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 

Abstract— An enhanced full wave method based on circuit 

analysis is presented in this paper, where the whole set of modes, 

TEmnp and TMmnp are taken into account. The modeling of a split 

cylinder resonator is done with two circuit networks of one and 

three ports, characterized by their generalized admittance matrix 

(GAM), which is computed making use of mode matching 

method. The improved full wave circuit method has been applied 

to the accurate determination of dielectric properties of 

materials. The proposed method has been validated through 

comparisons with others published models and also with 

measurements. 

 
Index Terms—Electromagnetic modeling, full wave analysis, 

circuit analysis, mode matching method, split cylinder, dielectric 

measurements. 

I. INTRODUCTION 

Electromagnetic modeling has been employed to analyze 

microwave structures such as resonators, filters or transitions 

between waveguides. Over the last few decades, many 

methods have been developed and improved in order to obtain 

a more accurate solution of the problem with less 

computational cost. These methods include classical 

discretization models, like FDTD [1] or FEM [2], which are 

the most general and flexible methods in literature, to modal 

methods such as the mode-matching technique [3], which 

provide the most accurate solutions for particular geometries. 

The discretization methods are able to model any type of 

shapes, however, they usually have to employ a huge mesh to 

accurately predict the solution, especially for eigenvalues 

problems, where one computes the resonant frequencies. For 

example, in [4], an interesting volume integral formulation is 

developed to model any arbitrary shape of lossy conductors 

filled with inhomogeneous dielectric, and about 1200 
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tetrahedrons are needed to discretize the structure. On the 

other hand, analytical methods are suitable to model some 

particular geometries, but they have the inconvenience of re-

analyzing the whole problem from the beginning for each 

different structure. 

In order to address this problem, a circuit method has been 

developed to analyze complex electromagnetic structures, 

based in [5]-[9], which consists of dividing the whole 

geometry into simpler canonicals elements or networks, which 

can be solved more easily [10]. This method has some 

advantages of the discretization and the modal technique, such 

as flexibility (discretization) and high accuracy (modal). 

With circuit analysis, the complex permittivity of materials 

with several types of cavities [11]-[13] has been predicted 

accurately, even for the determination of the dynamic 

permittivity with temperature [14]. However, in these papers 

only modes with symmetry of revolution are taken into 

account, i.e., TM0n or TE0n. This limitation narrows the 

frequency range of applicability, and the accuracy is also 

affected because possible couplings between higher order 

modes are not considered. 

These problems can be reduced using a full-wave method. 

With full-wave modeling, it is possible to use higher-order 

modes leading to measurements at multiple frequencies. In 

addition, it provides more realistic simulations of electric field 

variations and interactions with samples. In the literature we 

can find several full-wave methods based on mode-matching 

technique or others combined with this one. For example, a 

dielectric loaded cavity is analyzed by [15] with a full-wave 

technique. The coupling between cylindrical combline 

resonators is analyzed by [16] making use of a full wave 

method. The modeling of inhomogeneous dielectric cylinders 

is developed by [17] with full multimodal scattering matrix. 

More recent publications such as [18] or [19] describe a full-

wave mode-matching technique to model a cavity for liquid 

permittivity measurement or a split cylinder resonator 

respectively.  

In this work, we propose a full-wave circuit method, which 

has been employed for modeling of a split cylinder resonator. 

This structure has been analyzed by many methods and 

techniques, some of them stand out for introducing notable 

improvements or innovations in the model. The most classical 

one is described by Janezic [3], which was improved including 

some higher-order modes in [20] and [21]. In [22], the 

resonant frequency for the measurement of dielectric constant 

becomes tunable because it includes the possibility of 

modifying the lengths of the upper or lower parts of the split 

cavity. In [19], as was mentioned above, it includes more 

David Marqués-Villarroya, Felipe L. Peñaranda-Foix, Senior, IEEE, Beatriz García-Baños, 

José M. Catalá-Civera, Senior, IEEE, José D. Gutiérrez-Cano. 

Enhanced Full-Wave Circuit Analysis for 

Modeling of a Split Cylinder Resonator 

mailto:damarvi3@itaca.upv.es


TMTT-2016-06-0720. 
 

