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SUMMARY

This paper presents a methodology to obtain a guaranteed-reliability controller for constrained linear systems
which switch between different modes according to a Markov chain (Markov-jump linear systems). Inside
the classical maximal robust controllable set, there is 100% guarantee of never violating constraints at
future time. However, outside such set, some sequences might make hitting constraints unavoidable for
some disturbance realisations. A guaranteed-reliability controller based on a greedy heuristic approach was
proposed in an earlier work [1] for disturbance-free, robustly stabilisable Markov-jump linear systems. Here,
extensions are presented by, first, considering bounded disturbances and, second, presenting an iterative
algorithm based on dynamic programming. In non-stabilisable systems, reliability is zero; therefore, prior
results cannot be applied; in this case, optimisation of a mean-time-to-failure bound is proposed, via minor
algorithm modifications. Optimality can be proved in the disturbance-free finitely-generated case. Copyright
c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Reliability analysis, constrained Markov-Jump linear systems, invariant sets, fault-
tolerant control.

1. INTRODUCTION

Avoiding constraint violation in closed-loop operation of a control system is a relevant problem; it
is, for instance, one of the motivations behind the success of model predictive control [2].

In a worst-case setting, the concept of invariant sets [3, 4] helps solving the above problem: by
definition, any initial state in the referred invariant sets can be guaranteed to never violate constraints
for all future time (‘safe’ sets). If state and input constraint sets are polyhedral, (robust) invariant
and control-invariant sets can be computed with well known algorithms [4] using multi-parametric
toolbox (MPT) [5]. The framework allows extending set invariance results to switching [6, 7, 8]
and piecewise affine systems [9]; in such systems, collections of polytopes [8] should be handled in
some cases.
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2 M. HERNÁNDEZ AND A. SALA

The above worst-case analysis may be conservative when there is a probabilistic description of
the disturbances or the switching between different possible system models (operation modes):
basically, in such settings the ‘probability of constraint violation’ should be managed somehow.
Of course, the robust invariant sets in the cited literature will be sets where probability of not
violating constraints (to be denoted as reliability [1]) is one, but there might be larger sets where
such reliability is close to one; determining them can be useful for practical purposes. There might
be situations in which constraint violation is ultimately unavoidable (zero reliability), say, with
faults in unstable systems; in such a case, an alternative mean time to failure (MTTF) measure [10],
understood as the average time trajectories take to hit constraints, should be considered. Obviously,
reliability and MTTF will depend on how close initial state is from constraint boundaries.

The above issues arise in practice in, for instance, networked control systems with random packet
losses [11], control of processes subject to randomly-occurring faults (fault-tolerant control [12]),
predictive control under scenarios discarding some possible outcomes [13], etc.

Specifically, this paper extends the classical set-invariance ideas to provide some robust reliability
and mean time to failure (MTTF) bounds (and associated controllers), in processes where
disturbances are bounded and parameter changes can be modelled as a set of discrete-time linear
systems (operation modes), with mode transitions governed by a Markov chain (Markov-jump linear
systems (MJLS) [14, 15]). In this MJLS case, the maximal sets for which a mode-dependent control
action exists making them robustly invariant can, too, be computed by adapting the above concepts,
see [16, Lemma 16], [7, 17]. Of course, linear matrix inequalities may be used to handle ellipsoidal
invariant sets for MJLS [18], but this approach will not be pursued in this work.

As discussed above, the work [1] defined reliability as the probability of avoiding future constraint
violations, but only in a disturbance-free setting. Basically, the main idea proposed there is the
fact that, if the initial state is outside the maximal robust controllable set, there might exist mode
sequences such that constraint violation is unavoidable (‘failure’): if we are ‘close’ to the maximal
invariant set, such failure can be avoided with high probability, but it will not be the case ‘far away’
from it. The cited work proposed a solution, based on so-called ‘sequence-dependent’ sets; a sub-
optimal ‘greedy’ action was chosen to be the one associated to the most likely sequence with which
the invariant set was reachable.

Results in the above-cited paper apply only to suboptimal reliability computations for stabilisable,
undisturbed MJLS. The specific objective of this work is overcoming such issues by:

1. Devising better controller options than the greedy one, exploiting the possibility of ‘betting’
on more than one sequence (via an intersection operator). In fact, an optimal reliability
controller will be proven under a finitely-generated assumption.

2. Generalising the results to disturbed and non-stabilisable systems where, in fact, robust
invariant sets might be non-existent. In such a case, both reliability and MTTF bounds will be
considered, albeit the results cannot be guranteed to be optimal.

The basic tool will be based on dynamic-programming argumentations, whose ‘steps’ will be
identified with ‘1-step sets’ in the above-cited invariance-based control.

This paper is organized as follows: preliminary, definitions and notation are given in next section,
as well as the problem statement. Section 3 presents the main result of this paper, proposing
generalised 1-step and intersection operators, used in an algorithm which obtains a progressively
more accurate reliability bound; two initialisation options are proposed and compared. The MTTF
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RELIABILITY AND TIME-TO-FAILURE BOUNDS FOR CONSTRAINED MJLS 3

bound is discussed in Section 4, for zero-reliability set-ups (large disturbances, unstable modes,
. . . ). Numerical examples appear in Section 5. Finally, a conclusion section closes the paper. An
Appendix discusses algorithm implementation details and computational improvements.

2. PRELIMINARIES

Consider a non-autonomous discrete time-varying linear system:

xk+1 = Aθkxk +Bθkuk + Eθkwk, θk ∈M, k ≥ 0 (1)

where xk ∈ Rn represents the state vector, uk ∈ Rm the control actions, and wk ∈ Rs are
disturbances, being M = {1, 2, . . .M} a set of possible ‘modes’. System (1) switches between
these M different operation modes, i.e., Aθk ∈ Ā := {A1, . . . , AM}, Bθk ∈ B̄ := {B1, . . . , BM},
Eθk ∈ Ē := {E1, . . . , EM}.

In this work, it is assumed that, at time k, the current mode θk is known, as well as the state
xk. Additionally, the operation mode θk follows a discrete-time Markov chain with transition
probabilities matrix P = (πji) ∈ RM×M , i.e., Pr{θk+1 = j|θk = i} = πji, were πji ≥ 0, ∀i, j ∈M
and

∑M
j=1 πji = 1. The mode matrices will be assumed time-invariant (Ā and B̄ are constant) and

πji will not change with time: Ā, B̄ and πji will be assumed known.

Constraints. Mode-dependent state (Ω[θk]), input (U[θk]) and disturbance (W[θk]) constraint sets
will be considered. The origin x = 0 is assumed to belong to all Ω[i], and likewise u = 0, w = 0

will be assumed to belong to all U[i], W[i], respectively, for all i ∈M. Constraint sets are assumed
compact and polytopic. Notation Ω∗ will denote the set in the augmented space Rn ×M given by
Ω∗ := {(x, θ) ∈ Rn ×M : x ∈ Ω[θ]}. Therefore, the mode-dependent constraints can be stated, for
all k ≥ 0, as (xk, θk) ∈ Ω∗, (uk, θk) ∈ U∗, (wk, θk) ∈W∗ being U∗, W∗ likewise defined. Mode,
state, input and disturbance sequences fulfilling the constraints will be denoted as admissible.
Augmented-space ∗-notation will be omitted if all Ω[i], (or U[i], W[i]) are equal. Notation C ∈ C(Rn)

will refer to C being a polytopic set in Rn, where convexity and polytopic structure has been assumed
just for computational reasons, in order to use the multiparametric toolbox [5].

