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Abstract 

ARGONAUTEs (AGOs) are the effector proteins in eukaryotic small RNA(sRNA)–

based gene silencing pathways controlling gene expression and transposon activity. In 

plants, AGOs regulate key biological processes such as development, response to 

stress, genome structure and integrity, and pathogen defense. Canonical functions of 

plant AGO–sRNA complexes include the endonucleolytic cleavage or translational 

inhibition of target RNAs, and the methylation of target DNAs. Here, I provide a brief 

update on the major features, molecular functions and biological roles of plant AGOs. 

A special focus is given to the more recent discoveries related to emerging molecular 

or biological functions of plant AGOs, as well as to the major unknowns in the plant 

AGO field.  
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1 Introduction 

In eukaryotes, ARGONAUTEs (AGOs) are the effector proteins functioning in small 

RNA (sRNA)–guided gene silencing pathways regulating gene expression and 

transposon activity [1]. AGO–sRNA complexes target and silence complementary 

DNA or RNA through posttranscriptional gene silencing (PTGS) or transcriptional 

gene silencing (TGS), respectively. Silencing of target transcripts occurs through 

either direct endonucleolytic cleavage (slicing) or through other cleavage–

independent mechanisms such as target destabilization or translational repression [2].  

AGOs have an ancient origin, as they are present in bacteria, archae and eukaryotes 

[3]. In plants, the AGO family includes a variable number of members depending on 

the plant species [4], with flowering plants encoding more AGOs. For example, 

Arabidopsis thaliana (Arabidopsis) and rice have 10 and 19 AGO members [5,6] 

respectively, while the algae Chlamydomonas reinhardtii and the moss 

Physcomitrella patens have three and six [7-9] respectively. The expansion of the 

plant AGO family suggests a functional diversification of AGO proteins most likely 

during the specialization and evolution of endogenous sRNA–based RNA silencing 

pathways [10,11]. Phylogenetically, flowering plant AGOs can be grouped in three 

major clades: AGO1/5/10, AGO2/3/7 and AGO4/6/8/9. In addition, grasses present an 

expanded AGO1/5/10 clade including AGO18 [10]. 

Crystallographic studies on eukaryotic AGOs have determined that AGOs present 

four functional domains: a variable N–domain, and conserved PAZ, MID and PIWI 

domains [12]. The MID and PAZ domains bind the 5’ monophosphorylated 

nucleotide and the 3’ nucleotide of the sRNA, respectively. The PIWI domain is the 

ribonucleolytic domain, with four metal–coordinating residues required for slicer 

activity [13,14]. Plant AGOs associate with sRNA based on the identity of the 5’ 



nucleotide of the sRNA and/or other sequence and structural features of the sRNA 

duplex and the AGO PIWI domain [15-19]. Plant AGO–sRNA complexes can 

function through different modes to silence complementary DNA or RNA and exert 

their biological role. 

I present next an updated overview on the known and emerging molecular and 

biological roles of plant AGOs. I also highlight the main unknowns in the plant AGO 

field.  

 

2 Modes of Action of Plant AGOs 

The main modes of action of plant AGOs are summarized in Figure 1 and described 

next. 

 

2.1 Endonucleolytic Cleavage 

The PIWI domain of AGOs uses intrinsic RNAse H–like activity to cleave target 

RNA [20], and contains a metal–coordinating Asp–Glu–Asp–His/Asp catalytic tetrad 

[14,21]. Slicing activity has been experimentally confirmed for Arabidopsis AGO1 

[22,23], AGO2 [24], AGO4 [25], AGO7 [15] and AGO10 [18,26].  

Since the initial observation that plant microRNAs (miRNAs) targeted and cleaved 

highly sequence complementary target RNAs [27], it was assumed that slicing was 

the predominant mode of action in miRNA–mediated PTGS in plants [28]. Indeed, the 

high degree of complementarity is a requirement for effective target slicing by plant 

AGOs [29]. However, later examples describing slicing–independent translational 

repression of certain miRNA targets (see below) have questioned this assumption. 

