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Assessing machine learning classifiers for the 
detection of animals’ behavior using depth-based 
tracking 
Abstract.  

There is growing interest in the automatic detection of animals’ behaviors and body postures 
within the field of Animal Computer Interaction, and the benefits this could bring to animal 
welfare, enabling remote communication, welfare assessment, detection of behavioral patterns, 
interactive and adaptive systems, etc. Most of the works on animals’ behavior recognition rely 
on wearable sensors to gather information about the animals’ postures and movements, which 
are then processed using machine learning techniques. However, non-wearable mechanisms 
such as depth-based tracking could also make use of machine learning techniques and classifiers 
for the automatic detection of animals’ behavior. These systems also offer the advantage of 
working in set-ups in which wearable devices would be difficult to use. This paper presents a 
depth-based tracking system for the automatic detection of animals’ postures and body parts, as 
well as an exhaustive evaluation on the performance of several classification algorithms based 
on both a supervised and a knowledge-based approach. The evaluation of the depth-based 
tracking system and the different classifiers shows that the system proposed is promising for 
advancing the research on animals’ behavior recognition within and outside the field of Animal 
Computer Interaction. 

Highlights: 

• Animal Computer Interaction studies could benefit from automatic behavior detection 
• Cats’ body postures and orientation can be determined using depth-based information 
• Depth-based trackers offer promising accuracy rates classifying cats’ postures 

Keywords. Tracking system, Animal Computer Interaction, Depth-based tracking, Classification 
algorithms, Intelligent System 

1 Introduction 

Technology is unquestionably changing our world and our lives every day. In this ever-growing 
digital era, human beings are not the only ones who can make use of technology. With an 
estimated 75 million households owning at least one pet animal in Europe2, and more than 71 
million pet dogs and 73 million pet cats in USA3, animals are also a significant population 
coexisting with our technological surroundings. Domestic dogs and cats have been observed 
using some of our technological devices, such as smartphones or tablets, in their own way 
(Baskin, Anavi-goffer, & Zamansky, 2015; Noz & An, 2011; Westerlaken & Gualeni, 2014) 
and some zoos are also introducing touchscreens and tablet games for primate enrichment 
(Carter, Webber, & Sherwen, 2015). All these animals could benefit from the technological 
advances we have achieved throughout the digital revolution. However, animals have different 
physical features and mental perceptions of the world, preventing them from fully using and 
understanding our technology and interaction methods, which have been designed with human 
requirements and characteristics in mind. 

Recently, spreading research is addressing the aforementioned concerns within the field of 
Animal-Computer Interaction (ACI) (Mancini, 2011, 2013). ACI considers animals as the target 
users of digital systems, and grounds on the development of computer interfaces and digital 
systems specifically designed for them. Animal-centered technology could improve animal 
welfare and wellbeing in several scenarios: interactive systems or devices could provide 

                                                      
2 http://www.fediaf.org/fileadmin/user_upload/Secretariat/facts_and_figures_2014.pdf 
3 http://www.petfoodinstitute.org/?page=PetPopulation 
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enrichment and stimulation for captive animals in zoos (Carter et al., 2015; French, Mancini, 
Sharp, & Smith, 2014), digital and/or tangible games could foster physical activity of animals in 
shelters and even entertain pets alone at home (Hirskyj-Douglas, Luo, & Read, 2014; Pons, 
Jaen, & Catala, 2014), alleviating stress and isolation.  

In the era of computers and with the advances in computer vision and machine learning 
techniques, a promising research line into ACI would be automatizing behavior recognition on 
animals. Animals are not verbal communicators; instead, they rely on body postures or sounds 
to express themselves. For these reasons, ACI studies are taking a big effort in developing 
technology for the automatic recognition of animal behavior and body postures. The benefits 
this technology could bring both to animal welfare and ACI research are countless. Firstly, it 
could provide both objective measurement mechanisms and more reliable feedback to inform 
the design and development of animal-centered technology. Second, animal welfare could be 
evaluated using automatic behavior recognition paired with machine learning techniques. This 
knowledge could be used to support the detection of abnormal behaviors of animals, allowing 
early detection of illnesses and other kind of problems which could be derived from an 
abnormal behavior. Finally, body posture and behavior recognition could also be used to 
automatically adapt the reactions of a system to the animals’ interactions (Pons et al., 2014; 
Pons, Jaen, & Catala, 2015b). In this way, animals could interact with systems on their own, 
improving animal wellbeing when they are alone (at home, zoos, shelters, etc.). 

Great advances are being done using wearable devices as a way of recognizing animals’ body 
postures and activities. These works make use of the information provided by accelerometers 
and gyroscopes attached to a wearable device such as a collar or harness that the animal has to 
put on. The extracted raw information from the sensors is then processed using machine 
learning techniques to train different classification algorithms to recognize animals’ postures 
and activities. Depending on the activities and/or postures to be recognized, a wide range of 
classification algorithms have been used, either as standalone algorithms or combining them in 
a more complex learning process. However, there are animals who are not used to wear 
harnesses nor other wearable devices and could find those elements disturbing. Other animals, 
such as cats, have extreme agility and wide range of movements, and wearable devices could 
limit their naturalness. There are also animals to whom the use of wearable devices could pose a 
threat, such as wild animals, zoo animals or protected species. In addition, while wearable 
tracking systems might offer wider coverage area, they also require maintenance of batteries and 
sensors and one wearable device can only track one animal at a time. The use of non-wearable 
tracking mechanisms would be a promising complement for analyzing behavior and body 
postures in cases in which the use of wearable devices will not be feasible. These systems would 
allow more natural interactions within technologically-mediated environments as the animals 
will not be required to wear or carry any device, avoiding stress or affecting their behavior. 
Although the use of non-wearable systems would be delimited to a specific tracking area, they 
offer centralized maintenance and a single tracking device could provide information of several 
animals at a time. This information could also be used to train different classification algorithms 
for the automatic recognition of animals’ postures, therefore providing the same benefits to ACI 
as the wearable approach in terms of animal wellbeing. 

This paper describes the development of a non-wearable depth-based tracking system for cats 
and the promising results obtained by applying classification algorithms on the obtained depth 
information for the automatic recognition of the animals’ body parts and postures. The use of 
depth information along with traditional computer vision techniques provides more information 
about the tracked animal than using solely an RGB camera. By exploiting this information using 
machine learning techniques and suitable classification algorithms, this approach could be a 
promising starting point towards the automatic detection and analysis of animals’ behavior 
without requiring the animal to use any wearable device. This article is structured as follows: 
Section 2 analyzes previous tracking systems for animals based on wearable and non-wearable 
devices and their purposes, and states the necessity of a new approach grounding on previous 
research on non-wearable human-tracking systems. Section 3 describes the development of a 
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depth-based tracking system for cats in indoor scenarios. Section 4 reports two experiments 
carried out to determine the accuracy of the system using both a supervised learning process and 
a knowledge-based approach for the classification of the cats’ body postures and body parts, 
describing the different classification algorithms used and their accuracy rates. Section 5 
explains how this tracking mechanism could be applied in several ACI domains and how it 
could be coupled with human and object tracking, and conclusions and future work are given in 
Section 6. 

