Document downloaded from:

http://hdl.handle.net/10251/102722
This paper must be cited as:

Gil Pascual, M.; Pelechano Ferragud, V. (2017). Self-adaptive unobtrusive interactions of
mobile computing systems. Journal of Ambient Intelligence and Smart Environments.
9(6):659-688. doi:10.3233/AIS-170463

The final publication is available at

http://doi.org/10.3233/A1S-170463

Copyright |0S Press

Additional Information

Journal of Ambient Intelligence and Smart Environments 1 (2016) 1-5
10S Press

Self-adaptive unobtrusive interactions of
mobile computing systems

Miriam Gil ** and Vicente Pelechano ?

2 Centro de Investigacion en Métodos de Produccion de Software,

Universitat Politecnica de Valéncia,
Camino de Vera s/n, 46022 Valencia, Spain
E-mail: {mgil,pele} @pros.upv.es

Abstract. In Pervasive Computing environments, people are surrounded by a lot of embedded services. Since pervasive devices,
such as mobile devices, have become a key part of our everyday life, they enable users to always be connected to the environment,
making demands on one of the most valuable resources of users: human attention. A challenge of the mobile computing systems
is regulating the request for users’ attention. In other words, service interactions should behave in a considerate manner by taking
into account the degree to which each service intrudes on the user’s mind (i.e., the degree of obtrusiveness). The main goal of
this paper is to introduce self-adaptive capabilities in mobile computing systems in order to provide non-disturbing interactions.
We achieve this by means of an software infrastructure that automatically adapts the service interaction obtrusiveness according
to the user’s context. This infrastructure works from a set of high-level models that define the unobtrusive adaptation behavior
and its implication with the interaction resources in a technology-independent way. Our infrastructure has been validated through
several experiments to assess its correctness, performance, and the achieved user experience through a user study.

Keywords: Interaction adaptation, self-adaptation, pervasive computing, unobtrusiveness, mobile computing

1. Introduction

Emerging pervasive technologies have opened a
new way of accessing up-to-date information (about
weather forecasts, current market prices, etc.) and en-
vironmental services (a shopping service, a tourism
service, etc.). This is due to the fact that nowadays the
use of pervasive devices and things (e.g., smartphones,
tablets, TVs, smartwatches, etc.) is widespread. Unlike
desktop software (which assumes full user attention,
a static view of the user environment, and stable op-
erating conditions), mobile computing systems high-
light the importance of letting the user concentrate on
his/her tasks and of adapting the services proactively
to changing user contexts [1].

As intelligent objects and devices are becoming part
of our environment, in the near future could appear
a scenario in which our fridge announces to us what

*Corresponding author. E-mail: mgil @pros.upv.es.

recipes can be prepared with the food that is available,
our TV tells us that our favorite program is beginning
and asks us to record it, our mobile agenda reminds us
of a meeting to attend; and all of this is happening at
the same time. Clearly, living in such a pervasive envi-
ronment on a daily basis may be annoying as users may
frequently be inappropriately interrupted [2,3]. Con-
versely, if these services behave in a completely au-
tomatic or invisible manner (without requiring human
input or informing the user), users can feel that their
environment is out of their control, which is also unde-
sirable [4].

With more and more digital services being added to
our surroundings, they might possibly be embedded in
the actual activities of everyday life resulting in calm
technology that moves back and forth between the cen-
ter and the periphery of human attention [5]. Since user
attention is a valuable but limited resource, pervasive
services must behave in a considerate manner [6], re-
quiring user attention only when it is actually neces-

1876-1364/16/$35.00 (©) 2016 — 10S Press and the authors. All rights reserved

2 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

sary. For example, a considerate library service knows
that when a package of books arrives to the library, the
completion of the reception task has to be done with-
out notifying the librarian when s/he is attending cus-
tomers.

In earlier work, Gil et al. [7] presented a design
method to capture the degree of obtrusiveness required
to interact with a service based on the user’s needs. By
considering the obtrusiveness aspects in a static man-
ner, personalized interactions of services can be pro-
vided, but always with the same degree of obtrusive-
ness. Therefore, the user’s needs and context change
dynamically and the obtrusiveness aspects of service
interactions should change accordingly. In this way,
the obtrusiveness level of services interactions must
change during runtime in accordance with changes in
the user’s context. For example, consider a user in an
airport taking a flight and who is thinking mainly about
the task of moving swiftly through the airport termi-
nal in order not to miss the flight because s/he has ar-
rived late. S/he probably prefers instructions that re-
quire the least attention (e.g., an arrow showing the
way). By contrast, consider another user in the same
airport who has sufficient time to take the flight. This
second user is more relaxed and can pay much more
attention (e.g., using a dialog). In principle, the mobile
service interaction should be appropriately adapted to
each user context automatically and seamlessly for the
user at runtime.

The need to make mobile computing interactions
sensitive to the user’s attention is well recognized [8,
9,10]. Some studies have focused on reducing mobile
interruptions by creating interruption models [11,12].
However, they have been focused more on address-
ing when to interrupt without paying much attention
to the autonomic adaptation of how to interrupt. Some
other works focused on modality preferences do not
address the modality adaptation at runtime [13]. Re-
searchers have investigated context-aware systems to
adapt the phone profile [14,15], but they are limited to
phone calls and are technology-dependent. Therefore,
we propose to fill this gap by providing a user-centered
infrastructure that is capable of adapting interaction
obtrusiveness of services in a technology-independent
manner. There are other approaches that rely on learn-
ing techniques to create user and interruption models
[14], but they require training data and do not support
cold-starts [16].

In this article, we present a self-adaptive infras-
tructure to adapt the degree of obtrusiveness required
for each service interaction autonomously at runtime.

Following the Autonomic Computing principles [17],
our system makes decisions on its own, using high-
level policies. These high-level policies are specified
in design models that define how the interaction ob-
trusiveness varies in a technology-independent manner
according to the user’s context. From these models, the
infrastructure determines the modifications to be per-
formed on the interaction resources of a service in re-
sponse to context changes (changes in the user’s situ-
ation) in order not to disturb the user. When a context
change is detected, services are retargeted to make use
of the appropriate mobile interaction components in
an autonomous way. Finally, we present the results of
a real deployment to evaluate the correctness, perfor-
mance, and the User eXperience (UX) using the sys-
tem. This last evaluation reveals the relevance of con-
sidering obtrusiveness aspects in the interaction adap-
tation process in order to enhance the user’s experience
and presents some issues that need to be addressed.

