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Abstract

The communications world is moving from a standalone devices scenario to a all-connected scenario
known as Internet of Things (IoT), where billions of devices will be connected to the Internet through
mobile and fixed networks. In this context, there are several challenges to face, from the development
of new standards to the study of the economical viability of the different future scenarios. In this
dissertation we have focused on the study of the economic viability of different scenarios using concepts
of microeconomics, game theory, non-linear optimization, network economics and wireless networks.
The dissertation analyzes the transition from a Human Type Communications (HTC) to a Machine
Type Communications (MTC) centered network from an economic point of view. The first scenario
is designed to focus on the first stages of the transition, where HTC and MTC traffic are served on a
common network infrastructure. The second scenario analyzes the provision of connectivity service to
MTC users using a dedicated network infrastructure, while the third stage is centered in the analysis of
the provision of services based on the MTC data over the infrastructure studied in the previous scenario.
All the scenarios are described with more detail in the following paragraphs.

Firstly, we analyze a transition scenario, where HTC and MTC share a common network infrastructure.
We study the economic viability of the coexistence scenario under monopolistic and duopolistic
approaches, and we compare the results against a baseline scenario, where only one operator serves
Human Type Communications users (HTCu). The service provision is modeled using a two-priority
queue, where the HTC traffic has a higher priority than the MTC traffic. On the other hand, the
competition between operators is analyzed as a two-stage game. In the first stage, each operator
announces a price and in the second stage, the users decide to subscribe or not to the service based
on a utility function, which is related with the packet delay and the price charged by the operators. The
HTC-MTC coexistence is shown to be profitable for all the actors when there is competition between
operators serving different traffic profiles. In addition, the entry of the second operator to serve Machine
Type Communications users (MTCu) is shown desirable, not only from the point of view of resource
usage efficiency and from the point of view of the users, but also from the point of view of the two
operators. The HTC-MTC service provision is therefore shown economically viable and more efficient
than the baseline scenario.

Secondly, we model a scenario where Wireless Sensor Networks (WSN) are served by a dedicated
Network Operator (OP). The WSN connectivity scenario is modeled mathematically and analyzed using
capacity provision mechanisms, assuming that the price is fixed by a regulator, with the objective of
maximizing the profits of the OP . The scenario has several sensor clusters gathering data. Each cluster
has a sink node, which uploads the sensing data gathered in the cluster to the Internet, through the
wireless connectivity of the OP . The scenario is analyzed both, as a static game and as a dynamic
game, with two stages each game, using game theory. The sinks behavior is characterized with a utility
function related to the mean service time and the price paid to the OP for the service. The objective
of the OP is to maximize its profits modifying the network capacity. In the static game, the sinks’
subscription decision is modeled using a population game. In the dynamic game, the sinks’ behavior is
modeled using an evolutionary game and the replicator dynamic, while the OP optimal capacity decision
is obtained solving an optimal control problem. The scenario is shown feasible from an economic
point of view if the variable costs are bounded. Therefore, it is important to reduce the costs as much
as possible in order to maximize the profitability of the scenario. In addition, the dynamic capacity
provision optimization is shown a valid mechanism for maximize the OP profits, as well as a useful tool
to analyze evolving scenarios. On the other hand, the dynamic analysis opens the possibility to study
more complex scenarios using the differential games extension.
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Thirdly, we analyze a whole new business model based on a MTC scenario, or equivalently, an
end-to-end MTC scenario. In the scenario, two Internet of Things Service Provider (IoT-SP) deploy
their own private WSN in order to collect sensing data, which allows them to offer sensing services to
final users. The sensing data is collected by the WSN and transmitted by a sink node in each WSN to
its IoT-SP, through the wireless connection of an OP . This scenario allows us to have a global point
of view of the full business model, from the data collection to the service provision to the final users.
The feasibility of providing WSN-data-based services in an IoT scenario from an economical point of
view is studied. The scenario is analyzed as two games using game theory. In the first game, the OP
announces a price and the sensors decide to subscribe or not to the OP service to upload the collected
sensing-data. In the second game, each IoT-SP announces a price and the users decide to subscribe or
not to the sensor-data-based service of the IoT-SPs based on a Logit discrete choice model related to
the quality of the data collected and the subscription price. The sinks and users subscription stages are
analyzed using population games and discrete choice models, while OP and IoT-SPs pricing stages are
analyzed using optimization and Nash equilibrium concepts respectively. The scenario is shown feasible
from an economic point of view for all the actors if there are enough interested final users in the IoT-SPs
service, and their sensitivity to the amount of data/price rate is bounded, and opens the possibility of
developing more efficient models with different types of services.+

Finally, we analyze the previous model dynamically. We consider different time scales in each game,
given that the changes in the first game are much less frequent than in the second game, and therefore, we
can use the static solution of the first game as input of the second game. The second game is analyzed
dynamically, using the Logit dynamic to model the behavior of the users and a differential game to
model the competition between IoT-SPs. The scenario is shown feasible and the dynamic analysis able
to model competitive evolving scenarios, however, it is needed to extend the analysis to more complex
scenarios, with a wider range of strategies for the users.

Thanks to the analysis of all the scenarios we have observed that the transition from HTC users-centered
networks to MTC networks is possible and that the provision of services in such scenarios is viable. In
addition, we have observed that the behavior of the users is essential in order to determine the viability
of a business model, and therefore, it is needed to study their behavior and preferences in depth in future
studios. Specifically, the most relevant factors are the sensitivity of the users to the delay and to the
amount of data gathered by the sensors. We also have observed that the differentiation of the traffic in
categories improves the usage of the networks and allows to create new services thanks to the data that
otherwise would not be used, improving the monetization of the infrastructure and the data. In addition,
we have shown that the capacity provision is a valid mechanism for providers’ profit optimization, as
an alternative to the pricing mechanisms. Finally, it has been demonstrated that it is possible to create
dedicated roles to offer IoT services in the telecommunications market, specifically, the IoT-SPs, which
provide wireless-sensor-based services to the final users using a third party infrastructure.

Summarizing, this dissertation tries to demonstrate the economic viability of the future IoT networks
business models as well as the emergence of new business opportunities and roles in order to justify
economically the development and implementation of the new technologies required to offer massive
wireless access to machine devices.
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Resumen

El mundo de las telecomunicaciones está cambiando de un escenario donde únicamente las personas
estaban conectadas a un modelo donde prácticamente todos los dispositivos y sensores se encuentran
conectados, también conocido como Internet de las cosas (IoT), donde miles de millones de dispositivos
se conectarán a Internet a través de conexiones móviles y redes fijas. En este contexto, hay muchos
retos que superar, desde el desarrollo de nuevos estándares de comunicación al estudio de la viabilidad
económica de los posibles escenarios futuros. En esta tesis nos hemos centrado en el estudio de la
viabilidad económica de diferentes escenarios mediante el uso de conceptos de microeconomía, teoría
de juegos, optimización no lineal, economía de redes y redes inalámbricas. La tesis analiza la transición
desde redes centradas en el servicio de tráfico HTC a redes centradas en tráfico MTC desde un punto
de vista económico. El primer escenario ha sido diseñado para centrarse en las primeras etapas de la
transición, en la que ambos tipos de tráfico son servidos bajo la misma infraestructura de red. En el
segundo escenario analizamos la siguiente etapa, en la que el servicio a los usuarios MTC se realiza
mediante una infraestructura dedicada. Finalmente, el tercer escenario analiza la provisión de servicios
basados en MTC a usuarios finales, mediante la infraestructura analizada en el escenario anterior. En
los párrafos siguientes se describe con más detalle cada escenario.

En primer lugar, analizamos un escenario de transición, donde las comunicaciones de tipo humano
(HTC) y las comunicaciones de tipo máquina (MTC) comparten una única estructura de red. En el
trabajo se analiza la viabilidad económica de la coexistencia de ambos tipos de tráfico mediante una
aproximación de monopolio y una de duopolio. Los resultados de ambas aproximaciones se comparan
con un caso base, en donde un operador monopolista ofrece servicio únicamente a usuarios HTC. La
provisión de servicio de ambos tipos de tráfico es modelada mediante una cola de dos prioridades,
donde el tráfico HTC se considera prioritario sobre el tráfico MTC. Por otro lado, la competencia entre
los operadores se analiza como un juego de dos etapas. En la primera etapa, cada operador elige un
precio que optimiza sus beneficios y lo anuncia, mientras que, en la segunda etapa, los usuarios deciden
si suscribir o no al servicio en base a una función de utilidad basada en el retardo experimentado por
los paquetes y el precio cobrado por los operadores. Como resultado, se muestra que la coexistencia
HTC-MTC es provechosa para todos los actores cuando existe competencia entre los operadores que
sirven a cada tipo de tráfico. Además, la entrada de un nuevo operador para servir a los usuarios MTC es
deseable, no solo desde un punto de vista de eficiencia en el uso de la red o de los usuarios, sino también
desde el punto de vista de ambos operadores. Por tanto, podemos concluir que la coexistencia es viable
desde un punto de vista económico y, además, es más eficiente con respecto al caso base.

En segundo lugar, modelamos un escenario donde la conectividad para redes de sensores inalámbricos
(WSN) es proporcionada por un operador de red (OP) dedicado. El escenario es modelado
matemáticamente y analizado usando mecanismos de provisión de capacidad, con el objetivo de
maximizar los beneficios del OP, asumiendo que el precio es fijado por un órgano regulador. En el
escenario existen varios clústers de sensores con un nodo encargado de transmitir los datos recopilados
en el clúster a Internet a través del servicio de conectividad inalámbrica del OP. El escenario es analizado
mediante teoría de juegos como un juego estático y como un juego dinámico, con dos etapas cada
juego. El comportamiento de los sensores es caracterizado, una vez más, por una función de utilidad
relacionada con el retardo de los paquetes y el precio pagado al OP por el servicio. Por su parte, el OP
busca maximizar sus beneficios ajustando el valor de la capacidad de la red. En el juego estático, la
decisión de suscripción de los sensores se modela mediante juegos poblacionales, mientras que, en el
juego dinámico, el comportamiento de los sensores se modela mediante un juego evolutivo y la dinámica
del replicador. Por otro lado, la decisión de capacidad óptima se obtiene resolviendo un problema de
optimización en el caso estático y un problema de control óptimo en el dinámico. En el trabajo se
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muestra que el escenario es factible desde un punto de vista económico. Además, la optimización
dinámica de la provisión de capacidad se muestra como un mecanismo válido para maximizar los
beneficios del OP, así como una herramienta útil para analizar escenarios cambiantes. Por otro lado,
el análisis dinámico nos permite estudiar escenarios más complejos mediante el empleo de juegos
diferenciales.

En tercer lugar, analizamos un modelo de negocio completo basado en un escenario MTC, o
equivalentemente, un escenario MTC end-to-end. En el escenario, dos proveedores de servicios del
internet de las cosas (IoT-SPs) despliegan sus propias redes privadas de sensores WSN para poder
obtener datos que les permitirán ofrecer servicios a usuarios finales. Los datos se obtienen a través de las
WSN, y son transmitidos al IoT-SP por un nodo encargado de recolectar todos los datos de la WSN, a
través de la conexión de un OP. Este escenario nos permite tener un punto de vista global de un modelo
de negocio empleando datos de sensores, desde la recolección de los datos hasta la provisión de servicio a
los usuarios finales. En análisis se estudia la viabilidad económica de proveer servicios basados en datos
de WSN en un escenario IoT. El escenario es analizado como dos juegos interrelacionados empleando
teoría de juegos. En el primer juego, el OP anuncia un precio y los sensores deciden suscribir o no para
subir los datos al IoT-SP correspondiente. En el segundo juego, cada IoT-SP anuncia un precio y los
usuarios deciden si suscribir o no al servicio basado en datos de los sensores de los IoT-SPs en función
del modelo Logit de elección discreta, basado en la calidad de los datos de los sensores y el precio
del servicio. Las etapas de suscripción de sensores y usuarios se analizan mediante el uso de juegos
poblacionales y modelos de elección discreta, mientras que la selección de precios del OP y los IoT-SPs
se analizan mediante técnicas de optimización y el equilibrio de Nash respectivamente. Los resultados
muestran que el escenario es factible desde un punto de vista económico para todos los actores, siempre
que haya suficientes usuarios finales interesados en el servicio. Por otro lado, si se combina con los
resultados el primer escenario, existe la posibilidad de desarrollar modelos más eficientes con diferentes
tipos de servicios.

Finalmente, analizamos el modelo anterior dinámicamente. Consideramos diferentes escalas de tiempo
en cada juego, dado que los cambios en el primer juego son mucho menos frecuentes que en el segundo
juego, y por lo tanto, podemos usar la solución estática del primer juego para resolver el segundo
juego. El segundo juego se analiza dinámicamente, utilizando la dinámica Logit para modelar el
comportamiento de los usuarios y un juego diferencial para modelar la competencia entre IoT-SPs.
El escenario se muestra factible y el análisis dinámico capaz de modelar escenarios competitivos
cambiantes, sin embargo, es necesario extender el análisis a escenarios más complejos, con un mayor
abanico de posibles elecciones para los usuarios.

Gracias al análisis de todos los escenarios, hemos observado que la transición de redes centradas en
usuarios HTC a redes MTC es posible y que la provisión de servicios en tales escenarios es viable.
Además, hemos observado que el comportamiento de los usuarios es esencial para determinar la
viabilidad de los diferentes modelos de negocio, y por tanto, es necesario estudiar el comportamiento
y las preferencias de los usuarios en profundidad en estudios futuros. Específicamente, los factores
más relevantes son la sensibilidad de los usuarios al retardo en los datos recopilados por los sensores
y la cantidad de los mismos. También hemos observado que la diferenciación del tráfico en categorías
mejora el uso de las redes y permite crear nuevos servicios empleando datos que, de otro modo, no
se aprovecharían, lo cual nos permite mejorar la monetización de la infraestructura. También hemos
demostrado que la provisión de capacidad es un mecanismo válido, alternativo a la fijación de precios,
para la optimización de los beneficios de los proveedores de servicio. Finalmente, se ha demostrado que
es posible crear roles específicos para ofrecer servicios IoT en el mercado de las telecomunicaciones,
específicamente, los IoT-SPs, que proporcionan servicios basados en sensores inalámbricos utilizando
infraestructuras de acceso de terceros y sus propias redes de sensores.
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En resumen, en esta tesis hemos intentado demostrar la viabilidad económica de modelos de negocio
basados en redes futuras IoT, así como la aparición de nuevas oportunidades y roles de negocio, lo cual
nos permite justificar económicamente el desarrollo y la implementación de las tecnologías necesarias
para ofrecer servicios de acceso inalámbrico masivo a dispositivos MTC.
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Resum

El món de les telecomunicacions està canviant d’un escenari on únicament les persones estaven
connectades a un model on pràcticament tots els dispositius i sensors es troben connectats, també
conegut com a Internet de les Coses (IoT) , on milers de milions de dispositius es connectaran a Internet
a través de connexions mòbils i xarxes fixes. En aquest context, hi ha molts reptes que superar, des del
desenrotllament de nous estàndards de comunicació a l’estudi de la viabilitat econòmica dels possibles
escenaris futurs. En aquesta tesi ens hem centrat en l’estudi de la viabilitat econòmica de diferents
escenaris per mitjà de l’ús de conceptes de microeconomia, teoria de jocs, optimització no lineal,
economia de xarxes i xarxes inalàmbriques. La tesi analitza la transició des de xarxes centrades en
el servici de tràfic HTC a xarxes centrades en tràfic MTC des d’un punt de vista econòmic. El primer
escenari ha sigut dissenyat per a centrar-se en les primeres etapes de la transició, en la que ambdós
tipus de tràfic són servits davall la mateixa infraestructura de xarxa. En el segon escenari analitzem la
següent etapa, en la que el servici als usuaris MTC es realitza per mitjà d’una infraestructura dedicada.
Finalment, el tercer escenari analitza la provisió de servicis basats en MTC a usuaris finals, per mitjà
de la infraestructura analitzada en l’escenari anterior. Als paràgrafs següents es descriu amb més detall
cada escenari.

En primer lloc, analitzem un escenari de transició, on les comunicacions de tipus humà (HTC) i les
comunicacions de tipus màquina (MTC) comparteixen una mateixa xarxa d’accés. Al treball s’analitza
la viabilitat econòmica de la coexistència d’ambdós tipus de tràfic per mitjà d’una aproximació de
monopoli i una de duopoli. Els resultats d’ambdós aproximacions es comparen amb un cas base, on
un operador monopolista ofereix servei únicament a usuaris HTC. La provisió de servei d’ambdós tipus
de tràfic és modelada per mitjà d’una cua de dos prioritats, on el tràfic HTC es considera prioritari sobre
el tràfic MTC. D’altra banda, la competència entre els operadors s’analitza com un joc de dos etapes. A
la primera etapa, cada operador tria un preu que optimitza els seus beneficis i ho anuncia, per altra banda,
a la segona etapa, els usuaris decideixen si subscriure o no al servei basant-se en una funció d’utilitat que
depén del retard experimentat pels paquets i el preu cobrat pels operadors. Com resultat, es mostra que
la coexistència HTC-MTC és factible a l’escenari duopolista. A més a més, l’entrada d’un nou operador
per a servir els usuaris MTC és desitjable, no sols des d’un punt de vista d’eficiència en l’ús de la xarxa
o dels usuaris, sinó també des del punt de vista d’ambdós operadors. Per tant, podem concloure que la
coexistència és viable des d’un punt de vista econòmic i, a més, és més eficient respecte al cas base.

En segon lloc, modelem un escenari on la connectivitat per a xarxes de sensors inalàmbriques (WSN)
és proporcionada per un operador de xarxa (OP) dedicat. L’escenari és modelatge matemàticament i
analitzat usant mecanismes de provisió de capacitat, amb l’objectiu de maximitzar els beneficis de l’OP,
assumint que el preu és fixat per un òrgan regulador. A l’escenari hi ha diversos clústers de sensors
amb un node encarregat de transmetre les dades recopilats al clúster a Internet a través del servei de
connectivitat sense fil de l’OP. L’escenari és analitzat per mitjà de teoria de jocs com un joc estàtic i com
un joc dinàmic, amb dos etapes cada joc. El comportament dels sensors és caracteritzat, una vegada
més, per una funció d’utilitat relacionada amb el retard dels paquets i el preu pagat a l’OP pel servei.
Per la seua banda, l’OP busca maximitzar els seus beneficis ajustant la capacitat de la xarxa. Al joc
estàtic, la decisió de subscripció dels sensors es modela per mitjà de jocs poblacionals, mentres que,
al joc dinàmic, el comportament dels sensors es modela per mitjà d’un joc evolutiu i la dinàmica del
replicador. D’altra banda, la decisió de capacitat òptima s’obté resolent un problema d’optimització al
cas estàtic i un problema de control òptim al dinàmic. Al treball es mostra que l’escenari és factible des
d’un punt de vista econòmic. A més, l’optimització dinàmica de la provisió de capacitat es mostra com
un mecanisme vàlid per a maximitzar els beneficis de l’OP, així com una ferramenta útil per a analitzar
escenaris canviants. D’altra banda, l’anàlisi dinàmica ens permet estudiar escenaris més complexos per
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mitjà de l’ocupació de jocs diferencials.

En tercer lloc, analitzem un model de negoci complet basat en un escenari MTC, o de forma equivalent,
un escenari MTC end-to-end. A l’escenari, dos proveïdors de serveis d’Internet de les coses (IoT-SPs)
despleguen les seues pròpies xarxes privades de sensors WSN per a poder obtindre dades que els
permetran oferir serveis a usuaris finals. Les dades s’obtenen a través de les WSN, i són transmesos
a l’IoT-SP per un node encarregat de recol·lectar totes les dades de la WSN, a través de la connexió
d’un OP. Aquest escenari ens permet tindre un punt de vista global d’un model de negoci emprant dades
de sensors, des de la recol·lecció de les dades fins a la provisió de servei als usuaris finals. A anàlisi
s’estudia la viabilitat econòmica de proveir serveis basats en dades de WSN a un escenari IoT. L’escenari
és analitzat com dos jocs interrelacionats emprant teoria de jocs. Al primer joc, l’OP anuncia un preu
i els sensors decideixen subscriure o no per a pujar les dades a l’IoT-SP corresponent. Al segon joc,
cada IoT-SP anuncia un preu i els usuaris decideixen si subscriure o no al servei basat en dades dels
sensors dels IoT-SPs en funció del model Logit d’elecció discreta, basat en la qualitat de les dades dels
sensors i el preu del servei. Les etapes de subscripció de sensors i usuaris s’analitzen per mitjà de l’ús
de jocs poblacionals i models d’elecció discreta, mentres que la selecció de preus de l’OP i els IoT-SPs
s’analitzen per mitjà de tècniques d’optimització i l’equilibri de Nash respectivament. Els resultats
mostren que l’escenari és factible des d’un punt de vista econòmic per a tots els actors, sempre que hi
haja suficients usuaris finals interessats amb el servei. D’altra banda, si es combina amb els resultats el
primer escenari, hi ha la possibilitat de desenrotllar models més eficients amb diferents tipus de serveis.

Finalment, analitzem el model anterior dinàmicament. Considerem diferents escales de temps en
cada joc, atés que els canvis en el primer joc són molt menys freqüents que en el segon joc, i per
tant, podem utilitzar la solució estàtica del primer joc per a resoldre el segon joc. El segon joc
s’analitza dinàmicament, utilitzant la dinàmica Logit per a modelar el comportament dels usuaris i un joc
diferencial per a modelar la competència entre IoT-SPs. L’escenari es mostra factible i l’anàlisi dinàmica
capaç de modelar escenaris competitius canviants, no obstant això, és necessari estendre l’anàlisi a
escenaris més complexos, amb un major ventall de possibles eleccions per als usuaris.

Gràcies a l’anàlisi de tots els escenaris, hem observat que la transició de xarxes centrades en usuaris
HTC a xarxes MTC és possible i que la provisió de servicis en tals escenaris és viable. A més a
més, hem observat que el comportament dels usuaris és essencial per a determinar la viabilitat dels
diferents models de negoci, i per tant, és necessari estudiar el comportament i les preferències dels
usuaris en profunditat en estudis futurs. Específicament, els factors més rellevants són la sensibilitat
dels usuaris al retard en les dades recopilats pels sensors i la quantitat dels mateixos. També hem
observat que la diferenciació del tràfic en categories millora l’ús de les xarxes i permet crear nous
servicis emprant dades que, d’una altra manera, no s’aprofitarien, la qual cosa ens permet millorar la
monetització de la infraestructura. També hem demostrat que la provisió de capacitat és un mecanisme
vàlid, alternatiu a la fixació de preus, per a l’optimització dels beneficis dels proveïdors de servici.
Finalment, s’ha demostrat que és possible crear rols específics per a oferir servicis IoT en el mercat de les
telecomunicacions, específicament, els IoT-SPs, que proporcionen servicis basats en sensors inalàmbrics
utilitzant infraestructures d’accés de tercers i les seues pròpies xarxes de sensors

En resum, en aquesta tesi hem intentat demostrar la viabilitat econòmica de models de negoci basats en
xarxes futures IoT, així com l’aparició de noves oportunitats i rols de negoci, la qual cosa ens permet
justificar econòmicament el desenrotllament i la implementació de les tecnologies necessàries per a
oferir servicis d’accés inalàmbric massiu a dispositius MTC.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Communications suffered a dramatic change when the Internet appeared. The Internet was designed to
link a small group of networks and devices, nevertheless nowadays billions of people are connected
through it. One of the first problems appeared when the multimedia applications appeared and
researchers realised the need to adopt a new service model [1]. Nowadays mobile communications
are experiencing a similar situation. The world is moving from a standalone devices scenario to a
all-connected scenario also known as IoT. The basic idea is to have connected almost all objects around
us, being able to communicate with each other and connected to the Internet. The IoT is a key concept
in the present and future of the Internet [2] with several technologies involved, possible applications and
open research challenges [3–5]. This concept is not new [6], however, the wide concept of IoT that we
know nowadays was not defined until the last decade [7].

The traditional usage of networks where humans are the main users is changing progressively to a
thing centered model [8], and the number of devices connected is growing rapidly. In the Ericsson
Mobility Report an estimation of devices connected will 26 billion, and only 6.6 billion will be HTC
devices [9], and according to Cisco, there will be 5.5 billion mobile devices connected to the Internet
by 2020 [10], with a wide range of applications in several areas, such as education, healthcare, industry,
infrastructures, military, ecology, smart homes as well as smart cities [2,8,11,12], among others. In this
paradigm, MTC, also known as Machine to Machine communications (M2M) [13], have a key role in
almost all the applications, with a huge amount of devices [14] trying to transmit small size packets.