2 Related works 

This section provides an overview on existing research about animal tracking focused on animal 
gesture and body posture recognition for different purposes using both wearable and non-
wearable tracking systems.  

2.1 Wearable tracking systems 

Several works have addressed the necessity of tracking animals in different scenarios. The most 
common method to gather information about the animal has been using wearable harnesses or 
collars with attached technological devices providing information to the system in charge of 
processing the information. One of the most basic methods for animal tracking in outdoor 
scenarios has been relying on GPS or radio-frequency localization, attaching the emitter devices 
to a collar or harness. These systems only give information on the animals’ location and have 
been used by pet owners, mostly to assess their dogs’ locations and whether or not they are in 
trouble (Mancini, van der Linden, Bryan, & Stuart, 2012). This technology has also been used 
during hunting activities with dogs, allowing the human leading the hunting activity to interpret 
the movements of the dog in the field by following its signal on a handheld display (Paldanius, 
Kärkkäinen, Väänänen-Vainio-Mattila, Juhlin, & Häkkilä, 2011; Weilenmann & Juhlin, 2011).  

However, several outdoor scenarios require more precise information about the animals’ 
movements or body postures during the activity, and even some kind of communication from 
the animal to the human side. As an example, determining the pose of the animal is of vital 
importance in the case of Search and Rescue (SAR) dogs. Due to its agility and strong sense of 
smell, dogs are suited to perform SAR tasks which are not always safe for humans, such as 
accessing small locations or identifying potential locations of survivors after a catastrophe. 
Usually SAR dogs have to work away from human sight, and it would be extremely useful for 
the dog handlers if they could know the location and pose of the dog to determine if the dog is 
trying to communicate some discovery, and to assess the physical wellbeing of the animal. 
Recognition of animals’ postures and activities in this kind of scenarios are usually performed 
using accelerometers, gyroscopes or other inertial measurement units, and the majority of works 
are focused on dogs (Bozkurt et al., 2014; Zeagler et al., 2016). In these works, differentiating 
clearly between what is activity and what is a posture is usually difficult. A specific activity 
entails that the animal adopts a specific posture, e.g. walking or jumping are different activities 
identified by their posture, and eventually some postures are in itself an activity, e.g. sitting. 

Most of the works based on wearable devices for activity/posture recognition are based on the 
use of a tri-axial accelerometer located at the dog’s collar and then apply classification 
techniques to the data obtained from the accelerometer in order to recognize the activity/posture. 
There are several devices for dogs, some of them even commercial, such as Whistle®4, 
FitBark®5 or WagTag™ (Weiss, Nathan, Kropp, & Lockhart, 2013) which make use of a tri-
axial accelerometer to perform basic activity level recognition. However, these systems are only 
capable of indicating if the dog was resting or moving and do not differentiate between different 
activities which involve movement. In (Ladha, Hammerla, Hughes, Olivier, & Ploetz, 2013), 

                                                      
4 http://www.whistle.com/ 
5 www.fitbark.com 
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dogs wear a tri-axial accelerometer on the collar and, after being trained with a kNN classifier, 
the system is able to differentiate between 14 activities and 2 postures. 

Within the FIDO project (Jackson et al., 2013), researchers have been studying how wearable 
devices could mediate the communication between working dogs and their handlers. They have 
undertaken extensive work on providing dogs with suitable wearable activators (Jackson et al., 
2015). In addition, they have also considered to mediate this communication by recognizing 
motion-based dog gestures – sit, spin, roll, jump, etc. – using a three-axis accelerometer 
attached to the front of a service dog harness (Valentin, 2014). More recently, they have studied 
the use of a dog collar with an accelerometer and gyroscope for the recognition of head gestures 
on dogs (Valentin, Howard, & Jackson, 2015). 

The effectiveness of wearable harnesses with several inertial measurement units located along 
the harness has also been studied. The work of Ribeiro et al. (Ribeiro, Ferworn, Denko, & Tran, 
2009) uses the angles of two accelerometers on different locations on the dogs’ harness to 
develop an algorithm capable of estimating four poses including: standing, lying down, sitting, 
and walking. Other works (Bozkurt et al., 2014; Brugarolas et al., 2013) extend this idea by 
using more inertial measurement units located on the optimal locations of a dog’s body, which 
have been determined attending to the algorithm’s performance and the dogs’ comfort and 
physiognomy. Using the information provided by these units and applying machine learning 
techniques, five static postures and three dynamic behaviors can be identified. They have also 
compared the performance of the classification algorithm using supervised against unsupervised 
classification methods (Winters et al., 2015). 

Acceleration data-loggers are also a common and efficient way of detecting cats’ body postures 
and frequent behaviors based on movement (Watanabe, Izawa, Kato, Ropert-Coudert, & Naito, 
2005). Commercial devices for cat activity recognition are also available, such as PawTrack®6, 
which detects whether the cat is at home or outside, and offers GPS geolocation for outdoor 
walks. However, it does not monitor any activity nor gesture. Cat@Log (Yonezawa, Miyaki, & 
Rekimoto, 2009) is a non-commercial but more complete device. It consists of a cat collar 
device with several sensors: a camera, a GPS, an accelerometer, a Bluetooth module, battery 
and micro SD card. The camera provides videos of the cat’s view, while the accelerometer data 
is used for activity recognition such as sleeping, jumping, walking or scratching. 

Canine Amusement and Training (Wingrave, Rose, Langston, & LaViola, 2010) presents a 
wearable tracking system for dogs not based on accelerometers. It consists of IR emitters 
attached to the dog’s harness, and a Wiimote’s IR camera placed on the ceiling. The system 
detects the location and posture of the animal by tracking the IR emissions of the harness using 
the Wiimote. The detected postures and location are used by the system to determine whether 
the dog is performing correctly the proposed training activities offered by the system. Table 1 
provides a summary of the existing approaches for wearable tracking systems for animals and 
their most distinctive features: the device being used for tracking, whether it works in indoor or 
outdoor locations, and whether or not it detects the position of the animal within the tracking 
area, its posture and/or its activity. 

Table 1. Existing wearable tracking systems for animals and summary of features. 