The remainder of the paper is organized as follows.
Section 2 presents related work. Section 3 describes
the high-level models on which our system is based.
Section 4 presents the adaptation process that our ap-
proach follows to self-adapt the interaction obtrusive-
ness of services. Then, the software infrastructure that
supports the adaptation process is defined in Section
5. Section 6 describes the mechanisms that are used
to adapt service interactions to the managed devices.
Section 7 describes the experimentation done to eval-
uate the correctness and scalability of the proposed in-
frastructure and the achieved user experience. Finally,
Section 9 concludes the paper.

2. Related work

Some studies have been conducted on context-aware
mobile computing to automatically adapt the modal-
ity configuration profile of mobile devices based on
context changes [18,15]. However, the focus of these
studies has been on context recognition and not on the
multimodal configuration as such. In this area, Kor-
pipéd et al. [19] developed a prototype tool to let users
customize multimodal interactions with smart phones.
Howeyver, this tool does not allow the customization of
applications. Also, Barkhuss and Dey [20] conducted
a study showing that users prefer autonomous behav-
ior in spite of feeling a lack of control. Evers et al.
[21] provided an extension to the MUSIC middleware
[22] to define interaction practices to influence the ap-
plication’s behavior according to the user’s perceptual

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 3

focus. Their solution involve the user participation for
the interaction adaptation and do not focus on the ob-
trusiveness aspects of the interaction.

Several architectures have also been defined in the
area of context-aware mobile interaction. FAME [23]
is a model-based architecture for adaptive multimodal
applications. Models specify a behavioral matrix to
assist in the adaptation rules development. DynaMo-
AID [24] is a design process and a runtime architec-
ture to develop context-aware user interfaces that sup-
port dynamic context changes. Aleksy et al. [25] de-
fined an architecture that enables the dynamic loading
of different elements of a mobile application, includ-
ing the output components. Blumendorf et al. created
MASP [26], a runtime architecture to support migra-
tion, distribution, and multimodality. Motti and Van-
derdonckt in [27] reviewed research on context-aware
adaptation of user interfaces and proposed a computa-
tional framework to support adaptation of the user in-
terfaces of interactive systems. While these approaches
define the adaptation space in terms of the environment
and the platform, our approach defines this adaptation
space for the interaction in terms of obtrusiveness. Our
approach addresses a different issue that is more re-
lated to the human limitations of the user (e.g., atten-
tion) than the technical limitations of the device (e.g.,
screen size). Furthermore, existing solutions generally
manage adaptations at the concrete user interface level,
turning them into complex descriptions since they are
expressed as manipulations to the user interface mod-
els. Our approach introduces the feature model to de-
fine the variability on the interaction specification. In
this way, we exploit the commonalities and differences
of interaction features, hiding much of the complexity
in the definition of the adaptation space.

As early pioneers in the area of interruptability,
Horvitz et al. [11] have gone beyond inference to high-
light the crucial factors of uncertainty which should
influence decisions about proactivity. Research in this
area focuses on minimizing unnecessary interrup-
tions [28] by making studies to calculate the adequate
timing for them [29,30]. This research has focused pri-
marily on determining when to interrupt without pay-
ing much attention on how to interrupt, which is what
we do in this work. Their work is based on whether or
not to provide a service without paying attention to the
right way to provide the interaction.

In order to determine the obtrusiveness of interac-
tions, some studies rely on automatic learning tech-
niques. Bayesphone [14] is a call-handling system that
learns models for attendance and interruptability and

decides whether to ring the phone or transfer the call
to voicemail. Rosenthal et al. [12] proposed a method
to learn when to turn on and off the phone volume in
order to avoid phone interruptions. These studies are
limited to a single phone device. Along similar lines,
Valtonen et al. [15] proposed a system to adapt the
phone profile based on context changes. However, con-
text changes are limited to time and location, and the
system only works on a specific phone device. Pielot et
al. [31] provided a predictor of attentiveness to mobile
messages by means of machine-learning techniques.
However, they only focus on instant messaging. These
learning techniques also require time to adjust to new
user behavior by means of training and do not support
cold-starts [16]. Conversely, our infrastructure is based
on high-level design models that define the obtrusive-
ness adaptation behavior. Therefore, interaction adap-
tation is performed from the first moment the system
is running. In addition, since models are technology-
independent, we can adapt the interaction of the vari-
ous mobile devices that a user can possess, regardless
of the platform.

In similar research, Apple introduced the don’t dis-
turb feature in i0OS 6 allowing users to schedule the
periods of time when the phone device is to be si-
lenced. The fact that a leading company in the field
of mobile devices has acknowledged the interruption
problem and tried to make a first attempt to solve
it is an indicator that more research is needed. In
this direction, there are mobile apps such as Llama'
or Locale? that allows managing mobile sound pro-
files according to the user location. However, these
apps are only location-aware, not context-aware. Also
they are platform-dependent. To date the research has
dealt with the problem in different ways but with vari-
ous limitations. There is no user-centered, technology-
independent, and systematic proposal. Below, we pro-
vide details about the high-level models on which our
system is based and then we present our self-adaptive
software infrastructure.

3. The unobtrusive adaptation space

A key challenge to providing unobtrusive service
interactions is to manage the user’s attention in the
adaptation process. By “unobtrusive" we mean interac-
tions that are welcomed by the user that do not disturb

Thttps://play.google.com/store/apps/details ?id=com.kebab.Llama&hl=en
Zhttps://play.google.com/store/apps/details ?id=com.twofortyfouram.locale&hl=en

4 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

Partition of the
unobtrusive

User Context

Transition

adaptation space

When a transition T,
is triggered, the
obtrusiveness level varies

Shopping List service
User can add an item to the
shopping list manually or
the item can be added by
the system proactively when
there is little product or the
users throws the product

to the gargage.

initiative
reactive proactive

attention

invisible slightl
appreciable

Obtrusiveness Level

Healthcare Service

User is informed to take his pills
or appointments to doctor,
decreasing the attention
demand if the user is with
company

aware

Fig. 1. Example of the unobtrusive adaptation space for two services.

him/her. In order to address this issue, we represent the
adaptation space in terms of human limitations. Specif-
ically, we use the conceptual framework for design-
ing unobtrusive interactions to define our unobtrusive
adaptation space [7].