2 

modes in the model, providing measurements of higher-order 

resonant frequencies. 

The objective of this paper is to extend the circuit theory 

developed for TM0n and TE0n modes to full-wave modes 

(TMmn and TEmn modes) and apply the method for modeling 

of a split cylinder resonator. This paper is an extended version 

of [23], and it is expanded by including a deeper explanation 

about the theory of the full wave circuit method, experimental 

measurements, and more simulations and comparisons with 

other referred papers. 

Section II describes the theory involved in the problem, 

which has been subdivided in subsections to develop the three-

ports (II-A) and the one-port (II-B) networks. The sizing of the 

matrices is also treated (II-C) as well as the connection 

between basic elements (II-D). In section III, we validate the 

model through comparison with published models (III-A) and 

through measurements (III-B).The convergence of the method 

is studied in III-C. 

II. THEORETICAL ANALYSIS  

A cross section of a split cylinder cavity is shown in Fig. 1a, 

while Fig. 1.b describes its circuit segmentation and the 

different networks used to model the resonant structure. Two 

types of networks can be distinguished - one with three ports 

(cylinder) and the other with one port on the inner side (ring). 

These networks are illustrated in Fig. 2. In both cases the 

admittance matrix is computed by making use of the mode 

matching method, where electromagnetic fields inside of the 

structure are approximated on each surface of the ports by 

series expansions of basis functions.  

 

 
(a)  

 

 

 
 

            (b) 

Fig 1. (a) Cross section of split cylinder cavity. (b) Circuit segmentation of the 

split cylinder resonator.  

 

We take into account all the electromagnetic modes inside 

the structure because the proposed model consists of a full 

wave method, i.e., TEmn and TMmn modes (TEM modes are 

not possible because of the geometry). Thus, the basis function 

chosen must be able to approximate all these modes on the 

surface of each port. 

The following subsections first describe the procedure to 

obtain the admittance matrix of each simple element by full 

wave circuit technique. Next is a discussion concerning the 

sizing of the matrices. Finally, the connection between the 

different networks making use of the admittance matrices 

obtained previously is described. 
 

 
 

(a) 

 

 
 

(b) 
 

Fig 2. (a) Three-ports network. (b) One-port network  

 

A. Three Ports Network  

The three ports network consist of a cylindrical structure 

with three ports (see Fig. 2..a). The ports are defined as 

follows: port 1 at z=h, 0≤r≤ a, port 2 at r=a, 0≤z≤h and port 3 

at z=0,0≤r≤ a. The network is filled with a generic dielectric 

with permittivity    (          ) and permeability    

(          ). The next subsections describe the procedure 

to obtain the admittance matrix parameters. 

 

Parameter Yi1 

 

To calculate the Yi1 parameters, electric wall conditions are 

imposed on ports 2 and 3. Therefore, the following 

relationships are obtained as a result of applying the boundary 

conditions on the electromagnetic fields (see Appendix for 

electromagnetic fields expressions and parameters’ definition): 
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where     and    
  are, respectively, the n

th
 zero of the first 

kind of Bessel function and its derivative of order m. 

The governing electric field at port 1 (z=h) can be written 

as a series expansion of basis functions described in the 

Appendix (circular basis functions). Equating the basis 

functions and electromagnetic fields, the amplitudes of the 

fields are calculated applying orthogonal properties [24]: 
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The notation of the electric fields inside the network (   
   

and      
  ) and the basis functions (   

   and      
  ) is 
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described in the Appendix. The amplitudes of the electric 

fields (TE and TM) are calculated as function of electric 

weights of basis functions:   (TM electric weights) and   
(TE electric weights).  
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where    is the Kronecker delta. 

It is important to remark that the orthogonalization must be 

done simultaneously in r and   components in order to obtain 

an analytical solution of the integrals involved in the problem 

[25].  

 

Parameter Y11 

 

The magnetic field at port 1 (z=h) can also be written as a 

series expansion of basis functions (circular basis functions). 

The inner magnetic field and the approximation by basis 

function must be equal at the surface of port 1 (z=h).  
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Applying the orthogonal properties of the basis functions, 

the parameter Y11 is obtained as the relationship between 

magnetic (c and d) and electric weights of basis functions (the 

amplitudes of the fields have been substituted by their value 

calculated previously in (3) and (4)). 
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Note that in this case, c are the TM magnetic weights and d 

are the TE magnetic weights. 