Related work Device Indoor / 
Outdoor use 

Position 
detection 

Posture 
recognition 

Activity 
recognition 

(Mancini et al., 
2012) 

Collar-worn 
GPS 

Outdoor Yes No No 

(Paldanius, 
Kärkkäinen, 
Väänänen-

Collar-worn 
GPS 

Outdoor Yes No No 

                                                      
6 http://pawtrack.com/ 
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Vainio-Mattila, 
Juhlin, & 
Häkkilä, 2011) 
(Weilenmann & 
Juhlin, 2011) 

Collar-worn 
GPS 

Outdoor Yes No No 

Whistle Collar-worn 
GPS and 
accelerometer 

Indoor and 
outdoor 

Yes No Basic 

FitBark Collar-worn 
accelerometer 

Indoor and 
outdoor 

No No Basic 

WagTag Collar-worn 
accelerometer 

Indoor and 
outdoor 

No No Basic 

(Ladha et al., 
2013) 

Collar-worn 
accelerometer 

Indoor (possibly 
outdoor if the 
device range of 
frequencies 
allow it) 

No Yes Yes 

(Valentin, 2014) Accelerometer 
on a harness 

Indoor and 
outdoor 

No No Yes 

(Valentin et al., 
2015) 

Collar-worn 
accelerometer 
and gyroscope 

Indoor and 
outdoor 

No Yes Yes 

(Ribeiro et al., 
2009) 

Two 
accelerometers 
on a harness 

Indoor and 
outdoor 

No Yes No 

(Bozkurt et al., 
2014; 
Brugarolas et 
al., 2013) 

Two 
accelerometers 
and two 
gyroscopes on a 
harness 

Indoor and 
outdoor 

No Yes Yes 

(Watanabe et 
al., 2005) 

Two collar-worn 
accelerometers 

Indoor No Yes Yes 

PawTrack Collar-worn 
GPS 

Outdoor Yes No No 

Cat@Log Collar-worn 
GPS and 
accelerometer 

Indoor and 
outdoor 

Yes Yes Yes 

(Wingrave et al., 
2010) 

Harness with IR 
emitters and 
Wiimote IR 
camera 

Indoor Yes Yes No 

2.2 Non-wearable tracking systems 

Although wearable devices are the most common way of tracking an animals’ position and 
posture, a number of non-wearable solutions have also been proposed. Poultry.Internet (Lee et 
al., 2006) illustrates a remote communication system between a pet and its owner, in which the 
owner is able to remotely obtain real-time information on the location and orientation of its 
poultry inside the house backyard. This system tracks the movements of the chicken using a 
camera and an electro-pad located in the chicken’s leg to sense its muscle activity. Through 
camera images they also detect the chicken’s head to find the orientation of the animal within 
the backyard, but no postures are identified. In (Karlsson, Ren, & Li, 2010) computer vision 
methods have been used to track the movements of animals inside a zoo environment using 
multiple cameras, but again no body postures nor gestures are identified. No wearable device is 
either used in Purrfect Crime (Trindade et al., 2015), an interspecies digital game for cats and 



Author versión – Please cite as:  
Patricia Pons, Javier Jaén, Alejandro Catalá. Assessing machine learning classifiers for the detection of 
animals’ behavior using depth-based tracking. Expert Systems with Applications, vol. 86, pp. 235-246. 

7 
 

humans. In this case a Microsoft Kinect®7 is used to detect the position of the cats inside the 
play area, using the depth information provided by this sensor. However, the system only 
detects the central position of the animal, and no posture nor orientation are detected. Therefore, 
the interactive responses of the system were sometimes erroneous, as not being able to identify 
where the cat was looking introduced some interactions which were not really intended by the 
animal.  

To the best of the authors’ knowledge, none of the existent non-wearable systems intended for 
animal tracking is capable of detecting body postures. In order to address the aforementioned 
limitations that wearable devices present in several application domains, there is a need for the 
development of tracking mechanisms for animals not based on wearable devices which allow to 
detect body postures as well as locating the animal within the tracked area. The following 
section describes a promising non-wearable tracking system for animals based on depth 
information. For the recognition of the animals’ body parts and postures using the data provided 
by this depth-based tracking system, it has been essential to analyze how different classification 
algorithms perform in this domain. Both supervised and knowledge-based classification 
techniques have been tested, and the promising results obtained will be described in section 4.  

3 Tracking system 

Within Human Computer Interaction, depth sensors have been successfully used for gesture 
detection and posture recognition on human beings. A depth frame of an image provides, for 
each pixel, the distance in millimeters from the sensor plane to the nearest object in that 
particular pixel. Depth sensors, such as the Microsoft Kinect®, have been very useful to detect 
and recognize volumes and 3D shapes from 2D images. Usually, these sensors are located in a 
vertical plane, either in front of the user who is interacting or facing the scene to be analyzed. 
However, recent works have located this kind of sensors on the ceiling to track an open space 
area (Benko, Wilson, Zannier, & Benko, 2014; Jones et al., 2014; Jones, Benko, Ofek, & 
Wilson, 2013; Moreno, Van Delden, Poppe, Reidsma, & Heylen, 2015), providing wider 
tracking areas and avoiding occlusion due to elements in the room. Human gestures can be 
detected using this set-up (Bednarik & Herman, 2015; Hu, Reilly, Alnusayri, Swinden, & Gao, 
2014; Lin, Liu, Hsu, & Fu, 2015), and this configuration of the depth-sensor could also be 
useful for animal tracking applications. The skeleton of animals such as cats or dogs should be 
easily recognizable from above in several postures, e.g. sitting or walking, if volumetric 
information of the image such as depth analysis is used: the head could be identified as a 
volumetric shape different from the body and/or tail, and depth information would also allow to 
locate the position of each body part in a tridimensional representation space. In the case of 
other animals more similar to human beings in terms of skeletal characteristics, such as 
orangutans, similar approaches as the ones used for human gesture detection could be used. 
Therefore, a depth-based tracking system would be a promising way of detecting the animals’ 
location, posture and field of view (Pons, Jaen, & Catala, 2015a, 2017). In the following 
sections, a depth-based tracking system for the detection of cats’ body postures, location and 
orientation is described. The tracking system has been developed and tested with cats as target 
users, but it could be adapted to work with other animal species using a similar approach. 

3.1 Equipment and procedure 

Several sessions with cats were carried out in which a Microsoft Kinect® v1.0 sensor was used 
to record video streams of depth and color information from the cats’ natural movements during 
a period of time. During the sessions, cats moved freely and were also encouraged to play with 
their owners, caretakers or small interactive robotic toys. The Microsoft Kinect® was placed 
looking down from the ceiling at a height of 250 cm, where it covered an area of approximately 
200 cm long and 270 cm wide, as shown in Fig. 1. The tracking area was a clear space with no 
furniture nor objects besides the toys/robots used for the games. The Microsoft Kinect® 

                                                      
7 https://msdn.microsoft.com/en-us/library/hh855355.aspx 
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recorded both color and depth video streams at a rate of 30 frames per second with 640x480 
pixel resolution.  