As Fig. 1 illustrates, an unobtrusive adaptation
space is composed by obtrusiveness levels that de-
scribe the different possibilities in which interaction
with a service can be offered. Each obtrusiveness level
is formed by an initiative level to indicate who initi-
ates the interaction (e.g., the user or the system) and
an attention level to indicate the degree to which the
interaction intrudes on the user’s mind. Each service in
the system is located in any of the possible obtrusive-
ness levels in which the service can be performed. Ser-
vices in the obtrusiveness levels have transitions that
specify how a specific service should move between
obtrusiveness levels in order to adapt its interaction
based on user’s context (which is inferred from context
changes expressed as rules). We consider a service as
a mechanism that provides a coherent set of function-
ality, which is described in terms of atomic operations
(or methods).

Taking the example of the services of Fig. 1, we
have defined an unobtrusive adaptation space as de-
scribed in the following (see the partition in Fig. 1).
According to the initiative level, interaction can be re-
active (the user initiates the interaction) or proactive
(the system takes the initiative). According to the at-
tention level, an interaction can be invisible (the user
does not perceive the interaction), slightly appreciable
(the user would not perceive it unless s/he makes some
effort), and aware (the user becomes aware of the in-
teraction even if s/he is performing other tasks). De-
signers can divide each axis in as many parts as they re-
quire for describing the obtrusiveness level of the ser-
vices. The only rule that must be followed when di-

viding an axis is that the ordering must be preserved
in each axis for the defined values. In this unobtrusive
adaptation space, the healthcare service can inform the
user about taking the pills proactively across different
attention levels according to the user’s context. Specif-
ically, if the user is with company, interaction is pro-
vided at the slightly appreciable level of attention as
a hint in order that only the user is aware of the alert.
However, if the user is alone, interaction is provided
in a more notorious manner (the aware level of at-
tention). Regarding the shopping list service (to keep
track of the products users want to buy), an item can be
added to the shopping list reactively either by the user
manually when s/he remembers an item to buy (com-
pletely aware level of attention), or in a more subtle
way when the user just drops the item to the garbage
(slightly appreciable level of attention). Also, an item
can be added proactively by the system in an invisible
manner for the user when the system predicts that an
item is going to run out (e.g., when the fridge detects
small amount of a product). It is worth noting that sev-
eral services and their behaviors can be defined in the
same unobtrusive adaptation space and various unob-
trusive adaptation spaces can be defined with different
obtrusiveness levels.

The unobtrusive adaptation space is created follow-
ing a user-centered design (UCD) methodology where
users take center-stage in the design [32]. In order to
provide user-centered services adaptive to user’s atten-
tional resources, user preferences and needs have to be
detected and analyzed. In the pre-design phase, the de-
sign team employs ethnographic field study techniques
(user interviews and observations) to gather qualita-
tive data about the potential users. The main outcome
of these studies is a set of behavior patterns of users
that are going to drive the definition of Personas [33]
(user profiles). Specifically, Personas are powerful in-

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 5

struments for creating descriptive models of system-
to-be users based on behavioral data that is identified
during the interviews and observations. Then, from the
definition of Personas, designers determine what infor-
mation and capabilities our personas require to achieve
their needs and how this information is provided in
terms of obtrusiveness. This is performed by detecting
the services needed and their level of obtrusiveness ac-
cording to each type of user. For example, the shop-
ping list service could be relevant for a housewife or
a busy person that never remembers the products the
s/he needs and a healthcare service could be needed for
an elderly person who has to take pills regularly. Even
though two users can need the same service, they can
have different preferences about it. For example, a el-
derly person and a student could prefer the healthcare
service in different obtrusiveness levels due to their
frequency to take pills. Thus, the design of the services
in the unobtrusive adaptation space would vary from
user to user depending on the services needed and their
preferences and priorities for each service. By estab-
lishing the degree of user attention that a service needs,
we avoid developing overwhelming services. The user-
centered design process is further detailed in the work
of Gil et al. [7] and falls out of the scope of the present
work.

3.1. Formalizing the Transitions in a Context Model

At runtime, services are performed in one of the
obtrusiveness levels at a time. Thus, the level chosen
at each moment depends on the current user’s con-
text. In order to offer the service interaction with the
appropriate obtrusiveness level, designers must define
transitions (described as Ty in Fig. 1) that link user’s
contexts with changes in the obtrusiveness level. Each
transition is composed of a user’s context and an ac-
tion. When the user is in the specified context, the ob-
trusiveness level is modified by changing the atten-
tion level, the initiative, or both, as defined by the ac-
tion. For example, the transition T'y;iucompany Of Fig. 1
is defined as follows (withCompany is the name of the
user’s context associated to the transition):

Tithcompany = { (Attention, slightly-appreciable),
(Initiative, proactive)}

Thus, when the user is in a context with company,
the service interaction is adapted to an obtrusiveness
level that demands less attention. To define and infer
the different user’s contexts, we use an ontology-based
context model [34] that is based on the Web Ontology

language® (OWL). OWL is a W3C standard that pro-
vides a markup language that greatly facilitates knowl-
edge automated reasoning. The ontology-based con-
text model used in this work is described as a collec-
tion of triples in the form of (subject, predicate, ob-
Jject). For example, (Bob, personLocatedIn, Labl02)
means that Bob is located in the laboratory 102. This
context model keeps the updated context information
at runtime to reason about when to trigger an adap-
tation. Specifically, we took the ontology provided by
Serral et al. [35] and extended it by adding the user-
Context class to properly describe the current context
of the user and the relationship currentContext that
links a person with a context. The information of this
class is inferred by means of rules over the context in-
formation using the Jena Framework*. For example,
the logic rule to infer that the user is with company is
defined as follows:

[withCompany: (?user rdf:type pros:Person)
(?user pros:personLocatedIn ?location)
(?personl rdf:type pros:Person)
(?user pros:knows ?personl)
(?personl pros:personLocatedIn ?location)
(?user pros:socialRelationships ?personl)
_>

(?user pros:currentContext pros:withCompany)]

presented This rule detects that the user is in the
same location of another person and they have a social
relationship. Thus, when the service is in the (aware,
proactive) level and this user context is fulfilled, the
service has to be adapted to the (slightly appreciable,
proactive) obtrusiveness level. We have a rule reposi-
tory that contains a set of logic rules. Rules are manu-
ally added in the rule repository by designers, but they
can also be re-defined by users by means of a Context
Specification Interface such as the one presented by
Woensel et al. [36]. This interface captures automati-
cally the current context of the user letting the user to
link the current context with a transition. In this way,
new situations and contexts can be discovered and ex-
isting transitions can be refined.