The behavior of the networks in the IoT era is a challenge that must be faced, including the development
of new hardware and physical layer standards [4,15] to feasible economic and business models as well as
updated pricing strategies [16,17]. However, there is a lack of studies analyzing the economic aspects of
IoT, and particularly of MTC and sensor network-based services, such as pricing or economic viability
[15, 16, 18]. Recent investigations have shown an interest from the industry verticals to integrate IoT
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and 5G technologies, nevertheless it is not clear how the different telecom players could benefit from
it [19, 20]. Given the huge investments required to develop the new technologies [21] it is necessary to
study new business models and their economic viability as well as the emergence of new actors in the
market [17]. In fact, given that the main actors in the development of new networks are the operators, it
is needed to justify the IoT solutions, not only from an efficiency point of view, but also from an operator
profit point of view.

We have tried to solve some of the opened challenges, focusing our work on network economics. In this
dissertation we propose different network scenarios and we analyze their economical feasibility from
different points of view.

1.2 Objectives

The framework described above is complex. Mobile networks have experienced a huge growing in the
last years, increasing its bandwidth and their coverage to serve the growing number of devices, the new
applications and the services that have been appearing. Nowadays, a new challenge is opened with the
growing of IoT, M2M and WSN.

Our main objective in this dissertation is to analyze the economic viability of different network
scenarios using mathematical modeling, and specifically, game theory. The scenarios include wireless
communications and services that will appear in the following years to serve the IoT. Our work is focused
on the study of the economic viability of all the system actors including operators, service providers and
final users. For the final users the viability is studied making use of a utility function related with the
service received and the price payed for this service. For operators and service providers the viability is
studied through profit functions.

The main objective is divided in the following sub-objectives:

• To analyze the transition from HTC to MTC wireless networks scenarios from an economical point
of view, using microeconomics, competition between operators and users, demand and supply
curves and other economic concepts needed to model and study the behavior of the markets.

• To analyze a transition scenario, where HTC and MTC users are served on a common network
infrastructure. To analyze the economical viability of the scenario using game theory and
non-cooperative games.

• To study the changes due to the competition between operators, and the effect of the entry of a
new operator in the market.

• To analyze the connectivity service provision to MTC users using a dedicated network
infrastructure. To study the economical viability of the scenario using the capacity provision
as optimization variable from a static and a dynamic point of view.

• To study an end-to-end IoT scenario, from the wireless connectivity of the sensors that gather data,
to the provision of services based on that data to final users. To study the economical viability of
the scenario using static non-cooperative games.
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1.3 Methodology

In order to achieve the objectives described above we used a methodology based on the Scientific Method
[22], which is described below.

The first step is to analyze the problem and identify its limitations and needs. The analysis of the
existing works is essential and gives us a global insight of the research area. It helped us to identify
the weaknesses in the previous models. After defining the problem, a background research was done,
which helped us to identify the different approaches used by the scientific community to solve similar
problems. The research of the state of art gave us a wide view of the problem, the necessary experience
and knowledge to address our specific problem.

Once the research in the state of the art was done, we built new IoT scenarios and mathematical network
models [23], based on the acquired knowledge and we analyzed them. The analytic models are mainly
composed by a utility function, that models the value perceived by the users, a payment scheme between
all the actors in the market and profit functions for operators and service providers [24, 25].

The first task in the creation of new mathematical models is to define the system: the agents (users,
operators, third part service providers, ...) and the interactions between them. Once the system
was defined, different utility and profit functions were proposed, as well as the equilibrium concepts
that model the behavior of the agents. The next step was related with the analytic resolution of
the equilibrium of the system, using game theory concepts such as Nash and Wardrop equilibriums,
Population games,Stackelberg games and barward induction and discrete choice models such as
Logit [26–28]. The resolution of the described equilibriums, usually implies solving restricted
optimization problems. In order to solve these problems, it was needed to use mathematical tools like
Karush-Kuhn-Tucker (KKT) theorem or Lagrange multipliers [29] for static optimization, and optimal
control problems and differential games for dynamic optimization [30].

Finally, the results are analyzed and conclusions are drawn.

1.4 Tools and Means

In order to conduct the required research and to write this dissertation the following tools were needed:

• Access to the libraries, papers and articles related with the research field. These fields include
microeconomics, game theory, network pricing, IoT, WSN, M2M, MTC, static optimization and
dynamic optimization.

• A computer with the minimum requirements to run analytic and numerical tools, including Matlab
and Wolfram Mathematica for the analysis of the models and LaTeX to write the documents.

• The necessary means to make an international research stay, which helped us to collaborate with
other researchers in the same field.

• The necessary means to publish and publicize the results of the work.
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1.5 Context

This doctoral dissertation has been developed in the GIRBA research group and the ITACA institute of
the Universitat Politècnica de València over the last three years.

The dissertation has been supported by the MINECO in the framework of the project PLASMA
(TIN2013-47272-C2-1-R) and (co-supported by the Europen Social Fund) BES-2014-068998. During
the development of the Ph.D. the candidate has performed a three months research stay in the Department
of Informatics, King’s College of London, supervised by Mischa Dohler and Massimo Condolouci and
funded through the MINECO grant EEBB-I-17-11947.

1.6 Publications

As a result of the conducted work we have generated the following publications related with the different
parts of the dissertation:

Chapter 4:
A. Sanchis-cano, L. Guijarro, V. Pla, and J. R. Vidal, “Economic Viability of HTC and MTC
Service Provision on a Common Network Infrastructure,” in 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC), 2017, pp. 1051–1057.

Chapter 5:
A. Sanchis-Cano, L. Guijarro and M. Condolouci, "Dynamic Capacity Provision for Wireless
Sensors Connectivity. A Profit Optimization Approach", Submitted to Distributed Sensor
Networks on Jan. 2018.

Chapter 6:
A. Sanchis-Cano, J. Romero, E. Sacoto-Cabrera, and L. Guijarro, “Economic Feasibility of
Wireless Sensor Network-Based Service Provision in a Duopoly Setting with a Monopolist
Operator,” Sensors 2017, vol. 17, no. 12, p. 2727, Nov. 2017.

J. Romero, A. Sanchis-Cano and L. Guijarro, "Dynamic Price Competition Between a Macrocell
Operator and a Small Cell Operator: a Differential Game Model". Submitted to Wireless
Communications and Mobile Computing on Dec. 2017.

1.7 Dissertation Outline

The rest of this dissertation is organized as follows:

• Chapter 2: The background and the current state of art are reviewed. The concepts of
microeconomics, game theory and optimization used to conduct the research are explained in
depth, and we introduce some applications related with the study of the economic viability of
wireless communications and services. In addition, the related works in network economics are
reviewed.
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• Chapter 3: The different scenarios and models analyzed are explained. The structure of the
following chapters and the steps of the analysis are explained.

• Chapter 4: We analyze a transition scenario between networks serving only HTC and a scenario
with dedicated networks to serve MTC. The economic viability of providing service to HTC
and MTC on a common network infrastructure under monopolistic and duopolistic scenarios
is studied. The service provision is modeled using queueing theory, and the entry of a second
operator to serve MTC is analyzed using game theory.

• Chapter 5: As an evolution of the coexistence scenario, we study a scenario to provide wireless
sensor connectivity with its own infrastructure in the framework of IoT. The price fixed by a
regulator and the capacity provision is used as control variable. The optimal dynamic capacity
provision is obtained solving an optimal control problem.

• Chapter 6: We analyze the feasibility of providing Wireless Sensor Network-data-based services
in an IoT scenario from an economical point of view. This scenario allows us to have an end-to-end
economic point of view of future services. The scenario has two competing service providers
with their own private sensor networks, a network operator which provides connectivity service
to the sensors and final users. The scenario is analyzed as two games using game theory. In
the first game, sensors decide to subscribe or not to the network operator to upload the collected
sensing-data. In the second game, users decide to subscribe or not to the sensor-data-based service
of the service providers.

• Chapter 7: In this Chapter we go one step further, analyzing dynamically the scenario studied
in Chapter 6. The changes in the first game are much less frrequent than in the second game,
and therefore the static solution of the first game is used. On the other hand, the second game
is analyzed dynamically, using the Logit dynamic to model the behavior of the users and a
differential game to solve the competition between service providers.

• Chapter 8: We conclude the dissertation summarizing all the studied scenarios and remarking the
most important results. The dissertation concludes with some recommendations for future works.
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CHAPTER 2

BACKGROUND AND
STATE OF THE ART

2.1 Microeconomics

One of the basic tools needed to develop the aim of this work is microeconomics. Microeconomics is
an area of economics that analyzes the behavior and interactions of suppliers and consumers in a market
[31]. In the following points we describe the concepts of microeconomics needed to understand this
paper, based on [32]. We also develop some of the functions employed in the next chapters.

2.1.1 The Market

Firstly, it is needed to analyze the scenario, defining the actors in it and the interactions between them.
In our models we will typically find basically two types of actors:

• Service Providers.

• Service Consumers.

In the first group of service providers we can include the network operators (OPs) and the providers
of services based on sensing data, also known as IoT-SPs. In the second group we include any actor
that pays for services or goods, such as final users of a service or sensors, which need the connectivity
service of an OP to upload the gathered data to the network.

Secondly, the preferences of the actors are modeled creating simplified mathematical models of the
reality. One typical assumption is that all the actors act rationally, and they choose the option which

7



gives them a better reward, based on their preferences. How to define the preferences of the different
kind of actors is not a simple task, and it is explained in the points 2.1.2 and 2.1.3.

Finally, once all the scenario is defined and modeled mathematically, the decisions of the actors are
analyzed and the equilibrium of the scenario is found. The equilibrium is a state where no actor has
incentive to change its decision. There are several ways to find the equilibrium values depending on the
kind of market. The different types of markets are described in the point 2.1.4.

2.1.2 Utility function

The utility function is a mathematical tool to model the preferences of the service consumers. Its
objective is to give an estimation of the happiness of the consumers with a product or service, based
on several indicators, such as the quality of the good or the price paid for it[28, 32, 33].

Defining the utility function is not easy. The compensated utility function [34], which is a function
widely used in telecommunications [35–38] models the preferences of the consumers as the difference
between the quality of the service perceived and the price charged for this service

U = Q− p,

where p is the price charged for the service, and therefore, is an objective parameter. However Q is
the quality perceived by the consumers and its a subjective parameter, or equivalently, it may vary in
function of the perception of each consumer.

There are several possibilities to define the value of Q, in function of the terms that you want to
emphasize in your analysis and the kind of communication that we are trying to model. Some
publications model the quality of the service using physical parameters, like the available bandwidth, the
signal noise ratio or the interference in the wireless channel [39–41]. Other papers model the behavior of
the users using higher level concepts, avoiding to model the physical layer behavior explicitly [42, 43].
These papers use concepts such as the mean service time or the amount of data collected by the sensors
as indicators of the quality of the service offered to the final users. In our models we have used these
functions to model the behavior of users and sensor trying to upload their data to a wireless OP.The
quality function employed is based on the time required to transmit one data unit, which is obtained
modeling the wireless operator as a M/M/1 queue. It has been used in several works before [34,44–46],
and has the following form for a customer i:

Qi = c

(
Ti
xi

)−α
, (2.1)

where c is a scale factor, Ti/xi is the mean packet service time, normalized by the mean packet
transmission time, that is the minimum value of Ti and 0 < α < 1 is the customer sensitivity to
delay. Note that a utility function using the quality defined before is suitable for many IoT applications
with delay requirements [47].

The functions described above usually work well for many scenarios, however, when a homogeneous
population is modeled using a function that does not depend of the status of the market and the number of
options is limited, it may present a discontinuity. This discontinuity provokes that, with an infinitesimal
change in a parameter like the price, all the population changes its choice. This behavior is not desirable
and does not model a real scenario.
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In order to solve the discontinuity problem in the behavior of the costumers we used discrete choice
models [48], and specifically the Logit model. The Logit model has been used before in network
economics [28, 49, 50]. For a consumer i with N possible alternatives to choose, the alternative n in
the Logit model has the following utility:

Ui,n = vi + κi,n, (2.2)

where vi is deterministic and is related with the market parameters, while κi,n is treated as a random
variable that models the unobserved user-specific part of the utility. The random variable κi,n follows a
Gumbel distribution of mean 0. The human behavior is hard to predict and usually users within the same
population do not have the same preferences. For instance, while some users always prefer the cheapest
option others only will change their decision if the difference in the perceived utility is high enough. All
these unknown effects are aggregated in the random variable κi,n. One of the advantages of the Logit
model is that, assuming a high enough number of players, the number of players choosing the strategy i
is proportional to the probability of a player choosing the option i, which is:

ωi =
evi∑n
j=0 e

vj
. (2.3)

When the Logit model is used in the next chapters the utility presents the following form:

Ui,n = ϕ log (Ri) + κi,n, (2.4)

where ϕ > 0 is a sensitivity parameter and Ri is related with some parameters of the system, such
as the amount of data collected by the sensors and the price charged for the service. The logarithmic
relation between physical magnitudes and the human perception observed in (2.4) has been justified in
telecommunications through the Weber-Fechner Law [51, 52].

2.1.3 Profits

The profits is a mathematical tool to model the preferences of the service providers, such as OPs and
IoT-SPs. It can also be seen as a specific type of utility function, but mainly focused in the economical
aspects, due to the involved actors are mainly companies.

The profit of the providers typically has the following structure:

Π = pn− cv(n)−K, (2.5)

where n is the number of customers, pn is the revenue, while cv(n) and K are the costs. The revenue
is typically obtained multiplying the price chosen by the provider p and the number of customers
subscribed to the service n. The costs are divided in two groups:

• Variable costs cv(n): The variable costs, also known as investment costs [53], are the costs related
with the service provision and are function of the number of customers subscribed to the service.
In a wireless connectivity provision scenario the variable costs usually are related with the price
of the bandwidth used by the customers or the price of the maintenance and the energy used by the
telecommunications equipment. This is an important term in our analysis, given that it is directly
related with the viability of a scenario.
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• Fixed costs K: The fixed costs typically are related with initial investments, such as equipment,
spectral licenses or infrastructures. Usually it is a parameter of a scenario and it is relevant in
the Capital Expenditures (CAPEX) studios. However, it is not relevant in the scenarios viability
analysis [3, 32].

There are different ways of optimizing the profits, depending on the market and the kind of competition.
In monopolistic scenarios the optimization is calculated solving maximization problems with restrictions
in static models, and optimal control problems in dynamic models. On the other hand, in competitive
scenarios, the optimization is calculated using game theory: equilibrium concepts in static models
and differential games in dynamic models. Typically, the optimization variable is the price [54–57],
nevertheless, it is not strange to find works using the system capacity or leased bandwidth as optimization
variables [40, 58–60].

Typically the profits are used as a measure of the viability of a scenario. However, it is also common to
use the social welfare as an indicator of the viability of an scenario. The social welfare uses a pondered
sum of different factors as a measure of the viability. It typically is obtained adding up the providers’
profits and the customers’ utilities. The maximization of the social welfare can be performed solving a
multi-variable optimization problem.

2.1.4 Competition

In function of the scenario analyzed, there are different ways to solve the providers’ profit maximization
problem. In economics it is common to differentiate three different types of scenarios:

• Monopoly: A monopoly infrastructure comprises only one provider of a service with no other
providers able to provide an equivalent service. The unique provider completely controls all the
industry and it is able to block the entrance of new competitors. Historically there have been two
different kinds of monopolies:

– Public Monopoly: There are some services which are not profitable or are basics for the
daily life that are provided by a public entity. In this case, the objective of the monopolistic
operator is not to maximize its profits, but to maximize the social welfare.

– Private Monopoly: When the entrance in a market requires a huge initial investment it is
common that the first company entering into the market reaches a monopolistic status. In
this case the company has a complete control in the offer and the price of the services, and
therefore, can maximize its profits at expense of the consumers.
At the beginning of the telecommunications it was a public monopoly, which evolved to a
private monopoly when it started to be profitable. Nowadays, the market has evolved to an
oligopoly.
In order to analyze this scenario it is needed to solve an optimization problem.

• Oligopoly: In a oligopoly, there are only a small number of providers competing for offering
a service. It is common markets with high initial investments and a small number of big
companies. Unlike the monopolistic scenario, here the providers compete to serve the customers,
and therefore, the market equilibrium is more beneficial for the customers. However, given that
the number of providers is limited, the equilibrium reached is not the best for the users, and the
providers are still able to have high revenues.
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This is the most common scenario in telecommunications. Nowadays, telecommunications are
almost an essential good, and it is recommended the control of the market by a regulator to ensure
fair prices and good quality of service to all the users.

The tool needed to solve this scenarios is game theory, which helps us to analyze the competition
between providers and to obtain the market equilibrium parameters.

• Perfect Competition: Also known as competitive market, is a scenario with numerous small
providers offering equivalent services. In this scenario there is not a market leader, and all the
providers have the same power. The competition in this market is fierce, and the providers are
forced to minimize its profits in order to attract customers. This is the best scenario for the
customers, however, it is only possible in markets with small initial investments.

2.1.5 Economic Viability

In the dissertation the concept of economic viability or economic feasibility is used indistinctly as a
characteristic of a scenario.

The concept of economic viability means that all the actors that decide to join a scenario (operators,
users, service providers, sensors, ...) are benefited, or at least are indifferent, compared with those that
do not join it. More specifically, the operators and service providers obtain non-negative profits and the
users and sensors get a non-negative value in their utility function.
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2.2 Game theory

Game theory is a branch of mathematics that analyzes the decisions of an actor, taking into account
the decisions of the rest of the actors in the system [26]. At the beginning it was used to predict the
best strategies in a game, for this reason the actors are often called players. Nowadays game theory
has evolved and it has become a powerful tool to address several problems, such the analysis of the
competition between providers in a scenario. It also helps us to analyze the behavior of the users and
their decisions.

2.2.1 Overview and basic concepts

Following [26] and [61] we explain the game theory concepts employed in this dissertation:

• Information Requirements: In function of the knowledge of the actors about the system we have
two different types of games:

– Games with perfect information: In these games all the players know the preferences of the
other players and the payoff of all the possible actions. This is the main kind of games that
we use to analyze our models, nevertheless, it is not always a valid approach, given that the
assumptions about perfect information are very strong.

– Games with imperfect information: These games are characterized by the uncertainty of the
players about the preferences of the other players or the payoff of all the actions. These
games are characterized using random components. The Logit model is an example of a
function that incorporates the uncertainty about the preferences of the users, allowing us to
model an heterogeneous population.

• Rationality: We assume that a player is rational when it always chooses the option that better
satisfies its preferences. In our models it means that the providers always will try to maximize
their profits and the users will maximize their utility function.

• Equilibrium: This is one of the most important concepts of the game theory, given that it will
be the solution for many of our problems. An equilibrium is a state where the players have no
incentive to change their actions unilaterally. There are several equilibrium concepts, and they are
different if the played games are cooperative and non-cooperative. The most common equilibria
are the following:

– Nash: The Nash equilibrium is reached when two or more competitors choose
simultaneously their best strategy (also known as best response function) taking into account
the strategies of the competitors. The Nash equilibrium concept may be used to find the
prices chosen by several operators in a competitive scenario. In a two-player game, where
the competition is in prices, the Nash equilibrium can be defined as follows:

p∗1 = argmax
p1

Π1(p1, p
∗
2), (2.6)

p∗2 = argmax
p2

Π2(p∗1, p2).

– Wardrop: The Wardrop equilibrium is a concept born in the analysis of transportation
networks. The first Wardrop principle defines that in the equilibrium a user cannot improve
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its utility through an unilateral change of choice. The second principle defines that the
average utility of the users in the equilibrium is the best. It is useful to model the behavior
of users with common interests [62].

– Stackelberg: The Stackelberg equilibrium is obtained in sequential games with a leader and
one or more followers. The leader can choose its optimal decision firstly, anticipating the
choices of the followers. In oligopoly scenarios such as telecommunications, it is common
that one provider dominates the market. The leader position gives an additional advantage
to the dominant provider, allowing to increase its profit.

Another important aspect is that a game may have several equilibria, and not all are desirable.
Some games may have several stages or subgames, such as a subscription stage and a pricing
stage. Backward induction may be used to solve these games selecting a "good equilibrium".
Backward induction consists in deducing backwards from the end of a problem to the beginning
to infer a sequence of optimal actions. Extensive form games may have several Nash equilibria and
backward induction helps us to pick out a good equilibrium. Any Nash equilibrium found using
backward induction is also a Nash equilibrium for every subgame, or equivalently a Subgame
Perfect Equilibrium [61]. Such games with several stages may also be seen as a Stackelberg
game, with the providers choosing the prices as leaders and the users subscribing as followers.

2.2.2 Types of games

There are several ways to classify the types of games. We have decided to classify the games taking into
account the number of decisions that each player can make, the order of the decisions and the changes
in the system during the game.

2.2.2.1 Static games

In a static game each player makes only one decision with no knowledge of the decisions made by the
other players, or equivalently, the decisions are simultaneous.

The concepts that we used to solve these games are the Nash equilibrium to model the behavior of
operators and providers, and population games, which help us to model the behavior of large populations
of players, such as the customers.

2.2.2.2 Evolutionary games

Evolutionary games are games where the players are modeled as evolving populations. The main
difference with respect to static games is that the decisions of the population may evolve during the
time.

In evolutionary games, players use a set of rules to update their strategies. This set of rules is known
as revision protocol [63] and determines the evolutionary dynamic, which is a differential equation that
models the behavior of the players. There are several families of revision protocols, but we are interested
in the imitative protocols and direct selection protocols. In the imitative protocols the users updates
their strategies taking into account the strategies chosen by other users. But imitative protocols admit
boundary rest points that are not Nash equilibria of the underlying game [64]. On the other hand direct
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selection protocols are not directly influenced by the choice of others and this characteristic prevents
the boundary rest points. In our work we have chosen an imitative protocol, given that it is tractable
analytically and widely used in the literature. However we need to be cautious about the boundary rest
points. The main mean dynamics studied [63] are the following:

• Smith Dynamic: The Smith dynamic is derived from behavior of users modeled using the
following revision protocol:

Γij = [Uj − Ui]+ , (2.7)

where Γij is the switch rate from strategy i to strategy j, i is the current strategy, j is the new
strategy and Uk is the utility of selecting the strategy k. This revision protocol models that
each time instant, the players choose a random strategy, and if its utility with the new strategy
is higher than his current strategy’s utility, the player will change its strategy to the new one with
a probability proportional to the difference between utilities. As we observe the decisions of the
players are not based in the decisions of other players, and therefore, it is a direct revision protocol.

If we define the social state of a system asX = {x1, x2, ..., xs}, where xi is the fraction of players
choosing the strategy i and S = {1, 2, ..., s} is the set of all the possible strategies. We can define
the Smith mean dynamic, derived from (2.7) as:

ẋi =
∑
j∈S

xj [Ui(X)− Uj(X)]+ − xi
∑
j∈S

[Uj(X)− Ui(X)]+ , (2.8)

where ẋi is the instantaneous variation of the social state i, and Uk(X) is the utility perceived
choosing the strategy k for the current status of the system X . The Smith dynamic has the
following properties based on [63]:

– Continuity: Small variations in global behavior not lead to large changes in players’ actions.

– Positive Correlation: When a population is not in a steady state its strategies’ growth rates
are positively correlated with the utilities.

– Nash Stationarity: All the rest points of the dynamic are Nash equilibriums of the game.

– D2 Data requirements: Γij depends only on Ui(X) and Uj(X).

The Smith dynamic is one of the most interesting dynamics, due to its convergence characteristics
and information requirements. However, its mathematical expression presents a discontinuity, and
therefore is not analytically tractable. Despite of that, the Smith dynamic is an excellent dynamic
to use in simulation environments, which are out of the aim of this dissertation.

• Replicator Dynamic: The Replicator dynamic is derived from behavior of users modeled using
the following revision protocol:

Γij = xj [Uj − Ui]+ , (2.9)

This revision protocol models that each time instant, the players choose a random opponent, and
if the utility of the opponent is higher than his current strategy’s utility, the player will change it’s
strategy to the opponent one with a probability proportional to the difference between utilities. As
we observe the decisions of the players are based on the decisions of other players, and therefore,
it is an imitative revision protocol.