Ethical guidelines for ACI studies were considered (Väätäjä & Pesonen, 2013), and therefore 
the subjects were not forced to interact and they could walk freely around the room. Cats were 
encouraged to interact within the tracking area of the sensor by means of their owners/caretakers 
drawing their attention to this area with toys or by calling them. However, as the cat could move 
freely inside the room where the interaction took place, only the moments in which the cats 
were within the tracking area were valid recordings. These sessions allowed to obtain real data 
on common and spontaneous postures, behaviors and movements, which were later analyzed 
and processed to develop the depth-based tracking system. The tracking system has been 
developed using C#, Microsoft Kinect® SDK 1.8, and EmguCV, an OpenCV framework for 
.NET systems which has been used for image processing. 

 

Fig. 1. Set-up for the tracking system 

3.2 Processing depth-based information 

The Microsoft Kinect® v1.0 sensor provides both color (see Fig. 2a) and depth streams (see Fig. 
2b). The tracking system will only use depth information as input, so the color streams are 
discarded. Each depth frame provides, for each pixel, the distance in millimeters from the 
camera plane to the nearest object in that particular pixel (see Fig. 2b). In the obtained depth 
images, the contours of the cats can be clearly observed as their depth values are greater than the 
floor’s depth, which is constant. Instead, the depth pixels of a cat vary along its body, allowing a 
human eye to differentiate between the different parts of the cat’s body just by looking at the 
depth frame. In the same way, different cat postures can be observed to generate different cat 
contours in the processed depth frames. 

The first processing step of the algorithm consists of extracting the cat’s pixels from the depth 
frame (see Fig. 2b). In the current implementation of the algorithm, which has been tested with 
prerecorded data, background segmentation has been done by simply discarding from the image 
those pixels corresponding to the ground, as the sensor was placed in a fixed position during the 
sessions and therefore the distance to the floor was known (see Fig. 2c). However, this approach 
can unintentionally remove the cats’ tail (as observed in Fig. 2c, cat on the lower-right corner of 
the image), which in some cases could be a source of valuable information when creating richer 
posture descriptors. Thus, more elaborated approaches for background segmentation should be 
incorporated in order to overcome this current limitation and to allow for more flexible set-up 
conditions. With the floor removed from the image, computer vision algorithms are applied to 
the depth image in order to extract the cats’ contours, which now appear as grey-scale blobs on 
the image (see Fig. 2d). In this step, a cat’s location within the tracked area can be determined 
by using the centroid of the extracted contours as a 2D coordinate. Each detected contour is then 
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processed by a k-means clustering algorithm, which groups the pixels by their depth value and 
relative position (see Fig. 2e): pixels of similar depth which are located together in the image 
would be grouped together within the same cluster. The number of clusters was set to three in 
order to divide the cat contour into the three most noticeable parts of the cat’s body, i.e. head, 
body and tail. The following step of the tracking system would be the recognition of the cats’ 
postures and body parts. For this purpose, the obtained clusters of each cat have to be classified 
into either head, body or tail. Once the head is detected, its position in relation to the body/tail 
clusters allows an orientation vector to be defined, from the center of the body/tail cluster to the 
center of the head cluster (see Fig. 2f), roughly estimating the cat’s field of view. Moreover, not 
only the cats’ body parts can be detected but also different body postures can be identified. A 
pseudo-code description of the tracking, classification and clustering process is shown in the 
following algorithms.  

Algorithm 1: Processing pipeline 
BEGIN  
1.   Capture depth image 
2.   Carry out background segmentation 
3.   Obtain contours 
4.   Call Algorithm 2 
5.   Calculate orientation vector 
END 
 
Algorithm 2: Cat clustering algorithm 
Input: feature vector 
Output: posture, head, body, tail 
BEGIN 
1.   Obtain unclassified clusters with k-means (k=3)  
2.   Match body parts to clusters and obtain posture 
END 
 
Step 2 in our clustering algorithm (Algorithm 2) can be carried out in different ways. In this 
work, a supervised training method and a knowledge-based classification system have been 
evaluated for the detection of both postures and body parts. Both approaches will be explained 
in sections 4.1 and 4.2 respectively. A dataset was created from the recordings in order to train 
and evaluate these classification mechanisms. It was observed that the tracking device was 
providing better images for one of the cats, probably due to its color, size and density of the 
coat. However, with the current data it was difficult to quantify to which extent each factor was 
affecting the tracking accuracy. To avoid introducing errors due to such factors in the 
experiment, only images in which the cat contour was correctly tracked and extracted were used 
for the experimental data. The dataset is comprised of 1422 contours of cats in different 
postures, which were manually labeled indicating the posture and the different body parts of the 
cat. 

 

Fig. 2. Process of extracting the cat’s orientation: (a) color frame (b) depth frame, (c) 
background segmentation, (d) cat contours, (e) clusters for head, body and tail, (d) orientation 
vector 

4 Classification results and discussion 
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A set of experiments have been conducted in order to determine the accuracy of the system in 
the detection of a cat’s posture and the classification of its body parts. The following postures 
were considered, and representative color and clustered images of each of them can be observed 
in Fig. 3: 

• Standing: the cat is standing on its four legs, head slightly higher than the body 
• Walking: the cat is standing, head slightly bent forward and legs moving forward 
• Sitting: the cat is sitting on its rear legs, without bending its front legs  
• Turning: the head of the cat and its front part of the body are curving towards one side 
• Semisitting: the cat is sitting on its rear legs but bending towards the front 
• Jumping: the cat jumps on its back legs, head and front paws up, all body extended 

vertically 

 

Fig. 3. Cat’s postures and the corresponding depth and clustered image (a) standing (b) walking 
(c) sitting (d) turning (e) semisitting (f) jumping 

4.1 Supervised classification of body parts and postures 

Supervised learning has been used to classify the three different body parts of a cat’s contour 
into head, body and tail. The following features have been used to describe each body part: 
width and height of the cat’s contour, average depth, number of pixels and shape descriptors 
(second order moments and Hu invariant moments). It should be noticed that the posture has not 
been considered a feature. In this way, the algorithm can firstly classify a cat’s body parts 
regardless of its posture, and then use that information to properly create the feature vector of a 
cat’s posture as will be explained later in this section. The labeled dataset of cats´ body parts 
contained a total of 4266 feature vectors (1422 feature vectors of each class, i.e. head, body and 
tail) and the analysis was performed using the RapidMiner data mining tool. Table 2 shows the 
accuracy of several base classifiers tested using k-fold cross validation (10 validations, stratified 
sampling) to analyze their performance, except for those marked with *, in which simple split 
validation was used (70% of the data set used for training, stratified sampling). 

Table 2. Accuracy rates for base learners when classifying a cluster belonging to a cat’s contour. 