Admissible sequences. Si will denote the set of all modes j ∈M accessible from a mode i ∈M
in one time step, i.e., Si := {j ∈M|πji > 0}. An admissible switching sequence of length N ,
θ = {θ0, . . . , θN−1} for (1) is a switching path for which θk+1 ∈ Sθk , for all 0 ≤ k ≤ N − 2.
Equivalently, denoting as Pi the predecessors of mode i, i.e., Pi := {j ∈M|πij > 0}, admissible
sequences will be those for which θk ∈ Pθk+1

for 0 ≤ k ≤ N − 2. Notation AS(θ0, N) will denote
the set of admissible sequences of length N starting with θ0.
Pr(θ) will denote the probability of a particular sequence θ conditioned to its first element, i.e.,

Pr(θ) := ΠN−1
j=1 πθjθj−1 . All finite-length admissible sequences have Pr(θ) 6= 0.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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4 M. HERNÁNDEZ AND A. SALA

One-step sets. When there is no mode information available to the controller, system (1) can be
considered to be an uncertain linear system with polytopic uncertainty. In that context, the well-
known robust 1-step set is defined in [3, 4]. When the mode information is known by the controller,
a more flexible definition of 1-step set is proposed in [16, 1], quoted below:

Definition 1 (Mode-dependent 1-step controllable set)
Given a set C ⊂ Rn, the mode-dependent one-step controllable set for mode i ∈M is defined as:

Qi(C) := {x ∈ Ω[i] : ∃u ∈ U[i] such that Aix+Biu+ Eiw ∈ C ∀w ∈W[i]} (2)

and, also, Qi(∅) := ∅. The 1-step set in the augmented space Ω∗ is redefined, for C∗ ⊂ Ω∗, as [1]:

Q∗(C∗) :={(x0, i) ∈ Ω∗ : ∃u ∈ U[i] s. t. (Aix0 +Biu+ Eiw, j) ∈ C∗ ∀j ∈ Si,∀w ∈W[i]} (3)

Remark 1
Knowledge of the mode i by the controller is implicitly integrated in (3). Analogously to well-known
literature, [4], removing the existential quantifier (and plugging a predefined controller in) yields the
1-step sets needed for analysis-only set-ups, such as the implicitly considered one in Definitions 3
or 4, in later sections.

Definition 2
A set C∗ ⊂ Ω∗ is mode-dependent controllable if C∗ ⊂ Q∗(C∗). The largest of such sets is the
maximal mode-dependent controllable set, K∗∞.

If C∗ is mode-dependent controllable, there exists a controller u(xk, θk) such that trajectories
starting in (x0, θ0) ∈ C∗ can indefinitely remain there, robustly for any admissible mode/disturbance
sequence of arbitrary length.

Adapting algorithms in, for instance, [4], K∗∞ can be computed iterating K∗l = Q∗(K∗l−1) until
convergence, from initial K∗0 = Ω∗; see [16, 1]. Once the converged K∗∞ is available, for any
(x, i) ∈ K∗∞, any controller which steers a state in K[i]

∞ to the successor set:

S[i] := ∩j∈SiK[j]
∞ (4)

achieves the above-mentioned invariance. K∗∞ will be denoted as terminal set and the associated
controller as terminal controller†.

If there exists a finite l such that K∗l = K∗l+1 = · · · = K∗∞, we will say that K∗∞ has l-step
convergence or, plainly, that the set is finitely generated when the actual value of l is not relevant.
From robust invariant-set ideas, given l ≥ 0, if (x0, θ0) 6∈ K∗l there exists a mode sequence of length
l + 1 and a worst-case disturbance such that no admissible control action can avoid exiting Ω∗.

2.1. Problem statement

By definition, for initial mode-state conditions outside the terminal set K∗∞ there does not exist a
controller with probability of success equal to 1, i.e., trajectories starting from such initial states

†In this work, what we call ‘terminal’ set is the ‘maximal controllable’ one in prior literature, and bears no direct
relation to the terminal set in, say, predictive control (invariant, non-saturating LQR set [14]). However, conceptually,
it is actually a ‘terminal’ one in later proposed horizon-based algorithms, because an optimal (reliability 1) admissible
terminal controller is known inside such set.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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RELIABILITY AND TIME-TO-FAILURE BOUNDS FOR CONSTRAINED MJLS 5

will violate constraints under some admissible mode and disturbance sequences. The objective of
this paper is to optimise the ‘reliability’ understood as the likelihood‡ of not violating constraints in
future time; it will be proved to be equal (in some cases) to the likelihood of reaching the terminal
set from outside (and indefinitely remaining in it thereafter with a terminal controller).

This work will propose iterative algorithms, inspired on dynamic programming, to compute
reliability bounds for initial (x0, θ0) 6∈ K∗∞ and an associated controller guaranteeing such bounds.

As later developments will show, there are initial states with zero reliability, i.e., those for which
no control law can avoid constraint violation at future time (under some admissible worst-case
disturbance). In fact, there are well-known cases in which some (or even all) of the terminal sets
K[j]
∞ are empty (large disturbances, non-stabilisable modes, etc.). In the latter case, reliability bound

will be zero in all Ω∗ because no initial state can be robustly kept indefinitely in Ω∗ with a causal
mode-dependent controller.

In states with zero reliability, a modified performance measure will be of interest: the ‘robust
mean time to failure’, understood as the average number of steps in which the system starting at a
particular state will violate constraints under a worst-case disturbance (precise definition later on).

Next section will define reliability and propose an algorithm for guaranteed-reliability controllers,
and Section 4 will do the same for the mean-time-to-failure case, albeit briefly as developments will
be parallel to those in Section 3.

3. RELIABILITY BOUND COMPUTATION

Definition 3
Given x0, a control law u(x, θ), an integer horizon k, and a mode sequence θ ∈ AS(θ0, N + 1) of
length (N + 1) > k ≥ 1, the controller-sequence pair {u(·, ·),θ} is k-step successful for (x0, θ0) ∈
Ω∗ if (u(xj , θj), θj) ∈ U∗ and (xj+1, θj+1) ∈ Ω∗ for all wj such that (wj , θj) ∈W∗, for all j =

0, . . . , k − 1. For a fixed controller u(·, ·), we will denote as SS(x0, θ0, k) the set of admissible
sequences θ with length k + 1 such that {u(·, ·),θ} is k-step successful.

Basically, the above definition states that a k-step successful controller-sequence pair can avoid
constraint violation for k steps robustly for all admissible disturbances (for a particular initial state).
When there is no confusion on the controller under consideration, we will just say that a sequence
θ is k-step successful for (x0, θ0).

Note that, as an equivalent recursive characterisation, θ is k-step successful for (x0, θ0) ∈ Ω∗

if (u(x0, θ0), θ0) ∈ U∗, (x1(x0, θ0, w), θ1) ∈ Ω∗ –being x1(x0, θ0, w) := Aθ0x0 +Bθ0u(x0, θ0) +

Eθ0w–, and {θ1, . . . , θN} is (k − 1)-step successful for (x1(x0, θ0, w), θ1) for all w ∈W[θ0].