The mean dynamic derived from the revision protocol (2.9) is know as replicator dynamic and is:

ẋi = xi (Ui(X)− Uavg(X)) , (2.10)
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where Uavg is the average utility of all the players in the system. As we observe the dynamic
evolves progressively to the state with higher utility, slower when it has few players and faster
when the portion of players grow. However, we also observe that when a state has no players no
one will move to it, regardless of the utility of this state.

The Replicator dynamic has the following properties:

– Continuity.

– Positive Correlation.

– Dn Data requirements: Γij depends on the utility of all the strategies Uk(X), but not on the
social state X .

The replicator dynamic does not have Nash Stationarity. However, its mathematical expression is
tractable analytically and it has been widely used in the bibliography. We have used this utility to
model the behavior of sensors in Chapter 6.

• Logit Dynamic: When the behavior of the players is modeled following the Logit model, the
revision protocol is the same defined in (2.3):

Γi = ωi =
evi∑n
j=0 e

vj
. (2.11)

The mean dynamic derived from the revision protocol (2.11) is know as Logit dynamic and is:

ẋi = Γi(X)− xi =
evi∑n
j=0 e

vj
− xi, (2.12)

where ωi(X) is the probability of choice the strategy i when the social state is X and vi is the
deterministic part of the player utility choosing the option i, Ui(X).

The Logit dynamic has the following properties:

– Continuity.

– Dn Data requirements: Γij depends on the utility of all the strategies Uk(X), but not on the
social state X .

• Hybrid Dynamics: The hybrid dynamic models the behavior of a player when it uses several
revision protocols with different weights. The revision protocol of a player playing the dynamics
X with intensity a and Y with intensity b is:

ΓH = aΓX + bΓY , (2.13)

and the resulting dynamic is also a combination of the original dynamics. One interesting
characteristic is that if the dynamic X satisfies positive correlation and Nash stationarity, but
the dynamic Y only satisfies positive correlation, the hybrid dynamic satisfies both properties.

The solution for an evolutionary game are the stationary points of the dynamic. The dynamic reach a
stationary point when no user is willing to change its strategy, or equivalently when ẋi = 0. However,
no all the stationary points (or steady states) are stable, and it is needed to characterize its stability.
One simple way to determine the stability of a steady-state is using the concept of invasion. Consider a
steady-state x ∈ X where sinks perceive a utility U(x) and an invader state y ∈ X where some sinks
move to a different strategy and they perceive a utility U(y). We can affirm that x ∈ X is a Globally
Evolutionary Stable Strategy (GESS) [63] if:

U(y)− U(x) < 0 ∀ y ∈ X − {x}, (2.14)
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which means that the utility perceived by the sinks who do not switch their strategy from state x ∈ X is
higher than the utility perceived by the sinks who switched it. An equivalent definition is that the utility
of sinks who switch their strategy decrease or the utility of sinks who keeps their strategy increases,
while the utility of sinks who switch remains constant [65]. In addition, it has been demonstrated that in
every single population game, like in our models, every GESS is unique and it is also a Nash equilibrium
[63]. Furthermore, every GESS is also an Evolutionary Stable Strategy (ESS) and, as proven by Barron,
it is also an asymptotically stable solution of the dynamic [61].

2.2.2.3 Dynamic games

Dynamic games were developed in the 1920s, however they were not widely used until the 1970s [66].
Unlike static games, in dynamic games the players decide their strategies not only in one time instant,
but over a time horizon. In these games the parameters of the systems and the decisions of the actors
may change over time. These games are used typically to model and analyze the behavior of operators
and service providers in dynamic scenarios.

The objective of the players is to maximize their profits, however, the traditional definition of profits
(2.5) is not valid in this scenario. Defining the instantaneous profits of the player i in a given instant of
time as Πi

ins(t), we can define the overall profits in a time interval [a, b] of a dynamic game as:

Πi =

∫ b

a
Πi
ins(t)dt (2.15)

There are several kinds of dynamic games. In this dissertation we only have employed the concept of
non-cooperative differential games. The solution concept that we have employed for the differential
games is the Open-Loop Nash Equilibrium (OLNE) [66]. In the OLNE the equilibrium is defined as
an optimal path or strategy for each player that maximizes its profits given the OLNE strategies of the
other players. The OLNE does not need any information about the state of the system and is obtained
in advance. In the equilibrium no player has an incentive to deviate its strategy from its original path.
However, if the state of the system is deviated, given that the OLNE does not have feedback, the OLNE
looses its optimality. The Markov-Perfect Nash Equilibrium (MPNE) solves this problem, nevertheless,
it is not always possible to obtain.

In order to obtain the OLNE, each player has to solve an optimal control problem, taking into account
the strategies of the other players. The concept employed to solve the optimal control problems is the
Pontryagin Maximum Principle [30].
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2.3 Non-linear Optimization

The equilibrium concepts described in the previous section are essential to solve games with 2 or more
players, however, when a game has only one player the solution of the game is an optimization problem.
Another characteristic of our problems is that the objective function and the constraints are not linear
with the optimization variables. For this reason, the techniques described below are focused on the
nonlinear optimization.

Nonlinear optimization techniques differ if the problem solved is an static one-shoot game or a dynamic
game.

2.3.1 Static optimization

When the analyzed scenario does not evolve over time and the player only decides once its strategy we
are in a static optimization scenario. When the problem is constrained due to physical limitation of the
parameters or due to logical concepts, such as that the price paid for a service must be positive, we have
several tools available [29]. For problems with convex constraints we can use the following analytic
tools:

• Lagrangian multipliers: This tool allows us to solve optimization problems with equality
constraints. Assuming a two variable problem with the following structure:

maxx,y f(x, y) s.t g(x, y) = c, (2.16)

where f(x, y) is the objective function, g(x, y) is a the constraint function, x, y are the
optimization variables and c is a constant. If f(x, y) and g(x, y) are continuous functions, at
least twice differentiable and defined over all the domain, the solution to the problem

Ox,y,λF (x, y, λ) = 0, (2.17)

are maximums, minimums or saddle points of the problem (2.16). Where

F (x, y, λ) = f(x, y) + λ(g(x, y)− c) (2.18)

is an auxiliary function, λ is the Lagrange multiplier, Ox,y,z =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
is the gradient and

Ox,yf(x, y) = −λOx,yg(x, y).

• KKT: This is an extension of the Lagrange multipliers, that allows us to solve optimization
problems with inequality constraints of the form g(x) ≥ 0. Assuming once again that f(x, y)
and gi(x, y) (i = 1, ...,m) are continuous functions, at least twice differentiable and defined over
all the domain, we define an optimization problem with two variables:

maxx,y f(x, y) s.t gi(x, y) ≥ 0. (2.19)

The KKT theorem provides us the necessary conditions of the solution of the optimization
problem. However, if f and gi are also concave functions, the KKT conditions:

λ∗i ≥ 0,

λ∗i gi(x
∗, y∗) = 0,

Ox,yf(x∗, y∗) +
∑m

i=1 λ
∗
iOx,yg(x∗, y∗) = 0,

(2.20)
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are not only necessary, but sufficient conditions for the solution (x∗, y∗) of the optimization
problem (2.19).

Nevertheless, when the constraints are not "mathematically friendly", or equivalently, they are not
convex, we cannot use the previous methods. In such cases it is needed to use heuristic approaches
to optimization:

• Genetic Algorithms: The genetics algorithms try to replicate the behavior of biological
populations in order to find a good numerical solution for very complex problems. At the start, a
huge number of candidates to maximum are generated randomly and each candidate is evaluated
using a fitness function (in our case, the objective function f ) in order to see how good it is.
The best candidates are selected as seeds for next generations of candidates. The new generation
of candidates is obtained using mutation and crossover of the best candidates in the previous
generations. Genetics algorithms repeat this process until they reach a maximum number of
generations or a solution good enough.

Genetics algorithms are able to perform a global maximization, where other numerical methods
fail to converge, like when we have non continuous objective functions.

2.3.2 Dynamic Optimization

The optimization stages are solved using optimal control theory [30], which allows us to do a dynamic
optimization within a time horizon and not only in the steady states. As a result of the dynamic
optimization we obtain a control function in every instant of time t that optimizes the objective function
within a time horizon t ∈ [0, T ]. The problem that we typically solve is to obtain the optimal capacity or
price that maximizes the profits of an OP, given that the behavior of sinks is modeled by an evolutionary
game.

max
p

Π(p) =

∫ T

0
e−ηtΠins(p, t)dt (2.21)

s.t ẋi = xi(Ui(X)− Uavg(X), X(0) = X0 and p ∈ ]0,R+[,

where Πins(p, t) is the instantaneous profit of the OP defined in (2.5), η is a given discount rate, X0 is
the initial state of the system and ẋi is a a mean dynamic of the evolutionary game of the users, which
in this particular case is the replicator dynamic (2.10).

The previous optimal control problem can be solved using the Pontryagin’s Maximum Principle (PMP),
which provides the necessary conditions to find the candidate optimal strategies. For the open-loop case
the hamiltonian function of the OP can be defined as:

H = Πins(p, t) + σẋ1, (2.22)

where λ is the adjoint variable of the OP, that models the variation in the profit due to the behavior of
the users modeled by the replicator dynamic. The PMP gives the necessary conditions that all candidate
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to optimal strategy mush satisfy:

p∗(t) = max
p ∈ ]0,R+[,

H, (2.23)

ẋi = xi(Ui(X)− Uavg(X), (2.24)

σ̇(t) = ση − ∂H

∂x1
, (2.25)

σ(T ) = 0. (2.26)

where (2.23) is the maximality condition, (2.24) is the replicator dynamic, which models the behavior
of the sinks, (2.25) is the adjoint equation and (2.26) is the transversality condition. Solving (2.23) we
obtain the candidate strategy to maximum in terms of the state x1 and the adjoint variable λ . Replacing
the candidate strategy in the remaining PMP conditions we obtain a system of Partial Differential
Equation (PDE) with an initial condition and an end condition . These systems are also known as Two
Point Boundary Value Problem (TPBVP) and cannot be solved using traditional methods for PDE, given
that they do not have initial conditions for all its variables. The TPBVP can be solved using the shooting
method [67]. The problem of the shooting method is that it requires a very good initial estimation of the
value of λ(0), otherwise the method may be unstable. In order to obtain the initial estimation we can
solve the problem in several steps, starting with very small values of T and obtaining the value of λ(0)
that solves the TPBVP. In the next steps we increase the value of T progressively, using the value of
λ(0) obtained in the previous step, until we solve the problem for the original value of T .
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2.4 Network economics

Telecommunication network economics is not a new research topic, and a depth review of the state of
the art was needed before starting our research. In this study of the state of the art, we focused on the
application of microeconomics to solve several problems related with the next generation networks, as
well as to study the economic viability of different network scenarios in the framework of the IoT and
MTC. Firstly, the access network problems and the different approaches to solve were analyzed. And
secondly, the economic viability is studied.

2.4.0.1 Access Networks

There are different approaches trying to solve the massive access of MTC devices. On the one hand there
are local access technologies with a short or medium coverage range. These technologies including IEEE
802.11 and smallcells/picocells can be used in small areas with high density of devices, nevertheless this
solution requires adapting the protocols and improving the security, furthermore their deployment is
expensive due to the small coverage and in some areas may result impossible. On the other hand there
are global access technologies like cellular networks adapted to IoT requirements like narrowband IoT,
and unlicensed frequency technologies such as LoRa and Sigfox [16, 68–70]. Some of the advantages
of these technologies are the higher coverage, the infrastructure is cheap to deploy, and the protocols are
robust and safe[71, 72].

Cellular networks were not created to grant access to a huge number of devices. The recent LTE
standards in mobile networks, which are implemented in the nowadays access networks, were not
designed to provide service to MTCu but to HTCu, and the new 5G standards are still being developed.
HTC traffic needs high bandwidth, mobility and small delays in order to carry services like voice and
video streaming. By contrast, MTC traffic is mainly characterized by a huge number of devices, small
packet sizes and low mobility. The development of new technologies can help to solve the problems
that appear when MTC traffic coexists with HTC traffic in a common infrastructure[73]. There are a lot
of proposals trying to manage the congestion in networks with MTCu based on protocol modifications
[74–80], but also there are proposals using network pricing as a congestion control tool [81, 82] and
as an efficient power control mechanism [83, 84], showing promising results in both, the distribution
of the system load and in the control of the energy usage. For instance, the work in [85] proposes a
pricing mechanism to prevent the congestion due to a large number of MTC devices trying to access
to the channel within a short time interval. An adaptive price mechanism that increases the price
when the network is overloaded is proposed and meets two objectives: congestion management and
service differentiation mechanism. Reference [86] proposes a model where a centralized system is
implemented to control the channel sharing in cognitive radio networks based on a credits system and
how this mechanism allows to achieve different sharing objectives. Network pricing also has been used
in combination with game theory and machine learning to study the competition in access networks [41],
showing an improvement in the network usage and energy consumption.

Nevertheless, these works are focused in very specific aspects of access networks and WSN service
provision, and they do not analyze an end-to-end business model, which provides a global point of view
of all the system, from then sensors to the final users. For this reason, it is also necessary an analysis
from an economic point of view.
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2.4.0.2 Economic Viability

As we have shown in the previous point, new technologies are emerging to solve the IoT problems, but a
study of the economic viability of these technologies is needed before its adoption by the operators and
users. The main objective of the study of the economic models is to identify the viable scenarios where
both, operators and users get positive payoffs.

Network pricing is a useful tool for congestion control, but also is a tool needed in the study of the
economic viability of a scenario. It helps us to obtain the equilibrium prices where supply and demand
are balanced and the operator profits are maximized [54]. To study the economic viability of a network
scenario the users utility and the operators profits should be known, and consequently a pricing scheme
is needed. The OP profit maximization problem has been addressed several times in the literature as a
pricing problem [87–90].

There are works that model simplified cases with one network operator without competition, like [34],
which proposes priority queuing to model service differentiation with different delay restrictions and
analyzes the provider’s profit, or like [55], that uses game theory to find, select and improve the efficiency
of equilibria in wireless networks. There are works that also analyze different types of services like [77],
that develops a pricing scheme for a model with one operator providing macrocell and femtocell services.

On the other hand, there are models where two or more operators compete for serving users while they
try to maximize their own profits. In these cases the study of competition is needed. Historically, the
concepts of the economic analysis of transport systems field [57,91], based on game theory approaches,
have been applied to the competition in the networks field [90]. Many works study the competition
between operators with several considerations. Some studies analyze the competition in models with
homogeneous traffic profiles [92], and also that analyze the competition between operators offering
heterogeneous services like [93] or [46], which studies the feasibility of the competitive scenario making
use of game theory and a two-queue model to model priority and non-priority services. However the
work only considers one type of traffic and does not analyze different profiles, like the coexistence of
HTCu and MTCu.

Typically, the economic viability was studied in network connectivity provision scenarios, however, due
to the growing of the IoT and the WSN, the study of provision of different services over the network is
becoming more relevant. The economic analysis of the services provision allows us to study how the
IoT data could be monetized, and therefore study the economic viability from the point of view of actors
other than the operators, such as the IoT devices owner. This is a very important point because it allows
us to know which scenarios are most likely for IoT and how it will affect the HTCu perception of the
network. Despite the small number of studies in this topic, there are some interesting contributions such
as [94], which proposes a new business model for WSN-based services, where virtualization of WSN
is studied. The virtualization allows the author to separate the WSN infrastructure from the services
offered to final users, however the model is not studied from a mathematical perspective. Another
business model is studied in [42,88], where a bundling platform acts as an intermediary, buying the data
from WSN and selling data-based services to final users, however the model does not analyze the cost
of collecting and transmitting the sensors’ data nor a competition scenario. The pricing mechanisms
are studied in both articles using game theory and a solution maximizing the platforms’ profit is shown
to exist. Another approach based on bundling is [87], where several business models are proposed,
nevertheless the work is too general and does not analyze the models in depth. The work in [95]
proposes several models, where users purchase providers’ IoT data through a marketplace and analyzes
several economic concepts, such as value and pricing of information. In addition, it also analyzes the
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competition between providers using a game theory approach, nevertheless the model does not evaluate
the quality of the information and how the information is transported from providers to consumers.

The analysis is typically solved statically, and the results are obtained in the equilibrium, where the
actors have no incentive to change their decisions [96, 97]. However, some works go one step further,
analyzing dynamic problems, where the system parameters may vary over time and the optimization is
done within a time interval [39, 49, 84, 98, 99].
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CHAPTER 3

ANALYZED SCENARIOS

In this dissertation we propose different scenarios, in order to cover some of the different opened research
topics related with the economic viability of wireless communications, in the framework of IoT and
MTC. Our global objective in this dissertation is to analyze from an economic point of view the evolution
of wireless networks, from the nowadays networks designed to serve HTC to end-to-end MTC solutions.
In order to achieve that objective we have analyzed three scenarios. Scenario 1, studies the first stages of
the transition, where HTC and MTC traffic must coexist on a common network infrastructure. The next
logic step is to provide dedicated connectivity solutions to MTC users, which is analyzed in Scenario
2. Finally, once the MTC connectivity problem is analyzed, we can go one step further, and study the
implications of providing services based on the data gathered by the MTC devices, such as sensors. One
specific case of that is studied in Scenario 3.

All the scenarios are analyzed using the tools detailed in the previous chapter. In the following sections
we describe with more detail the aim of each scenario before analyzing them in depth in the following
chapters.

3.1 Scenario 1: HTC and MTC Service Provision on a Common Network
Infrastructure

The deployment of networks to serve MTC implies huge investments and the lack of funding is a
common problem [100, 101]. To minimize the costs of serving MTCu, we propose a model where the
existing network infrastructures are reused in a shared manner between HTC and MTC in Chapter 4.
Our objective is to study the economic viability of a transition scenario, where both, HTC and MTC, will
be served simultaneously on the same network infrastructure [11], without the need of high investments
in network improvements. The scenario is focused on the interaction between users and operators,
and between the competing operators. We have modeled the interaction between the operators by
applying the concepts of game theory and transport engineering [91] to networks economics. Our main
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contributions are to prove that the duopoly provision is economically viable and allows the HTC and
MTC to coexist.

3.2 Scenario 2: Dynamic Capacity Provision for Wireless Sensors
Connectivity

In Chapter 5, we analyze a scenario where an operator provides a connectivity service to WSN. The
OP chooses dynamically the amount of capacity provided in order to optimize its profits, given that the
prices are fixed by a regulator. The scenario is analyzed using mathematical modeling and game theory.

Firstly, a static model is solved as a first approximation, then we propose a more realistic dynamic model,
using evolutionary games and optimal control theory. The behavior of the sensors is modeled using a
delay-sensitive utility function.

The aim of this work is to show the feasibility of the proposed IoT scenario. To achieve this objective we
maximize the profits of the network operator in a given time interval. We provide detailed mathematical
procedures, not only for optimization problems with fixed parameters, but also for problems where the
parameters may vary over time.

3.3 Scenario 3: Wireless Sensor Network-Based Service Provision in a
Duopoly Setting with a Monopolist Operator

In Chapter 6, we analyze a scenario where several service providers collect sensing-data and compete
to provide a service based on the collected data. The scenario analyzes an end-to-end business model,
which provides a global point of view of all the system, from then sensors to the final users.

In the scenario we propose a model where the IoT-SPs are the owners of the WSN. The scenario analyzes
not only the competition between IoT-SPs, but also how the sensing data is obtained and the related costs.
We study the feasibility of the model from a positive-profit point of view for all the actors. The model is
analyzed as two games with two stages each one using game theory. Our model has the peculiarity that
both games are connected, through the amount of data collected by the sinks and the price of transmit
that data.

3.4 Scenario 4: Wireless Sensor Network-Based Service Provision in a
Duopoly Setting with a Monopolist Operator: A Dynamic Approach

In Chapter 7, we go one step further, analyzing the scenario described in Chapter 6 dynamically, which
allows us to obtain realistic conclusions, not only about static, but also about evolving scenarios.

In the scenario we consider diferent time scales in the sinks-OP and users-IoT-SPs games. We consider
that the changes in the first game are much less frequent, and therefore we can use the static equilibrium
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values of the first game to solve the second game dynamically. The behavior of the users is modeled
using a Logit dynamic, while the competitions between IoT-SPs is modeled using a differential game.
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CHAPTER 4

SCENARIO 1: HTC AND MTC SERVICE
PROVISION ON A COMMON NETWORK

INFRASTRUCTURE

The objective of this dissertation is to analyze the economic viability of all the stages in the transition
from a HTC to a MTC centered network. This scenario attempts to model the early stages of such
transition, where HTC and MTC users are served in a common network infrastructure. This approach
is a soft transition, where the initial investments in infrastructures are minimal, and allows us to analyze
the different problems and implications that may appear in the dedicated MTC networks.

The chapter has the following structure: Section 4.1 describes the scenario, the queue model employed
to model it and the pricing scheme, whereas Section 4.2 describes the strategic interactions in the model
as well as the different game stages and the strategies used to solve it. Subsection 4.2.1 analyzes the
baseline case with one operator serving HTCu, while Subsection 4.2.2 studies the case with HTCu and
MTCu in the duopoly case and Subsection 4.2.3 in the monopoly case. Finally, Section 4.3 discus the
results.

4.1 General Model

The paper models the following cases:

• Baseline case: One operator serving one HTC flow.

• Duopoly case: One operator serving an HTC flow and the other operator serving an MTC flow.

• Monopoly case: One operator serving one HTC flow and one MTC flow.
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Q2 - ordinary

Q1 - priority
λ1

λ2

Figure 4.1: Queue model for two different traffic profiles

Hereinafter the operator serving the HTC (resp. MTC) flow will be called Human Type Communications
Operator (HTCo) (resp. Machine Type Communications Operator (MTCo)).

To model the service provided in the above scenarios, we use the two-priority queue model shown in
Figure 4.1, where the HTC flow (Q1-priority) has priority over the MTC flow (Q2-ordinary), which is
served only when the HTC queue is empty. The HTC flow may suffer a little degradation in its QoS due
to the arrival of MTC packets. This is modeled with a non-preemptive model, that is, when one HTC
packet tries to access the network and a MTC packet is being served, the HTC packet has to wait. The
service discipline of each queue is FIFO (First In First Out). Each flow traffic follows a Poisson process
with a mean rate λi, and the transmission time follows a exponential distribution with mean xi, where
i = 1 for the HTC and i = 2 for the MTC. It is assumed that the buffer space is unlimited.

The quality perceived by each flow is proposed to be given by a variation of the expression used in
[34, 44–46]:

Qi ≡ c
(
Ti
xi

)−α
, (4.1)

where Ti/xi is the mean packet service time, normalized by the mean packet transmission time, that
is the minimum value of Ti, for each flow. The selected quality function is suitable for many MTC
applications with delay requirements [47]. We define 0 < α < 1 as the user sensitivity to delay, which
is assumed to be the same for the two flows; for a given normalized value of the delay, a greater α
translates into a worse perceived quality. Note that Qi decreases with Ti, which means that the higher
delay, the worse quality and that Qi ≥ c. Note that the quality function is different for each flow if the
packet size (equivalently xi) is different.

HTCo charges a price p1 per packet to the HTC flow, while MTCo charges a price p2 per packet to the
MTC flow. Operators’ profits are given by

• Π = λp in the baseline case.

• Πi = λipi i = 1, 2 in the duopoly case.

• Π12 = λ1p1 + λ2p2 in the monopoly case.

Our model does not include marginal costs since they are negligible compared to the fixed costs that
prevail in telecommunication network operation.
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The arrival rate of each traffic flow is influenced by the serving operator through the price pi it charges
and through the quality Qi it offers. The utility that each flow receives is proposed to be given by the
difference between the quality perceived by users in monetary units minus the price charged by operators
[35]:

Ui ≡ Qi − pi i = 1, 2, (4.2)

The adjustment of λi (or equivalently ρi ≡ λixi) hereinafter will be known as flow i’s subscription
decision. The selection of the price pi by each operator hereinafter will be known as pricing decision.

4.2 Game Analysis

From the model description above we can find the following strategic interactions:

• Flow i’s subscription decision depends on Operator i’s pricing decision.

• Operator i’s profit depends on flow i’s subscription decision.

• Flow i’s subscription decision depends on flow j’s decision with (j 6= i), through the Qi factor.

• Operator i’s profit depends on Operator j’s pricing decision indirectly trough flow j’s subscription
decision.

