no longer competitive and the average deviations go from 32.10% to
259.38%, depending on the measurement. UPMR-P performs better than
UPMR-S, yielding better averages and lower max RPD while using comparable
CPU times. For larger n values, most proposed matheuristics outperform
UPMR-P. For example, M AF-P gives average relative percentage deviations
equal to 7.90% and 8.46% for n = 30, which are several times lower than
those of UPMR-P while using considerably less CPU time. We also show the
graphical results of the ANOVA in Figure [f

As we can see, most of the larger observed differences between any two
means are statistically significant, especially for the RPD; measure. As
a matter of fact, measure RPD; favours the methods that produce fewer
solutions more than RPD,, as the former does not consider them and the
latter measurement assigns them a “bad” value. For the medium instances,
model UPMR-P is by a large margin statistically better than model UPMR-S.
Moreover, the matheuristics based on the UPMR-S model perform badly,

27

141F 3 B] 40 F

RPD>

14

A
AR NN S I A

&

DR R 2 8 8 S IR R
S) ¢ & & & F ¢ & & & &
SF¥F e SF & S F S FE

(a) n = 20. (b) n = 25. (c) n = 30.

Figure 6: RPD5 measure for the best algorithms as a function of the number of jobs n. All
means with Tukey’s Honest Significant Difference (HSD) 95% confidence intervals. Medium
instances.

except for GBF-S. The large differences in the plotted averages of Figure
do not allow us to observe the small differences between the high performing
methods. Figure[g]shows, for the three values of n in the medium instances, the
performance of the best methods (removing UPMR-S, JM R-S and M AF-S)
for measure RPD,.

From Figure [6] we observe that, as the number of jobs increases, the
observed differences among the best methods get larger. For n = 25 the best
methods are M AF-P, GBF-P or GBF-S and the difference from UPMR-P
is clear. For n = 30 there is a large margin of difference. Since GBF-P has
good results in small and medium instances with small CPU times, it seems
the best option among the matheuristics. In general, all these results show
that the modelization of the UPMR as a special packing problem results in
powerful methods and that the matheuristics presented clearly outperform
the state-of-the-art solver CPLEX when solving the packing model.

6. Conclusions

This paper studies a realistic unrelated parallel machine problem with
the additional consideration of resources that are used when jobs are being
processed on the machines. We have presented an adaptation of an existing
formulation (named UPMR-S) as well as a novel reformulation of the problem
inspired by the strip packing model (named UPMR-P), which, as opposed to
UPMR-S, does not need a time index. In the experiments, we have shown

28

how the UPMR-P outperforms model UPMR-S significantly as the size of the
solved problems increases. However, and as expected, because the UPMR
problem has previously been identified as NP-Hard, neither of these MIP
models is able to cope with medium-sized instances. For these cases, we have
presented matheuristic strategies and have shown them to be competitive
with the MIP models in small instances. In medium-sized instances, the
matheuristics clearly outperform the MIP models. Furthermore, each of the
three matheuristic algorithms obtained from model UPMR-P are superior
to their corresponding counterparts obtained from model UPMR-S which
is another indication that the strip-packing-based model is better than the
other one.

Initial tests over larger sized instances (around 50 jobs and 15 machines),
have shown us that more research needs to be done, as the matheuristics
proposed do not always succeed in providing a good solution. Therefore,
the complexity of this problem, exponentially increasing with the size of the
instance, calls for the design of further heuristics and metaheuristics which
shall be addressed in further research.

Acknowledgments

The authors are supported by the Spanish Ministry of Economy and
Competitiveness, under project “SCHEYARD - Optimization of Scheduling
Problems in Container Yards” (No. DPI2015-65895-R), partially financed
with FEDER funds. Thanks are due to our colleagues Eva Vallada and Ful
Villa, for their useful suggestions. Special thanks are due to three anonymous
referees which have significantly contributed to the improvement of the
manuscript. Apart from accompanying on-line materials, interested readers
can download more contents from http://soa.iti.es/problem-instances,
like the instances used, software for generating instances and all the binaries
of the algorithms tested in this paper. We also provide complete solutions,
full tables of results and the statistics software files to replicate all results
and plots. Additional explanations are also provided in “how-to” text files.

[1] Allahverdi, A., 2015. The third comprehensive survey on scheduling prob-
lems with setup times/costs. European Journal of Operational Research
246 (2), 345-378.

[2] Billaut, J.-C., Croce, F. D., Grosso, A., 2015. A single machine scheduling

29

http://soa.iti.es/problem-instances

[13]

[14]

problem with two-dimensional vector packing constraints. European
Journal of Operational Research 243 (1), 75-81.

Btazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., Weglarz, J., 2007.
Handbook on Scheduling. Springer-Verlag, New York, USA.

Btazewicz, J., Kubiak, W., Rock, H., Szwarcfiter, J., 1987. Minimizing
Mean Flow-Time with Parallel Processors and Resource Constraints.
Acta Informatica 24 (5), 513-524.

Btazewicz, J., Lenstra, J. K., Rinnooy Kan, A. H. G., 1983. Scheduling
subject to resource constraints: classification and complexity. Discrete
Applied Mathematics 5 (1), 11-24.

Croce, F. D., Salassa, F., T'’kindt, V., 2014. A hybrid heuristic approach
for single machine scheduling with release times. Computers & Operations
Research 45, 7-11.