Definition 4
Given a control law u(x, θ):

‡As discussed in the introduction, no probability distribution will be assumed on the disturbances, so the results will be
robust/worst-case regarding to them, and probabilities will be only associated to the Markov chain governing mode
transitions. Some probabilistic set-ups in disturbances can be embedded in our framework by suitably defining the
allowed mode-dependent disturbance sets W[i], as in [13] (details left to the reader).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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6 M. HERNÁNDEZ AND A. SALA

• For given k ≥ 1, the controller’s k-step reliability at initial conditions (x0, θ0), denoted by
RLk(x0, θ0) is defined as

RLk(x0, θ0) :=
∑

θ∈SS(x0,θ0,k)

Pr(θ) (5)

If SS(x0, θ0, k) is empty or (x0, θ0) 6∈ Ω∗, reliability will be defined RLk(x0, θ0) := 0. Also,
for any controller, RL0(x0, θ0) := 1 if (x0, θ0) ∈ Ω∗, and RL0(x0, θ0) := 0 otherwise.

• the controller’s reliability at initial conditions (x0, θ0), denoted as RL(x0, θ0), is defined as
RL(x0, θ0) := limk→∞RLk(x0, θ0).

If a sequence is k-step successful, trivially it must be (k − 1)-step successful; then, the set
of length-(k + 1) sequences which are k-step successful is smaller than or equal to the set of
length-(k + 1) sequences which are (k − 1)-step successful. So, inequality 0 ≤ RLk(x0, θ0) ≤
RLk−1(x0, θ0) is straightforward; subsequently, by monotonic-convergence argumentations,
existence of the required limit in the definition of RL can be proved.

Informally, Definition 4 means that reliability is the probability of not violating constraints in
future time from (x0, θ0) under worst-case disturbances. With K∗l in previous section (for the
particular controller under scrutiny, see Remark 1), it can be proved that:

(x, θ) ∈ K∗l ⇔ RLl(x, θ) = 1 (6)

Proposition 1
For a given controller u(x, i), reliability fulfils the following recursive equation:

RLl(x, i) = min
w∈W[i]

∑
j∈Si

πjiRLl−1(Aix+Biu(x, i) + Eiw, j) ∀l ≥ 1 (7)

Proof
Starting with RL0, it is straightforward to see that the assertion is true for RL1. For larger l, given
θ = {i, j, θ2, . . . } and u(x, θ), the controller-sequence pair is l-step successful for (x0, i) ∈ Ω∗ if and
only if (u(x0, i), i) ∈ U∗, and (x1, j) ∈ Ω∗, with x1 = Aix+Biu(x, i) + Eiw0 for all w0 ∈W[i],
and {u(x, θ), {j, θ2, . . . }} are l − 1-step successful for initial conditions (x1, j) . The sum of Pr(·)
of all l − 1-step successful sequences (noting that RL is zero if (x1, j) 6∈ Ω∗) multiplied by their
conditional probability (conditioned to θ0 = i, i.e., πji) yields (7). So, the reasoning can be applied
by induction to any l ≥ 1.

As a corollary, if there exists l such that RLl(x, i) = RLl−1(x, i) for all x and all i, then
RLl(x, i) = RL(x, i).

3.1. Iterative RLl(·, ·) Algorithm

Although reliability definition above considers a pre-existing control law, the aim of this section is to
obtain an approximation to the maximum-reliability controller. Of course, optimal l-step reliability,
denoted as RLoptl , must verify the Bellman condition:

RLoptl (x, i) = max
u∈U[i]

min
w∈W[i]

∑
j∈Si

πjiRL
opt
l−1(Aix+Biu+ Eiw, j) (8)
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RELIABILITY AND TIME-TO-FAILURE BOUNDS FOR CONSTRAINED MJLS 7

Measured mode= 2

Measured mode= 1

RL bound 
if is reached 

RL bound 
if is reached 

Figure 1. Illustration of the data structure O and operators Qi, I.

However, obtaining such optimal-reliability controller might require a large computational effort.
As discussed in the introduction, [1] introduces a greedy approach, which this paper tries to improve
in an algorithm which exploits the dynamic-programming structure of the problem.

Note that each state x will have a different reliability, depending on the mode the system is
at when x is reached, requiring the control law to drive the next state to a different target state
depending on such mode. So, a structure containing sets of states, mode-dependent value functions
(reliability estimates) and mode-dependent target successor sets is needed. This motivates the
following notation:

Notation. Let F denote the mappings M 7→ R+ ×C(Rn), being R+ the set of non-negative
real numbers. Given f ∈ F , j ∈M, we will denote the components of f(j) as f(j) :=

(fval(j), fsuc(j)) with f(j)val ∈ R+, f(j)suc ∈ C(Rn).
Let us denote as O := C(Rn)×F . The component fields of object o ∈ O will be denoted as

oset ∈ C(Rn), of ∈ F , i.e., o = 〈oset, of 〉. Thus, an element o ∈ O will have the following data
structure:

o = 〈oset, of 〉 =

〈
oset,


ovalf (1), osucf (1)

...
...

ovalf (M), osucf (M)


〉

(9)

Given o, q ∈ O, notation o � q (equivalently, q subset-dominates o) will be used when oset ⊃
qset and ovalf (i) ≤ qvalf (i) for all i ∈M.

Notation q J o (o dominates q) will mean oset ⊃ qset, ovalf (i) ≥ qvalf (i), for all i.
The justification of the structure (9) for O is as follows. Given o ∈ O we have a ‘set’ oset, and

a function of ∈ F , which is itself composed of ovalf :M 7→ R+ and osucf :M 7→ C(Rn). The first
component will take the role of the ‘value function’ (reliability bound if landing at oset for each
mode), whilst the second component will be the current policy’s ‘(mode-dependent) successor set’,
which will generalise to states outside K∗∞ the successor proposed in (4) for the terminal controller.
Figure 1 illustrates these concepts for a 2-mode setting: for instance, the blue pentagon depicts an
hypothetical oset; for xk in such set, there exists a current control policy which drives the next
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8 M. HERNÁNDEZ AND A. SALA

state xk+1 to one of the green hexagons, depending on mode θk being either 1 or 2. The reliability
estimate under such controller would be, say, 0.97 if θk = 1, and 0.32 if θk = 2.

Two operators on elements of O will be defined next.

Intersection operations over O. First, the obvious action when a point belongs to two sets, with
different possible controllers achieving different reliability bounds, would be to take the maximum-
reliability option. This motivates the intersection operator below:

Definition 5 (I-operator)
Let o, q ∈ O. The operator I(o, q) : O ×O 7→ O is defined as: I(o, q) := (oset ∩ qset,max(of , qf )),
where, for given f, g ∈ F , the maximum h = max(f, g) is the element h ∈ F whose image, for
j ∈M is:

h(j) :=

(fval(j), fsuc(j)) fval(j) ≥ gval(j)

(gval(j), gsuc(j)) otherwise
(10)

The I-operator will be informally denoted as ‘intersection’ because it behaves similarly to such
set operator. Indeed, it is trivial to prove that:

(a) the I-operator is associative, i.e., I(o, q, r) := I(o, I(q, r)) = I(I(o, q), r) for all o, q, r ∈ O,

(b) for any o, q ∈ O: q � I(o, q), o � I(o, q),

(c) if o � q then I(o, q) = q and, for any r ∈ O, o � I(q, r), and I(o, r) � I(q, r).

Resorting to Figure 1, the I-operator would evaluate the reliability for states in the shaded blue-
cyan region considering them to be in both oset, discussed before, and in qset, whose successors and
value function have not been represented to avoid cluttering the figure. I(o, q) creates a new element
of O associating to the small intersection set the most reliable successor/value option.