The scenarios with such strategic interactions can be modeled and analyzed using game theory. The
structure of the games is summarized in Figure 4.2

Game I: Baseline Case Game II: Duopoly Case Game III: Monopoly Case

Stage I: Operator
Pricing Decision

The operator chooses a price
that maximizes its profit. The

optimal price is obtained solving
a profit maximization problem

Stage I: Operators
Pricing Decisions

The HTCo and MTCo compete
in a rational manner with
the price pi in order to

maximize their own profits

Stage I: Operator
Pricing Decisions

The monopolistic operator
chooses the prices p1 and p2
that maximizes its profit. The

optimal prices are obtained
solving a multi-variable

optimization problem
Stage II: HTC flow
subscription decision

Given the optimal price fixed
by the operator, the value of
ρ is obtained assuming that
the population has reached
the Wardrop equilibrium

Stage II: HTC and MTC
flows subscription decisions

Given the prices fixed by the
operators competition, the values

of ρ1 and ρ2 are obtained

Stage II: HTC and MTC
flows subscription decisions

Given the prices fixed by the
monopolistic operator, the values

of ρ1 and ρ2 are obtained

Figure 4.2: Description of the games

In all the cases we use two-stage games. In the first stage of Game I/Game III the operator chooses the
price/s that maximizes its own profits. In the first stage of Game II each operator chooses its pricing
strategy simultaneously and in an independent way, in order to maximize its profits, taking into account
the behavior of the other operator. The equilibrium concept used here is the Nash equilibrium. In the
second stage of all the games, each flow makes its subscription decision/s in order to reach the Wardrop
equilibrium, based on the price published by the operator who serves the flow.
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All the games were solved using backward induction. Backward induction consists in deducing
backwards from the end of a problem to the beginning to infer a sequence of optimal actions. Extensive
form games may have several Nash equilibria and backward induction helps us to pick out a good
equilibrium. Any Nash equilibrium found using backward induction is also a Nash equilibrium for
every subgame, or equivalently a Subgame Perfect Nash Equilibrium (SPNE) [26, 61].

In Stage II of each game, Assuming a number of packets high enough, the flow subscription decision
of one user will not affect the utility perceived by the rest of the users. Under these conditions the
equilibrium reached is that postulated by Wardrop [62], either ρi > 0 and Ui = 0; or ρi = 0 and Ui < 0.
Under these circumstances a user equilibrium always exists and is unique. Four cases may be identified:

• Case 1: U1 = 0 and U2 = 0.
Qi − pi = 0 i = 1, 2. (4.3)

• Case 2: U1 = 0 and U2 < 0, which means ρ2 = 0.

• Case 3: U1 < 0 and U2 = 0, which means ρ1 = 0.

• Case 4: U1 < 0 and U2 < 0, which means ρ1 = ρ2 = 0.

In Stage I of Games I and III, the prices selected by the operator are obtained solving maximization
problems, given the flow subscription decision equilibriums as described above. However, in Game II,
given that there is competition between the operators, the price selected by each operator will be such
that:

p∗1 = argmax
p1

Π1(p1, p
∗
2), (4.4)

p∗2 = argmax
p2

Π2(p∗1, p2). (4.5)

4.2.1 Game I: Baseline Case - HTC service provision

In this section we study the baseline case: one operator providing service to an HTC flow. The first
stage described in the previous section is reduced to a HTCo pricing decision with the objective of
maximize its profits, while the second stage is reduced to the choice between the service provided by
the HTCo or no service, where the utility is assumed to be zero.

4.2.1.1 Stage II: HTC flow subscription decision

The mean service time for the M/M/1 queue is given by [23]:

T =
ρx̄

1− ρ
+ x̄, (4.6)
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the quality perceived by the users is

Q = c

(
1

1− ρ

)−α
, (4.7)

Analyzing the flow subscription decision we observe that given a price p announced by the HTCo, the
Wardrop equilibrium is reached when:

• Case 1: The packet flow increases its rate until the utility is zero. The ρ value will be such that
makes the utility zero

Q− p = 0. (4.8)

• Case 2: The price is so high that makes the utility negative (u < 0, so no packets subscribe the
service ρ = 0. This happen when Q(0)− p < 0, or in a similar way c−α < p.

Assuming equilibrium is reached in Case 1 we can obtain ρ solving (4.8)

ρ = 1−
(p
c

)1/α
, (4.9)

and its derivative is
∂ρ

∂p
= −

(p
c

)1/α
αp

. (4.10)

4.2.1.2 Stage I: Operator Pricing Decision

The HTCo’s profit is
Π = λp =

ρ

x
p. (4.11)

We can maximize the profit of the monopolistic operator in (4.11) setting its derivative with respect to
the price equal to zero and checking if the solution obtained is a maximum:

∂Π

∂p
=

1

x

(
ρ+ p

∂ρ

∂p

)
= 0, (4.12)

Replacing (4.9) and (4.10) in (4.12) and solving we can obtain the price candidate to maximize HTCo’s
profit

p∗ =

(
α

α+ 1

)α
c (4.13)

and replacing the maximized price (4.13) in (4.9), we obtain the traffic in the optimal case

ρ∗ =
1

α+ 1
. (4.14)

Finally we can obtain the maximum profit replacing (4.13) and (4.14) in (4.11)

Π∗ =
ρ∗

x
p∗ = cx−1 αα

(1 + α)1+α
. (4.15)
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4.2.2 Game II: Duopoly Case - HTC and MTC service provision by two competing
operators

In this section, we analyze the duopoly case: two competing operators serving the HTC flow (HTCo)
and MTC flow (MTCo).

We define the mean service time Ti ≡ Wi + xi, where Wi is the mean waiting time. The mean waiting
time for each flow for the M/M/1 non-preemptive priority queue can be computed as [23]:

W1 =
ρ1x1 + ρ2x2

1− ρ1
, (4.16)

W2 =
ρ1x1 + ρ2x2

(ρ1 − 1) (ρ1 + ρ2 − 1)
, (4.17)

so that

T1 = W1 + x1 =
ρ2x2 + x1

1− ρ1
, (4.18)

T2 = W2 + x2 =
ρ1x1 + (ρ1 (ρ1 + ρ2 − 2) + 1)x2

(ρ1 − 1) (ρ1 + ρ2 − 1)
, (4.19)

Finally, the expressions for the qualities are

Q1(ρ1, ρ2) = c

(
ρ2x2 + x1

x1 − ρ1x1

)−α
, (4.20)

Q2(ρ1, ρ2) = c

(
((ρ1 + ρ2 − 2) ρ1 + 1)x2 + ρ1x1

(ρ1 − 1) (ρ1 + ρ2 − 1)x2

)−α
. (4.21)

4.2.2.1 Stage II: HTC and MTC flows subscription decisions

As discussed in Section 4.2, the Wardrop equilibria in this specific case are the following ones:

Case 1: The conditions U1 = 0 and U2 = 0 give equilibrium values ρ1 and ρ2 such that Q1(ρ∗1, ρ
∗
2)−

p1 = 0 and Q2(ρ∗1, ρ
∗
2)− p2 = 0, and using (4.20) and (4.21) we can get:

ρ∗1 =

x2

((
c
p2

)1/α
− 1

)
− x1

((
c
p1

)1/α
− 1

)(
c
p2

)1/α

((
c
p2

)1/α
− 1

)(
x2 − x1

(
c
p1

)1/α
) , (4.22)

ρ∗2 =

x1

(
−x1

((
c
p1

)1/α
− 1

)(
c
p1

)1/α
)

x2

((
c
p2

)1/α
− 1

)(
x1

(
c
p1

)1/α
− x2

) +

x1

(
x2

((
c
p2

)1/α
− 1

))
x2

((
c
p2

)1/α
− 1

)(
x1

(
c
p1

)1/α
− x2

) .
(4.23)
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Case 2: ρ∗2 = 0, so the equations (4.20) and (4.21) become

Q1(ρ1, 0) = c

(
1

1− ρ1

)−α
, (4.24)

Q2(ρ1, 0) = c

(
(ρ1 − 1)2 x2 + ρ1x1

(ρ1 − 1)2 x2

)−α
. (4.25)

Solving U1 = Q1(ρ∗1, 0)− p1 = 0, we define obtain the value for ρ∗1 when ρ∗2 = 0 as

ρ∗1,0 = 1−
(p1

c

)1/α
. (4.26)

Solving U2 = Q2(ρ∗1, 0)− p2 < 0 we obtain the condition

p2 > p̂2L ≡ Q2(ρ∗1,0, 0) = c

x2 − x1

(p1
c

)−2/α
((p1

c

)1/α − 1
)

x2

−α . (4.27)

Note that ρ∗2 = 0 means that MTCo has zero profit.

Case 3: ρ∗1 = 0, so the equations (4.20) and (4.21) become

Q1(0, ρ2) = c

(
ρ2x2 + x1

x1

)−α
, (4.28)

Q2(0, ρ2) = c

(
− 1

ρ2 − 1

)−α
. (4.29)

Solving U2 = Q2(0, ρ∗2)− p2 = 0 for ρ∗2 we obtain

ρ∗2,0 = 1−
(p2

c

)1/α
. (4.30)

Solving U1 = Q1(0, ρ∗2)− p1 < 0 we obtain the condition

p1 > p̂1L ≡ Q1(0, ρ∗2,0) = c

x1 − x2

((p2
c

)1/α − 1
)

x1

−α . (4.31)

Note that ρ∗1 = 0 means that HTCo has zero profit.

Case 4: Finally, with ρ∗1 = ρ∗2 = 0 the equations (4.20) and (4.21) become

Q1(0, 0) = c, (4.32)

Q2(0, 0) = c, (4.33)

and the conditions Ui = Qi(0, 0)− pi < 0 (i = 1, 2) are held for

pi > p̂iU ≡ Qi(0, 0) = c. (4.34)

Note that ρ∗1 = ρ∗2 = 0 means that both operators have zero profits.
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Table 4.1: HTC & MTC flows: Wardrop Equilibrium Conditions

Case p1 conditions p2 conditions

1 p1 ≤ p̂1 = min(p̂1L, p̂1U ) p2 ≤ p̂2 = min(p̂2L, p̂2U ))

2 p1 ≤ p̂1U p2 > p̂2L

3 p1 > p̂1L p2 ≤ p̂2U

4 p1 > p̂1U p2 > p̂2U

Case 4: ρ1*=0, ρ2
*=0

Case 2: ρ1*>0, ρ2
*=0

Case 1: ρ1*>0, ρ2
*>0

Case 3: ρ1*=0, ρ2
*>0

Figure 4.3: Wardrop equilibrium regions

As a corollary, the price values for Case 1 are defined by

p1 ≤ p̂1 p2 ≤ p̂2, (4.35)

where

p̂1 ≡ min(p̂1L, p̂1U ), (4.36)

p̂2 ≡ min(p̂2L, p̂2U ). (4.37)

Table 4.1 summarizes the restrictions on p1 and p2 that define the space of the problem and all
the possible cases, while Fig. 4.3 shows a concrete graphical representation for a specific parameter
configuration.
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4.2.2.2 Stage I: Operators Pricing Decisions

At this point we proceed to analyze the equilibrium prices p∗i , given the values for ρ1 and ρ2 from the
previous subsection.

Assuming Case 1 holds, we can compute the profit for each operator in the duopoly scenario, that is

Π1 =
p1ρ1

x1
, (4.38)

Π2 =
p2ρ2

x2
. (4.39)

Applying the Nash equilibrium concept, we obtain the best responses making the partial derivatives
equal to zero to obtain the critical points, and checking if the solutions obtained are maximum of the
functions

∂Π1

∂p1
= 0, (4.40)

∂Π2

∂p2
= 0. (4.41)

Proceeding as indicated we obtain the following system:

p1
∂ρ1

∂p1
+ ρ1 = 0, (4.42)

p2
∂ρ2

∂p2
+ ρ2 = 0, (4.43)

where

∂ρ1

∂p1
= −

x1

(
c
p1

)1/α
(
x1

(
c
p2

)1/α
− x2

)
αp1

((
c
p2

)1/α
− 1

)(
x2 − x1

(
c
p1

)1/α
)2 , (4.44)

∂ρ2

∂p2
= −

x2
1

((
c
p1

)1/α
− 1

)(
c
p1

)1/α (
c
p2

)1/α

αp2x2

((
c
p2

)1/α
− 1

)2(
x1

(
c
p1

)1/α
− x2

) . (4.45)

We can simplify the system and obtain

A2 =
x2 (αx2 − (α+ 1)A1x1)

A1x2
1(α(A1 − 1)− 1) + α(1− 2A1)x2x1 + αx2

2

, (4.46)

where

Ai =

(
c

pi

) 1
α

, (4.47)

and an additional (and cumbersome) equation in A1.

Finally, solving the latter equation numerically and replacing its value in (4.46), we can get the values
for p1 and p2 using the inverse transformation of (4.47). Since we have not introduced the restrictions
of the Case 1 (4.35) in the optimization problem for analytical tractability reasons, we must check that
the solution obtained complies with these restrictions, which will be done in Section 4.3.
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4.2.3 Game III: Monopoly Case - HTC and MTC service provision by one operator

In this section we analyze the monopoly case, where one operator is serving both the HTC and the MTC
flows.

4.2.3.1 Stage II: HTC and MTC flows subscription decisions

The analysis for the flow subscription decision is the same as in Subsection 4.2.2.1.

4.2.3.2 Stage I: Operator Pricing Decisions

Monopolistic operator’s profit is now

Π12 =
p1ρ1

x1
+
p2ρ2

x2
. (4.48)

The operator will choose p1 and p2 in order to maximize Π12, that is, the first stage is reduced again to
an optimal decision problem.

We have solved the maximization problem across the four regions defined in subsection 4.2.2.1. If we
assume that the mean MTC flow packet length is lower than the one for the HTC flow (x2 < x1), the
maximum profit is always reached in Case 3 region, which means ρ1 = 0, or equivalently, the operator
only serves MTCu given that they are more profitable. It can be easily proved using the equilibrium
profits of the baseline case (4.15) and reducing the value of x. The operator’s profit is reduced to

Π12 =
ρ2

x2
p2. (4.49)

It can be checked that the expression (4.49) and the restriction for the case 3 (4.29) are the same equations
that appear in baseline case (4.11) and (4.7). The only one difference is that this time the service is
provided to the MTC instead of HTC, so the results will be the same replacing x by x2.

The above results imply that a profit maximizing operator that serves both the HTC and the MTC flows
will evict the HTC flow. Since our objective is to study the coexistence of HTC and MTC, we will not
discuss the monopoly case in the results section.

4.3 Results and discussion

In this section we compute numerically the equilibrium prices, traffic and profits and compare the
duopoly case against the baseline case, where there is a monopolistic operator with only HTC.

We set parameters x1 = 1, x2 = 0.1, c = 1 and we vary α ∈ [0.1, 0.9]. Figures 4.4, 4.5 and 4.6 show
the equilibrium traffic, prices and profits respectively. The values ρ∗, p∗, Π∗ refer to the baseline case,
while the values ρ1, p̂1, p1,Π1 refer to the HTC flow and ρ2, p̂2, p2,Π2 refer to the MTC flow in the
duopoly case. The monopoly case with HTC and MTC is not represented, given that it is equivalent to
the baseline case changing the value of x, as demonstrated above.
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Figure 4.4: Comparison between equilibrium traffic in the duopoly case (ρ∗1, ρ
∗
2) and baseline case (ρ∗)

when sensitivity to delay α varies.

Fig. 4.4 shows that the carried traffic by the HTCo (ρ1) in the duopoly case is greater than the carried
traffic in the baseline case (ρ∗); and that the carried traffic by the MTCo (ρ2) is greater than zero. In
other words, the coexistence is feasible. As α increases, ρ2 increases while ρ1 decreases, which means
that HTCu are more affected by delay than MTCu. Furthermore, the overall traffic in the duopoly case
is greater than the carried traffic in the baseline case. We can conclude that the efficiency in the usage of
the network increases when HTC and MTC coexists.

Fig. 4.5 shows that the prices p1 and p2 are below p̂1 and p̂2 respectively, which confirms that Case
1 holds, as assumed in Section 4.2.2. As α increases all prices decrease, due to the smaller perceived
utility, and the sensitivity α has a higher impact on the price in the duopoly case than in the baseline
case. We then conclude that the entry of the MTCo causes the price charged both by the HTCo and by
the MTCo to decrease, and it is therefore beneficial for the users, given that it allows to increase the
number of users subscribed to the service.

Fig. 4.6 shows that the HTCo suffers a negligible decrease in its profit when the MTCo enters, which is
caused by the non-preemptive behavior. In addition, the overall profits in the duopoly case are higher
than in the baseline case thanks to the MTCo profit contribution. Given that, the operators can agree a
payment from the MTCo to the HTCo that makes the MTCo’s entry incentive compatible to both, HTCo
and MTCo. We can conclude then that HTC and MTC coexistence is desirable from the point of view
of both operators.
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CHAPTER 5

SCENARIO 2: DYNAMIC CAPACITY
PROVISION FOR WIRELESS SENSORS

CONNECTIVITY

In the previous chapter we have observed that the service provision to HTC and MTC on a common
infrastructure is feasible under certain circumstances. This chapter analyzes the next step, where the
transition has been completed and the MTC service provision is done using a dedicated wireless access
infrastructure. Specifically, we analyze the connectivity service provision to wireless sensors.

This chapter is organized as follows: in Section 5.1 we describe in detail the scenario and the behavior of
the actors involved, the utility of the sinks and the operator profit. In Section 5.2 the scenario is analyzed
using a static and a dynamic model. The sinks subscription problem as well as OP profit maximization
problem are solved using game theory and optimization. Finally, Section 5.3 shows and discus the
results.

5.1 General Model

We consider the IoT scenario which is depicted in Figure 5.1 with several clusters uploading their sensing
data to the Internet through a OP. The sensor nodes are grouped into clusters. Each cluster has a large
number of sensing nodes connected through a multi-hop wireless network [102]. Each cluster has a sink
node, which transmits the data collected by all the nodes in the cluster to the Internet through the OP
wireless network. Our scenario is based on [43], and analyzes the interaction between the sinks and the
OP. The analyzed model has the following market actors:

• Sinks.
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Cluster N

Cluster 1
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Internet

Sink

Sink

Sink...

Figure 5.1: Analyzed scenario with all the actors of the market

• Network Operator (OP).

Sinks

Each sink belongs to only one cluster. Each sink is responsible of transmitting all the data collected by
its sensors in a cluster to the Internet. They are the clients of the wireless connectivity service offered
by the OP. The number of sinks is N , where N � 1.

In order to model the utility perceived by the sinks that subscribe to the OP we use a quality function Q
based on [34, 43–46, 103], which evaluates the service offered by the OP:

Q ≡ c (T )−1 , (5.1)

where c > 0 is a conversion factor and T is the mean sensing-data-unit (s.d.u) service time. Note that
when the service time T increases Q decreases, or equivalently, the sinks perceive a worse quality when
the delay of the network increases. This function has the ability to model the congestion in the wireless
network, which is suitable for IoT scenarios with delay constraints [47]. We model the OP service as an
M/M/1 system, and compute the mean service time T [23] as

T =
1

µ− λ
, (5.2)

where µ is inverse of the mean sensing-data-unit transmission time τ = 1
µ or simply the system capacity

and λ is the arrival rate of the s.d.u. We propose a utility function, which models the perception of
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the sinks about the service offered by the OP, as the difference between the quality perceived by the
sinks and the price charged by the OP. This utility function is also known as compensated utility, and is
commonly used in telecommunications [34, 35, 37, 38]

Us ≡ Q− p = c (µ− x1Nr)− p, (5.3)

where we have re-written the arrival rates as the traffic generated by all the sinks being served λ = x1rN ,
µ is inverse of the mean service time or simply the system capacity, r is the sensing data unit generation
rate of one sink, p is the price in monetary units (m.u.) per s.d.u charged by the OP to each sink when it
transmits one sensing data unit and x1 is the fraction of sinks being served by the OP.

The utility must be non-negative Us ≥ 0 or the sink will not subscribe to the service. Note that all
the sinks in the system perceive the same utility, and if we consider a number of sensors large enough,
distributed randomly, in each WSN, the willingness to pay of each sink is also the same. The distribution
of sinks in the system is described by the vector Xs = (x0, x1), where x0 and x1, are the fraction of
sinks being served and not being served by the OP respectively and x0 + x1 = 1.

Network Operator

The OP offers a wireless connectivity service to the sinks, that allows them to transmit the data collected,
and charges a price p to the corresponding sink per sensing data unit transmitted.

The objective of the OP is to maximize its own profit choosing the system capacity µ given a price p > 0
fixed by a regulatory authority. The OP profit is:

ΠOP = x1Nrp− kµ2, (5.4)

where Nprx1 are the revenues obtained from sinks and we assume quadratic investment costs kµ2 [53]
of leasing a system capacity µ, where k is a cost scale factor. The convex cost factor allows us to prevent
an aggressive behavior of the OP [99, 104], opening the possibility to analyze competitive scenarios in
future studies.

Figure 5.2 shows the payment flow described in this section, we observe that the amount of money
perceived by the OP is proportional to the traffic generated by all the sinks multiplied by the price that
each sink pays per data unit.

OP Sinks
λp

Figure 5.2: Model payments flow and actors involved

5.2 Game Analysis

The model described in the previous section can be analyzed as two games with two stages each one.
The first game is a static analysis, while the second game is a dynamic analysis of the model. Both
games have the following structure: firstly an optimization stage where the OP chooses the capacity that
maximizes its profits and secondly a sink subscription stage. The games are summarized in Figure 5.3.
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Game I: Static Analysis Game II: Dynamic Analysis
Stage I: OP Capacity Optimization
The OP chooses the capacity of the
network µ in order to offer a mean

transmission time τ = 1
µ

. The value of µ
is obtained solving an optimization problem

Stage I: OP Dynamic Capacity Optimization
The OP chooses the value of µ(t) that
maximizes its profits in a time interval

t ∈ [0, T ] solving and optimal control problem

Stage II: Sinks Subscription Game
Each sink determines if it subscribes or
not with the OP in order to transmit the
collected data. The behavior of the sinks

is modelled using a population game

Stage II: Sinks Evolutionary
Subscription Game

The decision of the sinks of subscribing
or not to the OP is modelled with
deterministic evolutionary dynamic

Figure 5.3: Description of the game stages

The games are solved as follows: Firstly the Game I was solved. A static analysis was conducted and
the equilibrium solutions were obtained. Secondly the Game II was solved, obtaining the optimal OP
decisions and the social state as a function of time.

Both games were solved using backward induction, which allows us to find a Subgame Perfect Nash
Equilibrium (SPNE) of the proposed games. Backward induction consists in deducing backwards from
the end of a problem to the beginning to infer a sequence of optimal actions. Any Nash equilibrium
found using backward induction is a Nash equilibrium for every subgame, or equivalently, a SPNE
[43, 61].

5.2.1 Game I: Static Analysis

This game analyzes our scenario using a static model, where all the parameters are fixed. In this game
the actors act with perfect rationality and their decisions are instantaneous. The solution of this game is
a Nash equilibrium where no actor has incentive to change its own decisions.

5.2.1.1 Stage II: Sinks Subscription Game

This stage is played once the OP has fixed its µ. Sinks equilibrium was solved using the unified
framework provided by Population Games described in [63]. This framework is useful for studying
strategic interactions between agents with certain properties that our model satisfies.

Population Game

• Strategies: S = {0, 1}, where 0 means not to subscribe to the OP and 1 means to subscribe to the
OP.

• Social State: Xs = {x0, x1}, x0 + x1 = 1. Sinks distribution between not being served and OP.

• Payoffs: Fs(x0, x1) = {Fs0(X), Fs1(X)} = {0, Us}, where Us(Fs1(X)) is the utility of the sinks
subscribing to the OP defined in (5.3) and Fs0(X) is the utility of the sinks not subscribing to the
OP.
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Pure Best Response The Pure Best Response b(Xs), is the best response where the actors can only
choose a pure strategy [63]. In this case, a pure strategy means that all the population of sinks choose
the same strategy. The first step for solving the population game is to obtain the pure strategies that are
optimal at each social state Xs.

b(Xs) ≡ argmax
i∈S

Fsi(Xs) =

{
i = 0 if µ ≤ p

c + x1Nr

i = 1 if µ ≥ p
c + x1Nr

, (5.5)

where i is the pure strategy chosen by all the population.