3.2. Linking to Interaction Resources

Depending on the degree of obtrusiveness in which
a service is performed, interaction will be offered in

3http://www.w3.org/standards/techs/owl (last accessed March 6,
2016)
“http://jena.apache.org (last accessed March 6, 2016)

6 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

Pervasive

n Services
Facebook n

e Agenda
Washing

Healthcare

Machine

O
Visual

Shopping —

[configuration

[phone=closeToSkin] J I s REUELIIYIINN

Interaction
Modalities

[NoisyLevel=Low]

@) @)
|Auditory| | Haptic | | Radio |

|Vibration|Touching || Pointing ||Scanning|

Interaction configuration

Healthcare(aware,proactive)

do@

Dialog Speech Pointing

[NoisyLevel=Low] |

Auditorvl | Hapticl | Radio |

lSpeech " VibrationITouching " Pointing "Scanningl

Interaction configuration

| Iconic ||Momentary|lHighlight || Quick

N

View

ar + A

Banner Vibration Touching

Fig. 2. Linking between obtrusiveness levels and interaction resources.

a different manner. The obtrusiveness level determines
the type of interaction that has to be offered to the user.
Thus, the appropriate use of a modality or modality
combinations can play a crucial role, attenuating the
required attention [37]. To define the interaction vari-
ability of the mobile device according to the obtru-
siveness levels, we use a feature model (FM) [38]. We
chose feature modeling because (1) it offers coarse-
grained variability management, (2) it facilitates the
representation of interaction modalities in a taxonomic
way, (3) it allows us to introduce variability in the in-
teraction specification, and (4) it has good tool sup-
port for variability reasoning [39]. Specifically, a FM
is used in this work to represent the interaction modal-
ities and modality combination as well as describe its
variability. Features are hierarchically linked in a tree-
like structure through variability relationships such
as optional, mandatory, single-choice, and multiple-
choice, and are optionally connected by cross-tree con-
straints such as requires or excludes (see Fig. 2).
Feature models provide an intensional description
of the interaction possibilities (as opposed to an exten-
sional description of all the possibilities) without de-
signers having to define the interaction requirements
for each user situation. In this way, we obtain common
interaction aspects between user contexts. For exam-
ple, the interaction provided for a user in a noisy envi-
ronment shares several interaction features with the in-
teraction provided for a user with an auditory impair-
ment (e.g., visual modalities). We have defined our FM

of interaction modalities based on existing modality
taxonomies in the literature [40]. Figure 2 shows the
FM for representing visual, auditory, haptic, and radio
modalities and the constraints for their selection. It is
worth noticing that these interaction modalities would
be adapted to the requirements of each particular do-
main and available interaction mechanisms.

In order to specify which interaction resources sup-
port a certain service for a given obtrusiveness level,
different interaction features will be enabled. We refer
to the set of all activated features in a feature model
as an interaction configuration (IC). For example, the
grey boxes in the FM of Fig. 2 represent the interac-
tion configuration (IC) defined to provide the interac-
tion of the (aware, proactive) obtrusiveness level. The
white boxes represent interaction variants that may be
activated in the future to adapt the interaction to other
obtrusiveness levels. For example the IC of the FM of
Fig. 2 defined for the (aware, proactive) obtrusiveness
level is assigned as follows:

Ob”usjveneSs(aware,proaclive) = ICFigure‘ 2=
{Interaction Modalities, Visual, Text, Image, Property,
Highlight, Auditory, Speech, Radio, Pointing }

Each configuration of the FM is defined by the
set of feature states of a FM. The feasible feature
states are: active and inactive. It is the task of de-
signers to define the possible interaction configura-
tions in which a FM can evolve and assign them to the
appropriate obtrusiveness levels. These configurations

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

Table 1

Summarized information of output modalities [41,40,42,43].

Output Modality Visual Audi

tory

Haptic

Sensory channel Visual

Auditory

Touch

Pros High-specificity, Usable when user’s Discreet, usable when user’s focus

supports privacy focus not on screen, not on the screen,
obtrusive/draws attention reduce interruptions

Cons User’s focus needs Not usable in noisy environment Limited amount of information
to be on a task and screen, when privacy needed, (understandability), interference,
not usable under certain social situations, perceivability (body contact
glaring sun obtrusive needed)

Properties Highlighted, size, spatial Volume, frequency, Frequency, amplitude,
relations, temporal relations, timbre, rhythm rhythm, vibration pattern
iconic representation

Suitability In home, office, Driving, sporting, certain In meeting,

for context public places, deafness

outdoor situation (bright

public (noisy) places

sunshine), blindness

Manifestations Graphical icon, text,

image, graph, map, lights

Beep, synthetic speech,

music, acoustic alarm

Vibration, force feedback,

temperature

are validated using MOSKitt4SPL>, an open source
tool for modeling dynamic software product lines that
integrates the FeAture Model Analyzer Framework®
(FAMA). FAMA enables the automated analysis of
Feature Models in order to ensure a consistent interac-
tion adaptation. In [44], more information about fea-
ture model validation can be found. Also, optional fea-
tures can be tagged with context conditions indicating
that the optional feature will be active if the condition
is fulfilled. In this way, an interaction modality is not
only chosen due to attentional factors, it is also cho-
sen depending on environment factors. For example, if
it is loud in the environment, auditory signals can not
be used; or if the user is not carrying the phone close
to the skin, vibration can not be used (see the tags on
auditory and haptic features of Fig. 2).