One-step operations over O. Abusing the notation, the one-step set Qi(C) in Definition 1 will
be naturally extended to O, formalising the intuitive idea that, if a target set can be reached from
another one, the target’s reliability bounds can be propagated to the latter set as follows:

Definition 6 (1-step operator over O)
The 1-step operator Qi : O 7→ O, will be defined, for o ∈ O, as: Qi(o) := (Qi(oset), Q

f
i (of , oset)),

where the operator Qfi (r, s) for i ∈M, r ∈ F , s ∈ C(Rn) is defined as the element g ∈ F below:

g(j) :=

(0,Rn) j 6= i

(
∑

κ∈Si πκir
val(κ), s) j = i

(11)

For instance, Figure 1 depicts a red square sset being s = Q1(o): If xk−1 ∈ sset were reached
with mode θk−1 = 1, every point in the red square could be steered to the blue oset for any
admissible disturbance; reliability if such action were taken, i.e., setting ssucf (1) = oset, would
be svalf (1) = 0.97 ∗ π11 + 0.32 ∗ π21; of course, if the red square were reached with θk−1 = 2 no
bound can be asserted apart from the trivial reliability bound svalf (2) = 0, with ssucf (2) = Rn.
As a further example, note also that, in order to make all the discussed concepts meaningful,
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RELIABILITY AND TIME-TO-FAILURE BOUNDS FOR CONSTRAINED MJLS 9

oset ⊂ Q1(osucf (1)) and oset ⊂ Q2(osucf (2)); this will be guaranteed by the algorithm discussed next.
Numerical illustration of the above operators in a first-order case appear later on in Example 1.

Guaranteed-reliability controller algorithm. From the above considerations, Algorithm 1 is
proposed in order to obtain a progressively more accurate bound for the reliability. Basically, it
will start with Ω∗ and RL0 at ‘iteration 0’, and it will apply the 1-step operator to each of its
elements, as well as the I-operator to the resulting 1-step operations (all combinations§). This will
yield additional elements ofO, and all of them will be grouped in a set O[1] ⊂ O, and, repeating the
procedure, we will produce O[2], O[3] and so on.

Algorithm 1 l-step reliability bound.

1. Let l = 1. Let O[0] be a M -element set {o1, . . . , oM} such that:

(oj)set = Ω[j]; (oj)
val
f (j) = 1, and (oj)

val
f (i) = 0 (for i 6= j) ; ∀i, (oj)

suc
f (i) = Rn.

2. Compute the relevant 1-step set for all elements of O[l−1], conforming a set D[l] ⊂ O as:

D[l] :=
⋃

o∈O[l−1], j∈M

Qj(o), (12)

3. Compute the intersections for all obtained elements of D[l], initialising with Y [l]
0 = ∅ and repeating

until Y [l]
h = Y

[l]
h−1, increasing h:

Y
[l]
h :=

⋃
o1,o2 ∈ D[l]∪Y [l]

h−1

I(o1, o2) (13)

4. Update:
O[l] := D[l] ∪ Y [l]

h (14)

5. Clean up: if there exist o, q ∈ O[l], such that q J o, or qset = ∅, or maxj q
val(j) = 0, remove q from

O[l].

6. If O[l] = O[l−1], then success=TRUE, and let l = l − 1, O[∞] = O[l]. END.

7. Let l = l + 1. If l < lMAX go to Step 2. Else, let success=FALSE. END.

Taking the algorithm’s output, given x, let us define a collection of objects O[l]
x ⊂ O as O[l]

x :=

{o ∈ O[l] : x ∈ oset}. Let us, too, denote by I(O
[l]
x ) ∈ O the single element of O defined to be the

I-operator of all elements of O[l]
x , where the order of intersection is irrelevant, by associativity. Note

that recursion (13) ensures I(O
[l]
x ) ∈ O[l].

Theorem 1
Given any o ∈ O[l] from Algorithm 1, and initial condition (x0, θ0),

1. if ovalf (θ0) > 0, there exists a control law which sends x0 to osucf (θ0) and achieves l-step
reliability RLl of at least ovalf (θ0), for l ≥ 0.

§This is a costly step, requiring a number of operations which grows exponentially with the number of elements of D[l];
the Appendix will discuss some alternatives to alleviate the load. The algorithm as it stands in this subsection must be
though of in a ‘formal’ sense, and not as an implementation proposal.
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10 M. HERNÁNDEZ AND A. SALA

2. Define:

R̂L(x0, θ0, l) := max
o∈O[l]

x0

ovalf (θ0), ô(x0, θ0, l) := arg max
o∈O[l]

x0

ovalf (θ0) (15)

Then, if R̂L(x0, θ0, l) > 0, there exists a control law which achieves l-step reliability of at
least R̂L(x0, θ0, l), for l ≥ 0. Note that, if the maximum above is reached at several elements
of O[l]

x0 , ô must be understood as any arbitrary choice of one of them.

Proof
First, note that R̂L(x0, θ0, 0) = RL0(x0, θ0) by the algorithm initialisation. So, there exists a
controller (actually any arbitrary controller) which achieves such reliability bound for RL0. Now,
consider the theorem to be true for l − 1, l ≥ 1.

Considering an arbitrary element o of O[l−1], let i = θ0, q = Qi(o) ∈ D[l]. Then, if x0 ∈ qset,
there exists a control law u which sends the next state x1 = Aix0 +Biu+ Eiw to oset for all
admissible disturbances if initial mode is i. Consider now that such u is applied at the present
instant, and that the controller arising from o will be used at next sample. Therefore, we can assert
that likelihood of success in l steps if such control law were applied, RLl(x, i), is, at least, the sum
(over all admissible successors j ∈ Si) of the conditional probability of being in mode j (i.e., πji)
multiplied by the (l − 1)-step reliability estimate stored in o, i.e.,

RLl(x, i) ≥
∑
j∈Si

πjio
val
f (j) (16)

Note that the right-hand side of the above inequality is actually stored in qf (and the corresponding
successor set), see (11). This proves the first assertion in the theorem statement.

Of course, if the state x0 belongs to several 1-step sets Qi from different elements of O[l−1], the
above reasoning can be made for each of them. The definitions in (15) just take the element o ⊂ O[l]

x0

yielding the largest reliability estimate. Last, an induction argumentation ensures that the theorem
holds for any positive l.

Note that, by definition of I(O
[l]
x0), and the fact that I(O

[l]
x0) ∈ O[l], the choice of ô in (15) could

be always made to be ô(x0, θ0, l) = I(O
[l]
x0) for any θ0 because I(O

[l]
x0) stores the best option for all

modes, i.e., o � I(O
[l]
x0) for all o ∈ O[l]

x0 . This idea will be used in the proof below.

Theorem 2
In the disturbance-free case, the algorithm yields the optimal reliability and associated optimal
controller, i.e., R̂L(x0, θ0, l) = RLoptl (x0, θ0).