Mixed Best Response The Mixed Best Response B(Xs), is the best response where the actors can
choose a mixed strategy [63]. In this case, a mixed strategy means that each sink in the population
chooses its strategy based on probabilities, and therefore, the population could be split into several
strategies. Once we have obtained the pure best responses we can extend the results to include the best
mixed strategies.

B(Xs) ≡ {[z0 + z1 = 1; zi ∈ R+] : zi > 0⇒ i ∈ b(Xs)} =


z0 = 1, z1 = 0 if x1 ≥ cµ−p

cNr

z0 ≥ 0, z1 ≥ 0 if x1 = cµ−p
cNr

z0 = 0, z1 = 1 if x1 ≤ cµ−p
cNr

,

(5.6)

where zi is the fraction of the population choosing the strategy i.

Nash Equilibrium At this point social state x ∈ Xs is a Nash equilibrium of the game Fs if all the
agents choose a best response to x ∈ Xs:

NE(Fs) ≡ {x ∈ Xs : x ∈ B(Xs)} =


(1, 0) if µ ≤ p

c

(1− cµ−p
cNr ,

cµ−p
cNr ) if p

c ≤ µ ≤
p
c +Nr

(0, 1) if µ ≥ p
c +Nr

. (5.7)

5.2.1.2 Stage I: OP Capacity Optimization

In this stage the OP wants to maximize its profit given by (5.4) using µ as the optimization variable and
considering the price p fixed by a regulatory authority. Given the three cases obtained from (5.7) we
analyze the case where the maximum profit is reached.

ΠOP =


−kµ2 if µ ≤ p

c
cµ−p
c p− kµ2 if p

c ≤ µ ≤
p
c +Nr

Nrp− kµ2 if µ ≥ p
c +Nr

(5.8)

43



• Case 1: µ ≤ p
c :

In this case the maximum profit is obtained solving the optimization problem

max
µ

Π∗OPc1 = −kµ2

subject to µ ≤ p
c ,

(5.9)

where Π∗OPci is the profit obtained in (5.8) for the Case i. The solution for the problem defined in
(5.9) is

Π∗OPc1 = 0 with µ∗ = 0. (5.10)

Note that in this case it is not possible to obtain positive profit.

• Case 2: p
c ≤ µ ≤

p
c +Nr:

In this case the maximum profit is obtained solving the optimization problem

max
µ

Π∗OPc2 = cµ−p
c p− kµ2

subject to p
c ≤ µ ≤

p
c +Nr

(5.11)

The problem in (5.11) is solved using KKT conditions and its solution is:

Π∗OPc2 =


(c−4k)p2

4ck if k > cp
2(p+cNr) with µ∗ = p

2k
c2Npr−k(p+cNr)2

c2
if k ≤ cp

2(p+cNr) with µ∗ = p
c +Nr

. (5.12)

• Case 3: µ ≥ p
c +Nr:

In this case the maximum profit is obtained solving the optimization problem

max
µ

Π∗OPc3 = Nrp− kµ2

subject to µ ≥ p
c +Nr

(5.13)

The problem in (5.13) is solved again using KKT conditions and its solution is:

Π∗OPc3 = c2Npr−k(cNr+p)2

c2
with µ∗ = p

c +Nr.. (5.14)

Given that the first part of (5.12) is always greater than (5.14) for the problem restrictions, the OP optimal
profit can be summarized as:

Π∗OP =


(c−4k)p2

4ck if k > cp
2(p+cNr) with µ∗ = p

2k
c2Npr−k(p+cNr)2

c2
if k ≤ cp

2(p+cNr) with µ∗ = p
c +Nr

. (5.15)

Analyzing the previous results we observe that Π∗OP > 0 if the following conditions are met:

• Case k > cp
2(p+cNr)

k <
c

4
. (5.16)
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• Case k ≤ cp
2(p+cNr)

k <
c2Npr

(p+ cNr)2 . (5.17)

In this case there are two possible interpretations depending on which is more restrictive (5.17) or
k ≤ cp

2(p+cNr) . If c > p
Nr then the case condition k ≤ cp

2(p+cNr) is more restrictive than (5.17) and
therefore there are no additional conditions. However, if c ≤ p

Nr then (5.17) is more restrictive
and it must be met in order to obtain positive profits.

As shown in the previous analysis the value of k has a vital role in the feasibility of the system, and
therefore, has to be bounded in order to obtain positive profits.

5.2.2 Game II: Dynamic Analysis

This game analyzes our scenario using a dynamic model, where the parameters and the decisions of the
actors may change over the time. The dynamic analysis was conducted using evolutionary game theory
for the Sink Subscription Game, while for the OP capacity optimization stage optimal control theory
and PMP were used.

5.2.2.1 Stage II: Sink Evolutionary Subscription Game

In order to maximize the user utility described in Equation 5.3, we define the following evolutionary
game:

• Strategies: S = {S0, S1}, where S0 means not to subscribe to the OP and S1 means to subscribe
to the OP.

• Social State: Xs(t) = {x0(t), x1(t)}, x0 + x1 = 1. Sinks distribution between not being served
and being served by the OP.

• Payoffs: Us(t) = {u0(t), u1(t)} = {0, Us(t)}, where Us(t) (u1(t)) is the utility of the sinks
subscribing to the OP as a function of time defined in (5.3) and u0(t) is the utility of the sinks not
subscribing to the OP. Note than here the utility varies with the time due to the variation on the
social state.

The sinks use a set of rules to update their strategies. This set of rules is known as revision protocol [63]
and determines the evolutionary dynamic. There are several revision protocols, but we are interested
in the imitative protocols and direct selection protocols. In the imitative protocols the users updates
their strategies taking into account the strategies chosen by other users. But imitative protocols admit
boundary rest points that are not Nash equilibria of the underlying game [64]. On the other hand direct
selection protocols are not directly influenced by the choice of others and this characteristic prevents
the boundary rest points. In this work we have chosen an imitative protocol, given that it is tractable
analytically and widely used in the literature. However we need to be cautious about the boundary rest
points.
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The revision protocol used in this work can be described by the following action:

• At the time instant t a user with strategy Si imitates the strategy Sj(j 6= i) selected by other user
if Ui(t) > Uj(t) with probability:

ΓIij(t, xj , Ui, Uj) = xj(t)[Uj(t)− Ui(t)]+. (5.18)

The revision protocol was introduced by Schlag in a population game context [105]. Under this protocol
a user switches its strategy only if the other user has a better utility. The switching rate is proportional
to the difference in the utility and the number of users in the destination strategy. The protocol has D2
data requirements [64].

The mean dynamic can be derived from the proposed revision protocol (5.18) as follows:

ẋi =
∑
j∈S

xjΓji − xi
∑
j∈S

Γij =

=
∑
j∈S

xixj [Ui − Uj ]+ − xi
∑
j∈S

xj [Uj − Ui]+ =

= xi
∑
j∈S

xj (Ui − Uj) = xi

Ui −∑
j∈S

xjUj

 = xi (Ui − Uavg)

ẋi = δxi (Ui − Uavg) , (5.19)

where δ is the learning rate and Uavg =
∑
j∈S

xjUj is the average utility of all the users in the model.

Following the mean dynamic described above users learn progressively the best choice until the market
reaches a stationary point, where the action of one user has no impact on the utility of the other users
and no user has an incentive to switch its strategy. When the equilibrium is reached the utility of all
the users is the same Ui = Uj ∀i, j ∈ N. This mean dynamic is also known as Replicator Dynamic.
Adapting (5.19) to our model we obtain:

ẋ0 = δx0 (U0 − x0U0 − x1U1) = δx0 (−x1U1) ,

ẋ1 = δx1 (U1 − x0U0 − x1U1) = δx1 (U1 − x1U1) . (5.20)

Given that x1 = 1− x0 we can work only with one of the previous equations without loss of generality.

Dynamic Stationary Points

The dynamic reaches a stationary point when no user is willing to change its strategy, or equivalently
when ẋi = 0.

ẋ1 = δx1 (U1 − x1U1) = 0,

δx1U1 (1− x1) = 0

Solving the previous equation and assuming that δ > 0 we get the following steady-states:

• Case 1:

x1 = 0, x0 = 1. (5.21)
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• Case 2:

1− x1 = 0

x1 = 1, x0 = 0. (5.22)

• Case 3:

U1 = c (µ− x1rN)− p = 0

x1 =
cµ− p
cNr

, x0 = 1− cµ− p
cNr

. (5.23)

Stability of Stationary Points

Once we have found the stationary points it is necessary to characterize their stability. Consider a
steady-state x ∈ Xs where sinks perceive a utility Us(x) and an invader state y ∈ Xs where some sinks
move to a different strategy and they perceive a utility Us(y). We can affirm that x ∈ Xs is a GESS [63]
if:

Us(y)− Us(x) < 0 ∀ y ∈ X − {x}, (5.24)

which means that the utility perceived by the sinks who do not switch their strategy from state x ∈
Xs is higher than the utility perceived by the sinks who switched it. An equivalent definition is that
the utility of sinks who switch their strategy decreases or the utility of sinks who keeps their strategy
increases, while the utility of sinks who switch remains constant [65]. We can apply this definition to
the steady-states found in the previous point:

• Case 1: X = (x0 = 1, x1 = 0)
Consider that a mass of sinks ε migrate from strategy S0 to S1, which leads us to the new social
state

X ′ = (x′0 = 1− ε, x′1 = ε).

The utility of sinks in both states is:

Us(x0) = 0, Us(x1) = cµ− p,
Us(x

′
0) = 0, Us(x

′
1) = c (µ− εNr)− p.

This steady-state is a GESS if

Us(x0) > Us(x
′
1) or Us(x

′
0) > Us(x

′
1)

0 > c (µ− εNr)− p.

For all the possible values of ε ∈ ]0, 1] it is true if

µ ≤ p

c
. (5.25)

• Case 2: X = (x0 = 0, x1 = 1)
Consider that a mass of sinks ε migrate from strategy S1 to S0, which leads us to the new social
state

X ′ = (x′0 = ε, x′1 = 1− ε).
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The utility of sinks in both states is:

Us(x0) = 0, Us(x1) = c (µ−Nr)− p,
Us(x

′
0) = 0, Us(x

′
1) = c (µ− εNr)− p.

This steady-state is a GESS if

Us(x1) > Us(x
′
0) or Us(x

′
1) > Us(x

′
0)

c (µ−Nr)− p > 0 or c (µ− εNr)− p > 0.

For all the possible values of ε ∈ ]0, 1] it is true if

µ ≥ p

c
+Nr. (5.26)

• Case 3: X = (x0 = 1− cµ−p
cNr , x1 = cµ−p

cNr )
Consider that a mass of sinks ε migrate from strategy S1 to S0, which leads us to the new social
state

X = (x0 = 1 + ε− cµ− p
cNr

, x1 =
cµ− p
cNr

− ε).

The utility of sinks in both states is:

Us(x0) = 0, Us(x1) = c
(
µ− cµ−p

cNr Nr
)
− p = 0,

Us(x
′
0) = 0, Us(x

′
1) = c

(
µ−

( cµ−p
cNr − ε

)
Nr
)
− p.

The necessary conditions to be a GESS are

Us(x1) > Us(x
′
0) or Us(x

′
1) > Us(x

′
0)

0 > 0 or c
(
µ−

( cµ−p
cNr − ε

)
Nr
)
− p > 0.

For all the possible values of ε ∈
]
0, cµ−pcNr

]
it is true if

µ >
p

c
. (5.27)

On the other hand, if we analyze the case when a mass of sinks ε migrate from strategy S0 to S1,
we obtain the new social state

X = (x0 = 1− ε− cµ− p
cNr

, x1 =
cµ− p
cNr

+ ε).

The utility of sinks in both states is:

Us(x0) = 0, Us(x1) = c
(
µ− cµ−p

cNr Nr
)
− p = 0,

Us(x
′
0) = 0, Us(x

′
1) = c

(
µ−

( cµ−p
cNr + ε

)
Nr
)
− p.

The necessary conditions to be a GESS are

Us(x0) > Us(x
′
1) or Us(x

′
0) > Us(x

′
1)

0 > c

(
µ−

(
cµ− p
cNr

+ ε

)
Nr

)
− p.

For all the possible values of ε ∈
]
0, 1− cµ−p

cNr

]
it is true if

µ <
p

c
+Nr. (5.28)

With (5.27) and (5.28) we have the sufficient conditions where this state is a GESS:
p

c
< µ <

p

c
+Nr. (5.29)
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Figure 5.4: Replicator dynamic convergence when the GESS is a mixed equilibrium.

In the previous analysis we have demonstrated that there is a GESS for all the possible values of
the control variable µ. Furthermore, in every single population game, like in our model, it can be
demonstrated that every GESS is unique and it is also a Nash equilibrium [63]. In addition, every GESS
is also an ESS and, as proven by Barron, it is also an asymptotically stable solution of the dynamic [61].

Note that when one of the steady-states deduced in (5.21), (5.22) and (5.23) is a GESS it is unique.
Figure 5.4 shows a particular case when the GESS is the mixed strategy equilibrium (5.23).

5.2.2.2 Stage I: OP Dynamic Capacity Optimization

The capacity optimization stage was solved using optimal control theory [30], which allows us to do a
dynamic optimization within a time horizon and not only in the steady states. As a result of the dynamic
optimization we obtained a control function in every instant of time t that optimizes the objective
function within a time horizon t ∈ [0, T ]. The problem that we are going to solve is to obtain the
optimal capacity that maximizes the profits of the OP, given that the behavior of sinks is modeled by the
dynamic (5.19):

max
µ

ΠOP (µ) =

∫ T

0
e−ηtΠOPins(µ) dt, (5.30)

s.t ẋi = δxi (Ui − Uavg) , Xs(0) = X0, and µ ∈ R>0,

where η is a given discount rate, ΠOPins(µ) is the instantaneous profit of the OP defined in (5.4) and X0

is the initial distribution of the population.

In order to solve the previous problem we used the PMP, which provides the necessary conditions to find
the candidate optimal strategies for the open-loop case. The hamiltonian function of the OP is defined
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as:

H = ΠOPins + σ ẋ1,

where σ is the adjoint variable of the OP. Rewriting the hamiltonian in terms of our model we have:

H = x1 (δσx1 (−c(µ+Nr) + cNrx1 + p) + δσ(cµ− p) +Npr)− kµ2. (5.31)

Following the PMP, all candidate optimal strategies must satisfy the necessary conditions:

µ∗(t) = max
µ ∈ ]0,R+[

H, (5.32)

ẋ1 = δx1 (U1 − Uavg) , (5.33)

σ̇ = ση − ∂H

∂x1
, (5.34)

σ(T ) = 0. (5.35)

where (5.32) is the maximality condition, (5.33) is the replicator dynamic, which models the behavior
of the sinks, (5.34) is the adjoint equation and (5.35) is the transversality condition. Solving (5.32) we
obtain the candidate strategy to maximum in terms of the state x1 and the adjoint variable σ:

µ∗(t) = −cδσ (x1 − 1)x1

2k
. (5.36)

Replacing the optimal candidate strategy (5.36) in the remaining PMP conditions and with the initial
state condition we have the following system of PDE:

ẋ1 = δ(x1−1)x1(cx1(−cδσ+cδσx1+2kNr)+2kp)
2k

σ̇ =
2k(σ(δp+Γ)−Npr)−δσx1(c2δσ+4k(p−cNr)+cx1(−3cδσ+2cδσx1+6kNr))

2k

x1(0) = x0

σ(T ) = 0

. (5.37)

The previous system is a TPBVP and cannot be solved using traditional methods for PDEs, given that
it has no initial conditions for all its variables. Instead of that, it has an initial condition and an end
condition. This problem has been solved numerically using the shooting method [67]. Given that the
shooting method requires a good initial estimation for the value of σ(0) otherwise it may be unstable,
we have solved the problem in several steps, beginning with small values of T and increasing it in the
following stages, using the solution of σ(0) of the previous stage as initial estimation for the present
stage.

5.3 Results and discussion

In this section, we present the numerical results for the static and dynamic games analyzed in the
previous section. The results were obtained for the case when the equilibrium is a mixed strategy.
The figures were calculated for the values shown in Table 5.1 unless otherwise specified.
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Table 5.1: Reference Case - Static Parameters

Parameter Value Units
Quality conversion factor (c) 1

[
m.u s
s.d.u.2

]
Sensor data generation ratio (r) 1

[
s.d.u
s

]
Operator price (p) 0.2

[
m.u
s.d.u

]
Total Number of sensors (N ) 200
Capacity cost scale parameter (k) cp

1.5(cNr+p)

[
m.u s
s.d.u.2

]
Dynamic’s learning rate (δ) 0.14
Initial social state (Xs(0)) {0.05, 0.95}
End time horizon (T ) 1 [s]
Discount rate (ρ) 0.2

0.2 0.4 0.6 0.8 1.0
t

100

200

300

400

μ*static when N = 200 
μ*static when N = 400 
μ*static when N = 600 
μ*(t) when N = 200

μ*(t) when N = 400

μ*(t) when N = 600

μ*

Figure 5.5: OP optimal capacity in the static and dynamic cases for different values of N .

5.3.1 OP optimal control and sinks’ distribution with static parameters

In order to study the static and dynamic results, we show the optimal capacity µ∗(t) and the fraction of
sinks being served by the OP x1(t) as a function of the time t, for different values of the number of sinks
N .

Figure 5.5 shows the OP optimal capacity in the static case and in the dynamic case for different values
of N . In both the static and the dynamic analysis, when N increases, the optimal capacity increases in
order to be able to serve the higher number of sinks. Comparing the static and the dynamic analysis we
observe that the provider chooses a similar strategy for low values of t. It is different due to the existence
of the discount rate η. Nevertheless, when t is close to T the provider decreases the reserved capacity and
when t = T , the total capacity reserved is zero. This behavior makes sense given that the OP optimizes
its decision for a limited time interval, and it is not worthy to have costs when the OP has not to provide
more services. Fig. 5.6 shows a similar behavior. For low values of t the population learns the optimal
strategy by imitation moving from the initial state to the static Nash equilibrium. The population learns
faster the optimal strategy when it has a higher amount of sinks. For values of t close to T the utility
perceived by the sinks decreases due to the decrease in the capacity offered by the provider. The sinks
start to leave the OP service but they are not able to learn fast enough and some sinks remain in the OP
when t = T and it offers no service at all.
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Figure 5.6: Social state in the static and dynamic cases for different values of N .

5.3.2 OP optimal control and sinks’ distribution with dynamic parameters

In this subsection we show the evolution of the optimal capacity µ∗(t) and the fraction of sinks being
served by the OP x1(t), when the number of sinks in the system is also a function of the time N(t).
The results for two different scenarios are shown. Figures 5.7, 5.8, 5.9 and 5.10 are related to Scenario
1, while figures 5.11, 5.12, 5.13 and 5.14 are related to Scenario 2. The figures for each scenario were
calculated for the values shown in Table 5.2.

In both scenarios are shown three different cases.

• Case 1: In this case the values of µ∗(t) and x1(t) are obtained using the solutions for the static
equilibrium obtained in (5.7) and (5.15) for each instant of time. The values of µ∗(t) and x1(t)
are represented in the figures with the names “µ∗ Static” and “x∗1 Static” respectively.

• Case 2: In this case the value of µ∗(t) is obtained using the solution for the static equilibrium
obtained in (5.7) for each time instant. However, the value of x1(t) is obtained from the replicator
dynamic defined in (5.20). The values of µ∗(t) and x1(t) are represented in the figures with the
names “µ∗ Static” and “x∗1 Replicator” respectively. Note that the value of µ∗(t) is the same in
Case 1 and Case 2. This case analyzes the scenario with a more realistic model, where the behavior
of the sinks is not ideal and their reaction against a change in the market is not instantaneous.

• Case 3: In this case the values of µ∗(t) and x1(t) are obtained from the solution to the optimal
control problem defined in (5.37). The values of µ∗(t) and x1(t) are represented in the figures
with the names “µ∗ Optimal Control” and “x∗1 Optimal Control” respectively.

5.3.2.1 Scenario 2.1: Decreasing number of sensors

This scenario models a decreasing number of sensors over time due to failures in the sensors during its
life as shown in Table 5.3 and Fig. 5.7. The figures were calculated for the values shown in Tables 5.2
and 5.3.

Due to the variation in the number of sensors N, the optimal decision for the OP over time may vary.
Fig. 5.8 shows how the system is able to adapt its decisions to variations not only in the distribution
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Table 5.2: Reference Case - Dynamic Common Parameters 1

Parameter Scenarios 1 and 2 Units

Quality conversion factor (c) 1
[
m.u s
s.d.u.2

]
Sensor data generation ratio (r) 1

[
s.d.u
s

]
Operator price (p) 0.2

[
m.u
s.d.u

]
Initial Number of sensors (N(0)) 1200
Dynamic’s learning rate (δ) 0.14
Initial social state (Xs(0)) {0.25, 0.75}
End time horizon (T ) 0.5 [s]
Discount rate (ρ) 0

Table 5.3: Reference Case - Dynamic Parameters 2

Parameter Scenario 1 Value

Evolution of Number of sensors (N(t)) N(0)− 0.7N(0)

Te0.8T
te0.8t

Capacity cost scale parameter
(
k
[
m.u s
s.d.u.2

]) cp

1.8(cN(0)r + p)
Parameter Scenario 2 Value

Evolution of Number of sensors (N(t)) N(0) +
0.7N(0)

Te0.8T
te0.8t

Capacity cost scale parameter
(
k
[
m.u s
s.d.u.2

]) cp

2.75(cN(0)r + p)

of the sinks, but also in the system parameters. The difference between Cases 1 and 2 and Case 3 is
small for small values of t, but it increases when t is close to T . Fig. 5.9 shows the distribution of
the sinks as a function of time, while Fig. 5.10 shows the instantaneous profit for all the cases, while
the aggregated profits are 48.46 for Case 1, 44.36 for Case 2 and 45.56 for Case 3. We observe how
the optimal control strategy, represented in Case 3, allows to increase the OP profits compared with
Case 2 despite the lower number of sinks subscribed. This is possible thanks to the lower value of µ∗,
and therefore, a reduction in the investment costs. We also observe how the non-optimal behavior of
the sinks caused by the replicator dynamic decreases the OP profits with respect to Case 1, however, a
scenario with instantaneous sink decisions is not realistic.

5.3.2.2 Scenario 2.2: Increasing number of sensors

This scenario models an increasing number of sensors over time due to a progressive deployment of new
sensors as shown in Table 5.3 and Fig. 5.11. The figures were calculated for the values shown in Tables
5.2 and 5.3.

As in the previous scenario, the variation in the number of sensors changes the OP optimal static solution
µ∗static, as shown in Fig. 5.12. However, in this case the optimal control decision does not follow the
static optimal solution. This is possible given that the OP knows in advance the evolution ofN over time
and can adapt its strategy to optimize not only the instantaneous profits, but the profits in all the time
interval. This strategy allows the OP to maintain all the sensors subscribed during more time as shown
in Fig. 5.13 and allows the OP to increase its profits with respect to the static optimization. Fig. 5.14
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Figure 5.7: Scenario 2.1: Evolution of the number of sinks N as a function of t.
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Figure 5.8: Scenario 2.1: OP optimal capacity in the cases with static and dynamic optimization as a
function of t.
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Figure 5.9: Scenario 2.1: Social state in the three studied cases as a function of t.
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Figure 5.10: Scenario 2.1: Evolution of the OP profits for different strategies as a function of t and total
profits.

shows the instantaneous profit for all the cases, while the aggregated profits are 81.06 for Case 1, 80.14
for Case 2 and 82.77 for Case 3.
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Figure 5.11: Scenario 2.2: Evolution of the number of sinks N as a function of t.
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Figure 5.12: Scenario 2.2: OP optimal capacity in the cases with static and dynamic optimization as a
function of t.
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Figure 5.13: Scenario 2.2: Social state in the three studied cases as a function of t.
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Figure 5.14: Scenario 2.2: Evolution of the OP profits for different strategies as a function of t and total
profits.
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CHAPTER 6

SCENARIO 3: WIRELESS SENSOR
NETWORK-BASED SERVICE

PROVISION IN A DUOPOLY SETTING
WITH A MONOPOLIST OPERATOR

Once we have demonstrated that it is possible to provide connectivity service to MTC users using a
dedicated infrastructure, we can analyze the provision of services based on MTC data. In this scenario
we analyze the provision of services based on WSN data using an end-to-end approach, from the
gathering of the data by the sensors to the competition between the service providers in order to offer a
sensor-data-based service to final users.