The definition of configurations for each obtrusive-
ness level is based on the cognitive characteristics of
interaction modalities [45], i.e., how information car-
ried by different modalities is perceived by the human
perceptual-sensory system. Although there is not a uni-
versal interaction technique that is well suited for any
situation, there are several studies that have evaluated
the effects on the cognitive load of the different modal-
ities in order to detect the appropriate combinations of

Shttps://tatami.dsic.upv.es/moskitt4spl/
Ohttp://www.isa.us.es/fama/

them [46,45,47]. These studies show that the selection
of an appropriate interaction modality depends on (1)
the user context and (2) their effects on cognitive load.
In order to make our selection, Table 1 presents sum-
marized information of the output modalities consid-
ered in this work based on the existing multimodal de-
sign taxonomies and frameworks [41,40,42,43]. This
table shows the strengths, limitations and properties
of the different modalities according to the literature.
The three main modality types include a set of mani-
festations of output modalities. For example, manifes-
tations of the auditory output include beeps, synthetic
speech, music, and acoustic alarm. Each manifestation
has its own features, based on which it can be identi-
fied and selected for use. The purpose of this table is
to identify modalities and modality combinations best
suited for different situations and information presen-
tation needs. This table aims to help in the modeling
of the interaction variability in terms of obtrusiveness.
Furthermore, for the interaction between users and the
physical elements, we used the comparison provided
by Rukzio et al. [48] about physical mobile interac-
tion techniques. These techniques include fouching an
element with a mobile device (using NFC or RFID),
pointing at it with the device (using visual markers or
a laser pointer), or scanning the environment (using
Bluetooth or GPS) as considered in our variability in-
teraction modeling.

8 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

P
@ User modeling
Personas

Services

deﬁnltlon | LX) |
Level of

resgasrecrher obtruswenessl

Persona modeler

[
! 2

D Step
==p Manual process
B ool support

== p Semi-automated
process

\

\(" monY7 "
QObtrusweness modeling 9 Interaction
modeling
From the
T
:’igggf, Obtrusiveness| Interaction
modeling variability
Igte(actio/n modeling
esigner,
Analyst I:—QL'—‘:
:
modeler
\ J

Progégé

Fig. 3. Steps of the design phase.

By classifying services in this space, we adapt each
service according to the user’s context and attentional
aspects required for each user. The main benefit of
these high-level models is that they allow us to de-
fine how multi-modal interaction is adapted at run-
time in a technology-independent way. It is worth not-
ing that these models are built from user research or
information-gathering methods as the ones described
in [7]. Also, they are represented in XML Metadata
Interchange standard (XMI)’ and created by designers
using graphical editors based on EMF®. An example of
these models can be found on our website [49].

3.3. Unobtrusive adaptation design methodology

From a methodological perspective, designers have
to perform the following steps using the provided tool
support to prepare the unobtrusive services (see Fig.
3):

1. User modeling: Detect user needs and prefer-
ences by means of the definition of personas in
order to determine the needed services and the
obtrusiveness level required for the interaction
with them. The Persona Modeler is used to de-
fine the personas and specify the services re-
quired and their obtrusiveness level.

2. Obtrusiveness modeling: Define the unobtrusive
service behavior and interaction style based on
user’s needs and obtrusiveness to make use of the
appropriate interaction resources for each con-
text. In order to define the transitions that link
user’s context with changes in the obtrusiveness,

Thttp://www.omg.org/spec/XMI (last accessed March 6, 2016)
8http://www.eclipse.org/modeling/gmp/ (last accessed March 6,
2016)

the context model has to be modeled. To model
the obtrusiveness, we provide an Obtrusiveness
Modeler tool. Using this tool, the unobtrusive
adaptation space is partially generated from the
persona specification and manually completed
using this graphical tool. The Protege-OWL edi-
tor is used for modeling the context in a graphical
manner.

3. Interaction modeling: Define the interaction re-
sources most appropriate for each service in-
teraction in each user’s context. MOSKitt4SPL,
a free open-source tool, is used to create this
model.

The provided tools help designers in the specifica-
tion of the system, facilitating the adaptation descrip-
tion and the integration of the obtrusiveness with the
service interactions. More information about the tool
support, examples of models, some screenshots and a
video can be found in [50],[51].

Thanks to the use of models, we can define ubiq-
uitous services that are capable of adapting their in-
teraction in terms of obtrusiveness by working with
abstract concepts. By abstracting technical details, we
can describe how the interaction varies in terms of ob-
trusiveness regardless of the particular technology and
platform of the different ubiquitous devices. Also, by
using models, we can deal in a centralized way with
aspects such as obtrusiveness that are much harder to
deal with in the final software system since they are
spread across different parts of the code. A distinguish-
ing aspect of our approach is the separation of con-
cerns such as obtrusiveness and interaction. The ob-
trusiveness adjustment and the interaction specifica-
tion are faced from a modeling perspective. By linking
these aspects, when a service obtrusiveness varies, the
interaction of the service is re-targeted to make use of

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 9

New context
event

e, Y

Runtime
adaptation
context change

(a) feedback loop

(b) Adaptation process

Change in the
obtrusiveness level

Insert event/
check user context

Changes in
user context

=)

Unobtrusive
adaptation

Ontology-based
context

model space

? ¢ I Managed Change
o | system I pushnew Calculatenew request
policies, rules ol managed system : : interaction Interaction components

|

|

‘ Interaction
) variability

Fig. 4. (a) feedback loop and (b) adaptation process.

the new interaction components in an automated fash-
ion. To summarize, the main benefits of our modeling
method are:

— Focus on each aspect. Separation of concerns is
promoted by our approach in order to allow de-
signers to focus on a specific aspect at a time. De-
signers can define the way in which obtrusiveness
is adapted according to the user’s situation with-
out thinking on the interaction mechanisms, and
later, the appropriate interaction mechanisms can
be chosen to cope with the obtrusiveness require-
ments.

— Explore the solution space. The used models
capture not only a specific solution but also the ra-
tionale behind it. In this way, alternative solutions
can be re-considered and the design knowledge
can be reused for similar domains. Moreover, sup-
port for traceability between all the models allows
to easily identify the interaction elements affected
when the obtrusiveness degree of a service varies.