Proof
First, note that R̂L(x0, θ0, 0) = RLopt0 (x0, θ0) = RL0(x0, θ0) by the algorithm initialisation, and
RL0 is identical for any controller. Now, assume the theorem to be true for l − 1, l ≥ 1. Let i = θ0

and denote by q(x, l) := I(O
[l]
x ), x1 := Aix0 +Biu. Hence, without disturbances, (8) gets converted

to:

RLoptl (i, x0) = max
u∈U[i]

∑
j∈Si

πjiRL
opt
l−1(Aix0 +Biu, j) = max

u∈U[i]

∑
j∈Si

πjiô
val
f (Aix0 +Biu, j, l − 1)

(17)
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RELIABILITY AND TIME-TO-FAILURE BOUNDS FOR CONSTRAINED MJLS 11

where the last equality is stated by assumption. Now,

max
u∈U[i]

∑
j∈Si

πjiô
val
f (Aix0 +Biu, j, l − 1) = max

u∈U[i]

∑
j∈Si

πji max
o∈O[l−1]

x1

ovalf (j)

= max
u∈U[i]

∑
j∈Si

πji · [q(x1, l − 1)]valf (j) = max
u∈U[i]

max
o∈O[l−1]

x1

∑
j∈Si

πji · ovalf (j) (18)

because the elements ô (which might be different, depending on j) have a value function for mode
j identical to a single element q(x1, l − 1) ∈ O[l−1]

x1 due to the I-operator computations in the
Algorithm. As o � q(x1, l − 1) for all o ∈ O[l−1]

x1 , so we can search over all O[l−1]
x1 , yielding the

last equality.
Note now that, given any o ∈ O[l−1]

x1 , there exists u such that x0 can be steered to some x1 ∈ oset
if and only if x0 ∈ Qi(oset). Hence,

max
u∈U[i]

max
o∈O[l−1]

x1

∑
j∈Si

πji · ovalf (j)
∗
= max
o∈O[l−1]s.t.x0∈Qi(oset)

∑
j∈Si

πji · ovalf (j) = max
o∈O[l]

x0

ovalf (i) = R̂L(i, x0, l)

(19)

An induction argument ends the proof.

The equality in (19) marked with ‘ ∗=’ does not hold in disturbed cases; details omitted for brevity.

Corollary 1
In the undisturbed case, if Algorithm 1 converges in a finite number of steps, considering the
minimum l such that O[l] = O[l−1], the resulting R̂L(x0, θ0, l) is equal to RLopt(x0, θ0).

Proof
Indeed, in such a case RLopt(x0, θ0) = RLoptl (x0, θ0) = RLoptl−1(x0, θ0), so the last iteration has
obtained the optimal reliability.

It might be the case that the algorithm does not converge in a finite number of steps. In such a
case, a controller guaranteeing the state to stay only for a finite number of samples inside Ω∗ will
be obtained. Although it is faithful to the RLl definition, in most cases l will be just a handful of
samples, which will not be meaningful for applications, because as RL ≤ RLl the optimal (non-
converged) RLl controllers might have zero long-term reliability (and, moreover, in the disturbed
case the obtained controllers are themselves suboptimal). These issues motivate the next subsection.

3.2. Terminal set based algorithm

In case of not having enough computational resources for convergence, if a subset of the terminal
set S∗ ⊂ K∗∞ is available, the algorithm could be seeded replacing initialisation in step 1 by a
initial value function (’reward’) equal to one for being inside S∗, and zero elsewhere. This is the
idea exploited in [1]: forcing the terminal set to be reached for at least one sequence. S∗ may
be generated by a finite λ-contractive search [3, Theorem 3.2], or via LMIs [19]. In this case, as
R̂L(x, θ, 0) ≤ RL0(x, θ), dynamic programming propagation would, trivially, obtain an estimate
R̂L(x, θ, l) lower than the original Algorithm 1. Let us discuss such issues in more detail.

For a given controller u(x, θ), let us denote the likelihood of reaching K∗∞, under a worst-case
disturbance, in at most l steps as RTl(x0, θ0), and RT (x0, θ0) := liml→∞RTl(x0, θ0). Evidently, as
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12 M. HERNÁNDEZ AND A. SALA

all finite sequences reaching the terminal set will be l-step successful for any arbitrary large l, we
can trivially assert that

RTl(x0, θ0) ≤ RTl+1(x0, θ0) ≤ RT (x0, θ0) ≤ RL(x0, θ0)

for all l ≥ 0. So, RTl provides lower bounds on the reliability whereas RLl provide upper bounds.
However, the following result states that such bounds are equal in the finitely generated case.

Theorem 3
Given (x0, θ0), and a control law u(x, θ), if the terminal set associated to the controller, K∗∞ is
finitely generated, then RT (x0, θ0) = RL(x0, θ0).

Proof
In order to prove the above assertion, some notation will be introduced. First, given (x0, θ0), and a
control law u(x, θ), we will consider an infinite-length mode sequence to be successful if it is k-step
successful for (x0, θ0) for any finite k. So, RL(x0, θ0) is the probability of the set of successful
sequences. Also, let us denote by Θ̂h(x0, θ0) the set of length-(h+ 1) sequences which: (1) are h-
step successful for (x0, θ0), and (2) there exists a disturbance sequence wj(θ), j = 0, . . . , h− 1,
for every sequence θ ∈ Θ̂h(x0, θ0), such that the controller in consideration keeps (xj , θj) in
(Ω∗ ∼ K∗l ), for j = 0, . . . , h.

Consider l to be the smallest integer such that K∗∞ = K∗l . Successful mode sequences, i.e., which
do not lead to failure in any finite time (robustly keeping the state inside Ω∗), can either:

1. make state reach the terminal set in finite time for some (or all) disturbance realisations (and
remain there ever after because the controller makes K∗l robustly invariant), or

2. remain for infinite time in Ω∗ ∼ K∗l (for the rest of disturbance realisations, which do not
reach the terminal set in finite time).

Let us prove that the second case has zero probability: if such assertion is proved, RL will be
equal to the probability of reaching the terminal set, as asserted in the theorem.

Indeed, as discussed in Section 2, if (x0, θ0) is not in K∗l , there exists at least one mode
sequence of at most length l + 1 with non-zero probability, and a worst-case disturbance such that
constraint violation is unavoidable. Evidently, the probability of such mode sequence is greater than
ρl := minθ∈Mminθ∈AS(θ,l+1) Pr(θ), and, hence, the cumulative probability (sum) of all non l-step
successful sequences is, too, greater than ρl so:

(x0, θ0) ∈ (Ω∗ ∼ K∗l ) ⇒ RLl(x0, θ0) ≤ 1− ρl < 1 (20)

From this argumentation, Pr(Θ̂l(x0, θ0)) ≤ RLl(x0, θ0) ≤ 1− ρl, where, abusing the notation,
the probability of a set of sequences is understood as the sum of individual sequence probabilities,
conditional to their first element.

Let us now show that Pr(Θ̂h) tends to zero as h tends to infinity, for h = l, 2l, 3l, . . . .
Note that, considering length-(2l + 1) sequences, for such sequences to be (2l)-step succesful for

(x0, θ0), forcedly they must be the concatenation of a l-step successful sequence for (x0, θ0) and
another l-step successful one for (xl, θl). Then, we have:
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RELIABILITY AND TIME-TO-FAILURE BOUNDS FOR CONSTRAINED MJLS 13

Pr(Θ̂2l(x0, θ0)) =
∑

θ∈Θ̂2l(x0,θ0)

Pr(θ) =
∑

θ ∈ Θ̂l(x0, θ0)

Pr(θ)
∑

θ′ ∈ Θ̂l(xl, θl)

Pr(θ′)


≤

∑
θ ∈ Θ̂l(x0, θ0)

(Pr(θ)(1− ρl)) ≤ (1− ρl)2 (21)

Indeed, in the above expression, the following fact has been used: the probability of a length-
(2l + 1) sequence θ := {θ0, θ1, . . . , θ2l} being 2l-step successful for (x0, θ0) requires:

1. {θ0, . . . , θl} being l-step successful for (x0, θ0), and
2. {θl, . . . , θ2l} being l-step successful for (xl, θl).

and the bound for the sum of probabilities for (xl, θl) is, too, (1− ρl) because K∗l = K∗2l = K∗∞ and,
by definition of Θ̂2l, (xj , θj) lies in Ω∗ ∼ K∗∞ for j = 0, . . . , 2l.