This chapter is organized as follows: in Section 6.1, we describe in detail the model with the actors, the
utility of each actor and the pricing scheme. In Section 6.2, the two games of the model are described
and the subscription and pricing strategies are solved. Finally, Section 6.3 shows and discus the results.

6.1 General Model

We consider the IoT scenario that is depicted in Figure 6.1 with two IoT-SPs deploying their private
WSN in order to provide sensor-data-based services to sensor-data users or simply final users, who pay
to the IoT-SPs for this service. The sensor nodes are grouped into clusters. Each cluster has a large
number of sensing nodes connected through a multi-hop wireless network [102], and belong to only one
IoT-SP. Each cluster has a sink node, which transmits the data collected by all the nodes in the cluster to
their IoT-SP server (IoT-SPi srv) through a OP and Internet. In the IoT-SP servers the data is aggregated
in order to provide a service to final users. Our scenario has the following market actors:
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OP

Sensor Data Users

IoT-SP1

srv
IoT-SP2 

srv

Cluster 2

IoT-SP1

IoT-SP2

Cluster 1

Cluster N

Internet

Sink

Sink

Sink

Figure 6.1: Analyzed scenario with all the actors of the market. Each IoT-SP collects its sensing data
through an OP and transmits it to a server (srv) where it is processed in order to offer a service to the
Sensor Data Users.

• Sinks.

• Network Operator (OP).

• Users.

• Internet of Things-Service Providers (IoT-SPs).

6.1.1 Sinks

Each sink belongs to only one IoT-SP. They are responsible of transmitting all the data collected by
sensors in a WSN to their IoT-SP server. They are the clients of the wireless connectivity service offered
by the OP. The number of IoT-SPi sinks is Nj , where Nj � 1 (j = 1, 2), and N1 +N2 = N .

In order to model the utility perceived by the sinks that subscribe to the OP we use a quality function Q
based in [34,44–46,103], which evaluates the service offered by the OP as a latency based service [106]:

Q ≡ c
(
T

τ

)−1

, (6.1)

where c > 0 is a conversion factor and T/τ is the mean sensing-data-unit service time normalized by
the mean sensing-data-unit transmission time τ = 1

µ , that is the minimum possible value of T . Note
that Q decreases when the service time T increases, which means that the users perceive a worse quality
when the delay of the network increases. We have chosen this function due to its ability to model
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the congestion in the wireless network, which makes it suitable for many IoT scenarios with delay
constraints [47]. This quality function also has the ability to model different kinds of users through the
value of τ and different queueing systems throught T , however, in this model we consider homogeneous
sinks, given that we study the competition in a single service provision. We model the OP service as a
M/M/1 system, and compute the mean service time T [23] as

T =
τ

1− τλ
. (6.2)

The utility function models the perception that sinks have about the OP connectivity service. We propose
a utility function for the sinks that subscribe to the OP as the difference between the quality perceived
by the sinks and the price charged by the operator, also called compensated utility, which is a function
widely used in economics and telecommunications [34–38]

Us ≡ Q− p = c (1− x1rNτ)− p, (6.3)

where we have re-written the arrival rates as the traffic generated by all the sinks being served λ = x1rN ,
r is the sensing-data-unit generation rate of one sink, p is the price charged by the OP to each IoT-SPj
(j = 1, 2) when its sinks transmit one sensing-data-unit and x1 is the fraction of sinks being served by
the OP. The utility must be positive Us ≥ 0, or equivalently, the price charged by the OP should not be
higher than the service value perceived by the sink, otherwise the sink will not subscribe to the service.
Note that all the sinks, whichever IoT-SP they belong to, perceive the same utility, which means that the
fraction of sinks served by the OP is the same for all the IoT-SPs. The distribution of sinks in the system
is described by the vector Xs = (x0, x1), where x0 and x1, are the fraction of sinks not being served
and being served by the OP respectively and x0 + x1 = 1.

6.1.2 Network Operator

The OP offers a wireless connectivity service to the sinks, that allows them to transmit the data collected
to their IoT-SP, and charges a price p to the corresponding IoT-SP per sensing-data-unit transmitted.

The objective of the OP is to maximize its own profit announcing a price p > 0. The OP profit is:

ΠOP = px1rN. (6.4)

6.1.3 Users

Users want to subscribe to a sensor-data service offered by the IoT-SPs. The number of users is M ,
where M � 1. The utility of a user making the choice j is based on [28, 42]

Uuj = ϕ log

(
βRj
fj

)
+ κuj , (6.5)

where the first part of the expression is deterministic and is related with the market parameters while the
second part κuj is treated as a random variable that models the unobserved user-specific part of the utility.
The random variable κuj follows a Gumbel distribution of mean 0. The human behavior is hard to predict
and usually users within the same population do not have the same preferences. For instance, while
some users always prefer the cheapest option others only will change their decision if the difference in
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Figure 6.2: Model payments flow and actors involved.

the perceived utility is high enough. All these unknown effects are aggregated in the random variable
κuj . In the deterministic part Rj is the quality of the data provided by the WSN to the IoT-SPj , fj is the
price per time unit that users pay to the IoT-SPj for its service, β is a conversion factor and ϕ > 0 is a
sensitivity parameter that models the relative importance of the rate R/f . Larger values of ϕ increase
the impact of the rate R/f in users’ choices, while lower values of ϕ reduce the impact. In our model
we set the conversion factor β = 1. We obtain the expression for Rj assuming that the quality of the
information is proportional to the number of sinks sending data to the IoT-SPj

Rj = x1rNj . (6.6)

The logarithmic relation between physical magnitudes and the human perception observed in (6.5) has
been justified in telecommunications through the Weber-Fechner Law [33, 51, 52].

The users will choose the IoT-SPj that maximizes their utility Uuj ≥ Uuk ∀ k 6= j. The distribution of
users in the system is described by the vector Xu = (y0, y1, y2), where y0 is the fraction of users not
subscribing to any IoT-SP and yj , j = 1, 2 is the fraction of users subscribing to IoT-SPj . Note that
y0 + y1 + y2 = 1.

6.1.4 IoT-Service Providers

The IoT-SPs are the owners of the sensors. IoT-SPj pays a price p for each sensing-data-unit transmitted
by its sinks through the OP and announces a price fj per time unit that will be charged to its users.
According to the previous information, we can compute the IoT-SPj profit as:

ΠIoT−SPj = yjMfj − x1rNjp = yjMfj −Rjp, (6.7)

where yjM is the number of users subscribed to the IoT-SPj service and xjrNj is the number of
sensing-data-units transmitted by the sinks per time unit through the OP. The first part of the expression
is the revenues obtained from the users, while the second part is the cost of transmitting the sensors data
through the OP network.

Figure 6.2 shows the pricing scheme of the model described in this section, where WSNj are all the
sinks of the IoT-SPj (j = 1, 2).

6.2 Game Analysis

Optimal profits could be obtained if the IoT-SPs were able to change their sinks’ decisions, however,
in most real scenarios it is not possible due to energy limitations. Changing sinks’ decisions implies
a constant communication between the IoT-SPs and sinks, which requires a lot of energy, which
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typically is a limited resource in WSN [14, 107], although there are cases where the sensors could
be wireless-powered [108]. In this paper, we consider the case where the energy is a limited resource,
in order to be as general as possible. Assuming that the IoT-SPs cannot influence in the decisions of
their sinks, the model can be analyzed as two games of two stages. The model has the characteristic that
both games are connected through the value of Rj in (6.6). Both games have a similar structure: firstly
a pricing stage and secondly a subscription stage. The game model is summarized in Figure 6.3.

Game I: OP and Sinks Game II: IoT-SPs and Users
Stage I: OP Pricing Stage

The OP chooses the price p charged
to WSNs subscribing with him

Stage I: IoT-SPs Pricing Stage
The IoT-SPs compete in a rational
manner with the fee fj charged to

final users for the sensor data service

Stage II: WSN Subscription game
Each cluster determines if it

subscribes or not with the OP in
order to transmit the collected data

Stage II: Users Subscription Game
Final users choose which
IoT-SP subscribe or not

based on the utility perceived

Figure 6.3: Description of the games stages.

Both games were solved using backward induction. The correct way forward is to solve first Game I and
then solve Game II replacing the variables with the equilibrium values obtained in the solution of Game
I. In Game I, the second stage is solved using Population Games described in [63], while the pricing
stage is solved using optimization methods. In Game II, the second stage is solved using the probability
of choice for the Logit model [48], while the first stage is solved using game theory and the concept of
Nash Equilibrium.

6.2.1 Game I: OP and Sinks

In the first stage, hereinafter OP pricing stage, the OP chooses the price p in order to maximize its profit.
The optimal price p∗ is given by the problem

p∗ = argmax
p

ΠOP (p,Xs). (6.8)

In the second stage, called WSNs subscription game, sinks decide to subscribe or not to the OP
connectivity service based on the perceived utility. Sinks have limited information due to the restrictions
in power, processing capabilities and memory [14] and their subscription decisions may not be optimal
for their IoT-SP.

6.2.1.1 WSN Subscription Game

This stage is played once the OP has fixed its price p. Sinks equilibrium is solved using the unified
framework provided by Population Games described in [63]. This framework is useful for studying
strategic interactions between agents with certain properties that our model satisfies. Furthermore, the
analysis is easily extensible from static to dynamic games, which will allow us to obtain more realistic
conclusions in future studies. The equilibrium reached is a Nash equilibrium.
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Population Game

• Strategies: S = {0, 1}, where 0 means not to subscribe to the OP and 1 means to subscribe to
the OP.

• Social State: Xs = {x0, x1}, x0 + x1 = 1. Sinks distribution between not being served and OP.

• Payoffs: Fs(x0, x1) = {Fs0(X), Fs1(X)} = {0, Us(6.3)}, where Fs0(X) is the utility of the
users choosing the strategy of not to subscribe to the OP and Fs1(X) is the utility of the users
choosing the strategy of subscribe to the OP.

Pure Best Response The first step for solving the population game is to obtain the pure strategies that
are optimal at each social state Xs.

b(Xs) ≡ argmax
i∈S

Fsi(Xs) =

{
i = 1 if Fs1(Xs) ≥ Fs0(Xs)⇐⇒ x1 ≤ c−p

cτNr

i = 0 if Fs0(Xs) ≥ Fs1(Xs)⇐⇒ x1 ≥ c−p
cτNr

. (6.9)

Mixed Best Response Once we have obtained the pure best responses, we can extend the results to
include the optimal mixed strategies.

B(Xs) ≡ {[z0 + z1 = 1; zi ∈ R+] : zi > 0⇒ i ∈ b(Xs)} =


z0 = 0, z1 = 1 if x1 ≤ c−p

cτNr

z0 ≥ 0, z1 ≥ 0 if x1 = c−p
cτNr

z0 = 1, z1 = 0 if x1 ≥ c−p
cτNr

.

(6.10)

Nash Equilibrium At this point social state x ∈ Xs is a Nash equilibrium of the game Fs if all the
agents chooses a best response to x ∈ Xs:

NE(Fs) ≡ {x ∈ Xs : x ∈ B(Xs)} =


(0, 1) if p ≤ c (1− τNr)
(1− c−p

cτNr ,
c−p
cτNr ) if c (1− τNr) ≤ p ≤ c

(1, 0) if p ≥ c
. (6.11)

6.2.1.2 OP Pricing Stage

In this stage, the OP wants to maximize its profit given by (6.4). Given the three cases obtained from
(6.11) we analyze the case where the maximum profit is reached.

ΠOP =


pNr if 0 < p ≤ c (1− τNr)
p c−pcτ if c (1− τNr) ≤ p ≤ c
0 if p ≥ c

(6.12)

• Case 0 < p ≤ c (1− τNr):
In this case, the maximum profit is obtained solving the optimization problem

max
p

Π∗OP1
= pNr

subject to 0 < p ≤ c (1− τNr) .
(6.13)
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The solution for the previous problem is

Π∗OP1
= c (1− τNr)Nr if 0 ≤ τ < 1

Nr with p∗ = c (1− τNr) . (6.14)

Note that if τNr > 1 the upper limit c (1− τNr) is negative and, therefore, there is no possible
solution for p∗ in this case.

• Case c (1− τNr) ≤ p ≤ c:
In this case, the maximum profit is obtained solving the optimization problem

max
p

Π∗OP2
=
(
p c−pcτ

)
subject to c (1− τNr) ≤ p ≤ c

(6.15)

The problem in (6.15) is solved using KKT conditions in Appendix A, and its solution is:

Π∗OP2
=

{
c (1− τNr)Nr if 0 ≤ τ < 1

2Nr
c

4τ if τ ≥ 1
2Nr

. (6.16)

• Case p ≥ c:
In this case, for any value of p the maximum profit is

ΠOP3 = 0. (6.17)

Combining (6.14) and (6.16) the OP optimal profit can be summarized as:

Π∗OP =


c (1− τNr)Nr if τ < 1

2Nr with p∗ = c (1− τNr)
max

(
{cNr (1− τNr) , c4τ }

)
if 1

2Nr ≤ τ ≤
1
Nr with p∗ =

[
c (1− τNr) , c2

]
c

4τ if 1
Nr < τ with p∗ = c

2

.

(6.18)

The expression for the profit in (6.18) can be simplified given that c
4τ ≥ cNr (1− τNr) for any value

of c, N , r and τ . To prove this we analyze the expressions for any value of τ
c

4τ
≥ cNr (1− τNr) , (6.19)

re-writing with A = τNr, the previous expression is simplified to:

1 ≥ 4A− 4A2.

We can demonstrate that
max
A

(
4A− 4A2

)
≤ 1 (6.20)

∂
(
4A− 4A2

)
∂A

= 0

∂
(
4A− 4A2

)
∂A

= 4− 8A

4− 8A∗ = 0

A∗ =
1

2

4A∗ − 4A∗2 = 1,
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which proves (6.19). Figure 6.4 shows a particular case of the demonstration, where we can see how
c

4τ ≥ cNr (1− τNr) for the range of interest τ ≥ 1
2Nr . With the previous demonstration, OP optimal

profit can be simplified to:

Π∗OP =

{
c (1− τNr)Nr if τ < 1

2Nr
c

4τ if 1
2Nr ≤ τ

. (6.21)

p∗ =

{
c (1− τNr) if τ < 1

2Nr
c
2 if 1

2Nr ≤ τ
. (6.22)

x∗1 =

{
1 if τ < 1

2Nr
1

2τNr if 1
2Nr ≤ τ

. (6.23)

In order to understand better the behavior of the first game we can re-write the equations in terms of the
maximum amount of data generated by sensors normalized by the system capacity, which we define as
maximum system load L:

L = τNr =
Nr

µ

obtaining

Π∗OP =

{
c (1− L)Lµ if L < 1

2
cµ
4 if L ≥ 1

2

. (6.24)

p∗ =

{
c (1− L) if L < 1

2
c
2 if L ≥ 1

2

. (6.25)

x∗1 =

{
1 if L < 1

2
1

2L if L ≥ 1
2

. (6.26)

6.2.2 Game II: Internet of Things-Service Providers (IoT-SPs) and Users

The scenario analyzed in this section is a model with two IoT-SPs and M users. In the first stage, also
known as IoT-SPs Pricing stage, the IoT-SPs compete with the pricing strategies in order to maximize
their profits given by (6.7). This game is solved assuming the solution for Game I obtained above.

6.2.2.1 Users Subscription Game

This stage is played when the IoT-SPs have decided their prices f∗j . The concept of equilibrium used for
users is Nash equilibrium.
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Figure 6.4: Normalized OP profit (N = 1) for each case with c = 1, r = 1.

The utility of the users described in (6.5) is a Logit discrete choice model. In such a model, if the number
of users M is large enough, it can be proved that the portion of user choosing the IoT-SPj equals the
probability of a user choosing that option [28, 50]:

ωj =

(
Rj
fj

)ϕ
n∑
k=0

(
Rk
fk

)ϕ = yj , (6.27)

where n is the number of IoT-SPs and ϕ is the sensitivity parameter described in (6.5). Given that the
utility of the users that do not subscribe is zero Uui0 = 0, the "no-operator" option is characterized by
the ratio

(
R0
f0

)
= 1. The distribution of users choosing each strategy can be expressed as:

y0 =
1(

R1
f1

)ϕ
+
(
R2
f2

)ϕ
+ 1

,

y1 =

(
R1
f1

)ϕ(
R1
f1

)ϕ
+
(
R2
f2

)ϕ
+ 1

, (6.28)

y2 =

(
R2
f2

)ϕ(
R1
f1

)ϕ
+
(
R2
f2

)ϕ
+ 1

.

where y0 is the fraction of users not subscribing and y1, y2 are the portion of users subscribing to IoT-SP1

and IoT-SP2 respectively.

6.2.2.2 IoT-SPs Pricing Stage

In this stage, each IoT-SP wants to maximize its own profit given by (6.7). Given the solution of the
previous stage (6.28) and the solution for Game I in (6.21) the providers’ profits in the Nash equilibrium
are going to be analyzed.

67



With the solution of OP-Sinks game and users subscription game we can re-write the profit for the
IoT-SPi as:

ΠIoT−SPi(f1, f2) =
fiM

(
Ri
fi

)ϕ(
R1
f1

)ϕ
+
(
R2
f2

)ϕ
+ 1
− pRi, i = 1, 2. (6.29)

In order to find the Nash equilibrium we use the best response functions for both operators defined as
follows:

BR1(f2) = f∗1 (f2) = arg max
f1 > 0

ΠIoT−SP1(f1, f2),

BR2(f1) = f∗2 (f1) = arg max
f2 > 0

ΠIoT−SP2(f1, f2).

The Nash equilibrium is obtained from the equation system

f∗1 = argmaxf1 ΠIoT−SP1(f1, f
∗
2 ) s.t. f1 > 0

f∗2 = argmaxf2 ΠIoT−SP1(f∗1 , f2) s.t. f2 > 0.
(6.30)

In order to obtain the optimum prices we equal the partial derivatives to zero

∂ΠIoT−SP1(f1, f2)

∂f1
=
M
(
R1
f1

)ϕ (
−ϕ+

(
R1
f1

)ϕ
− (ϕ− 1)

(
R2
f2

)ϕ
+ 1
)

((
R1
f1

)ϕ
+
(
R2
f2

)ϕ
+ 1
)2 = 0,

∂ΠIoT−SP2(f1, f2)

∂f2
=
M
(
R2
f2

)ϕ ((
R2
f2

)ϕ
− (ϕ− 1)

((
R1
f1

)ϕ
+ 1
))

((
R1
f1

)ϕ
+
(
R2
f2

)ϕ
+ 1
)2 = 0.

With the change Ai =
(
Ri
fi

)ϕ
and simplifying the system we obtain

A1 = (ϕ− 1)(A2 + 1), (6.31)

A2 = (ϕ− 1)(A1 + 1). (6.32)

Solving the previous equation system we obtain

A1∗ = A2∗ =
1− ϕ
ϕ− 2

. (6.33)

Given thatRi and fi are positive, Ai has to be positive. From Equation (6.33) we can infer that 1 < ϕ ≤
2, otherwise Ai would be negative, and there would be no real solutions for fi. In addition, we see that
there is only one pricing equilibrium different than (f∗1 = 0, f∗2 = 0) if and only if 1 < ϕ < 2. Figure
6.5a shows a particular solution when 1 < ϕ < 2, where we observe that there is a Nash equilibrium
where the best response functions intersect. On the other hand, Figure 6.5b shows how the best response
functions of both operators only intersect in (0, 0), and therefore the only possible solution when ϕ = 2
is (f∗1 = 0, f∗2 = 0).
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Figure 6.5: Best responses with different values of ϕ.

Reverting the change fi = RiAi−
1
ϕ , we get the pricing strategies for both IoT-SPs in the equilibrium

f∗1 =
(

1
2−ϕ − 1

)−1/ϕ
R1 s.t. 1 < ϕ < 2,

f∗2 =
(

1
2−ϕ − 1

)−1/ϕ
R2 s.t. 1 < ϕ < 2.

(6.34)

Replacing (6.34) in (6.28) we obtain the users distribution in the equilibrium, that depends only on ϕ.

y∗0 =
2

ϕ
− 1, y∗1 =

ϕ− 1

ϕ
, y∗2 =

ϕ− 1

ϕ
. (6.35)

Figure 6.6 shows how when the value of ϕ is close to 1 the percentage of users that subscribe is very
small and the prices of the providers are very high. This could be counter-intuitive, but it explains cases
where some users are willing to pay huge amounts of money even without clear evidence of a good
quality of service. On the other hand, when ϕ is close to 2, almost all the users decide to subscribe. This
is caused because all the users act in a more rational behavior, and the providers adjust its prices in order
to attract the largest possible number of them.

Finally, replacing the values obtained in (6.22), (6.23) and (6.34) in (6.29) we obtain the profits in the
equilibrium for both operators

Π∗IoT−SP1
=


N1r

(
c(τNr − 1) +

(ϕ−1)
(

1
2−ϕ−1

)−1/ϕ
M

ϕ

)
if τ < 1

2Nr

N1
4Nτ

(
2
(

1
2−ϕ−1

)−1/ϕ
(ϕ−1)M

ϕ − c

)
if τ ≥ 1

2Nr

(6.36)

Π∗IoT−SP2
=


N2r

(
c(τNr − 1) +

(ϕ−1)
(

1
2−ϕ−1

)−1/ϕ
M

ϕ

)
if τ < 1

2Nr

N2
4Nτ

(
2
(

1
2−ϕ−1

)−1/ϕ
(ϕ−1)M

ϕ − c

)
if τ ≥ 1

2Nr

(6.37)
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Figure 6.6: Distribution of the users between the strategies in the equilibrium.

Analyzing the previous results we observe that Π∗IoT−SPi > 0 if the following conditions are met:

Case τ < 1
2Nr :

M >

(
1

2−ϕ−1
)1/ϕ

ϕc(1−τNr)
ϕ−1 . (6.38)

Case τ ≥ 1
2Nr :

M >

(
1

2−ϕ−1
)1/ϕ

ϕc

2(ϕ−1) . (6.39)

Restrictions (6.38) and (6.39) are represented in Figure 6.7 as minM1 and minM2 respectively. When
the value of ϕ is near to 1, the impact of the ratio R/f in users’ utility is low, and the providers can
increase their prices, obtaining, as shown, positive profits with a very small pool of users. However,
when the value of ϕ increases the providers have to decrease their prices in order to attract users and the
revenue per user decreases drastically, while the cost of sensor data collection remains constant. In order
to obtain positive profits an increasing number of users M is needed as ϕ increases, with an asymptotic
behavior in ϕ = 2.

6.3 Results and Discussion

In this section, we present the numerical results for the games analyzed in the previous section. The
results were obtained for the reference case shown in Table 6.1 unless otherwise specified. The figures
are structured as follows: Figures 6.8–6.10 are related to Game I, while Figures 6.11–6.16 are related to
Game II-IoT-SP1 and Figures 6.17–6.22 are related to Game II-IoT-SP2.
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Figure 6.7: Minimum value of M to obtain positive profits with c = 1 and τNr = 1/3.

Table 6.1: Reference Case

Parameter Value

Quality conversion factor (c) 1
Sensor data generation ratio (r) 1
Mean sensing-data-unit transmission time (1/µ) 1/800
Total Number of sensors (N ) 200
Number of IoT-SP1 sensors (N1) 1

4N

Number of IoT-SP2 sensors (N2) 3
4N

Number of users (M ) 1000

Sensitivity (ϕ) 1.5
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Figure 6.8: OP optimal price as a function of L for different values of c.

6.3.1 OP Pricing and Profit

In order to study the Game I results we show the optimal price p∗ and the OP profit ΠOP , varying the
maximum system load L and the parameter c.

Figure 6.8 shows the OP optimal price as a function of L for different values of c. When c increases,
the optimal price increases as expected, given that c acts as a conversion factor. More interesting is the
behavior of the price when it is analyzed in terms of the maximum system load L. When the maximum
system load (eq. L) increases the utility of the sinks decreases given the growing mean transmission time.
When L < 1

2 the OP decreases its price and thanks to it all the sinks decide to subscribe. Nevertheless,
when the generated traffic is more than the half of the network capacity, it is more profitable for the
OP to keep constant the price and decrease the percentage of subscribed sinks as shown in Figures 6.8
and 6.9. In terms of real system load LR = x1L, it is equivalent to the maximum system load while
L ≤ 1/2, but when L > 1/2 the real load remains constant in LR = 1/2, which means that real system
load never exceeds the 50% of the capacity. Another approximation studied in [103] where different
priorities were used in the OP wireless network obtained a better efficiency. In order to implement this
improvement in our model a sensing data differentiation in delay requirements is needed, where priority
traffic has a more restrictive utility function, while non-priority traffic utility function is more relaxed.
This would allow us to obtain a better efficiency in the OP network and, in addition, allows the IoT-SPs
to offer new services using the sensing data with lower requirements.