 Decision 
tree 

Random 
tree 

Random 
forest 

Rule 
induction* 

Support 
Vector 
Machine* 

kNN 
(k=4) 

Naïve 
bayes 

Logistic 
regression* 

Head 97.57% 42.98% 77.55% 84.63% 64.90% 61.46% 34.16% 49.23% 
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Body 47.44% 40.43% 50.82% 74.70% 59.37% 54.58% 29.63% 59.34% 
Tail 93.00% 63.57% 85.29% 81.18% 73.29% 66.23% 59.65% 81.46% 
Average 62.87% 47.17% 62.28% 82.20% 66.67% 60.64% 34.81% 60.33% 

Results show rather low average accuracy rates. However, it can be seen that for several 
classification algorithms such as decision trees and random forest, very promising accuracy 
rates are obtained when classifying the head and the tail. As we know that for each cat’s 
contour, there is only one head, tail and body, the first two kinds of clusters could be identified 
using the learned classification model and the latter one, the body cluster, would be the 
remaining one. To demonstrate this hypothesis, a combined model has been built using a 
stacking approach and considering the three best base learning algorithms for this data: rule 
induction, support vector machine and decision tree. The resulting model, combined using rule 
induction, has an average accuracy of 83.18% (head = 88.22%, body = 77.75%, tail = 83.97%). 
As expected, it follows the prediction if the output class is either head or tail, or classifies the 
cluster as body otherwise. With the head correctly classified, the field of view of the cat can be 
roughly estimated as an orientation vector from either the center of the body or tail to the center 
of the head. 

Supervised learning has also been used to classify a cat’s posture. The same dataset of 1422 
manually labeled images of cats in different postures was used. For each posture, the following 
features were considered: width and height of the cat’s contour, clusters basic info (centroid, 
average depth, and number of pixels), distance between head to body centroids, distance 
between tail and body centroids, distance between head and tail centroids, angle between the 
vectors from body to tail and from body to head, depth differences between clusters (head and 
body, head and tail, body and tail), with a total of 21 features. Base learners performed as shown 
in Table 3 using k-fold cross-validation (100 validations, stratified sampling) when classifying 
the aforementioned postures. As can be observed in Table 3, rule induction was shown to be the 
best performing algorithm considering average accuracy scores. However, some algorithms 
perform better than others depending on the posture being classified. As an example, 
classification of jumping postures has slightly better results using a kNN, random forest or 
Naïve Bayes classifier rather than rule induction. 

Table 3. Accuracy rates for base learners when classifying a cat’s posture. 

 Decision 
tree 

Random 
tree 

Random 
forest 

Rule 
induction 

Support 
Vector 
Machine 

kNN 
(k=4) 

Naïve 
bayes 

Logistic 
regression 

Standing 72.62% 50.65% 55.17% 85.41% 83.44% 85.32% 84.62% 84.62% 
Walking 75.12% 51.35% 76.39% 77.19% 74.89% 74.55% 63.31% 71.43% 
Sitting 89.77% 67.27% 85.71% 92.90% 89.08% 87.63% 90.86% 90.00% 
Semisitting 81.15% 58.76% 87.25% 84.78% 78.69% 86.57% 81.02% 78.12% 
Turning 81.40% 42.07% 79.35% 80.19% 70.98% 71.68% 62.17% 73.78% 
Jumping 92.31% 80.47% 96.84% 94.71% 93.66% 96.69% 96.97% 92.92% 
Average 79.56% 55.84% 69.59% 85.50% 81.93% 83.32% 79.01% 82.05% 

Forward feature selection was applied on all base learners in order to discard features that could 
introduce noise into the classification. Accuracy results for the same cat postures are shown in 
Table 4. K-fold cross validation was used to analyze the performance of all classifiers (100 
validations, stratified sampling), except for those marked with *, in which simple split 
validation was used (70% of the data set used for training, stratified sampling). It can be 
observed that in few cases the average and individual accuracy rates are significantly improved, 
such as in the random tree, random forest and kNN classification algorithms. The selected 
features are different depending on the algorithm being used, hence it seems that there are no 
noisy features and the best performing subset of features will depend on the algorithm being 
used. With this approach, the kNN classifier not only has the best average performance score, 
but also is the best classifier for four of the six postures, and in the remaining two postures it is 
the second best performing classifier. 
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Table 4. Accuracy rates for base learner when classifying a cat’s posture, using forward feature 
selection. 

 Decision 
tree 

Random 
tree 

Random 
forest 

Rule 
induction* 

Support 
Vector 
Machine* 

kNN 
(k=4) 

Naïve 
bayes 

Logistic 
regression* 

Standing 76.05% 63.06% 74.64% 88.64% 85.92% 92.98% 82.77% 73.81% 
Walking 79.27% 59.56% 71.94% 80.60% 69.70% 87.83% 77.92% 79.03% 
Sitting 91.33% 87.80% 90.75% 94.12% 83.61% 94.12% 96.64% 88.89% 
Semisitting 80.45% 74.80% 78.86% 82.61% 100.00% 84.67% 82.19% 77.50% 
Turning 74.57% 62.42% 73.33% 76.81% 74.24% 87.32% 71.22% 83.78% 
Jumping 93.56% 92.57% 97.01% 96.72% 96.61% 97.52% 96.52% 89.23% 
Average 81.10% 70.74% 79.58% 86.62% 83.80% 91.22% 83.63% 80.05% 

As a final validation, a combined model has been trained using a stacking approach, considering 
the three best performer classifiers (kNN, rule induction and support vector machine) and 
combining them using rule induction. Forward feature selection has been applied to the 
combined model. The average accuracy for this model is 88.50%, with the following class 
accuracy: standing = 87.32%, walking = 80.56%, sitting = 94.00%, semisitting = 86.36%, 
turning = 89.47%, jumping = 96.72%. 

The obtained results are very promising and demonstrate that reliable tracking systems for 
animals based on depth information can be developed using machine learning algorithms for the 
classification of the cat’s body parts and postures. 

4.2 Knowledge-based classification of body parts and postures 

The process for supervised learning is time demanding as it requires to label the data in order to 
construct the training set and build a suitable model to apply to the new data. As this system is 
envisioned to adapt to cats of different breeds, sizes and physical characteristics, it would be 
very beneficial if the tasks of labeling, training and deploying the model could be eased. Other 
works have also considered including knowledge-based models directly encoded in 
classification algorithms for solving several problems (Li, Goldgof, & Hall, 1993; Winters et 
al., 2015), when the costs for the preparation of datasets and training required in supervised 
learning are not feasible. Therefore, an exploratory study on the accuracy of the tracking system 
using knowledge-based classification has been conducted in order to assess the suitability of 
such an approach. If feasible, it could allow easy deployment and adaptation of the system to 
new scenarios and users, i.e. cats of different sizes and breeds, with minimal configuration 
requirements.  