Now, if h = ν · l, being ν any arbitrary natural number, a similar argumentation can prove that:

Pr(Θ̂ν·l(x0, θ0)) ≤ (1− ρl)ν

Hence, letting ν tending to infinity, we can say that the cumulative probability of ‘all successful
sequences for which there exists a disturbance indefinitely keeping the state in a set with
reliability not equal to one’, is zero. Hence, the probability of violating constraints under worst-
case disturbance (i.e., 1−RL) and the probability of reaching the terminal set (RT ) add 1, so
RT (x0, θ0) = RL(x0, θ0).

Basically, the above theorem states that a controller with non-zero reliability cannot keep state
wandering outside the terminal set forever because, eventually, the worst-case sequence (which is
finite-length and, hence, has non-zero probability) will appear, with probability one.

In conclusion, Algorithm 1 had been presented due to the direct relationship with RLl and the
MTTF bound to be defined in next section, as well as because of the optimality under finite-
step convergence in an undisturbed case. However, the referred algorithm, if unmodified, only
provides an upper bound of the reliability if not converged, which hast little use. On the other hand,
terminal-set-based initialisation provides a guaranteed lower bound on the reliability even if not
converged, which is, of course, more useful in practice. An Appendix discusses in more detail such
modified algorithm, and some options to alleviate the computational load by prioritising promising
operations, used in the examples in Section 5.

4. MEAN TIME TO FAILURE BOUND COMPUTATION

Definition 7
Given a control law u(xk, θk), initial conditions (x0, θ0) and θ ∈ AS(θ0, N + 1), the sequence’s
guaranteed time to failure k∗(x0,θ) is defined as either the minimum natural number k such that
the pair {u,θ} is not k-step successful for (x0, θ0), or (N + 1) if it is N -step successful, or zero if
(x0, θ0) 6∈ Ω∗.
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14 M. HERNÁNDEZ AND A. SALA

Definition 8
Given a control law u(xk, θk), the robust mean time to failure MTTF (x0, θ0) is defined as:

MTTF (x0, θ0) := lim
l→∞

Ml(x0, θ0)

where
Ml(x0, θ0) :=

∑
θ∈AS(θ0,l+1)

k∗(x0,θ) · Pr(θ) (22)

As in Definition 4, MTTF involves worst-case (non-random) disturbances. Simple modifications
to the set-up in Section 3 will be needed to handle the new performance measure. Actually, the
needed changes are twofold: first, replacing Qfi (r, s) in Definition 6 by the one in Definition 9
below and, second, modifying algorithm initialisation. Let us discuss such issues in detail.

Definition 9 (1-step MTTF operator on F)
Let r ∈ F , s ∈ C(Rn). The operator Qfi (r, s) for i ∈M is defined as the element g ∈ F below:

g(j) :=

(0,Rn) j 6= i(
1 +

∑M
k=1 πkir

val(k), s
)

j = i
(23)

The modified 1-step operator is motivated by the fact that the recursion (7), for a given controller,
in the MTTF case changes to:

Ml(x, i) ≥ 1 + min
w∈W[i]

∑
j∈Si

πjiMl−1(Aix+Biu+ Eiw, j)

because if x1 is reached from x0, then the guaranteed time to failure of x0 is at least 1 step longer.
So, if the state can be robustly driven to a set where MTTF can be lower bounded by some
rval(j), propagating the bounds backward will yield improved bounds, parallel to the reliability
case considered in prior sections (details left to the reader).

Initialization. Algorithms can run unmodified, but initialised at O = {o1, . . . , oM , q1, . . . qM},
with oi being identical to the one in Algorithm 1, and qj defined as:

(qj)set ⊂ K[j]
∞; (qj)

val
f (j) =∞, (qj)

suc
f (j) ⊂ Si, and for j 6= i, (qj)

val
f (i) = 0, (qj)

suc
f (i) = Rn.

Relationship between MTTF and RL. The two performance measures are related by the
following proposition:

Proposition 2
For a given controller u(xk, θk), MTTF (xk, θk) is finite if and only if RL(xk, θk) = 0.

Proof
For any l, we can assert, from (22), that

Ml(x0, θ0) = RLl(x0, θ0) ∗ (l + 1) +
∑

θ∈AS(θ0,l+1): k∗(x0,θ)<(l+1)

k∗(x0,θ) · Pr(θ) (24)

because RLl is computed only with those sequences which are l-step successful so their guaranteed
time to failure is l + 1. Hence, Ml ≥ RLl ∗ (l + 1).
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If RL > 0, as RLl > RL for any l, RL > 0 implies MTTF = liml→∞Ml =∞. Conversely, we
can write RLl ≤Ml/(l + 1), so, taking the limit l→∞, if liml→∞Ml is finite (by assumption),
then forcedly RL = 0.

Note that, as a consequence of this proposition, the above-discussed initialisation can be improved
by choosing (qj)set to be any non-zero reliability set (instead of the terminal one), if the results of a
previously-run reliability algorithm were available.

5. EXAMPLES

Example 1. Consider the unstable first-order system xk+1 = 1.2xk + uk in mode 1, and (actuator
failure) xk+1 = 1.2xk in mode 2, consider U = {|u| ≤ 1}, Ω[1] = Ω[2] = {|x| ≤ 20}. It will be
assumed that there is a 10% chance of being in mode 2 at any time. The terminal set (RL = 1) is
given by K[1]

∞ = [−0.833,+0.833], K[2]
∞ = {0}. As there is a non-stabilisable mode, the algorithms

will not converge.
In order to illustrate the steps of the algorithms, to compute reliability bounds, we would start by:

• o1 =< 0.8333, {oval1 (1) = 1, osuc1 (1) = 0, oval1 (2) = 0, osuc1 (2) =∞} >,
• o2 =< 0, {oval2 (1) = 0, osuc2 (1) =∞, oval2 (2) = 1, osuc2 (2) = 0} >.

where, abusing the notation, a single number γ in place of a set should be understood as {|x| ≤ γ}.
Then, we can compute:

• o3 = Q1(o1) =< 1.527, {oval3 (1) = 0.9, osuc3 (1) = 0.833, oval3 (2) = 0, osuc3 (2) =∞} >,
• o4 = Q2(o1) =< 0.694, {oval4 (1) = 0, osuc4 (1) =∞, oval4 (2) = 0.9, osuc4 (2) = 0.833} >.