Figure 6.10 shows the OP profit as a function of L for different values of c. The figure shows how the
OP profit increases when the system load increases until L = 1

2 . After this point, the profit remains
constant with the system load. In addition OP profit also experiments an increase with c for any value
of L.

6.3.2 IoT-SP1 and IoT-SP2 Pricing and Profits

In order to study the Game II results we show the equilibrium price f∗1 and the IoT-SP1 profit ΠIoT−SP1 ,
varying the sensitivity of the users to the providers’ price ϕ and the parameters c, N and M .

Figures 6.11 and 6.12 show the IoT-SP1 equilibrium price f∗1 as a function of ϕ for different values of c
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Figure 6.9: Social state as a function of L for different values of c.
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Figure 6.10: OP optimal profit as a function of L for different values of c.
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Figure 6.11: IoT-SP1 equilibrium price as a function of ϕ for different values of c.

and N respectively. The equilibrium price does not depend on the value of c and increases with N , due
to the higher utility perceived by users. Note that it only happens if the maximum system load L < 1/2.
We also observe that when users’ sensitivity to R1/f1 increases, the IoT-SP1 optimal price decreases
very fast.

Figure 6.13 shows the IoT-SP1 profit as a function of ϕ for different values of c. Similarly to the price
the equilibrium profit does not depend on the value of c and decreases with the sensitivity of the users
to the price. On the other hand Figure 6.14 shows that the IoT-SP1 profit increases with the value of
N . This means that final users are willing to pay a higher price if the amount of data collected by the
IoT-SP is higher. This will drive to a competition between the IoT-SPs to increase the number of sensors
that is not studied in this paper. As shown in Figure 6.15 the profit also increases with M due to the
higher pool of users subscribed to the IoT-SP1. Note that here there is not a congestion effect when M
increases. With low values of the sensitivity parameter users choices have a very weak dependence on
the prices fi and the IoT-SPs increase hugely its prices. When it occurs the rate of users subscribed to
the IoT-SPs is very low, but the higher prices offset it.

Figure 6.16 shows the IoT-SP1 profit as a function of N . The figure shows how the profit increases with
N until the OP network is congested. After that, the profit remains constant.

The conclusions for the IoT-SP2 obtained from Figures 6.17–6.22 are the same as those obtained for the
IoT-SP1 taking into account that the values of N1 and N2 are different.

From previous results we observe that users’ sensitivity parameter ϕ is critical in the second game. For
values of ϕ < 1 and ϕ > 2 it is not possible to reach an equilibrium with positive profits, as deduced
from the analysis. In addition, if the value is in the range 1 < ϕ < 2 it still has a huge relevance in the
IoT-SPs equilibrium decisions and profits, not only in the value of them, but also in the feasibility of the
whole model as deduced in (6.38) and (6.39).

74



1.2 1.4 1.6 1.8 2.0

100

200

300

400

500

600

700

f1
*

N=100

N=200

N=300

N=400

ϕ

Figure 6.12: IoT-SP1 equilibrium price as a function of ϕ for different values of N .

1.2 1.4 1.6 1.8 2.0

5000

10,000

15,000

20,000

25,000

30,000

35,000
ΠIOT-SP1

c=0.5
c=1.

c=1.5

c=2.

ϕ

Figure 6.13: Scenario 3: IoT-SP1 equilibrium profit as a function of ϕ for different values of c.
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Figure 6.14: IoT-SP1 equilibrium profit as a function of ϕ for different values of N .
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Figure 6.15: IoT-SP1 equilibrium profit as a function of ϕ for different values of M .
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Figure 6.16: IoT-SP1 equilibrium profit as a function of N .
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Figure 6.17: IoT-SP2 equilibrium price as a function of ϕ for different values of c.
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Figure 6.18: IoT-SP2 equilibrium price as a function of ϕ for different values of N .

1.2 1.4 1.6 1.8 2.0

20,000

40,000

60,000

80,000

100,000

ΠIOT-SP2

c=0.5

c=1.

c=1.5

c=2.

ϕ

Figure 6.19: IoT-SP2 equilibrium profit as a function of ϕ for different values of c.
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Figure 6.20: IoT-SP2 equilibrium profit as a function of ϕ for different values of N .
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Figure 6.21: IoT-SP2 equilibrium profit as a function of ϕ for different values of M .
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Figure 6.22: IoT-SP2 equilibrium profit as a function of N .
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CHAPTER 7

SCENARIO 4: WIRELESS SENSOR
NETWORK-BASED SERVICE

PROVISION IN A DUOPOLY SETTING
WITH A MONOPOLIST OPERATOR: A

DYNAMIC APPROACH

In Chapter 5 we have analyzed statically and dynamically the provision of connectivity service to MTC
users, while in Chapter 6 we have studied statically a more complex scenario, where two IoT-SPs
compete to provide WSN-data-based services to final users. In this chapter we go one step further,
analyzing the model shown in Chapter 6 dynamically, which allows us to obtain realistic conclusions,
not only in static, but also in end-to-end evolving scenarios.

This chapter is organized as follows: in Section 7.1, we describe the model with the actors, the utility
of each actor and the pricing scheme. In Section 7.2, the two games of the model are described and the
subscription and pricing strategies are solved. Finally, Section 7.3 shows and discuss the results.

7.1 General Model

We consider the IoT scenario that is depicted Chapter 6, Figure 6.1. The scenario in this chapter is the
same with small variations in the behavior of the final users and IoT-SPs, which are specified in the
following subsection. These differences are due to the differences in the static and dynamic analysis.

In order to improve the readability of Chapter, we are going to explain briefly all the elements of the
model. For a detailed explanation, the reader can go to Section 6.1. Our scenario has the following
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actors:

• Sinks.

• Network Operator (OP).

• Users.

• Internet of Things-Service Providers (IoT-SPs).

7.1.1 Sinks

The behavior of the sinks is exactly the same shown in Chapter 6. The sinks subscribe to the connectivity
service of the OP in order to transmit the gathered sensing data. The behavior of the sinks is modeled
through the utility function

Us(t) ≡ Q(t)− p(t) = c (1− x1(t)rNτ)− p(t), (7.1)

where x1 is the fraction of sinks subscribed to the OP, r is the sensing-data-unit generation rate of one
sink, N = N1 + N2 is the number of sinks, where Nj is the number of sinks of the IoT-SPj , τ is the
mean sensing-data-unit transmission time and p is the price charged by the OP to each IoT-SPj (j = 1, 2)
when its sinks transmit one sensing-data-unit.

The distribution of sinks in the system is described by the vector Xs(t) = (x0(t), x1(t)), where x0 and
x1, are the fraction of sinks not being served and being served by the OP respectively and x0(t)+x1(t) =
1.

7.1.2 Network Operator

The profit of the OP is exactly the same shown in Chapter 6. The OP offers a wireless connectivity
service to the sinks and charges a price p to the corresponding IoT-SP per sensing-data-unit transmitted.
The OP instantaneous profit function is:

ΠOPins(t) = p(t)x1(t)rN. (7.2)

7.1.3 Users

The behavior of the users has been slightly modified due to mathematical limitations. The users
subscribe to the sensing-data-based service of the IoT-SPs. The preferences a user j are modeled using
the Logit discrete choice model and a utility function based on [49]:

Uuj (t) = ϕ log (βRj(t)− fj(t)) + κuj , (7.3)

where ϕ log (βRj(t)− fj(t)) is a deterministic part, related with the market parameters, while κuj is
treated as a random variable that models the unobserved user-specific part of the utility. The random
variable κuj follows a Gumbel distribution of mean 0. The parameterRj = x1rNj is the amount of data
transmitted to the to the IoT-SPj , fj is the price per time unit that users pay to the IoT-SPj for its service,
β = 1 is a conversion factor and ϕ > 0 is a sensitivity parameter that models the relative importance of
the difference Rj − fj .
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The users will choose the IoT-SPj that maximizes their utility Uuj ≥ Uuk ∀ k 6= j. The distribution of
users in the system is described by the vector Xu(t) = (y1(t), y2(t)), where yj is the fraction of users
subscribed to IoT-SPj . Note that y1(t)+y2(t) = 1, and that all the users subscribe to one of the IoT-SPs.

7.1.4 IoT-Service Providers

The profit of the OP is exactly the same shown in Chapter 6. The IoT-SPs provide a sensing-data-based
service to the users. Each IoT-SP pays a price p to the OP for each sensing-data-unit transmitted by
its sinks, and charges a price fj per time unit to the users subscribed to its service. The IoT-SPj
instantaneous profit is:

ΠIoT−SPinsj (t) = yj(t)Mfj(t)−Rj(t)p(t). (7.4)

7.2 Game Analysis

The scenario defined in the previous section is analyzed dynamically. The model is analyzed as two
different games using game theory. Both games have a similar structure: firstly a pricing stage and
secondly a subscription stage. The game model is summarized in Figure 7.1.

Game I: OP ans Sinks Game II: IoT-SPs and Users
Stage I: OP Pricing Stage

The OP chooses dynamically a price
p(t) that maximizes its own profit

Stage I: IoT-SPs Pricing Stage
The IoT-SPs compete dynamically
with the fee fj(t) charged to final
users for the sensor data service

Stage II: WSN Subscription Stage
Each cluster determines if subscribes or

not with the OP in each time instant

Stage II: Users Subscription Stage
Final users choose in each time

instant with which IoT-SP subscribe
based on the utility perceived

Figure 7.1: Description of the games stages.

In this scenario we can assume that the changes in the Game I, for instance in the deployment of WSNs,
are much less frequent than the changes in the Game II, such as the variation in the number of users in the
market. In this case, we can consider that most of the time, the outcome of the Game I is constant while
the Game II is being played. In addition, the outcome of the Game I is a stationary point that matches
with the Nash equilibrium of the static analysis, which could be obtained using backward induction. On
the other hand, the changes in the Game II are relatively frequent, and therefore, the equilibrium solution
is a function of time, which is obtained using differential games [30].

7.2.1 Game I: OP and Sinks

In this game, the sinks decide to subscribe or not to the OP service in order to transmit the gathered
data to their IoT-SP, while the objective of the OP is to maximize its profit. Given that we can consider
the Game I static from the point of view of the Game II the solution of this game is the same that we
obtained in Chapter 6:
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Π∗OP =

{
c (1− τNr)Nr if τ < 1

2Nr
c

4τ if 1
2Nr ≤ τ

. (7.5)

p∗ =

{
c (1− τNr) if τ < 1

2Nr
c
2 if 1

2Nr ≤ τ
. (7.6)

x∗1 =

{
1 if τ < 1

2Nr
1

2τNr if 1
2Nr ≤ τ

. (7.7)

7.2.2 Game II: Internet of Things-Service Providers (IoT-SPs) and Users

In this game we analyze the competition in prices between the two IoT-SPs in order to maximize their
profits and the subscription of the users to the IoT-SPs service. This game is analyzed dynamically
assuming the static solution for Game I obtained above. The dynamic analysis was conducted using
evolutionary game theory for the Users Subscription Game and differential games for the IoT-SPs pricing
stage.

7.2.2.1 Users Subscription Stage

In this stage the users decide with which IoT-SP subscribe. The behavior of the users is modeled by the
utility function described in (7.3), which is a Logit discrete choice model. In the logit model, we can
obtain the probability of a user choosing the IoT-SPj as :

ωj =
elog(Rj−fj)

2∑
k=1

elog(Rk−fk)

, (7.8)

and therefore, the probability of subscribing with each IoT-SP is:

ω1 =
R1 − f1

(R1 − f1) + (R2 − f2)
, (7.9)

ω2 =
R2 − f2

(R1 − f1) + (R2 − f2)
. (7.10)

In order to maximize dynamically the user’s utility described in (7.3), we define the following
evolutionary game:

• Strategies: S = {S1, S2}, where Sj means to subscribe to the IoT-SPj service.

• Social State: Xu(t) = {y1(t), y2(t)}, y1 + y2 = 1. Users’ distribution between IoT-SPs.

• Payoffs: Fs(t) = {Uu1(t), Uu2(t)}. Note than here the utility varies with the time due to the
variation on the social state and the prices.
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Figure 7.2: Evolution of the Logit dynamic when R1 = 15, R2 = 20, f1 = 5, f2 = 3, δ = 1, y1(0) = 1
and y2(0) = 0

The previous evolutionary game is modeled by the mean dynamic:

ẏi = δ (ωi − yi) , (7.11)

where ẏi represents the instantaneous variation of the population of users subscribed to the IoT-SPi and
δ is the learning rate. This mean dynamic is known as the Logit dynamic [49,63]. Substituting the values
of our model in (7.11), we obtain the instantaneous variation of the population of users subscribed to
each IoT-SP:

ẏ1 = δ

(
R1 − f1

(R1 − f1) + (R2 − f2)
− y1

)
ẏ2 = δ

(
R2 − f2

(R1 − f1) + (R2 − f2)
− y2

)
. (7.12)

Figure 7.2 shows the evolution of the population of users as a function of time, when their behavior is
modeled by the equations (7.12).

The Logit dynamic, unlike the replicator dynamic, has the property that the pure strategies are not
necessarily steady states, as shown in Figure 7.3, where we observe the evolution of the Logit dynamic
in a particular case with four different initial states, where the GESS is the mixed strategy equilibrium.

7.2.2.2 IoT-SPs Pricing Stage

In Chapter 5 we used an optimal control problem to optimize the profit of the operator, however, in this
stage we have two competing operators. In this case, we solve the stage using a differential game, which
allows us to analyze the competition dynamically within a time horizon, and not only in the steady states.
As a result of the differential game we obtain an optimal path for the price of each provider, given the
optimal path of the other provider. In order to solve the optimal path of the dynamic competition, each
IoT-SP solves an optimal control problem that maximizes its profits given the strategies of the other
IoT-SP and the behavior of the users, or equivalently, a differential game. The dynamic competitions is
solved within a time horizon t ∈ [0, T ]. The objective function the IoT-SPj is:

max
fj

ΠIoT−SPj =

∫ T

0
e−ηtΠIoT−SPinsj dt, (7.13)
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Figure 7.3: Logit dynamic convergence when the GESS is a mixed equilibrium.

s.t ẏ1 = δ (ω1 − y1) ,

ẏ2 = δ (ω2 − y2) ,

Xu(0) = {y1,0, y2,0},
fi, (i = 1, 2) ∈ R>0,

where η is a given discount rate, ΠIoT−SPinsj is the instantaneous profit of the IoT-SPj defined in (7.4)
and Xu(0) is the initial distribution of the population of users.

In order to solve the previous problem we used the PMP, which provides the necessary conditions to
find the candidate optimal strategies for the open-loop case. The Hamiltonian function of the IoT-SPs is
defined as:

H1(f1, f2) = ΠIoT−SPins1 + σ11ẏ1 + σ12ẏ2

H2(f1, f2) = ΠIoT−SPins2 + σ22ẏ2 + σ21ẏ1.

where σji are the adjoint variables of the OP.

Following the PMP, all candidate optimal strategies of the IoT-SPj must satisfy the necessary conditions:

f∗j (t) = max
fj ∈ ]0,R+[

Hj , (7.14)

ẏj = δ (ωj − yj) , (7.15)

σ̇ji = σjiη −
∂Hj

∂yi
, (7.16)

σji(T ) = 0. (7.17)

where (7.14) is the maximality condition, (7.15) is the Logit dynamic, which models the behavior of
the users, (7.16) are the adjoint equations and (7.17) are the transversality conditions. Solving (7.14)
we obtain the candidate strategies f∗1 , f

∗
2 to optimal paths in terms of the state y1, y2 and the adjoint

variables σ11, σ12, σ22, σ21. Replacing the optimal candidate strategies f∗1 , f
∗
2 in the remaining PMP
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Table 7.1: Game I parameters

Game I parameter Scenario 1 Scenario 2
Quality conversion factor (c) 1 1
Sensor data generation ratio (r) 1 1
Mean sensing-data-unit transmission time (τ ) 1

600
1

600
Number of IoT-SP1 sensors (N1) 200 150
Number of IoT-SP2 sensors (N2) 100 150

conditions and with the initial state conditions we have the following system of PDE:

ẏ1 = δ (ω∗1 − y1) ,

ẏ2 = δ (ω∗2 − y2) ,

σ̇11 = σ11η −
∂H∗1
∂y1

,

σ̇12 = σ12η −
∂H∗1
∂y2

,

σ̇22 = σ22η −
∂H∗2
∂y2

,

σ̇21 = σ21η −
∂H∗2
∂y1

,

y1(0) = y1,0,

y2(0) = y2,0,

σ11(T ) = 0,

σ12(T ) = 0,

σ22(T ) = 0,

σ21(T ) = 0,

. (7.18)

where ω∗i andH∗i are the probability of choice the strategy i and the Hamiltonian function of the operator
i when prices f1, f2 are replaced by the candidates to optimal paths f∗1 , f

∗
2 .

The system (7.18) is a TPBVP that models the solution to the differential game, and cannot be solved
using traditional methods for PDEs. This problem has been solved numerically using the shooting
method [67], ans the results are shown in Section 7.3.

7.3 Results and Discussion

In this section, we present the numerical results for the Game II given the solutions for the Game I.

The value of the Game I parameters for the two scenarios that we analyzed are shown in Table 7.1, and
the solutions of the Game I given that parameters are shown in Table 7.2. On the other hand, the Game
II is solved using the reference case parameters shown in Table 7.3 for both scenarios.

7.3.1 Scenario 1: IoT-SPs dynamic competitions with different number of sinks

In this subsection we show the IoT-SPs dynamic competition in the prices f∗1 (t) and f∗2 (t) when both
providers have a different amount of sinks deployed, given the solution for the Game I shown in Table
7.2, column "Scenario 1". We also show the fraction of users subscribed to each IoT-SP (y1(t), y2(t)),
and the profit of each IoT-SP.
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Table 7.2: Game I solutions

Game I Variable Scenario 1 Scenario 2
OP price (p) 0.5 0.5
Fraction os sinks subscribed (x1) 1 1
Amount of IoT-SP1 data (R1) 200 150
Amount of IoT-SP2 data (R2) 100 150

Table 7.3: Reference Case - Game II Differential Game parameters

Parameter Scenario 1 and 2 Value
Number of users subscribed to the IoT-SPs (M ) 1000
Dynamic’s learning rate (δ) 0.7
Initial social state (Xu(0)) {0.2, 0.8}
Final time horizon (T ) 10
Discount rate (η) 0

Fig. 7.4 shows the variation of the prices as a function of time, while Figure 7.5 shows the evolution
of the users’ social state as a function of the time. For small values of t the providers change their
prices in order to compensate the changes in the population of users, due to the differences between the
static equilibrium values and the initial populations. Once the static equilibrium is reached the behavior
of the users and providers is stationary, until t is close to T , where the providers increase their prices.
We do not observe changes in the users’ social state when the prices increase, given that we have not
included the option of not subscribing. It is also interesting to note that the provider with more sinks
gathering and transmitting data (Ri), is able to fix a higher price and still maintain a higher number of
users subscribed to it. We observe a similar behavior in the instantaneous profits of the providers in
Figure 7.6, where there is a transition stage until the stationarity is reached, and the profits only deviates
from the equilibrium when t is close to t. The aggregated profits for the IoT-SP1 are 839325 while for
the IoT-SP2 are 298900. We observe that the profits for the IoT-SP1 are higher than the profits of the
IoT-SP2 as expected, given that R1 > R2.

7.3.2 Scenario 2: IoT-SPs dynamic competitions with same number of sinks

In this subsection we analyze the same variables when both providers have the same amount of sinks
deployed.

In this scenario we observe a similar behavior than in the scenario 1, with the difference that given that
the two provider have the same amount of sinks, the equilibrium values for the prices, population and
profits are the same for both providers, as shown in Figures 7.7, 7.8 and 7.9. In this case, the aggregated
profits are 492837 for IoT-SP1 and 558575 for IoT-SP2. They are not the same due to the differences
between the initial state of the population of users and the equilibrium.
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Figure 7.4: Scenario 1: IoT-SPs equilibrium prices as a function of t.
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Figure 7.5: Scenario 1: Social state as a function of t.

ΠIoT-SP1 (t)

ΠIoT-SP2 (t)

0 2 4 6 8 10
t

20000

40000

60000

80000

100000

120000
ΠIoT-SPi 

Figure 7.6: Scenario 1: Evolution of the IoT-SPs profits as a function of t.
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Figure 7.7: Scenario 2: IoT-SPs equilibrium prices as a function of t.
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Figure 7.8: Scenario 2: Social state as a function of t.

ΠIoT-SP1 (t)

ΠIoT-SP2 (t)

0 2 4 6 8 10
t

20000

40000

60000

80000

100000

120000
ΠIoT-SPi 

Figure 7.9: Scenario 2: Evolution of the IoT-SPs profits as a function of t.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions (English)

Wireless communications are evolving continuously. In the recent years they have experienced an
enormous growth thanks to the HTC users. In addition, the introduction of the IoT paradigm and MTC,
that are still being studied, are increasing the growth even more. These new paradigms require the
solution of new technical problems, but it is also needed to prove that it will be economically feasible
for the main network actors, the network operators.

In this dissertation we have analyzed the transition from HTC to MTC centered networks, trying to
prove that wireless sensor-based service provision scenarios are feasible from an economic point of
view. The analysis was conducted using concepts of microeconomics, game theory, optimal control
and optimization. The different stages of the transition are analyzed in three different scenarios. The
first scenario is focused on the coexistence of HTC and MTC, where both traffic profiles are served
on a common network infrastructure. The second scenario analyzes the connectivity provision service
to MTC users using a dedicated network infrastructure. Finally, given that the connectivity of MTC
users is solved in the previous scenario, the third scenario is focused on the study of the provision of
MTC-data-based services to final users from an end-to-end point of view.

Thanks to the analysis in the previous chapters we have observed that, in the analyzed scenarios, the
transition from HTC to MTC centered networks is feasible and that the provision of services is viable
with certain restrictions. The first restriction is related with the users of the services. It has been observed
that the behavior of the users is vital in order to determine the optimal decisions of the operators and
the economic feasibility of the scenarios. Specifically, the most relevant factors are the tolerance of the
users to the delay and to the quality of the data gathered by the sensors. The second restriction is related
with the investment costs of the service. It has been shown that the variable costs of the providers have
to be upper bounded, otherwise the feasibility of the service provision could not be guaranteed for all
the actors. We also have observed that separating the different traffic profiles in different categories,
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with different priorities in the service, improves the utilization of the networks. In addition, if each
traffic profile is served by a different operator in a competitive scenario, it also allows to increase the
revenues for all the actors in the market, improving the monetization of the investments and opening the
possibility to create new services based on data, that otherwise, would not be used due to its low quality.
It also has been demonstrated the possibility of creating a a dedicated role in the telecommunications
market to offer IoT services, the IoT-SPs, which provide sensor-data services to final users using their
own sensors and a third party access infrastructure. Furthermore, we have shown that the pricing is not
the only one tool that can be used to optimize the profits of the operators, but also the capacity provision,
which could be used in scenarios where the price if fixed by external factors.

In the following sections we describe in detail the results obtained in each scenario.

8.1.1 Main Contributions

8.1.1.1 Scenario 1:

In this scenario we modeled a transition scenario, where human and machine users shared the wireless
access infrastructure. The human traffic (HTC) and the machine traffic (MTC) differentiation was
modeled using a two-priority queue. The economic viability of the coexistence of both traffic profiles
was studied under both, monopolistic and duopolistic scenarios and these scenarios are compared with
the baseline case, where only one operator serves HTCu.

We have proved that the HTC-MTC coexistence is only feasible in a duopolistic scenario, given that
in monopolistic scenarios, the operator decides to serve only the more profitable users. The entry of
a second operator to serve MTC users is desirable not only from the point of view of resource usage
efficiency and from the point of view of the users, but also from the point of view of both operators,
if a payment mechanism between MTCo and HTCo is agreed. Furthermore, the HTCo profit is hardly
affected by the entry of the second operator, given that we consider opportunistic access, however, the
quality of the service is also lower, and it has to be compensated with a lower price charged for the
MTCo service.