 

Parameter Y21 

 

In the same way as before, the magnetic fields at port 2 

(r=a) can also be written as a series expansion of basis 

functions (in this case the lateral basis functions described in 

Appendix). The inner magnetic field and the approximation by 

basis function must be equal at the surface of port 2 (r=a).  
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Note that the basis function on this port is complete (able to 

approximate any boundary condition). The orthogonalization 

is done in this case component by component, first for z and 

then for   components of magnetic field.  

Applying the orthogonal properties of basis functions, the 

parameter Y21 is obtained from the relationship between 

magnetic and electric weights of basis functions on port 2 and 

1 respectively (as before, the amplitudes of the fields have 

been substituted by their value calculated previously in (3) and 

(4)). 
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and the parameters Li are defined as follows: 
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Note that in this case, c are the magnetic z weights and d are 

the magnetic φ weights of basis functions. 

 

Parameter Y31 

 

The calculation of parameter Y31 is obtained in a similar 

way to the Y11 parameter, noting that port 3 is now placed at 

z=0. 

 

Parameter Yi2 

 

To calculate the Yi2 parameters, electric wall conditions are 

imposed on ports 1 and 3. Therefore, the following 

relationships, as a result of applying the boundary conditions 

on the electromagnetic fields are obtained: 
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As we did to obtain Yi1, the governing electric field at port 2 

(r=a) can be written as a series expansion of basis functions 

(lateral basis functions). Equating the basis function and 
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electromagnetic fields, the amplitudes of the fields are 

calculated: 
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As before, the amplitudes of the electric fields (TE and TM) 

are expressed as function of electric weights of basis 

functions:   (electric z weights) and   (electric φ weights). 
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Parameter Y12 

 

The inner magnetic field and the approximation by basis 

function must be equal at the surface of port 1 (z=h).  

 

∑    
            

 ∑      
              

 
∑     

     
     

  
  

 ∑ (     
       

 )     
  

    
 (21) 

 

Applying the orthogonal properties of basis function, the 

parameter Y12 is obtained from the relationship between 

magnetic and electric weights of basis functions on ports 1 and 

2 respectively (the amplitudes of the fields have been 

substituted by their value calculated previously in (16)). 
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where: 
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In this case, in the same manner that Y11, c are the TM 

magnetic weights and d are the TE magnetic weights. 

 

Parameter Y22 

 

The inner magnetic field and the approximation by basis 

function must be equal at the surface of port 2 (r=a).  

 

∑    
          

 ∑      
              

 ∑ (

   
  

   
  

   
  

   
  

)

 

      ̂  (

   
  

   
  

   
  

   
  

)

 

    ̂

 (27) 

The parameter Y22 is obtained as the relationship between 

magnetic and electric weights of basis functions on port 2. 
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and parameters Mi and Ni are defined as follows: 
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The trigonometric integrals (   
   

) are defined in the Appendix. 

As for Y21, c are the magnetic z weights and d are the 

magnetic φ weights of basis functions 

 

Parameter Y32 

 

The calculation of parameter Y32 is obtained in a similar 

manner to the Y12 parameter, noting that port 3 is now placed 

at z=0. 

 

B. One Port Network  

 

The one port network consists of a ring structure with one 

port as is shown in Fig.2.b. The one only port is defined at 

r=a, 0≤z≤h. The network is filled with a generic dielectric 

with permittivity    (          ) and permeability    

(          ).  
In this case, the boundary conditions consist of imposing 

electric walls at surfaces r=b, z=0 and z=h, so the 

relationships obtained for the electromagnetic fields are: 
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Once the new boundary conditions are applied, the 

admittance matrix of this network is computed in exactly the 

same way as Y22 of the three ports network. 

 

C. Sizing of Matrices 

The sizing of matrices is shown because it is not easily 

interpretable. To understand the sizing of any parameter Yij is 

important to realize that this parameter is defined as the 

relationship between the magnetic weights of basis functions 

on port i and the electric weights of basis functions on port j. 