Still, growing evidence suggest that target RNA regulation by slicing is widespread in 

plants. First, sequencing of Arabidopsis mRNA degradome has revealed that most 



miRNA targets undergo slicing [30,31]. Second, the slicing activity of Arabidopsis 

AGO1 (the primary miRNA–associating AGO), AGO2 and AGO7 is critical for plant 

development, antiviral activity and juvenile to adult phase transition, respectively 

[24], while AGO4 and AGO10 exert their primary functions in a slicer–independent 

mode [18,25]. And third, recent transcriptome profiling of ago1 null and slicer–

deficient Arabidopsis mutants confirmed that AGO1 slicer activity is necessary for 

the repression of the majority of miRNA targets [32]. 

Slicing activity of plant AGOs is also required for triggering the amplification of 

phased secondary small interfering RNAs (phasiRNAs) from certain target transcripts. 

For instance, trans–acting small interfering RNAs (tasiRNA), a class of secondary 

small interfering RNAs (siRNAs) that forms through a refined mechanism, derive 

from four families of TAS transcripts that are initially cleaved by AGO1–miR173, 

AGO1–miR828 or AGO7–miR390 complexes to produce TAS1/TAS2, TAS4 and 

TAS3–derived tasiRNAs respectively [15,24,33-37]. Interestingly, a recent 

comparative analysis of tasiRNA generation in wild–type, ago1 null and ago1 slicer 

deficient Arabidopsis showed that slicing by AGO1 is required for the definition of 

the phase but not for the generation of TAS–derived tasiRNAs [38]. 

The subcellular location of miRNA–mediated target cleavage has been largely 

unknown. However, the observation that a reduced level of isoprenoids, which are 

essential for membrane sterols, blocks miRNA–mediated cleavage of several target 

transcripts suggests that membrane association of AGO1 is important for target 

cleavage [39]. In a recent work, Arabidopsis miRNAs were shown to associate with 

membrane–bound polysomes as opposed to polysomes in general, and this association 

was required for miRNA–triggered phasiRNA production [40]. Because slicing is 



required for phasiRNA production, it appears that, at least, part of the AGO–mediated 

target cleavage activity occurs in membrane–bound polysomes. 

 

2.2 Translational Repression 

Translational repression by miRNAs is common in animals where miRNA–target 

RNA interactions require limited sequence complementarity [41]. In plants, several 

evidences suggest that AGO–miRNA complexes can also translationally repress their 

targets RNAs with almost perfect complementarity [39,42-48]. Several Arabidopsis 

mutants impaired in miRNA–mediated gene repression at protein but not at mRNA 

levels have been described [39,43,49] In particular, AGO1–miRNA–mediated 

translation repression in Arabidopsis occurs in the endoplasmic reticulum and requires 

the integral membrane protein ALTERED MERISTEM PROGRAM 1 to exclude 

target mRNAs from membrane–bound polysomes [43]. AGO10, another member of 

the AGO1 clade, also appears to translationally repress several Arabidopsis miRNA 

target genes, including AGO1 [50]. Very recently, it has been shown that AGO7–

miR390 binding to a non–cleavable miR390 target site included in TAS3a non–coding 

transcripts cause ribosome stacking and subsequent inhibition of translation 

elongation [51]. However, the global contribution to plant miRNA–mediated 

translation repression of direct blocking of ribosome movement through the binding 

of AGO–miRNA complexes appears to be limited [51].  

 

2.3 Target mRNA Decay? 

Target mRNA decay is a common outcome of AGO recruitment in animals, where the 

complementarity between an amiRNA and its target mRNA is generally limited to the 

5’ region of the miRNA and slicing is not common [52]. AGO–miRNA complexes 



destabilize target mRNAs in a process requiring both deadenylation and decapping 

[53,54]. Recruitment of the two major deadenylases CCR4–NOT and PARN requires 

the adaptor protein GW182/TNRC6 that binds to hydrophobic pockets in AGOs 

[55,56]. Because no homolog of GW182/TNRC6 is present in plant genomes, it is 

unlikely that such mechanism exists in plants. Three recent studies support this 

statement: i) transcriptome analyses performed on either stable or conditional slicer–

deficient AGO1 mutants did not show any substantial differences in gene expression 

between the two classes [32], ii) efficient translational repression by either wild–type 

or slicer–deficient AGO1 in lysates of tobacco protoplasts is not accompanied by any 

kind of reporter–mRNA degradation other than slicing [42], and iii) no deadenylation 

has been reported in sRNA–mediated translational repression in Chlamydomonas 

reinhardtii [57]. However, the possibility that a subset of plant miRNA targets could 

be regulated by AGO–mediated mRNA decay cannot be completely ruled out.  