In order to develop such a system, an observational analysis on a sample of the recordings and 
their corresponding clustered images was conducted. Different cat postures were seen to 
generate different cat contours in the processed depth frames, and the sizes and depth values of 
the different clusters also varied from one posture to another. As an example, the cat’s depth 
stream contour when sitting showed a smaller, square-shaped bounding rectangle (see Fig. 3c), 
while the depth stream when standing or walking revealed a larger and rectangular-shaped 
bounding rectangle (see Fig. 3a and Fig. 3b). In addition, the pixels of the sitting cat’s head had 
a significantly higher average depth than the pixels of the rest of the body. This is observed in 
Fig. 3c, in which the grey pixels of the head are significantly darker than the pixels of the cat’s 
haunch. In contrast, the cat walking in Fig. 3b has an average depth of its head pixels very 
similar to the average depth of the haunch and tail pixels. Another aspect to consider is that the 
k-means clustering algorithm has been fixed to provide three clusters at all times. Hence, the 
classification algorithm for the different body parts is the one responsible of determining which 
one would correspond to the lower back of the cat. This cluster, in most cases, corresponds to 
the tail. However, in some cases in which the tail is not visible such as in Fig. 3c, the detected 
cluster physically corresponds to the lower back of the animal. These cases usually occur when 
the cat is in a sitting posture. In this case, the head is clearly differentiated from the rest of the 
body, and in terms of average depth it is undoubtedly the highest cluster detected. Hence, in this 
posture only the detection of the head and the body would allow the cat’s field of view to be 
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determined. However, in other postures the detection of the tail is crucial to determine the 
orientation of the cat. For instance, determining whether the cat is looking north or south in Fig. 
3b would be difficult if the tail was not detected, because the head is not clearly in a higher 
position than the rest of the body.  

After the analysis, a decision tree algorithm was developed which considered the following 
parameters: dimensions of the cat’s contour, number of pixels for each cluster and average 
depth for each cluster. The decisions on the tree are made in terms of the observed average 
values for each feature on the data used for the analysis, allowing a threshold for the variance of 
each of these values. Several simplifications have been made. Firstly, the algorithm cannot 
differentiate between walking and standing positions, nor between sitting and semi-sitting, as 
considering this basic information the average and threshold values overlap and it is only 
possible for machine learning algorithms to build such an elaborate classification. Therefore, 
this basic version of the tracking system is focused on detecting sitting/semi-sitting, 
walking/standing, jumping and turning positions of several cats at a time, and classifying the 
different pixel regions in each posture to detect the head, body and tail of each cat. Secondly, 
with the supervised approach it was possible to isolate the classification of postures from the 
classification of clusters into cats’ body parts. It is not possible to do that in this knowledge-
based approach, as for the human observer the identification of each cluster depends on the 
posture being analyzed, and vice versa. Third, and extra piece of information has been given to 
the algorithm. If the decision tree cannot find the head of the cat, information from the last 
previous frame will be used to find the closest cluster which was classified as the head in the 
last frame. The following pseudocode shows the basic behavior of the decision tree algorithm: 

Algorithm 3 
Input: cat’s contour size, clusters’ average depth, clusters’ number of pixels, clusters’ 
centroids, head cluster’s centroid from last frame 
Output: posture, head cluster, body cluster, tail cluster 
BEGIN 
1.  if (small bounding rectangle of the cat’s contour) 
2.     if (difference between highest and deepest cluster > threshold) 
3.        posture = jumping 
4.        head = highest cluster (cluster with smallest depth value) 
5.        body = intermediate cluster 
6.        tail = deepest cluster (cluster with biggest depth value) 
7.     else if (number of pixels of highest cluster < average tail max. size)  
8.        posture = turning 
9.        tail = highest cluster (cluster with smallest depth value) 
10.       head = intermediate cluster 
11.       body = deepest cluster (cluster with biggest depth value) 
12.    else if (number of pixels of highest cluster < average head max. size) 
13.       posture = sitting 
14.       head = highest cluster (cluster with smallest depth value) 
15.       body = intermediate cluster 
16.       tail = deepest cluster (cluster with biggest depth value) 
17.    else 
18.       posture = unknown 
19.       head = closest cluster to the head cluster detected in last frame 
20.       tail = furthest cluster from head 
21.       body = remaining cluster 
22. else 
23.    if (difference between highest and deepest cluster > threshold) 
24.       posture = jumping 
25.       head = highest cluster (cluster with smallest depth value) 
26.       body = intermediate cluster 
27.       tail = deepest cluster (cluster with biggest depth value) 
28.    else if (number of pixels of highest cluster < average tail max. size) 
29.       tail = highest cluster (cluster with smallest depth value) 
30.       head = furthest cluster from tail 
31.       body = remaining cluster 
32.       if (bounding rectangle of the cat’s contour within average turning posture dimensions) 
33.           posture = turning 
34.       else 
35.           posture = walking/standing 
36.    else if (number of pixels of second highest cluster < average tail max. size) 
37.       tail = second highest cluster 
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38.       head = furthest cluster from tail 
39.       body = remaining cluster 
40.       if (bounding rectangle of the cat’s contour within average turning posture dimensions) 
31.           posture = turning 
42.       else 
43.           posture = walking/standing 
44.    else if (number of pixels of highest cluster > average tail max. size AND  
45.            number of pixels of highest cluster < average head max. size AND  
46.            depth difference between highest and second highest cluster is very small) 
47.       posture = sitting/semisitting 
48.       head = highest cluster (cluster with smallest depth value) 
49.       body = intermediate cluster 
50.       tail = deepest cluster (cluster with biggest depth value) 
51.    else 
52.       posture = unknown 
53.       head = closest cluster to the head cluster detected in last frame 
54.       tail = furthest cluster from head 
55.       body = remaining cluster 
END 

An accuracy analysis has been conducted extracting 200 random frames of each posture and 
processing them offline by the tracking and classification algorithms. Table 5 shows a summary 
of the results indicating the percentage of frames for each posture in which the algorithm 
correctly identified the posture and body parts of the cats respectively. Regarding the posture, 
the results indicate the percentage of cases in which the decision tree assigns the correct label 
for the analyzed cat’s contours. Regarding the body parts, the results indicate the percentage of 
cases in which the algorithm correctly identifies the head of the cat and its body and/or tail. 

Table 5. Accuracy of the tracking system identifying the cats’ postures and body parts. 