            (36) 

In our case, on each port there are two basis functions 

because of the use of full wave model. For this, we have 

subdivided each parameter of the admittance matrices into 

submatrices to try to explain the sizing of them and their 

physical meaning.  

Remember that on circular ports: c are the magnetic TM 

weights of basis functions, d are the magnetic TE weights,   

are the electric TM weights and   are the electric TE weights. 

On the lateral ports: c are the magnetic z weights of basis 

functions, d are the magnetic φ weights,   are the electric z 

weights and   are the electric φ weights. 

Then, the parameters of the admittance matrix of three-ports 

network are expressed as follows: 

 

- Yij  for i,j:={1,3} 
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Each submatrix represents the relationship between 

TM and TE modes and their possible coupling. 

 

- Y22 (the GAM of the one-port network has the same 

form) 

  (
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) (38) 

Each submatrix represents the relationship between 

field components z and φ on port 2. 

 

- Y12 (the same for Y32) 
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)  [
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) (39) 

Each submatrix represents the relationship between 

TM and TE modes in port 1 and the field components 

z and φ on port 2. 

 

- Y21 (the same for Y23) 

 (
  
  

)  [
   

       
    

   
    

   
    ] (

  

  
) (40) 

Each submatrix represents the relationship between 

the field components z and φ on port 2 and TM and 

TE modes on port 1. 

D. Connections of Networks 

The connections between networks are carried out making 

use of circuit theory [10]. One of these junctions is shown in 

Fig. 3, where networks A and B are joined to create network 

C. 

 

 
Fig 3. Connection of two networks 

 

The admittance matrices of each simpler network (A and B) 

of the Fig. 3 are defined as follows: 
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where hi and ei represent the magnetic and electric weights 
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of basis functions on port i. 

To join the two networks, the boundary conditions are 

enforced for the magnetic and electric fields between ports 2 

and 4. Then, making use of the admittance matrix definition, 

the system of equations which provide the new admittance 

matrix of the junction is obtained. 

The new parameters are related to the previous as follows 

(obtained solving the system of equations mentioned before): 
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 (42) 

 

Applying this procedure recursively for joining all the ports 

of the networks, the whole geometry of the problem is 

obtained, represented by an admittance matrix of one single 

port.  

Once the different simple networks are joined together 

using the circuit boundary conditions, only two networks 

remain, as shown in Fig. 1b of [23], whose GAM are Yup and 

Ydown following the same names than those used in [23].  

It is at this point where the resonant condition is applied to 

compute the complex resonant frequency, defined in (43), 

where fr is the resonant frequency and Q is the quality factor, 

or the complex permittivity (          ), as shown in [11], 

where the procedure to use the resonant condition is described. 

 

       (  
 

  
) (43) 

III. MEASUREMENTS AND RESULTS  

In order to validate the accuracy of the method described in 

the previous sections, some comparisons with data published 

in the literature have been carried out. Furthermore, 

measurements with a split cylinder resonator have been also 

performed. Finally, a convergence study is presented, showing 

the number of modes necessary to get the right solution, as 

well as the effect of the number of modes in the computational 

time. 

A. Comparison with published data 

 

The first comparison is done in Table I, for symmetric non-

azimuthal modes TE0n, because they were the first employed 

for the split cylinder resonator. The full wave circuit method is 

compared with the mode matching model described by [3], 

which is one of the first rigorous analysis of this structure. The 

dielectric constant is computed through the resonant 

frequency, which was measured by [3]. 

It is important to remark in this case, that the uncertainties 

of the geometric dimensions provided by paper [3] makes the 

correct comparison between both methods difficult. 

Nevertheless, adjusting the thickness of the sample between 3-

5 mm, as the paper specifies, we have achieved a good 

agreement of simulations, getting a relative difference lower 

than 1%, validating the good behavior of the proposed method 

for modes TE0n.  

An improvement on the previous work was published in 

[26], where the mode TE111 was added in the model. With this 

extra mode, the analysis of split cylinder resonator with modes 

without symmetry of revolution was done for the first time. 