 

2.4 RNA–Dependent DNA Methylation 

DNA methylation regulates gene expression, blocks transposon movement and 

consequently maintains genome integrity. In plants, canonical DNA methylation is 

primarily mediated by AGO4–siRNA complexes functioning in RNA–dependent 

DNA methylation (RdDM) pathways [58]. These pathways are initiated by the 

synthesis of double–stranded RNA (dsRNA) by the concerted action of RNA 

POLYMERASE IV (Pol IV) and RNA–DEPENDENT RNA POLYMERASE 2 

(RDR2) [59-63]. DsRNA processing in the nucleus by DICER–LIKE 3 (DCL3) leads 

to the production of 24–nt siRNAs [59] that are exported to the cytoplasm where they 

are incorporated into AGO4. AGO4–siRNA complexes localize to the nucleus where 

they are recruited to target loci via base–pairing with nascent Pol V transcripts and/or 



through their interaction with the glycine–tryptophane/thryptophane–glycine 

(GW/WG) AGO hook motifs present in in both Pol V [64-67] and its associated factor 

SUPPRESSOR OF TY INSERTION 5 (SPT5) [68,69]. Finally, AGO4–siRNA 

complexes recruit DOMAIN REARRANGED METHYLTRANSFERASE 2 (DRM2) 

protein that methylates target DNA [70,71].Very recently, AGO4 interaction with 

DNA has been observed at RdDM targets. It appears that Pol V–dependent transcripts 

or their transcription are needed to lock Pol V into a stable DNA–bound configuration 

that allows AGO4 recruitment via Pol V and SPT5 AGO hook motifs [72].  

AGO6 is also associated with RdDM in Arabidopsis, and thought initially to have 

partially redundant functions with AGO4 [73]. Later studies assigned more specific 

features and functions for AGO6, such as its preferential association for a unique set 

of heterochromatic sRNAs [74], or its dominant expression in shoot and root apical 

meristems and not in mature leaves [75]. More recently, it has been proposed that 

AGO6 may indeed work sequentially with AGO4 in the methylation of most target 

loci [76]. In addition, AGO6 also associates with RDR6–dependent 21–22 nt sRNAs 

to direct the methylation of transcriptionally active transposons in Arabidopsis [77]. 

Unexpectedly, a combination of genetic, biochemical and bioinformatic genome–

wide analyses has recently showed that Arabidopsis AGO3, thought to function in 

PTGS as the other members of the AGO2/AGO7 clade, binds 24 nt sRNAs and can 

partially complement AGO4 function. The authors speculate with a role of AGO3 in 

RdDM in Arabidopsis [78], possibly under salinity stress when its expression is 

highly induced.  

 

2.5 Emerging AGO Functions 



Besides the well–characterized roles of plant AGOs in sRNA–mediated PTGS and 

TGS, new molecular functions have been described in the last years. First, 

Arabidopsis AGO10 and rice AGO18 sequester miR165/166 and miR168 from AGO1 

to regulate shoot apical meristem (SAM) development [18] and antiviral defense [79], 

respectively. Rice AGO18 additionally sequesters miR528 from AGO1 upon viral 

infection to inhibit L–ascorbate oxidase (AO) mRNA cleavage by AGO1–miR528 

complexes, thereby increasing AO–mediated accumulation of reactive oxygene 

species and enhancing antiviral defense [80]. Second, Arabidopsis AGO2 and AGO9 

participate in the repair of double–strand break sites [81,82]. Third, AGO4 

participates in an alternative siRNA biogenesis pathway by binding precursor 

transcripts that are subsequently subjected to 3’–5’ exonucleolytic trimming for 

maturation and sidRNA (siRNA independent of DCLs) production [83]. AGO4–

sidRNA complexes target Pol V transcripts to mediate DRM2–dependent DNA 

methylation. And fourth, a novel role for Arabidopsis AGO1 in the cotranscriptional 

regulation of MIRNA gene expression under salt stress conditions has been recently 

reported [84]. It seems that miRNA–loaded AGO1 interacts with chromatin at 

MIR161 and MIR173 loci, causing the disassembly of the transcriptional complex and 

the release of short and unpolyadenylated transcripts [84]. 