 Sitting / semi-sitting Walking / standing Jumping Turning 

Posture 84% 49.5% 69% 53% 

Body parts 99% 74.5% 92.5% 71% 

As it can be observed, the sitting position is one of the most distinctive ones as it usually 
comprises a small area in which the head can be clearly identified and hence the body parts are 
very easily classified and the orientation vector between the head and body/tail can be almost 
perfectly traced. The algorithm also classifies very well the cat’s body parts when jumping, 
although the classification of this posture has a 31% error rate. This is mostly due to the 
moments in which the jump is starting or finishing. In these cases, the threshold value 
established to determine the jump, which is the difference in depth between the highest and the 
deepest cluster, does not fit well. This accuracy rate could probably be improved by adjusting 
more carefully this threshold. The algorithm had problems identifying the walking/standing 
position as well as the turning one. Nevertheless, in both cases the classification of the body 
parts offers promising accuracy rates and allows to determine an orientation vector to estimate 
the animal’s field of view. 

At this stage the knowledge-based classification algorithm would not be suitable to provide very 
accurate posture classification in all cases. It is likely that the decisions coded in the algorithm 
do not represent well the most characteristic features of each postures as it has been a manual 
process based on observation and codification. This is an issue that supervised classification 
algorithms are capable of resolve, as it has been demonstrated by the results in section 4.1. 
However, the knowledge-based classification algorithm presented in this section performs well 
in terms of body parts classification, allowing to determine the different body parts of the 
animal correctly with less training time than in a supervised approach.  

Therefore, for a system to automatically recognize between different body postures of an animal 
with very high certainty, supervised classification algorithms are preferred over a basic 
knowledge-based approach. If more complex systems are to be developed, supervised 
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classification algorithms are the recommended approach. For example, they could provide very 
reliable information in monitoring systems for animal welfare and behavioral pattern 
recognition, or remote communication systems for dogs with occupations based on postures. 
Nevertheless, a knowledge-based classification technique could provide satisfactory accuracy 
rates if other types of information derived from the body parts of the animal are required, such 
as determining its field of view or just detecting a specific part of the animal such as the head. 
The next section will provide an overview of the different systems in which classification 
algorithms as the ones presented would be a key component. 

5 Applications within Animal-Computer Interaction 
5.1 Behavior recognition, learning behavioral habits and welfare assessment 

Non-wearable depth-tracking systems as the one presented in this paper would significantly 
contribute to the development of ACI research. ACI studies usually rely on the observational 
clues and expert knowledge provided by pet owners, caretakers, zookeepers or specialists in 
animal behavior. They can provide insightful interpretations about an animal’s body language 
by analyzing its posture and movements, as understanding and analyzing the animals’ body 
language is one of the potential ways in which ACI researchers can interpret the animals’ 
reactions to a system. Therefore, a tracking system capable of detecting body postures, together 
with expert knowledge on animal behavior, could have the potential to automatize the 
interpretation of an animal’s responses to a digital system. Wearable systems might not be used 
in all scenarios; hence, non-wearable technologies would provide great advantages in this 
regard.  

One of the main benefits of not using wearable devices would be the possibility of creating 
systems capable of constantly monitoring an animal’s activity without disturbing it nor 
modifying its habits. Complete animal tracking systems such as the one presented in this paper 
coupled with machine learning algorithms would allow us to learn behaviors and habits of 
individual animals during their usual daily life. In this way, a personalized knowledge base 
could be obtained for each animal, similar to the knowledge their human companions have 
about them. Through the tracking system we could learn, for example, the habitual location and 
movements an animal performs in a specific context, the amount of time a day it spends doing 
physical activity such as walking or playing, and the intensity of this activity. This knowledge 
base could be used to detect changes in behavioral patterns, such as increasing/decreasing 
physical activity or resting time, therefore supporting early detection of illnesses or other 
problems.  

Zookeepers could make use of these systems in order to assess the wellbeing of animals in zoos 
by means of detecting abnormal behavioral patterns. Automatically detecting behaviors of 
animals in shelters could also alert the caretakers in case that abnormal activity patterns are 
detected on an animal, allowing the caretakers to take rapid action to foster the animal’s 
physical activity, dedicate more time to that animal or prioritizing adoption for cases in which 
the animal does not respond to those cares. In addition, this automatic behavior detection could 
allow to create personalized profiles for each animal. When adopting, it is very important that 
the personality of the animal matches the needs and personality of the human beings who are 
adopting it. In this way, profiles of the animals’ personality could be extracted and presented to 
the adopters (Alcaidinho et al., 2015). Finally, pet owners could also use this kind of systems in 
order to detect whether their animals are doing well while left alone at home, for example 
during working hours, and communicate remotely with them via cameras and microphones if 
abnormal behaviors are detected. 

5.2 Playful environments based on gesture and posture recognition 

Tracking systems such as the one presented in this paper have an essential role in the 
development of future playful environments for animals. Current digital games for animals have 
been usually tied to a specific device, human participation has usually been limited to a 
“controller” or “assistant” role and there has been no support for several animal participants 



Author versión – Please cite as:  
Patricia Pons, Javier Jaén, Alejandro Catalá. Assessing machine learning classifiers for the detection of 
animals’ behavior using depth-based tracking. Expert Systems with Applications, vol. 86, pp. 235-246. 

16 
 

playing together as differentiated players (Pons et al., 2015b). However, traditional games with 
animals rely on a more natural and open interaction, meaning that both animals and humans can 
move freely during the game. Animals are used to playing by themselves or with humans, and 
in the latter case the human is an active and essential participant in the activity. In addition, 
traditional games make use of the elements in the environment to enhance the playful 
experience, not limiting it to the object itself but to the spontaneous interactions between the 
players thanks to the mediating object. 

Future technologically-mediated games for animals could therefore be conceived as multimodal 
and multi-device systems, in which animals could play either alone, in a group or with human 
beings in a natural way. If animals play by themselves, the system should intelligently manage 
the different devices and objects in the environment in order to adapt the game to the animals’ 
preferences and interactions (Pons et al., 2014, 2015b). In order to keep the animals’ interest in 
the game, some kind of “intelligence” is required. Random movements or actions of a digital 
element would cause the animal to eventually lose interest in the activity (Pons & Jaen, 2016b; 
Pons et al., 2017). Hence, being able to interpret an animal’s body posture and interactions in a 
similar manner humans do is very important for providing proper actuations in the playful 
environment. A tracking system capable of detecting a cat’s location, posture and orientation 
coupled with the detection of digital objects and their movements would allow us to create 
engaging and realistic games using technological artifacts which adapt to the detected cat’s 
postures and field of view. As an example, we could think of a game in which a cat chases a 
Sphero® (electronic ball, see Fig. 4) controlled by the system, but the movements of the ball are 
not random. Instead, the Sphero® could also be tracked by the system and programmed to move 
depending on the detected context. Detecting the location of the cat inside the play area would 
allow the game to start whenever the cat approached the electronic ball. The detected cat’s field 
of view could be used as the region on which to deploy and move the technological artifacts to 
attract and maintain its attention. Posture detection would allow the system to move away the 
toy if the tracking system detects that, for example, the cat is crouched in a hunting position, 
waiting for the ball to approach. The presented tracking system would have other advantages in 
this regard, as not all animals perform the same interactions in play: during a chasing game, a 
cat might prefer to wait patiently until an object approaches him to catch it, whereas another cat 
might be more eager and prefers to run after the object. Therefore, the tracking system could 
help to learn the specific play dynamics and preferences of an animal during the game in order 
to adapt it. 