4. The self-adapting system

The high-level models previously presented cap-
ture the knowledge required to provide unobtrusive
service interactions. However, in order to allow au-
tonomous adaptations (self-adaptive), the pervasive
services must themselves adapt their interactions ac-
cording to the current context of the users at runtime.
Autonomic Computing research [52] is the foundation
to achieve application adaptation (in our case interac-
tion adaptation). In autonomic systems, the human op-
erator defines general policies and rules that guide the
self-adaptive process, instead of controlling the sys-
tems directly. In our solution, these policies are the
high-level models defined at design time.

Specifically, our approach follows a feedback loop
that controls the dynamic behavior and comprises four
activities: collect, analyze, decide, and act [53] (see
Fig. 4(a)). The feedback cycle starts with the collec-
tion of relevant data about the user’s context. Next, the
system analyzes this data to check about the current
state of user’s context. Then, the system makes a de-
cision about how to adapt the interaction of the ser-
vices in order to reach the desirable state (not to dis-
turb the user). Finally, the system acts by applying the
interaction adaptation to the managed system (mobile
device). In particular, this adaptation process follows
four steps as depicted in Fig. 4(b):

1. Collecting context changes. The adaptation pro-
cess is triggered when the system senses a rel-
evant contextual change from the environmen-
tal and mobile sensors. The new context event
is inserted in the ontology to reflect the user en-
vironment. Then, the user context is analyzed
to check whether the user’s current context has
changed and whether an adaptation needs to be
made (e.g., the user goes from being alone to be-
ing with company). This inference is based on
the logic rules that use the context information
that is updated in the ontology. For example, a
change in the current location could mean that
the user is with company.

2. Analyzing the attentional demand. The sec-
ond step of the adaptation process is triggered
when there is a change in the user context. This
change can trigger an adaptation of the obtru-
siveness level for a service. Thus, the unobtrusive
adaptation space is checked to see if any transi-
tion depends on that new user context. For exam-
ple, a new user context, the UserWithCompany,
can trigger a change in the obtrusiveness level
demanding less attention. A change request with
the new obtrusiveness level is generated.

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

3. Deciding the interaction mechanisms. The
third step of the adaptation process is triggered
when a change request with the new obtrusive-
ness level is created. This change request will
require new interaction mechanisms to be used
by a service. Thus, the interaction mechanisms
of the old and the new obtrusiveness level are
compared and the necessary modifications to the
interaction resources are calculated in terms of
interaction increments (interaction mechanisms
to activate) and interaction decrements (interac-
tion mechanisms to deactivate) according to the
configurations of the feature model. Specifically,
the InteractionIncrement operation is made up of
the interaction mechanisms in the new obtrusive-
ness level that are not in the current obtrusiveness
level (set-theoretic difference), and the other way
round for the InteractionDecrement operation.
The results of the Interactionincrement/Decrement
operations given the adaptation of the healthcare
service when the user is with company (with-
Company context) are as follows (see configura-
tions in Fig. 2):

InteractionIncrement,incompany =
{Quick View, Haptic, Vibration, Touching}
InteractionDecrementyishcompany =

{Image, Highlight, Auditory, Speech, Pointing}

These operations indicate how the services should
adapt their interaction in order to move from one
interaction configuration to another. For exam-
ple, in the case of the adaptation of the healthcare
service from the (aware, proactive) level to the
(slightly appreciable, proactive) level, the high-
light, image, speech and pointing resources are
no longer used; instead, quick view, vibration and
touching interaction resources are used (as cal-
culated by the operations).

4. Adapting the interaction components. When

the new interaction resources are calculated ac-
cording to the current context, the system ap-
plies the adaptation in the pervasive device where
the service is running. However, before applying
the adaptation, the concrete interaction compo-
nents of the target device need to be calculated.
As the adaptation is performed in a technology-
independent manner, we need a mechanism to
translate the abstract interaction resources into
the concrete interaction components of each plat-
form. This is done by querying the interaction

providers of each device (a component explained
in the next section) to realize the mappings be-
tween the abstract resources and their related in-
teraction components.

For example, if our infrastructure indicates that
a quick view with vibration is needed for service
S, this operation replaces these components with
the ones that match the specific target technology
(e.g., in an Android system, the banner is trans-
lated into the status bar component).

In this section, we have illustrated how the auto-
nomic reaction of a system can be calculated by taking
the high-level models as a basis. In the next section,
more detail is provided about how the required steps
are supported by our infrastructure.

5. Adapting the interaction obtrusiveness at
runtime

In order to carry out the adaptation process, we
provide an software infrastructure (AdaptIO) that en-
hances services with interaction obtrusiveness adapta-
tion capabilities.

Our infrastructure provides the following benefits:

— Itis available to the pervasive and mobile services
in a centralized manner.

— It senses context changes from environmental and
mobile sensors.

— It is based on the high-level design models in or-
der to adapt service interactions based on user’s
context in a technology-independent manner.

5.1. The self-adaptive software infrastructure

In order to make interaction obtrusiveness adap-
tation a reality, we define a model-based infrastruc-
ture, i.e., AdaptlO. AdaptIO is a software infrastruc-
ture to support the considerate interaction adaptation
of services at runtime in the pervasive computing do-
main. To achieve this, it senses the context and adapts
the interaction resources of each service of the man-
aged system in terms of obtrusiveness. To enable au-
tonomic behavior on the managed system, our infras-
tructure is based on the IBM reference model for self-
management [54], which is called the MAPE-K (Mon-
itor, Analyze, Plan, Execute, Knowledge) loop. In our
case, the knowledge is represented in the high-level
models introduced in Section 3.

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 11

Ubiquitous
Services

Healthcare

Washing
Machine

Analyze Change

Request,

User Context

Adaptation
Analyzer

Weather
Shopping

Context Knowledge \ | Service
Change - invocations
High-level

Models

=)
Interaction
Providers

) Information +, W, Service
Configuratiog invocations

Managed systems

Presence Facebook
~.| Detector it Twitter

A *-'_

RFID Calendar
GPS

Service
Manager

Context
Monitor

uonndaxgy

Context
Update

Mobile Services

Context Sources Mobile Phone Tablet

Fig. 5. Infrastructure component overview

Our design goal for AdaptlO was to support the in-
teraction obtrusiveness adaptation in a modular and
extensible manner by decoupling context processing,
technology-independent interaction adaptation, and
service management. We also provide a set of com-
ponents in a pluggable manner to address the techno-
logical heterogeneity of pervasive and mobile devices.
Figure 5 illustrates the AdaptIO infrastructure com-
ponents and their connection to context sources, ser-
vices, and managed devices (managed systems). For
the definition of the infrastructure, we rely on the com-
ponent concept since this is a well-understood concept
that can be implemented in most of the implementa-
tion technologies available. Components are the basic
pieces that make up the system.