 

3 Biological Roles of Plant AGO Proteins 

Plant AGOs have functionally diversified during evolution due to the expansion 

of the AGO family because of numerous duplications and losses [10,85,86]. The main 

biological roles of plant AGOs are listed in Table 1 and described next [see [4] for a 

recent review]. 

 



3.1 Plant AGOs and Development 

The importance of AGOs in plant development became obvious after the 

characterization of the first Arabidopsis ago1 mutants. These mutants –named 

“Argonaute” because of the resemblance of their leaf defects with the tentacles of a 

small squid of the Argonauta genus– presented important pleiotropic developmental 

defects such as dwarfing and sterility [87]. Later, developmental screens in 

Arabidopsis identified a series of hypomorphic ago1 alleles with reduced 

developmental defects. The characterization of such mutants highlighted AGO1 role 

in leaf polarity and lateral organ development [88-90]. The organ polarity defects 

exhibited by ago1 mutants suggested that AGO1 plays a role in the miRNA pathway, 

as these defects were similar to those of phabulosa (phb) and phavoluta (phv) miRNA 

gain–of–function mutants [91]. Ago1 mutants have also been characterized in rice, 

and show obvious pleiotropic developmental defects such as severe dwarfism, 

tortuous shoots, narrow and rolled leaves and low seed–setting rates [92]. 

Other Arabidopsis ago mutants such as ago7 or ago10 present limited 

developmental defects, and others like ago2, ago3, ago4, ago5 ago6 and ago9 have 

no obvious growth–related phenotypes [93]. AGO7 was identified in a screen for 

mutants displaying accelerated juvenile to adult phase change [94]. AGO7 associates 

exclusively with miR390 to target TAS3 transcripts and initiate TAS3–based tasiRNA 

biogenesis leading to the targeting of several AUXIN RESPONSE FACTOR genes 

involved in the regulation of developmental timing and lateral organ development in 

Arabidopsis [15,35,95-98]. The observation that AGO7 also participates in TAS3–

dependent tasiRNA biogenesis in moss [97] and in monocot species such as rice [99] 

and maize [100] indicates that AGO7 function in tasiRNA biogenesis is deeply 

conserved in plants. 



Arabidopsis AGO10 mutants (previously known as phn from “pinhead” and zll 

from “zwille”) exhibit abnormal SAM development [101,102]. Despite that early 

analyses of Arabidopsis ago1ago10 double mutants revealed functional redundancies 

between the two AGOs in some aspects of development [101], later observations have 

assigned specific roles for AGO10. Contrary to AGO1 which is expressed 

ubiquitously, AGO10 is predominantly expressed in the provasculature, adaxial leaf 

primordia and the meristem [101,102]. AGO10 expression pattern is consistent with 

its roles in the maintenance of SAM development and leaf development in 

Arabidopsis [101,102] and rice [103]. More recent observations indicate that AGO10 

sequesters miR165/miR166 from AGO1 to regulate SAM development [18], and 

associates with miR172 to favour floral determinacy [26]. 

 

3.2 Plant AGOs and Pathogen Defense 

Plant AGOs play a key role in antiviral defense [for a recent review see [104]]. In 

antiviral silencing, highly structured or dsRNAs of viral origin are processed by plant 

DCLs into 21–24 nt virus–derived siRNAs (vsiRNAs). VsiRNAs associate with 

specific AGOs to target and repress cognate viral RNA through endonucleolytic 

cleavage or translational repression, or cognate viral DNA through hypermethylation 

or by regulating host gene expression to enhance antiviral defense [105]. Plant AGOs 

with roles in antiviral silencing include Arabidopsis AGO1, AGO2, AGO4, AGO5, 

AGO7 and AGO10, N. benthamiana AGO1 and AGO2, and rice AGO1 and AGO18. 

Plant AGOs can also bind sRNAs derived from viroids to attenuate viroid 

accumulation in vivo [106]. Interestingly, a recent report suggests that Arabidopsis 

AGO4 has direct antiviral activity against Plantago asiatica mosaic virus independent 

of its RdDM function [107]. 