 

Fig. 4. Kitten chasing a Sphero® 

If human beings are also participating, their interactions should also be considered an essential 
part of the game and the digital playful experience should be as natural as traditional games. 
The automatic recognition of human gestures by a top-down depth-based tracking system would 
allow humans to participate in the game in a natural way for both the animal and the human, not 
being tied to any specific device. Human gestures could be used to control the movements or 
features of the digital elements in the play area, e.g. the human player points at an element with 
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his hand and then points to another place, and the element moves in the direction indicated by 
the human. Some games could introduce specific gesture-based interactions, e.g. a competitive 
game between the animal and the human in which a clapping gesture makes the system move a 
toy/cord for 10 seconds to distract the cat so the human can take advantage. 

5.3 Tracking systems for zoo enrichment and open spaces 

Depth sensors for animal tracking are a powerful tool in order to help zoos improve their current 
enrichment practices. Technology is being integrated into enrichment activities at zoos 
worldwide, as it easily allows creating varied scenarios and cognitive stimulation for the animal 
(French et al., 2016). In these environments, animals are not allowed to acquire and hold the 
technology themselves. Therefore, zoo enrichment activities based on technology would benefit 
from mechanisms that track and augment the animals’ interactions with other elements in their 
environment. In this way, all the technological devices could be placed outside the enclosure 
while the animal interacts naturally with the augmented elements inside (Pons & Jaen, 2016a). 
This also leverages the need of a human caretaker being present to provide the technology. For 
example, current studies include the use of depth sensors to detect the interactions of orangutans 
with a projection on the floor (Webber et al., 2017). Tangible elements inside the environment 
have also been augmented using RGB-D sensors. By tracking and detecting non-technological 
tangible objects, the system could produce responses such as sounds based on the animals’ 
movements with those objects (Pons, Carter, & Jaen, 2016). 

However, due to current limitations of the RGB-D technology, the tracking system described in 
this paper is only suitable for indoor detection. Other methods would have to be considered if 
we wanted to carry out animal tracking outdoors without using a wearable device, such as dogs 
in their yards or wild animals in their habitats. In these scenarios, lighting conditions and 
required distance for optimal tracking would make the acquisition of accurate information from 
the depth sensor very difficult. In fact, current works for outdoor animal tracking usually rely on 
computer vision techniques either from recorded videos from regular video cameras (North, 
Hall, Roshier, & Mancini, 2015), heat-cameras (Vonderen, 2015) or drone mounted cameras for 
survey population (Hodgson, Kelly, & Peel, 2013). The use of drones for posture and behavioral 
tracking seems promising but still presents many issues that could disturb the animals’ natural 
behaviors: distance from the device to the animal, noise of the device, battery life, transmission 
rate and range, etc. Although this is an interesting area, it requires deeper discussion and 
consideration. 

6 Conclusions and future work 

A tracking system for cats based on depth information has been developed, and two studies 
comparing its performance using both supervised and knowledge-based approaches for the 
classification of cat’s postures and body parts have been presented. Results have shown to be 
very promising and therefore tracking systems for cats based on depth information could 
effectively detect a cat’s location and also use classification algorithms to recognize a cat’s 
postures and body parts. Several applications have been envisioned for this kind of tracking 
systems and its benefits for animal welfare and wellbeing have been outlined.  

Our future work would be improving the tracking and classification system, for example by 
introducing temporal information which could help to better differentiate between several 
postures such as walking or standing, and allowing to register paths and sequences of 
movements which are usually performed together. New postures and behaviors could also be 
identified, and new experiments should be conducted with cats of different sizes and breeds in 
order to contrast the results. In this regard, improving the knowledge-based classification 
process could allow to achieve fully adaptation of the system to different cats. For example, the 
tracking system could automatically detect the size of the cat, in case it is a kitten, and adapt the 
classifier to it without requiring the researcher or owner of the animal to perform manual 
labeling of the data to train a new classifier, which is a very time consuming task.  
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Some improvements could also be done regarding the detection of the cat’s field of view. The 
orientation vector defined as a vector from the body/tail of the cat to its head sometimes gives 
misleading information when the cat is turning its head around. In these scenarios, the 
orientation vector might not be accurate when determining the cat’s head orientation. Computer 
vision could then be used to recognize the shape of the cat’s head and detect characteristic 
features, such as nose or ears. This would allow the detection of the head orientation and hence 
correctly determining where the cat is looking at. Cats have a field of view of 200º; therefore 
detecting the head orientation would be sufficient to provide a broad area of around 100º 
centered using the head orientation vector, in which to locate the technological intervention. 

Another feature that will greatly benefit the tracking system in terms of flexibility and 
adaptation is automatic background segmentation. The tracking system presented in this 
manuscript performed background segmentation assuming a fixed position from the sensor to 
the floor, and within a clear space with no obstacles nor furniture. However, from the initial 
frames of the tracking area without any animals or humans in it, background segmentation could 
be applied to detect the floor (i.e., deepest area in the image). Once the floor has been extracted 
from the image, static objects with higher depth than the floor could be detected. This would 
correspond to furniture, obstacles, etc. Once the area and obstacles have been mapped, any new 
information with different depth than the one recorded in the initial static frames would 
correspond to the player/s. This process would allow the tracker to adapt to several scenario 
configurations without minor interventions from the human, either researcher or 
owner/caretaker. 

It should also be noted that for this study, the depth sensor was a Microsoft Kinect v1. It is 
known that the newer version of this sensor provides better tracking accuracy. Hence, it remains 
to be studied whether this new sensor would help to improve the results presented in this paper. 
Moreover, it could also help to quantify and reduce tracking issues caused by the physical 
characteristics of the cats, e.g. color, size, density of the coat, etc. In addition, it would be very 
interesting to evaluate the tracking system with other animal species, not only four legged ones, 
such as dogs, but also animals with very different skeletal characteristics such as orangutans. 
The next step would be the integration of the tracking system and the learned classifiers into an 
intelligent playful environment, as explained in section 5.2. In this way, the system could react 
properly according to the detected behavior, creating engaging playful scenarios for the animal 
who is playing. 

The proposed tracking approach for animals based on depth information as well as the two 
studies on the performance of different classifiers in this domain are a significant and beneficial 
contribution for advancing research within and outside the field of Animal Computer 
Interaction. The outcomes of these two studies will allow to improve the techniques for posture 
and behavior recognition of animals using non-wearable devices, which will be used in the 
development of systems to support animal welfare and improve animal wellbeing.  
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