8.1.1.2 Scenario 2:

A capacity provision scenario for wireless sensors connectivity is proposed. The scenario was studied
using both, a static model and a more complex, but also more realistic, dynamic model.

The behavior of the sensors was modeled through a utility function based on a congestion model, while
the subscription decision was modeled using both: static equilibrium and the replicator dynamic. The
OP profit was modeled using the revenues obtained from the sensors and a quadratic investment costs
function. The optimal profit in a defined time interval was obtained solving an optimal control problem,
using the network capacity as a control variable, and compared against the static optimization.

It has been shown that the optimization using optimal control, when the users are modeled using the
replicator dynamic, allows the OP to obtain higher profits than the optimization using the equilibrium
solution. In addition, the dynamic optimization allowed the operator to optimize its profits not only in a
scenario with fixed parameters, but also in a scenario where the system parameters, like the number of
sensors, changed over time. Given the obtained results, we can conclude that the proposed scenario is
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feasible from an economic point of view for all the actors if the investment costs scale factor is bounded.
Therefore, it is important to invest in the development of the technology, in order to reduce as much as
possible these costs. In addition, we show that the optimal control theory is a profitable and a powerful
tool for the maximization of the network operator profits in dynamic IoT scenarios and that capacity
provision is an alternative to pricing in the profit optimization.

8.1.1.3 Scenario 3:

A novel network model for providing IoT-based services with private sensor networks, using third party
access infrastructure, has been studied. The model was analyzed as two games using game theory,
population games, Logit discrete choice model, optimization and Nash equilibrium concepts.

Firstly, a congestion model was proposed for the utility of the sensors and it was shown economically
viable for the network operator to offer connectivity service, however, the system load never exceeded
half of the maximum possible load.

Secondly, a Logit discrete choice model was chosen to model users’ decisions with two IoT-SPs
competing for serving them maximizing their own profits. It has been shown that, in the equilibrium,
both IoT-SPs obtain the same profits multiplied by the portion of the total sensors that each one has. We
observed that the value of users’ sensitivity to the data/price ratio had to be 1 < α < 2, in order to obtain
a providers’ pricing equilibrium other than (0,0). In addition, the number of potential clients had to be
high enough to guarantee the feasibility for the IoT-SPs.

Given that both stages have been shown feasible under specific conditions, we can conclude that the
whole network model is conditionally feasible from an economic point of view, and therefore, the
provision of services based on MTC data is possible, from the deployment of the WSNs that gather
the sensing data, to the data-based service provision to the final users.

8.1.1.4 Scenario 4:

The dynamic provision of IoT-based services with private sensor networks, using third party access
infrastructure, has been studied. The model was analyzed as two games using concepts of game theory,
population games, Logit dynamic, optimization and differential games.

Firstly, the model was analyzed as two games. The first game analyzed the interaction between the OP
and the sinks, while the second game analyzed the competition between IoT-SPs to provide services to
final users and the behavior of the users. The first game was considered static from the point of view of
the users and IoT-SPs, given that the frequency of the changes in that game is much lower than in the
second game.

Secondly, a Logit dynamic was chosen to model users’ behavior, while the competition between IoT-SPs
in order to maximize their profits was analyzed using a differential game.

It has been shown how the dynamic analysis of the scenario is economically viable in the analyzed cases.
In addition, we observe that the competition between providers keeps the prices bounded until the time
is close to the end of the optimization interval, therefore, it is recommended to introduce a reservation
value or an infinite interval in order to observe the long term behavior. We also observe how the provider
with more sinks is able to fix a higher price, keep a higher portion of users subscribed and therefore,
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obtain higher profits. Finally, it has been shown how the initial distribution of users alters the profits of
two competing providers with the same number of sensors in short term optimizations.

8.1.2 Future Work

Future work will mainly involve the dynamic profit optimization, given that the results are better in the
dynamic than in the static approaches. In addition, it is necessary to study more complex scenarios with
several competing operators using differential games, which will allow us to study a broader range of
scenarios with a higher dynamism in parameters and to identify additional business opportunities for the
network actors. This tool will allow us to study scenarios with variable number of clients or the entry of
new operators in a market that has already reached the equilibrium, among others.

In our work we have been focused in machine communications with delay-based utilities, however,
there are other types of services with a higher dependency in other parameters, such as bandwidth and
coverage. In future studies we recommend to analyze these models using a similar methodology, in
order to validate our results for a wider range of scenarios.

Given that outcomes may change with the behavior of the users it is necessary to conduct rigorous
studies, which allow us to obtain reliable data about users’ behaviors and preferences, in order to be able
to tune the parameters of our models and analyze more realistic and complex situations in a precise way.

The analytical methods employed in our analysis gave us a wide perspective of the problem.
Nevertheless, this analysis is limited to relatively simple models, and it is not possible to use it in more
realistic and complex models due to mathematical limitations. One of the main future research lines is
to develop numerical methods that will allow us to study the competition in complex scenarios, using
mechanisms such as genetic algorithms.

8.2 Conclusiones (Spanish)

Las comunicaciones inalámbricas están en constante evolución. En los últimos años han experimentado
un enorme crecimiento debido al tráfico HTC, sin embargo todavía están en constante evolución.
Actualmente, el internet de las cosas y las comunicaciones MTC son paradigmas que todavía están en
desarrollo, sin embargo, están aumentando el crecimiento de las redes de una forma más pronunciada.
Estos nuevos paradigmas requieren la solución de nuevos problemas técnicos, pero también es necesario
para demostrar que será económicamente viable para los principales actores de la red, los operadores de
red.

En esta tesis hemos analizado la transición de las redes centradas en usuarios y servicios HTC a MTC,
tratando de demostrar que los escenarios de provisión de servicios basados en sensores inalámbricos
son factibles desde el punto de vista económico. El análisis se realizó utilizando conceptos de
microeconomía, teoría de juegos, control óptimo y optimización. Las diferentes etapas de la transición
se han analizado en tres escenarios diferentes. El primer escenario se centra en la coexistencia de
HTC y MTC, donde ambos perfiles de tráfico se emplean una infraestructura de red común. El
segundo escenario analiza el servicio de provisión de conectividad para usuarios MTC mediante una
infraestructura de red dedicada. Finalmente, dado que la conectividad de los usuarios MTC queda
resuleta en el escenario anterior, el tercer escenario se centra en el estudio de la provisión de servicios
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basados en datos MTC a usuarios finales con un enfoque end-to-end.

Gracias al análisis de los capítulos anteriores, hemos observado que, en dichos escenarios, la transición
de las redes centradas en usuarios HTC a MTC es factible y que la provisión de servicios es viable bajo
determinadas condiciones. La primera condición está relacionada con los usuarios de los servicios. Se
ha observado que el comportamiento de los usuarios es vital para determinar las decisiones óptimas de
los operadores y la viabilidad económica de los escenarios. Específicamente, los factores más relevantes
son la tolerancia de los usuarios al retardo de los datos y la calidad de los datos recopilados por los
sensores. La segunda condición hace referencia a los costes de inversión del servicio. Se ha demostrado
que los costes variables de los proveedores deben estar acotados, de lo contrario, la viabilidad de la
provisión del servicio no se puede garantizar para todos los actores. También hemos observado que
separar los diferentes perfiles de tráfico en diferentes categorías con diferentes prioridades en el servicio
mejora la utilización de las redes. Además, si cada perfil de tráfico es atendido por un operador diferente
y el escenario es competitivo, también permite aumentar los ingresos para todos los actores del mercado,
mejorando la monetización de las inversiones y permitiendo crear nuevos servicios basados en datos, que
de lo contrario, serían deshechados. También se ha demostrado la posibilidad de crear un rol específico
en el mercado de las telecomunicaciones para ofrecer servicios IoT, los IoT-SPs, que proporcionan
servicios basados en datos de sensores a usuarios finales, empleando sus propias redes de sensores y la
infraestructura de acceso de un tercero. Además, hemos podido mostrar como la elección de precios
no es la única herramienta disponible para la optimización de beneficios, sino también la provisión de
capacidad, que resulta eficaz en escenarios donde el precio es fijado por factores externos.

En las siguientes secciones se describe en detalle los resultados obtenidos en cada escenario.

8.2.1 Principales contribuciones

8.2.1.1 Escenario 1:

El escenario modelado está planteado como un escenario de transición entre las redes clásicas y redes
dedicadas exclusivamente al servicio de MTCu. El escenario modela una etapa temprana en la transición,
en la que usuarios HTCu y MTCu comparten una infraestructura de acceso inalámbrico. Los diferentes
perfiles de tráfico se diferencian mediante el uso de una cola con dos prioridades. En el escenario se
analiza la viabilidad económica de la coexistencia de ambos perfiles de tráfico cuando son servidos por
un único operador monopolista o por dos operadores en competencia. Los resultados se comparan con
un caso base, en el que un solo operador ofrece servicio a HTCu.

En el trabajo demostramos que la coexistencia HTC-MTC es únicamente factible en un escenario donde
los operadores compiten, ya que en el caso de monopolio el operador decide servir únicamente a los
clientes que le proporcionan un mayor beneficio. La entrada de un segundo operador para servir a los
HTCu es deseable desde un punto de vista de eficiencia de la red, así como desde el punto de vista de los
usuarios. Por otro lado, si consideramos un mecanismo de pago entre el operador entrante y el operado
existente, el escenario también es factible desde el punto de vista de los operadores. Finalmente, debido
a la disciplina de servicio empleada en la cola, se observa que el operador HTC existente apenas sufre
variación con la entrada del nuevo operador MTC, sin embargo, la calidad del servicio también es menor,
y debe compensarse con un precio más bajo por el servicio del MTCo.
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8.2.1.2 Escenario 2:

En este capítulo se propone un escenario de provisión de capacidad para la conectividad de sensores
inalámbricos. El escenario es analizado usando dos modelos: un modelo estático y un modelo dinámico,
más complejo pero también más realista.

El comportamiento de los sensores se modela empleando una función de utilidad basada en un modelo
de congestión, mientras que las decisiones de los usuarios se estudian empleando los conceptos de
equilibrio estático y la dinámica del replicador. Los beneficios del OP se modelan utilizando los ingresos
percibidos por el pago de los sensores y una función de costes cuadrática con la capacidad de la red
reservada. Los beneficios se obtienen para un intervalo de tiempo. En el caso dinámico se resuelve un
problema de control óptimo, en el que la capacidad de la red se utiliza como variable de control, y se
comparan con los beneficios de la optimización estática.

En los resultados observamos que la optimización mediante control óptimo, cuando los usuarios
se comportan según la dinámica del replicador, permite al OP obtener mayores beneficios que la
optimización empleando la solución del equilibrio estático. Otra de las ventajas de la optimización
dinámica es que permite a los operadores optimizar sus beneficios en escenarios tanto estáticos, con
parámetros fijos, como con dinámicos, donde los parámetros, como el número de sensores, varían con
el tiempo.

Con los resultados obtenidos podemos concluir que el escenario planteado es factible desde un punto
de vista económico para todos los actores. Además, hemos mostrado como la teoría de control óptimo
es una herramienta que permite mejorar la maximización de los beneficios de los operadores de red en
escenarios IoT dinámicos y que la provisión de capacidad es una alternativa a la fijación de precios para
la optimización de beneficios.

8.2.1.3 Escenario 3:

En este escenario presentamos un novedoso modelo para la provisión de servicios de IoT basados en
datos de redes de sensores privadas que usan una infraestructura de acceso inalámbrico de un tercero. El
modelo se analiza como dos juegos utilizando los conceptos de teoría de juegos, juegos poblacionales,
modelo Logit de elección discreta, equilibrio de Nash y optimización.

En el primer juego, se propone un modelo de congestión para la utilidad de los sensores que recopilan
los datos y se demuestra que resulta económicamente viable para el operador de red ofrecer un servicio
de conectividad a los mismos. Sin embargo, las decisiones óptimas para el operador y el modelo de
congestión para los sensores hacen que en el equilibrio la carga del sistema nunca supere la mitad de la
capacidad máxima.

En el segundo juego, se propone un modelo Logit de elección discreta para modelar las decisiones de los
usuarios, mientras que dos proveedores de servicios IoT compiten para servir a los usuarios buscando
maximizar sus beneficios. Se observa que en el equilibrio ambos operadores obtienen los mismos
beneficios, multiplicados por la porción total de sensores que cada uno posee. También se observa
que la sensibilidad de los usuarios a la relación calidad del servicio/precio debe estar comprendida entre
1 < α < 2, de modo que se pueda obtener un equilibrio diferente del (0, 0) en los precios de los
proveedores de servicio. Finalmente, también se observa que el número de potenciales usuarios debe ser
suficiente grande para garantizar la viabilidad del modelo para los IoT-SPs.

94



Debido a que ambos juegos se demuestran factibles bajo ciertas circunstancias, podemos concluir que el
modelo completo de red es condicionalmente factible desde un punto de vista económico y por lo tanto,
la provisión de servicios basados en datos MTC es posible, desde el despliegue de los WSNs que se
encargan de obtener los datos, hasta la provisión de servicios basados dichos datos a los usuarios finales.

8.2.1.4 Escenario 4:

Se ha estudiado la provisión dinámica de servicios basados en el IoT con redes de sensores privadas,
utilizando la infraestructura de acceso de un tercero. El modelo fue analizado como dos juegos
usando conceptos de teoría de juegos, juegos de población, la dinámica Logit, optimización y juegos
diferenciales.

El modelo se analizó como dos juegos: en el primer juego se analiza la interacción entre el OP y los
sensores, mientras que el segundo juego se analizó la competencia entre IoT-SPs y el comportamiento
de los usuarios. Dado que los cambios en el primer juego es mucho menor que en el segundo, se pueden
considerar escalas de tiempo diferentes, lo que nos permite considerar el primer juego estático desde el
punto de vista del segundo juego.

En segundo lugar, se eligió una dinámica Logit para modelar el comportamiento de los usuarios,
mientras que la competencia entre IoT-SPs para maximizar sus ganancias se analizó utilizando un juego
diferencial.

Se ha demostrado cómo el escenario analizado mediante modelos dinámicos es económicamente viable
en los casos analizados. Además, observamos que la competencia entre proveedores mantiene los
precios acotados hasta que el tiempo está cerca del final del intervalo de optimización, por lo que
se recomienda introducir un valor de reserva o un intervalo de optimización infinito para observar la
evolución a largo plazo. También observamos cómo el proveedor con más sensores puede fijar un
precio más alto, mantener una mayor proporción de usuarios suscritos y, por lo tanto, obtener mayores
ganancias. Finalmente, se ha observado que la distribución inicial de usuarios es capaz de influir en las
ganancias de proveedores con las mismas características en optimizaciones a corto plazo.

8.2.2 Trabajos futuros

En los trabajos futuros se recomienda principalmente utilizar métodos de optimización dinámica, debido
a que se ha probado que permite obtener mejores resultados que las aproximaciones estáticas. Por otro
lado, resulta necesario estudiar mediante juegos diferenciales escenarios más complejos, con un mayor
número de operadores y proveedores de servicio compitiendo, lo que nos permitirá estudiar una mayor
abanico de escenarios con un alto dinamismo e identificar nuevas oportunidades de negocio para los
diferentes actores. Esta herramienta nos permitirá estudiar escenarios con un número variable de clientes
o la entrada de nuevos operadores en un mercado que ya ha alcanzado el equilibrio, entre otros.

En nuestro trabajo principalmente nos hemos centrado en modelar comunicaciones MTC con funciones
de utilidad basadas en el retardo, sin embargo, hay otros tipos de servicios con una mayor dependencia
de otros parámetros, como el ancho de banda y la cobertura. En futuros estudios se recomienda estudiar
dichos escenarios empleando una metodología similar a la actual, a fin de revalidar los resultados ya
obtenidos en un mayor abanico de escenarios.
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En los diferentes escenarios se ha observado que la viabilidad de los mismos está estrechamente ligada
con el comportamiento de los usuarios. Resulta por tanto necesario realizar estudios rigurosos que nos
permitan obtener datos fiables sobre el comportamiento y las preferencias de los usuarios, para poder
ajustar los parámetros de nuestros modelos y analizar de manera más realista y precisa situaciones
complejas.

Finalmente, los métodos analíticos empleados en nuestro análisis nos han dado una amplia perspectiva
del problema. Sin embargo, este tipo de análisis está limitado a modelos relativamente simples, y
no es posible emplearlos en modelos más complejos, donde las expresiones analíticas se vuelven
intratables. En futuros estudios se recomienda emplear herramientas como algoritmos genéticos y
métodos numéricos para estudiar la competencia en escenarios complejos.
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APPENDIX A

SCENARIO 3: OP PRICING STAGE -
SOLUTION OF KKT PROBLEM

The candidates to local maximum of the optimization problem with restrictions

max
p

Π∗OP2
=
(
p c−pcτ

)
subject to c (1− τNr) ≤ p ≤ c

(A.1)

must hold KKT conditions

∇f0(p∗) + λ1∇g1(p∗) + λ2∇g2(p∗) = 0 (A.2)

λ1, λ2 ≥ 0

λ1g1(p∗) = 0

λ2g2(p∗) = 0,

where

f0(p) = p
c− p
cτ

∇f0(p) =
c− 2p

cτ
g1(p) = p− c (1− τNr) ∇g1(p) = 1

g2(p) = c− p ∇g2(p) = −1

The solution to the KKT conditions is a global maximum if f0(p), g1(p) and g2(p) are concave C1

functions. We observe that g1(p) and g2(p) functions are both convex and concave since they are linear
and f0(p) is concave since its second derivative f

′′
0 (p) = − 2

cτ is negative for any value of p .

Solution of the problem with the KKT conditions:

• λ1 > 0:

g1(p∗) = 0⇔ p∗ − c (1− τNr) = 0

p∗ = c (1− τNr) (A.3)
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– λ2 > 0:

g2(p∗) = 0⇔ c− p∗ = 0

p∗ = c. (A.4)

Given that p∗ must meet (A.3) and (A.4) simultaneously we have

τNr = 0, (A.5)

which is impossible.
– λ2 = 0:

From this restriction we can obtain
c− 2p∗

cτ
+ λ1 = 0

c− 2c (1− τNr)
cτ

+ λ1 = 0

2τNr − 1

τ
< 0

2τNr − 1 < 0

τ <
1

2Nr
. (A.6)

This case is valid if (A.6) holds. And the profit is

ΠOP2(c (1− τNr)) = c (1− τNr) c−c(1−τNr)cτ = c (1− τNr)Nr (A.7)

Note than the profit is always positive and

ΠOP2(p∗) > cNr
2 s.t. τ < 1

2Nr
(A.8)

• λ1 = 0:

– λ2 > 0:

g2(p∗) = 0⇔ p∗ = c
c−2p∗

cτ − λ2 = 0

λ2 = − 1
τ ⇔ λ2 < 0,

which is impossible.
– λ2 = 0:

c− 2p∗

cτ
= 0

p∗ =
c

2
. (A.9)

This case is valid only if

c ≥ c
2 and c (1− τNr) ≤ c

2 ⇔ τ ≥ 1
2Nr ,

and the optimal profit is

ΠOP2(p∗) = c
4τ s.t. τ ≥ 1

2Nr . (A.10)

From previous analysis we conclude that the solution for the KKT problem defined in (A.2), and
therefore the solution for the optimization problem (6.15) is:

Π∗OP2
=

{
c (1− τNr)Nr if 0 ≤ τ < 1

2Nr
c

4τ if τ ≥ 1
2Nr

. (A.11)
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APPENDIX ABBREVIATIONS

CAPEX Capital Expenditures. 10

ESS Evolutionary Stable Strategy. 16, 49

GESS Globally Evolutionary Stable Strategy. 15, 16, 47–49, 83

HTC Human Type Communications. i–iv, vi, vii, 1, 2, 5, 20, 23, 24, 27, 28, 30, 32, 36, 37, 39, 89, 90,
92, 93

HTCo Human Type Communications Operator. 28, 30–33, 37, 90

HTCu Human Type Communications users. i, 20, 21, 27, 37, 90, 93

IoT Internet of Things. i–vii, 1–3, 5, 8, 20, 21, 23, 24, 39, 40, 59, 61, 79, 89–91, 93–95

IoT-SP Internet of Things Service Provider. ii, iv, vii, 7, 9, 24, 25, 59–63, 66–69, 71, 72, 74, 79–86,
90, 91, 93–95

KKT Karush-Kuhn-Tucker. 3, 17, 44, 65, 105, 106

M2M Machine to Machine communications. 1–3

MINECO Spanish Ministry of Economy and Competitiveness. 3, 4

MPNE Markov-Perfect Nash Equilibrium. 16

MTC Machine Type Communications. i–vii, 1–3, 5, 20, 23, 24, 27, 28, 32, 36, 37, 39, 59, 79, 89–93,
95

MTCo Machine Type Communications Operator. 28, 32, 33, 37, 90, 93

MTCu Machine Type Communications users. i, 20, 21, 23, 27, 36, 37, 93

OLNE Open-Loop Nash Equilibrium. 16

107



OP Network Operator. i–iv, vi, vii, 7–9, 18, 21, 24, 39–45, 49–53, 59–66, 68, 72, 74, 80, 81, 84, 86,
90, 91, 94, 95

PDE Partial Differential Equation. 19, 50, 85

PMP Pontryagin’s Maximum Principle. 18, 19, 45, 49, 50, 84, 108

SPNE Subgame Perfect Nash Equilibrium. 30

TPBVP Two Point Boundary Value Problem. 19, 50, 85

WSN Wireless Sensor Networks. i–iv, vi, vii, 2, 3, 20, 21, 24, 41, 59, 60, 62, 63, 79, 81, 91, 95
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NOMENCLATURE

Common Terms

∗ All the symbols with a ∗ represent the value of such symbols in the optimal/equilibrium case

α Customer sensitivity to the delay in the packets

λi Arrival rate of the queue i

Π Operators or service providers profit

c Scale factor of the quality Q

cv(n) Variable costs

K Fixed costs

n Number of users subscribed to the operator service

pi Price charged by the network operator i to the users of its connectivity service

Qi Quality perceived by the users choosing the queue i

S Set of all possible strategies in a game

Ti Mean packet service time in the queue i

Ui Utility of the users choosing the strategy i

Wi Mean waiting time in the queue i

X Social state of a system

Sceanrio 1

xi Mean packet transmission time in the queue i

Π Operator profit in the baseline case

Πi Operator i (i = 1, 2) profit in the duopoly case

109



Π1,2 Operator profit in the monopoly case

ρ Total server load

ρi Server load due to the queue i

p̂i Upper threshold to the price pi in order to waranty the coexistence of two operators

p Operator price in the baseline case

pi Price charged to the users of the queue i

Sceanrio 2 and 4

δ Learning rate of the evolutionary dynamic

σ̇ Instantaneous variation of the adjoint variable (seePMP)

ẋi Instantaneous variation of the social state i

η Discount rate of the instantaneous profits

Γij Revision protocol. Switching rate from strategy i to strategy j

κi,n Aleatory part of the Logit utility Ui,n. The variable κi,n follows a Gumbel distribution of
mean 0

µ Service rate of a server,or equivalently, system capacity

ωi Probability that a user following the Logit utility chooses the strategy i

Πi
ins(t) Instantaneous profit of the operator i at time t

σ Adjoint variable (see PMP)

ϕ Sensitivity parameter in the User Logit utility Ui,n to the deterministic part

H Hamiltonian function

k Scale factor of the investment costs

N Total number of sinks in the scenario

p Price charged by the OP to the sinks

r Sensing data unit generation rate of one sink

T Final time horizon of the optimization

Uavg Average utility of all the players in the system

Ui,n Logit utility Ui,n

vi Deterministic part of the Logit utility Ui,n

x0 Fraction of sinks not being served

x1 Fraction of sinks being served by the OP

Scenario 3 and 4
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µ Service rate of a server,or equivalently, system capacity

fi Price charged by the IoT-SPi to the users subscribed to its service

k Scale factor of the investment costs

L Maximum theorical system load

M Total number of users that can subscribe to the IoT-SPs services

N Total number of sinks in the scenario

p Price charged by the OP to the sinks

r Sensing data unit generation rate of one sink

Ri Quality of the data provided by the IoT-SPi

x0 Fraction of sinks not being served

x1 Fraction of sinks being served by the OP

y0 Fraction of users not subscribed to any service

y1 Fraction of users subscribed to the service of the IoT-SP1

y2 Fraction of users subscribed to the service of the IoT-SP2
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