In addition to their well–known role in antiviral defense, several Arabidopsis 

AGOs have antibacterial activity. In particular, AGO2 binds miR393b* to 

translationally repress the Golgi–localized MEMB12 gene, resulting in the exocytosis 

of the pathogenesis–related protein PR1 with high antibacterial activity [108]. AGO4 

is required for Arabidopsis resistance to Pseudomonas syringae, in a mode 

independent of other components of the RdDM pathway [109]. 

 

3.3 Plant AGO Functions In Meiosis And Gametogenesis 

Plant AGOs have a key role during sexual reproduction, with specific AGOs being 

preferentially expressed in reproductive tissues and enriched in germline cells [110]. 

For instance, Arabidopsis AGO5 is expressed in the somatic cells around megaspore 

mother cells and in the megaspores, and ago5 mutants are impaired in 

megagametogenesis initiation [111]. In rice, mutations in MEIOSIS ARRESTED AT 

LEPTOTENE 1 (MEL1) –one of the five AGO5 homologs in rice– induces precocious 

meiotic arrest and male sterility, with abnormal tapetums and aberrant pollen mother 

cells [112]. In maize, AGO9 is expressed in ovule somatic cells surrounding female 

meiocytes and contributes to non–CG DNA methylation in heterochromatin, and 

chromosome segregation is arrested during meiosis in ago9 mutants [113]. Both 

Arabidopsis and maize AGO9 act in somatic cells to regulate cell fate specification in 

a non–cell autonomous manner. However, Arabidopsis AGO9 represses germ cell fate 

in somatic cells [114] while maize AGO9 inhibits somatic cell fate in germ cells 

[113]. 

 

4 Major Unknowns in the Plant AGO field 

4.1 AGO Protein Interactors 



In principle, plant AGOs likely need co–factors to exert their functions. However, in 

contrast to the situation observed in other organisms, a limited number of proteins 

interacting with plant AGOs has been described to date. Known plant AGO 

interactors are i) CYCLOPHILIN 40 (CYP40), HEAT SHOCK PROTEIN 90 

(HSP90) and TRANSPORTIN 1 (TRN1) which interact with AGO1 and facilitate 

miRNA loading [115-118], and ii) the PolV NRPE subunit [66], the transcription 

elongation factor SPT5 [68,69], and the the putative oxidoreductase WGRP1 [119] 

which interact with AGO4 via their GW/WG AGO hook motifs. Systematic genome–

wide scans for AGO protein interactors through more refined co–immunoprecipitation 

coupled with mass spectrometry analyses should identify a larger number of AGO 

partners, especially in response to abiotic or biotic stresses.  

 

4.2 AGO Target RNAs 

A fundamental requisite to understand AGO function is the identification of the whole 

spectrum of cellular target RNAs regulated by plant AGOs. Contrary to animal 

miRNAs, the majority of plant miRNAs regulate highly sequence complementary 

mRNAs [120]. This strict complementary feature of functionally relevant miRNA–

target interactions made early bioinformatics studies highly successful in predicting 

miRNA targets in plants [28]. Molecular validation of numerous plant miRNA targets 

has relied on the amplification by 5’ Rapid Amplification of cDNA Ends (RACE) of 

3’ cleavage products from cell extracts [121]. Because the isolation of loss–of–

function miRNA mutants is difficult due mainly to the genetic redundancy in most 

miRNA families, the biological significance of individual miRNA–target interactions 

has been explored by other genetic approaches. These include the overexpression of 

miRNAs, miRNA–resistance targets or target mimicries [122]. The first genome–



wide assessment of the repertoire of miRNA target RNAs regulated by cleavage 

corresponds to degradome sequencing analyses [30]. It appears that many conserved 

canonical targets have consistently strong degradome signatures, suggesting that this 

approach may be more likely to detect functionally relevant targets. Unfortunately, 

weak signatures are also recovered from several conserved canonical targets, and new 

potential targets do not follow the canonical parameters of base pairing. Therefore, the 

functional significance of degradome signatures is still not always clear [122]. All 

these approaches are useful to confirm or discover miRNA targets but do not reveal 

which specific AGO member mediates their regulation.  