 

TABLE II 

COMPARISON – TE111 MODES 

a=19.05 mm, b>27.5 mm, L=25.345 mm, d<9 mm  

Sample 

  

fr (GHz) 

Measured 

εr  

[26] 

εr  

(This work) 
Δεr/εr (%) 

Fused 

Silica 
5.2128 3.820 3.816 0.105 

Alumina 4.6976 9.869 9.880 0.111 

Quartz 5.1459 4.424 4.427 0.068 

 

In Table II, the dataset of Table 1 from [26] is compared 

with our technique, and the accuracy of the full wave circuit 

method for the correct determination of the dielectric 

properties using TE111 mode is validated.  

 

TABLE III 

COMPARISON - FULL WAVE MODEL 

a=19.053 mm, b>>a, L=25.4 mm, d=0.704 mm, εr~4.5  

Mode 
fr (GHz) 

[19] 

 

fr (GHz) 

 (This work) 

 

|Δfr | 

(MHz) 
Δfr / fr (%) 

TE111 5.1904 5.1952 4.78 0.092 

TE112 7.4233 7.4256 2.34 0.031 

TM111 9.9865 9.9902 3.69 0.037 

TE312 12.02 12.0162 3.77 0.032 

TE441 12.7058 12.7034 2.43 0.019 

TE214 13.9238 13.9365 12.67 0.091 

TM212 13.9845 13.9726 11.9 0.085 

TE412 14.5286 14.5362 7.60 0.052 

TE122 14.5605 14.5645 4.04 0.027 

TE115 14.6122 14.6221 9.93 0.068 

 

The last comparison, Table III, is done with a full wave 

mode matching method developed in [19]. This is the most 

TABLE I 

COMPARISON – TE0n MODES 

a=19.09 mm, b=60 mm, L=15.22 mm, d=3 to 5 mm  

fr (GHz) 

Measured 

εr  

[3] 

εr  

(This Work) 

Δεr/εr (%) 

4.805 9.82 9.73 0.917 

4.368 13.57 13.56 0.074 

4.131 16.66 16.65 0.060 

3.866 20.87 20.81 0.288 
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general case, where all electromagnetic modes are taken into 

account. In this case, the resonant frequency of some high 

order modes is computed.  

In the simulations, there are more TE modes than TM 

modes because the excitation of the cavity is designed for the 

propagation of only TE modes, TM modes appear because of 

coupling misalignment or discontinuities into the cavity. 

The accuracy of the method is also validated for full wave 

model, as the absolute differences of resonant frequencies are 

only of some Megahertz, and the relative differences are less 

than 0.1%. 

B. Measurements 

Once the method has been validated by simulations and 

comparisons with the literature, some measurements of the 

permittivity and the loss tangent of three different materials 

have been performed at NIST laboratories (in Boulder) with a 

split cylinder resonator, whose dimensions are: a=19.05 mm, 

b>a and L=25.346 mm. The measurement system is shown in 

Fig.4. The materials have been selected with different 

permittivity and losses in order to expand the range of 

validation. The thicknesses of the materials are: dFUSED-

SILICA=1.953 mm, dREXOLITE=2.9957 mm and dGLASS=0.9324 

mm. Their dielectric properties are in [27]. 

 

In Table IV, the resonant frequency and the quality factor of 

some modes TE0np have been measured, and the permittivity 

and the loss tangent have been computed and compared by 

three different methods: NIST model (mode-matching TE0np 

model [3]), circuit TE0np model [13] and full-wave circuit 

model (this work). Note that the proposed method is also valid 

for the calculation of the complex permittivity, as the losses 

have also been computed in this case. 

Good agreement is observed in Table IV with the results of 

the two referenced methods. The accuracy obtained seems to 

be higher for the determination of the dielectric constant. 

For the correct determination of the loss tangent, the finite 

conductivity of the walls must be taken into account, which 

changes with the frequency [28]. In this work, the conductivity 

has been computed measuring the resonant frequency and the 

quality factor of each mode with the empty cavity, calculating 

in each case the associated conductivity for each mode.  

In Table V, the applicability of the method proposed in this 

work for azimuthal and higher order modes is shown. The 

resonant frequency of modes without symmetry of revolution 

has been measured, and the permittivity has been computed by 

full wave circuit method. In particular, three modes have been 

measured for each material. The first resonant mode, TE111, 

has been performed in all the cases, and also other two higher 

modes, with more complex field distribution have been chosen 

to test the behavior of the model in these cases. The quality 

factor has not been measured because of the uncertainties 

appeared in the measurements of higher modes. Only TEmnp 

modes have been measured because the feeding of the cavity 

is designed to excite only this type of electromagnetic modes.  