AdaptlO is designed to provide a loosely-coupled
and model-based solution. It allows us to define how
the different services are integrated (by means of a Ser-
vice Manager) and adapted (by means of an Adapta-
tion Engine) to all the changes in the user context (by
means of a Context Monitor) in terms of obtrusiveness
(by means of the User Context Analyzer) using the de-
sign models. In the following subsections, more details
are given about these components and their supported
operations (with some implementation details).

5.1.1. Context Monitor

The Context Monitor is the component that is in
charge of the monitoring process. It detects changes in
the user context and translates them to context events.
For example, the detection of a RFID tag with the
X id means that Bob has been detected. These con-
text events are inserted in the ontology-based context
model to reflect the user environment. Note that this

update must be performed at runtime. Then, the con-
text change is passed to the User Context Analyzer.

Context changes are physically detected by envi-
ronmental (physical sensors) and mobile sensors (vir-
tual sensors), which are controlled by pervasive and
mobile services. Therefore, in order to capture con-
text changes, the monitor continuously monitors the
execution of the services. Specifically, the pervasive
services that control the physical sensors are devel-
oped using the development method presented by Ser-
ral et al. [35], which allows us to automatically gen-
erate Java/OSGi® pervasive services from high-level
abstraction models. Using OSGi, the Context Monitor
can listen to the changes produced in the services to
detect context changes. The mobile services that con-
trol the virtual sensors are implemented as background
services running on the mobile devices that monitor
changes in their own sensors. For example, the user
location is detected by the GPS service that controls
the mobile GPS sensor and presence detector devices
of the environment. Specifically, we have two Context
Event Listeners: one in charge of listening to events
from the environmental sensors and another in charge
of listening to events from mobile devices.

5.1.2. User Context Analyzer

When a context event is detected, the User Context
Analyzer analyzes the context change to infer the new
user’s context and to determine whether a service in-
teraction adaptation needs to be made. For example,
a change in the user’s location could mean that the
user is working or with company. If the user context
has changed, the User Context Analyzer generates a
change request with the new user context and passes it
to the Adaptation Engine.

In order to accurately infer the user’s context, the
User Context Analyzer is based on logic rules. These
logic rules use the context information updated in the
context model (see an example of a rule in Section 3).
We have a rule repository that contains a set of logic
rules. Rules are manually added in the rule repository
by designers in the design and runtime phase.

The main operations that support the User Context
Analyzer are: the operation for loading rules from a
folder, the operation for inferring and getting new data,
and the operation for updating the user context changes
in the ontology.

9http://www.osgi.org/ (last accessed March 6, 2016)

12

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

5.1.3. Adaptation Engine

When alerted by the User Context Analyzer of a

change request, the Adaptation Engine consults the un-
obtrusive adaptation space to check if any transition
of the current obtrusiveness depends on that new user
context. If so, the engine calculates the necessary mod-
ifications to the interaction resources and generates an
adaptation plan. This plan represents the set of high-
level interaction changes for each service.

In order to calculate the necessary modifications to

the interaction mechanisms by means of increments
and decrements (explained in Section 4), the adapta-
tion engine queries the obtrusiveness and interaction
model at runtime. This is based on four main opera-
tions: (1) the getTransitionsToCheck operation, (2) the
checkUserContext operation, (3) the triggerTransition
operation, and (4) the getDifferences operation.

The process that the Adaptation Engine follows

when it receives a change request with the updated user
context is the following:

is

— For each service, the Adaptation Engine gets the
output transitions of the current obtrusiveness
level of the service. This activity is supported by
the getTransitionsToCheck operation.

Then, the Adaptation Engine checks the transi-
tions to see if any user context has been fulfilled
according to the user’s current context (this means
that an adaptation needs to be made). This is sup-
ported by the checkUserContext operation.

For the transitions that have been fulfilled, the
Adaptation Engine aggregates their actions to cal-
culate the target obtrusiveness level and avoid in-
consistencies when the transitions are triggered.
The median is used to obtain an average move-
ment in the unobtrusive adaptation space if more
than one transition is fulfilled. We use the median
instead of the mean in order to prevent extreme
results from affecting the changes in the obtru-
siveness level.

Then, the Adaptation Engine applies the final ac-
tion by obtaining the current interaction configu-
ration and the target one and calculating the dif-
ference between both configurations. This differ-
ence is calculated by means of increments and
decrements with respect to the current configura-
tion. These procedures are supported by the trig-
gerTransition and the getDifferences operations.

The plan of high-level interaction increments/decrements
notified to all of the installed Interaction Providers.

Since the adaptation is performed in a technology-

independent manner (high-level concepts), we need
a mechanism to translate the abstract interaction re-
sources to be used into the specific resources for
each platform. To do this, we define the Interaction
Providers, which are pluggable components in charge
of converting the high-level interaction plan into a spe-
cific one with the specific interaction components of
the underlying managed systems. For example, the
Quick View is translated to a Status Bar on Android
and a Banner on i0OS. Finally, the plan of low-level
components is passed to the Service Manager. The op-
eration in charge of supporting this translation is the
doWeaving operation.

5.1.4. Service Manager

The Service Manager is the component that is in
charge of applying the adaptation to the underlying
system. When the Service Manager receives a change
plan that contains the interaction components that have
to be adapted for a service, it stores the plan and waits
until a service has to interact with the user. Typically,
plenty of local and remote services or applications are
running on a user’s mobile device (e.g., agenda), which
may interact with the user to notify him/her of impor-
tant events or information. These services are regis-
tered in the Service Manager and invoke it when they
have to interact with the user. Thus, when a service
invocation is received (i.e., a notification, information
that is useful for the user, etc.), the Service Manager
retrieves the interaction components to be used from
the change plan, composes the interaction, and pushes
the information to the user’s managed device with the
appropriate interaction configuration.