Genome–wide analysis of AGO–bound target RNAs have been reported in 

animals by applying a step of in vivo crosslinking (generally using ultraviolet light) in 

intact cells of tissues before immunoprecipitating the AGO of interest and analysing 

by high–throughput sequencing the co–immunoprecipated AGO-bound RNAs [123]. 

Such AGO crosslinking immunoprecipitation followed by sequencing (CLIP–Seq) 

approaches have not been reported in plants. This could be due because, in contrast 

with animals where the majority of miRNA targets are not sliced, AGO–sRNA–target 

RNA interactions are ephemeral for the majority of plant target RNAs that might be 

immediately sliced upon AGO–miRNA recognition. Indeed, recent AGO RNA 

immunoprecipitation followed by high–throughput sequencing (RIP–Seq) analysis of 

AGO1–bound RNAs in Arabidopsis revealed that target RNAs are more efficiently 

co–immunoprecipitated with slicer–deficient AGO1 forms [24]. This suggests that 

AGO1 ternary complexes including miRNAs and target RNAs are more stable when 

AGO1 is catalytically inactive. By comparing the pool of target RNAs recovered from 

immunoprecipitates containing catalytically active or inactive AGO1 forms it is 

possible to identify the repertoire of AGO1 target RNAs regulated by slicing and 



those regulated in a slicing–independent mode. Moreover, the application of this 

methodology to the different Arabidopsis AGOs could reveal the specific pool of 

target RNAs regulated by each specific AGO in different stress conditions or cell 

types. Understanding AGO–sRNA–target RNA dynamics is crucial to better 

understand sRNA–mediated gene silencing in plants. 

 

4.3 AGO Transcriptional Regulators 

While some plant AGOs such as Arabidopsis AGO1 and AGO4 are ubiquitously 

expressed, others have a more restricted expression. This is the case of Arabidopsis 

AGO9 and AGO10, which are expressed in female gamete and their accessory cells 

[114], or in provasculature, adaxial leaf primordia and the meristem [101,102], 

respectively. Moreover, several AGOs are induced upon abiotic or biotic stress. For 

instance, rice AGO18 accumulation is induced upon viral infection [79], while AGO2 

and AGO3 accumulation is induced by gamma–irradiation and bacterial infection 

[108], and salt stress [78], respectively. The differential spatiotemporal expression of 

the distinct AGO members as well as the induction of certain AGOs upon stress 

suggests that AGO transcription may be regulated. However, transcriptional 

regulators of plant AGOs are largely unknown. Only recently, it was shown that 

Arabidopsis AGO10 expression is activated by at least one homeodomain–leucine 

zipper (HD–ZIP) transcription factor [124], and inhibited by the LBD12–1 

transcription factor that directly binds to AGO10 promoter [125]. 

 

5 Conclusions and Future Challenges 

Intensive research over the past two decades has elucidated the main functions of 

plant AGOs. However, future research should identify new functions for plant AGOs, 



as occurred for AGOs from other organisms. Emerging functions of non–plant AGOs 

include nonsense–mediated mRNA decay regulation in humans [126], alternative 

splicing in humans [127,128] and Drosophila [129], sRNA-independent association 

with full-length introns (called “agotrons”) to control gene expression in humans and 

probably in other mammals [130], nucleosome occupancy at human transcription start 

sites [131] and quality control of human proteins entering the secretory pathway 

[132]. Remarkably, DNA-guided genome editing has been recently reported in human 

cells using Natronobacterium gregoryi AGO [133], although failure to replicate these 

results by other groups [134] has questioned the general applicability of this approach.  

Several outstanding questions remain to be answered in the plant AGO field. At 

the molecular level, more structural work is needed to better understand the formation 

of AGO ternary complexes. In particular, how AGOs scan and find target transcripts? 