Note that several modes with different and varied field 

distribution have been used to determine the dielectric 

constant of the samples. In all the cases the results are 

TABLE IV 

MEASUREMENTS – TE0np MODES 

Sample Mode fr (GHz) Q 
εr  

[3] 

tgδ ·10
4 

[3] 

εr  

[13] 

tgδ ·10
4
 

[13] 

εr  

(This Work) 

tgδ ·10
4 

 (This Work) 

Fused 

Silica 

TE011 8.671462 11109 3.84 1.37 3.84 1.32 3.85 1.44 

TE013 11.92135 19731 3.83 1.801 3.84 1.74 3.85 1.85 

Rexolite 
TE011 8.909700 10451 2.54 1.6 2.53 1.58 2.55 1.68 

TE012 11.94721 8853 2.54 6.41 2.55 6.31 2.56 6.2 

Glass 
TE011 8.831331 520 6.20 54.75 6.20 54.62 6.21 56.56 

TE014 16.262571 1489 6.15 65.23 6.18 65.327 6.18 68.23 

 

 
Fig 4. Split cylinder resonator and measurement set up. 

TABLE V 

MEASUREMENTS – AZIMUTHAL VARIATION MODES 

TEmnp 

Sample Mode 
fr -Meas. 

(GHz) 

εr 

(This Work) 

Fused 

Silica 

TE111 4.872588 3.8045 

TE314 13.90127 3.8142 

TE123 15.86673 3.7675 

Rexolite 

TE111 4.93875 2.5328 

TE414 17.3608 2.5316 

TE223 17.99497 2.5559 

Glass 

TE111 4.952876 6.1429 

TE212 7.339534 6.1088 

TE113 9.09115 6.1501 
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consistent with those obtained in Table IV, validating the good 

behavior of the method for all type of modes, with and without 

symmetry of revolution, for high and low frequencies and for 

high and low loss materials. Note also that with full wave 

model we can determine the dielectric constant of the sample 

at more frequencies than with other simpler models. The 

complex permittivity could also be computed at more 

frequencies when the uncertainties of the measurements of the 

quality factor are reduced. 

C. Convergence and Computational Time 

In Fig. 5, we show how the number of modes chosen for the 

ports, affects the convergence and the computational time.  

Three different but significant modes have been chosen to 

analyze the convergence of the method. The difference in 

computational time between the three modes is negligible, 

therefore, the same computed time (an average of the three 

similar computing times) has been presented for all of them in 

terms of the number of modes.  

One notes in the graph that the convergence does not 

require many modes - 8 modes in circular ports and 9 in lateral 

ports the results are acceptable. Introducing more modes, the 

results improve slowly to the ideal solution. However, the 

computational time required increases with the number of 

modes. At the end, the selection of the number of modes is a 

compromise between convergence and computational time. 

For all the tables shown in the previous sections, we have 

chosen between 50 to 60 modes for the circular ports and 42 to 

70 in lateral ports, ensuring the convergence as well as the 

relative fast computation.  

The computational time to find the right solution, 

employing the number of modes specified above, requires on 

average of about 45 seconds using MATLAB on an Intel Xeon 

E5-1607 v2 3 GHz PC. With the circuit method TE0n 

developed in [13], the computational time is, on average about 

30 seconds. Note that the computational cost is of the same 

order of magnitude in both cases, but obviously, the method 

where only modes without rotational symmetry are taken into 

account is faster than the method proposed in this paper. 

Nevertheless, it is important to emphasize that the full wave 

method is modeling all the electromagnetic modes inside of 

the cavity and their possible coupling, which is important in 

the accurate calculation of the dielectric properties, especially 

at high frequencies. 

By using the analytical solution of the Bessel integrals, our 

full wave method is faster than others and one of the most 

efficient computationally. For example, in [19] all the 

integrals involved into the problem are computed numerically, 

which reduces significantly the speed and the efficiency of the 

method.   