As o4 has an smaller associated set than o1, from the properties of I(o1, o4), we can now update
o4 to: o4 =< 0.694, {oval4 (1) = 1, osuc4 (1) = 0, oval4 (2) = 0.9, osuc4 (2) = 0.833} >. Now, we can
set o5 = Q2(o4) =< 0.694/1.2, {oval5 (1) = 0, osuc5 (1) =∞, oval5 (2) = 0.9 · 1 + 0.1 · 0.9, osuc5 (2) =

0.694} >, and so on: suitable steps in the algorithms would similarly proceed until desired.
Figure 2 depicts the obtained reliability and MTTF bounds (in both cases, algorithms have been

stopped when the final O had 1000 or more elements). The ordinate axis depicts:

• log-likelihood y = −log10(1−RL(x, θ)) (i.e., the inverse of the probability of failure), and
• estimated MTTF bound (logarithmic scale, too; magenta for mode 1, green for mode 2).

For instance, when starting in mode 1 for any |x| > 5, constraint violation is unavoidable due to
control saturation (1.2|x| − 1 > |x|), so reliability is zero. Also in |x| = 5 we have RL = 0 because
in mode 1, successor state is 5 but sooner or later mode 2 will occur, so it will depart to the
unrecoverable region. This is in accordance with the results from the algorithm, which asserts, too,
that MTTF1 ≥ 21.92 for |x| = 5.

Also, if starting in mode 2, if |x| ≥ 5/1.2 = 4.1667 then the system will be steered out of |x| < 5

so, again, it will be unrecoverable (reliability zero). For |x| = 5/1.2, the algorithm proves that
MTTF2 ≥ 21.62). If starting in mode 2, if |x| < 4.166 the system is steered to |x| < 5 so, as mode
1 is quite likely, in a ‘lucky’ trial, the controller will drive it to the origin: reliability is non-zero,
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Figure 2. Example 1: 1−RL(x, θ) vs. MTTF for each mode, without disturbances (log10).

Figure 3. Example 2: Mean-time to failure bound (log10).

MTTF is infinite. For instance, for x = 2.60 the likelihood of ending up in the origin is at least 0.99

if starting in mode 2, and 0.9999 if starting in mode 1; for x = 1.47, RL(1.47, 2) ≥ 1− 10−5 and
RL(1.47, 1) ≥ 1− 10−8.

Example 2. Consider now the above system subject to disturbance, xk+1 = 1.2xk + uk + wk (mode
1), xk+1 = 1.2xk + wk (mode 2), with W = {|w| < 0.1} and same U, Ω[i] and mode probabilities as
above. In this case, RL is zero everywhere (a possibly unstable disturbed system yields empty robust
invariant sets), and MTTF is shown in Figure 3 (logarithmic scale). At the moment of stopping the
algorithm, O had 4300 elements.

For instance, MTTF bound changes sharply at |x| ≈ 4.5 for mode 1 (note that if |x| = 4.5, under
a worst-case disturbance, we will have 1.2|x| − 1 + 0.1 = 4.5, so the bound corresponds to a sort
of ‘invariant under mode 1’ set). Also, the MTTF bound is larger than 3414 samples for |x| < 2.5;
last, in |x| > 4.5 for mode 1 and |x| > 4.5/1.2 for mode 2, failure is ver quick to come (estimated
MTTF cannot be guaranteed to be larger than 24.15).

Example 3. Let us now consider the undisturbed second-order MJLS (1) with three operating
modes, i = {1, 2, 3} considered in [1]. The model matricesAi,Bi and constraint regions are directly
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taken from [1]. The transition probabilities are¶ set to π21 = π22 = π33 = 0.4, and the rest of
transition probabilities equal to 0.3.

Terminal sets K[i]
∞ were first computed using the mode-dependent one-step controllable set (2)

and, subsequently, Algorithm 2 in the Appendix was executed. The total number of sets when the
algorithm converged was 139. Computation time (i7-4790K, Matlab R© R2015a) was 26.84 seconds.

Figure 4a depicts the ‘stationary’ reliability bound RLs(x) :=
∑3

i=1 piRL(x, i), where, from
the eigenvectors of P, the prior probability of each mode has been set to the stationary values
p1 = 0.30, p2 = 0.3667, p3 = 0.3333. As it is a disturbance-free case with finite-step algorithm
convergence, results are optimal (Theorem 2). Figure 4b compares the result obtained in this work
and those in [1]. This figure shows the increase in achieved reliability by Algorithm 2 with respect
to the reliability obtained in [1], reaching an improvement of 0.25 in some states (for brevity, the
equivalent plot of Figure 4a with the algorithm in [1] hasn’t been included in this paper, showing
only the difference).

As a last example, Figure 4c depicts the stationary reliability bound, considering a disturbed

system, with E1 = E2 =
(

1 0.5
)T

and W = {|w| < 1.2}. Clearly, the resulting reliability
bounds are lower, as the robust-invariant and one-step sets are smaller due to the (worst-case)
disturbance effect. In fact, it is well known that invariant-set computations in disturbed systems
do not in general converge in a finite number of iterations [4]; the same happens here: computation
of terminal sets is now carried out seeding an initial K∗0 = W∗ in the iterations below Definition 2,
so that any K∗l such that K∗l ⊂ K∗l+1 is mode-dependent controllable and, hence, any of them can be
used as terminal set for Algorithm 2. In this case l = 41, which, with a tolerance of 10−6 achieved
the required inclusion, was used. Algorithm 2 was subsequently executed and the data in Figure 4c
was obtained when it was stopped with O having 128 elements.

6. CONCLUSION

This work has extended prior results in [1] dealing with reliability bounds and associated mode-
dependent control laws for Markov-Jump linear systems. Reliability is understood as the probability
of avoiding constraint violations in future time; obviously, inside the maximal robust controllable
set reliability is 1, and the concept is closely related to the likelihood of reaching the terminal set.

The extensions account for disturbances and non-stabilisable modes. Iterative algorithms are
presented, improving the reliability bound achieved in the referred prior results. Optimality is
achieved in the disturbance-free case if algorithms converge in a finite number of iterations. Later,
a further extension computes bounds on robust mean time to failure (time to constraint violation
under worst-case disturbance) in zero-reliability regions. Algorithms are based on polyhedral 1-step
sets and intersections of such sets.
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APPENDIX: TERMINAL-SET ALGORITHM AND IMPLEMENTATION GUIDELINES

Consider that a subset of the terminal set S∗ ⊂ K∗∞ is available. Then, as discussed in the main text,
a modified algorithm can be crafted by replacing initialisation in step 1 of Algorithm 1 by new sets
and value functions, (see initialisation of Algorithm 2 on page 21; actually, related to the terminal
initialisation in the MTTF version). Also, as the definition of RTl before Theorem 3 involve RTl
being the likelihood of reaching the terminal set in at most l steps, this means that expression (14)
must be replaced by:

O[l] := D[l] ∪ Y [l]
h ∪O

[l−1] (25)

i.e., previous estimates of the likelihood of reaching the terminal set in a shorter time should be
kept. With these modifications, the 1-step and I-operations will store a value function which will
be a lower bound of the likelihood of reaching the terminal set RT (details left to the reader).
Importantly, all found control laws driving states in a certain set to a mode-dependent successor set
will ensure, if successful, infinite lifetime once the terminal set is reached.

The main issue with the proposal in this paper is the computational cost, regarding the
exponentially increasing number of set operations which is needed. Some implementation-oriented
modifications, aiming to reduce the number of operations or prioritising them, will be incorporated
to the new algorithm. Note that these computational issues are not exclusive to our proposal, for
instance many contributions on predictive control of MJLS have the same problem [16], needing to
resort to the so-called “scenario approach” [13]. Also, in high-dimensional systems, the projection
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step in computing the controllable sets is very costly. Again, this issue is common to widely-cited
papers such as the control-invariant set computation in above-referred [16].