Or, how ternary complexes dissociate? Indeed, to date no crystal structure for a 

complete plant AGO has been solved. Also, besides AGO4 binding to sidRNA 

precursors, can other AGOs regulate target RNAs in a sRNA guide–independent 

mode? Regarding sRNA–mediated translational repression of target RNAs, what is 

the degree of miRNA–target RNA complementarity necessary to support the 

translational inhibition activity of plant miRNAs? Can AGOs other than AGO1 or 

AGO10 be programmed to function in a translational repression mode? And for those 

target RNAs regulated by slicing and translational repression [39,46,135], what 

mechanism(s) underlie the choice between these two modes of action? At a cellular 

level, how AGO ternary complexes are programmed in different cell–types and 

tissues? Cell–type specific profiling of AGO–small RNA–target RNA dynamics in 

different cell–types and tissues should shed light on the role of the different AGO 

modules in the large regulatory networks established during development and stress 



response. Because of the broad interest of these fundamental questions, I anticipate 

that at least some of them will be answered soon. 
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Table 1 Biological roles of plant ARGONAUTEs 

Function AGO involveda References 
Antibacterial immunity AtAGO2 

AtAGO4 
[108] 
[109] 

Antiviral defense AtAGO1 
AtAGO2 
AtAGO4 
AtAGO5 
AtAGO7 
AtAGO10 
NbAGO1 
NbAGO2 
OsAGO1a/b 
OsAGO18 

[6,136-139] 
[17,24,136,138,140-143] 
[107,142,144-147] 
[136,148] 
[136,137] 
[136] 
[149] 
[150-152] 
[79] 
[79] 

Cell specification 
    Gamete 
    Somatic 

 
AtAGO9 
ZmAGO9 

 
[114] 
[113] 

Chromosome segregation ZmAGO9 [113] 
Development AtAGO1 

OsAGO1a/b/c 
SiAGO1b 

[22-24,87,153] 
[92] 
[154] 

DNA methylation AtAGO3 
AtAGO4 
AtAGO6 
OsAGO4a 
OsAGO4b 

[78] 
[25,64,65,72,155,156] 
[73,74,76,77,156,157] 
[158] 
[158] 

DNA repair AtAGO2 
AtAGO9 

[81] 
[82] 

Germ cell development ZmAGO18b [159] 
Leaf development AtAGO1 

AtAGO7 
OsAGO10 
ZmAGO7 

[87,88] 
[95,160] 
[103] 
[100] 

Meiosis AtAGO4 
OsAGO5c 

[161] 
[112] 

Megagametogenesis AtAGO5 [111] 
Phase transition AtAGO7 [15,24,94,95] 
SAM development AtAGO10 

OsAGO7 
[18,26,101,102,162,163] 
[99] 

SAM maintenance OsAGO10 [103] 
Small RNA biogenesis 
    miRNA 
    siRNA 
    tasiRNA 

 
AtAGO1 
AtAGO4 
AtAGO1 
AtAGO7 
OsAGO7 
ZmAGO7 

 
[84] 
[83] 
[34] 
[15] 
[99] 
[100] 

Stress response AtAGO1 
SiAGO1b 

[164,165] 
[154] 

Tapetum development ZmAGO18b [159] 
a At, Arabidopsis thaliana; Nb, Nicotiana benthamiana; Os, Oryza sativa; Si, Setaria italica, Zm, Zea 
mays 
 
  



 
 
Fig.1 Modes of action of plant AGOs. (a) Endonucleolytic cleavage. Several AGOs 

bind sRNAs and slice highly sequence complementary target RNAs. Cleavage 

products are degraded by components of endogenous degradation pathways. (b) 

Translational repression. Plant AGOs such as Arabidopsis AGO1 and AGO10 

associate with miRNAs and target highly complementary RNAs to inhibit their 

translation. (c) Canonical RdDM pathway. AGO4–siRNA complexes bind to nascent 
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Pol V transcripts. DRM2 is recruited to mediate DNA methylation. (d) MiRNA 

sequestration. Arabidopsis AGO10 sequesters miR165/166 from AGO1, while rice 

AGO18 sequesters miR168 and miR528 from AGO1. (e) Double–stranded break 

repair (DSB). Arabidopsis AGO2 binds to DSB–induced siRNAs (diRNAs) to 

mediate DSB repair. (f) DCL–independent siRNA biogenesis. AGO4 binds to nascent 

Pol II RNAs which are trimmed by a 3’–5’ exonuclease to produce sidRNAs. (g) 

Cotranscriptional regulation of MIRNA gene expression. Upon salinity stress AGO4 

directs the slicing of nascent MIR161 or MIR173 precursors to cotranscriptionally 

regulate miRNA production. 

 