IV. CONCLUSION 

In this paper, an enhanced full wave method for modeling 

of electromagnetic structures has been presented. The method 

has been applied to the case of a split cylinder resonator, 

where the generalized admittance matrix (GAM) of two 

networks of one and three ports has been solved, and they 

have been joined and combined to model the complete 

structure. 

The method has been successfully validated by several 

simulations, comparing the results with published data, 

considering all the possible cases, from symmetric modes to 

higher order modes. 

Measurements of the resonant frequencies and quality 

factors have been also performed, and the permittivity and loss 

tangent of several materials using symmetric modes have been 

computed and compared with two other efficient methods in 

literature.  

The azimuthal variation modes and higher-order modes 

have been also employed to determinate the dielectric constant 

of some samples at different frequencies.  

In all the cases, simulations and measurements, the good 

agreement of the results confirm the validity of this method, 

which is generally applicable to any cylindrical structure in the 

range of microwave frequencies. The dielectric properties of 

any material can be obtained, but it must be taken into account 

that for high permittivity and/or high loss materials, many 

modes are needed for the correct electromagnetic modeling 

because of the multiple variations of the fields inside the 

structure, which could reduce significantly the computational 

speed. 

APPENDIX 

 

 In this section, we show the expressions of the 

electromagnetic fields, the basis functions employed along the 

work and the analytical integrals involved in the problem, 

which can be related with Bessel or trigonometric functions.  

 

Electromagnetic fields inside the networks [29]: 

 

    ∑
      

 

   
   

  (
       

       
)             

 
    (A.1) 

 
 

Fig 5. Convergence of the method and computational time 

required in terms of the number of modes used in the approach. On 

the abscissa axis, X//Y notation is employed, where X is the number 

of modes on circular ports and Y is the number of modes on lateral 

ports. 
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where: 
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The parameters    
  and    

  are the amplitudes of the 

progressive and regressive wave, respectively. The parameters 

Cij are the amplitudes of the trigonometric functions. When the 

boundary conditions are imposed, all these amplitudes are 

joined in one. 

The super-index T has been employed to indicate transpose 

vector or matrix. The functions       and       are, 

respectively, the Bessel functions of the first and second kind 

with order m. Non primate subscripts have been used for TM 

index and primate subscripts for TE index. 

The values      (cut-off wave number) and    depend on 

the boundary conditions (     for the three-ports network). 

The propagation constant     is related to cut-wave numbers 

as follows: 

 

     
        

  (A.15) 

 

where k is the free-space wave number    √  , and 

     . 

The definition of these parameters are applicable for TM 

and TE modes.  

 

Basis Functions of Circular Ports 

 

Chosen in a similar manner than [25] 
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where,              and                . 

 

The constants     and        are the zeros of the first kind of 

Bessel function and its derivative respectively.    
   and    

   

are the normalization factor of basis functions defined in [28]. 

Non primate subscripts have been used for TM index of basis 

functions and primate subscripts for TE index of basis 

functions. Subscripts p and q are employed for electric field 

series expansions; subscripts u and v are used for magnetic 

field series expansions.  

 

Basis Functions of Lateral Ports 

 

They are bi-dimensional Fourier series expansion. 
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Integrals of Bessel Functions 

 

The analytical solution of integrals of Bessel functions has 

been solved using [30] and [31]. 

 

    
   ∫ [    

   
         

  

    
        ]    

 

 

 
   
 

 
  
       

 (A.22) 

      
   ∫ [      

      
    

       
  
   

   

      
    

       
  

]    
 

 

 
 
    
  

 
(  

   

 
    
   

)   
 (     

  )

 

 (A.23) 

       
     ∫ [

  

  
          (

   

 
 )

    

   

 
  
         

 (
   

 
 )

]    
 

 

 
        

 

     
       

 
          

      

 

 (A.24) 

       
     ∫

[
 
 
 
 

  

  
          (

   
 

 
 )

    

   
 

 
  
         

 (
   

 

 
 )

]
 
 
 
 

   
 

 

 
       

  

    
         

 
  
             

  

 

 (A.25) 

         
     ∫   [

   (
 
    
 

 
 )    

            

 
 
    
 

 
   
 (

 
    
 

 
 )           

]   
 

 

      (     
 )          

 (A.26) 

 

Integrals of Trigonometric Functions 
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