Daniels, R. L., Hua, S. Y., Webster, S., 1999. Heuristics for parallel-
machine flexible-resource scheduling problems with unspecified job as-
signment. Computers & Operations Research 26 (2), 143-155.

Edis, E. B., Oguz, C., 2011. Parallel Machine Scheduling with Additional
Resources: A Lagrangian-Based Constraint Programming Approach. Vol.

6697. Springer-Verlag Berling Heidelberg, Ch. Lecture Notes in Computer
Science, CPAIOR 2011, pp. 92-98.

Edis, E. B., Oguz, C., 2012. Parallel machine scheduling with flexible
resources. Computers and Industrial Engineering 63 (2), 433-447.

Edis, E. B., Oguz, C., Ozkarahan, 1., 2013. Parallel machine scheduling
with additional resources: Notation, classification, models and solution
methods. European Journal of Operational Research 230 (3), 449-463.

Edis, E. B., Ozkarahan, I., 2011. A combined integer/constraint program-
ming approach to a resource-constrained parallel machine scheduling
problem with machine eligibility restrictions. Engineering Optimization
43 (2), 135-157.

Edis, E. B., Ozkarahan, 1., 2012. Solution approaches for a real-llife
resource constrained parallel machine scheduling problem. International
Journal of Advanced Manufacturing Technology 9 (12), 1141-1153.

Fanjul-Peyro, L., Ruiz, R., 2010. Iterated greedy local search methods for
unrelated parallel machine scheduling. European Journal of Operational
Research 207 (1), 55-69.

Fanjul-Peyro, L., Ruiz, R., 2011. Size-reduction heuristics for the unre-

30

[15]

[16]

[25]

[26]

lated parallel machines scheduling problem. Computers & Operations
Research 38 (1), 301-309.

Ghirardi, M., Potts, C. N., 2005. Makespan minimization for schedul-
ing unrelated parallel machines: A recovering beam search approach.
European Journal of Operational Research 165 (2), 457-467.

Grigoriev, A., Sviridenko, M., Uetz, M., 2005. Unrelated parallel ma-
chine scheduling with resource dependent processing. In: Jiinger, M.,
Kaibel, V. (Eds.), TIMES, Proceedings of the 11th conference on integer
programming and combinatorial optimization. Vol. 3509 of Lecture Notes
in Computer Science. Springer, Berlin-Heidelberg, pp. 182—-195.

Grigoriev, A., Sviridenko, M., Uetz, M., 2007. Machine scheduling with
resource dependent processing times. Mathematical Programming Series
B 110 (1), 209-228.

Kellerer, H., 2008. An approximation algorithm for identical parallel
machine scheduling with resource dependent processing times. Operations
Research Letters 36 (2), 157-159.

Kellerer, H., Strusevich, V. A., 2003. Scheduling parallel dedicated
machines under a single non-shared resource. European Journal of Oper-
ational Research 147 (2), 345-364.

Kellerer, H., Strusevich, V. A., 2003. Scheduling problems for parallel
dedicated machines under multiple resource constraints. Discrete Applied
Mathematics 133 (1-3), 45-68.

Kravchenko, S., Werner, F., 2011. Parallel machine problems with equal
processing times: A survey. Journal of Scheduling 14 (5), 435-444.

Lenstra, J. K., Rinnooy Kan, A. H. G., and Brucker, P., 1977. Complexity
of machine scheduling problems. Annals of Discrete Mathematics 1, 343—
362.

Lodi, A., Martello, S., Monaci, M., 2002. Two-dimensional packing
problems: A survey. European Journal of Operational Research 141 (2),
241-252.

Martello, S., Soumis, F., Toth, P., 1997. Exact and approximation
algorithms for makespan minimization on unrelated parallel machines.
Discrete Applied Mathematics 75 (2), 169-188.

McNaughton, R., 1959. Scheduling with deadlines and loss functions.
Management Science 6 (1), 1-12.

Mokotoff, E., Jimeno, J. L., 2002. Heuristics based on partial enumera-

31

[27]

28]

[29]

[30]

[31]

tion for the unrelated parallel processor scheduling problem. Annals of
Operations Research 117 (1-4), 133-150.

Perea, F., de Waard, H. W., 2011. Greedy and k-greedy algorithms for
multidimensional data association. IEEE Transactions on Aerospace and
Electronic Systems 47 (3), 1915-1925.

Pinedo, M. L., 2005. Planning and scheduling in manufacturing and
services. Springer series in operations research. Springer, New York,
USA.

Pinedo, M. L., 2016. Scheduling: theory, algorithms and systems, 5th
Edition. Springer, New York,USA.

Stowinski, R., 1980. Two approaches to problems of resource allocation
among project activities, a comparative study. Journal of the Operational
Research Society 31 (8), 711-723.

Stefanello, F., de Aratjo, O. C. B., Miiller, F. M., 2015. Matheuristics
for the capacitated p-median problem. International Transactions in
Operational Research 22 (1), 149-167.

Sule, D. R., 2008. Production planning and industrial scheduling: ex-
amples, case studies and applications, 2nd Edition. CRC Press, Boca
Raton, USA.

Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., Soares, J. A., 2015.
An integer programming approach to the multimode resource-constrained
multiproject scheduling problem. Journal of Scheduling (Online).

Ventura, J. A., Daecheol, K., 2000. Parallel machine scheduling about
an unrestricted due date and additional resource constraints. IIE Trans-
actions 32 (2), 147-153.

32