Improved implementation.

The proposition below discusses how to update the value function when a invariant set has been
obtained (in the geometric sense).

Proposition 3
Consider o ∈ O, q = Qi(o) for any arbitrary i ∈M. If oset ⊂ qset, then the component of can be
set to ψ∞ := limk→∞ ψk, obtained from recursion ψk+1 := max(ψk, Q

f
i (ψk, oset)), starting with

ψ0 := of . The element õ, with õset := oset, õf := ψ∞ verifies o J õ. Also, defining q̃ := Qi(õ), we
have q J q̃.

Proof
Given ψ0, then ψ1 is the value/successor function of r1 = I(o,Qi(o)), where r1,set = oset. Then,
ψ2 is the one for r2 = I(r1, Qi(r1)), and so on again, it can be repeated until no improvement
occurs.

Note that rk,set = oset and, evidently, if oset ⊂ qset, there exists a control action such that oset
is invariant under mode i, so we can set itself as its successor if that were the result in ψ∞. Thus,
in case the above proposition were used in an algorithm modification, the optimal successors in
O[l] might not lie in O[l−1] but in O[l] itself, opening the possibility of reaching the terminal set
in an arbitrarily long time (although such event has probability tending to zero as time increases,
Theorem 3). Note, too, that ψ∞ has an straightforward explicit expression, without the need of
actually iterating. For instance, in a system with 3 operating modes, if there exists a set S with
RT (1, x) ≥ 0, RT (2, x) ≥ 0.98, RT (3, x) ≥ 0.8, which happens to be invariant with mode 1, i.e.,
Q1(S) ⊃ S, then the above proposition allows to assert RT (1, x) ≥ (0.98π21 + 0.8π31)/(1− π11)

too, for x ∈ S. The controller arising from the application of Proposition 3 would remain in S under
mode 1 (for as long as needed) until mode 2 or 3 occurred.

Avoiding repeated operations. As O[l−1] ⊂ O[l], in the modified update (25), in order to avoid
recomputing 1-step or I operations, the unordered horizon-based set O[l] will be replaced with
an ordered list, denoted plainly as O, whose element at position α will be denoted as O(α). New
objects will be appended at the end of O. Some labels will be introduced (Algorithms 2 and 3):
matrices will be defined whose elements will be a label taken from: {‘pending’, ‘dom’, ‘same’,
‘done’}. Obviously, the label ‘pending’ will be used to denote pending operations, then:

• Element V (j, α) of a matrix V of dimensions card(O)×M will be changed from ‘pending’
to ‘done’ once Qj(O(α)) has been computed.

• Regarding I-operator, an upper triangular matrix T of dimensions card(O)× card(O) will
be used to store the progress information. A labelling algorithm will be later discussed.

The changes to the original algorithm in the initialisation and list management appear as Algorithm
2, which carries out the 1-step and intersection operations one by one, and analyses the resulting
object in order to determine whether some of the ‘pending’ operations are actually needed.

The construction of T in the above algorithms allows to state:
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Algorithm 2 Terminal-set based reliability bound

1. Let O[0] be a M -element set {o1, . . . , oM} such that:

(oj)set ⊂ K[j]
∞ , (oj)

val
f (j) = 1, (oj)

suc
f (j) ⊂ Sj and, for j 6= i, (oj)

val
f (i) = 0, (oj)

suc
f (i) = Rn.

2. Initialise V and T to ‘pending’, initialise N to zero. Let h = card(O).

3. Choose whether to carry out either
(a) a pending ‘intersection’ between two elements q = I(O(α), O(β)), or
(b) a 1-step operation q = Qj(O(α)),

according to any criteria (either randomly or with probability-based choices to be later discussed).

4. Label V (j, α) =‘done’ in case (b), or T (α, β) =‘done’ in case (a).

5. If qset = ∅ or there exists r ∈ O such that rset ⊇ qset and max(rf , qf ) = rf then go to step 3.

6. Let h = h+ 1, let O(h) = q.

7. Add to T and V a column of zeroes at the right-hand side, corresponding to the new element.

8. If choice is ‘intersection’, i.e., (a), handle the last column of matrix T with Algorithm 3 below.

9. If there are no pending operations, then STOP.

10. Go to step 3.

Algorithm 3 Updating matrix T .
| Inputs: α, β, T . | Outputs: modified T .

1. For each r = 1, . . . , α: if T (r, α) =‘dom’, set T (r, h) =‘dom’.

2. For each r = 1, . . . , β: if T (r, β) =‘dom’, set T (r, h) =‘dom’.

3. For each r, 1 ≤ r ≤ h: if T (r, α) or T (r, β) are ‘same’ or ‘done’ and T (r, h+ 1) 6=‘dom’, then set
T (r, h) =‘same’.

4. Set T (α, h) =‘dom’ and T (β, h) =‘dom’.

1. If T (k, j) =‘dom’, k < j, then O(k) � O(j).

2. If T (k, j) =‘same’, then there exists a collection of elements on the ordered list O, prior to
item j, such that I(O(k), O(j)) can be obtained via a finite set of operations on them (i.e.,
there is another way to obtain the ‘same’ result).

Proof
Consider O(h) = q = I(O(α), O(β)) from step 6 of Alg. 2. The first statement comes from the
fact that O(α) � q, O(β) � q is encoded in the Step 4 (Alg. 3), and transitivity of the I-operator
justifies carrying out steps 1 and 2 (Alg. 3), as the new element inherits subset-dominated sets from
its parents.

Regarding the second statement, note that Step 4 (Alg. 2) will set T (α, β) =‘done’.
Consider now for arbitrary r < h, the operation I(O(r), O(h)) = I(O(r), O(α), O(β)). Step 3

(Alg. 3) labels with ‘same’ the element T (r, h) if T (r, α) or T (r, β) are ‘same’ or ‘done’ because:
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22 M. HERNÁNDEZ AND A. SALA

• If T (r, α) = ‘same’, it means that I(O(r), O(α)) can be obtained as the intersection of pre-
existing elements‖. Then operations between such pre-existing elements and β, which was
also on the list, would obtain the ‘same’ result: there is no need of evaluating I(O(r), O(h)) =

I(I(O(r), O(α)), O(β))), so Algorithm 3 set T (r, h) =‘same’.
• If T (r, α) =‘done’, there exists s such that I(O(r), O(α)) = O(s); hence, I(O(r), O(h)) =

I(O(r), O(α), O(β))) = I(O(s), O(β)) so the intersection (r, h) can be skipped, obtaining
the same results with s and β; so, Alg. 3 sets T (r, h) =‘same’.

As a consequence of the above, I-operations associated to elements of T with a label different
to ‘pending’ can be skipped. The algorithm ends and produces finitely-generated sets when no
pending operations remain.

Probabilistic ranking. Another improvement regarding step 3 of Algorithm 2, can be conceived:
in case of limited computing resources it would be desirable to prioritise the evaluation of high-
likelihood options. Note that computing the value function of all pending operations (Definitions
5 and 6) before actually computing the ‘set’ is very fast. With that data, pending operations can
be sorted according to, for instance, the stationary probability. This idea is reminiscent of the
probability-based scenario generation in, for instance, [13]. In this way, in non-converged cases
the operations with better expected value function would be carried out first.
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‖We are implicitly using an induction argumentation: we are proving that if the proposition holds for prior list elements,
so it will for subsequent additions.
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