The Service Manager can also be queried in order
to retrieve the service information based on certain cri-
teria (e.g., read last information, retrieve all notifica-
tions, retrieve deleted information, etc.). Since in a mo-
bile environment users can change from device to de-
vice on the go, it is desirable to allow users to ac-
cess their service’s information from a single applica-
tion point. The Service Manager component provides
a unified view of the information for all the services
in which the user is involved. This distributed schema
is common in mobile approaches. Two operations are
implemented:

Receive service information. To receive data from
the services, a web service has been implemented.
This way, services can send any kind of data to
the Service Manager simply by sending the infor-
mation via HTTP.

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 13

Execute a service adaptation. Once a service invo-
cation is received, it is adapted to the user’s cur-
rent situation and sent to Managed Systems (e.g.,
mobile phones). To do this, our infrastructure
makes use of push notifications (remote notifica-
tions). The information processed is pushed to the
Managed Systems (via the Push Notification ser-
vices) when the service has to interact with the
user. The service information and the interaction
configuration to be used are specified in the pay-
load. This payload is sent to all of the registered
devices.

6. Implementation and deployment of the
infrastructure

This section provides details about the architecture
used to deploy our infrastructure, describing the key
design choices and solutions, and giving implementa-
tion details about it. AdaptIO follows a client/server
architecture. The context processing, current user con-
text inferring, adaptations and service information are
managed at the server. Managed systems are the clients
that rely on the server components for receiving the
service information with the appropriate interaction
components to be used. Therefore, the logic remains
on the server side so that mobile clients do not have to
deal with complex processes that may have an impact
on performance.

6.1. Server-side subsystem

The components of the server side (Context Mon-
itor, User Context Analyzer, and Adaptation Engine)
are implemented using Java/OSGi technology. With
this technology, the software infrastructure becomes
an independent operative system that can be dynami-
cally constructed from reusable and collaborative com-
ponents, which are known in the OSGi terminology as
bundles. Therefore, the infrastructure is developed to
be run on an OSGi service platform. An OSGi service
platform is an instantiation of a Java virtual machine,
an OSGi framework, and a set of bundles.

The OSGi framework runs on top of a Java virtual
machine and provides a shared execution environment
to install, update, run, stop and uninstall bundles with-
out needing to restart the entire system. To minimize
the coupling among bundles, the OSGi framework pro-
vides a service-oriented architecture that enables bun-
dles to dynamically discover each other for collabora-

tion. An installed bundle can register services by pub-
lishing their interfaces using the framework’s service
registry. Thus, when a bundle queries the registry, it
obtains references to actual service objects that are reg-
istered under the desired service interface. For exam-
ple, each Interaction Provider is encapsulated in an
OSGi bundle. In this way, we can add as many Inter-
action Providers as we need without having to stop the
system. This provides flexibility for adding new de-
vices (Managed Systems).

The framework also manages dependencies among
services to facilitate coordination among them by us-
ing Wire objects. A Wire object acts like a communi-
cation channel between a Producer service and a Con-
sumer service. Therefore, we use the Wire Admin Ser-
vice in OSGi to carry out the inter-component eventing
of the components of our system: the Context Monitor
and the User Context Analyzer; the User Context An-
alyzer and the Adaptation Engine; and the Adaptation
Engine and the Interaction Providers. When a compo-
nent has an event to deliver, the component source calls
all of the event listeners in the service registry.

To enable this communication, the Producer service
must implement the OSGi Producer interface, while
the Consumer service must implement the OSGi Con-
sumer interface. There are two ways to establish com-
munication using a wire: 1) the Producer service can
send information to the Consumer service or 2) the
Consumer service can request information from the
Producer service. In our approach, the communication
between services using a wire is always produced from
the producer to the consumer.

Furthermore, OSGi enables the integration of het-
erogeneous devices and sensors in pervasive environ-
ments by means of the service discovery. Services ex-
hibit external devices such as UPnP devices or KNX-
EIB devices, which are the ones that we use to gather
context information besides mobile sensors.

The Adaptation Engine uses Eclipse Model Query '’
(EMFMQ) to query the models at runtime and the
EMF Compare plugin'! to calculate the differences be-
tween the interaction configurations. EMFMQ facili-
tates the process of search and retrieval of model el-
ements in a flexible, controlled, and structured man-
ner. To achieve this, the plugin allows the construc-
tion and execution of queries in a SQL-fashion. We

10http://www.eclipse.org/modeling/emf/?project=query (last ac-
cessed March 6, 2016)

http://www.eclipse.org/emf/compare/ (last accessed March 6,
2016)

14 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

use these queries to search for and get the instances of
the model that need to be accessed or modified. EMF
Compare provides a generic comparison engine that
allows model comparison for any kind of EMF model.
Specifically, we use the diff class to calculate the dif-
ference between the two interaction configurations.

As context is represented by means of OWL on-
tologies, to implement the operation to insert con-
text events in the ontology (InsertContextEvent oper-
ation), the Context Monitor uses the INSERT form
of SPARQL'2. SPARQL is the W3C recommendation
query language for RDF. This query language is based
on graph-matching techniques. Given a data source, a
query consists of a pattern that is matched against the
data source, and the values obtained from this match-
ing are processed to give the answer. The data source to
be queried can be an OWL model like the one we use
for the context model. To implement the rules of the
User Context Analyzer, we have used the Jena Frame-
work!3, which is a Java framework for building Se-
mantic Web applications. It provides a programmatic
environment for OWL and SPARQL and includes a
rule-based inference engine (see an example of a rule
in Section 3.1).

Finally, the Service Manager is implemented in
PHP, which is a server-side scripting language that is
interpreted by an Apache web server and connected
to a MySQL database that stores the received inter-
action configurations. This way, we can keep track of
the adaptation traces to be able to analyze them later
and check the proper functioning of the software in-
frastructure. Also, these traces are shown in a web
page to assist engineers in the task of checking the
correct adaptations of the services (see Section 7). To
implement the web service of the Service Manager,
the Restlet Framework!# has been used. The informa-
tion to transfer has been formatted in JSON, which is
a lightweight data-interchange format. Therefore, all
the components understand the format of the informa-
tion. Also, in order to implement the push notifications
we have used Android Cloud to Device Messaging'?
(C2DM) for the Android platform and Apple Push No-
tification service (APNs) for iOS. Further information
about the implementation is available in [55].

http://www.w3.org/TR/rdf-sparql-query/ (last accessed March
6,2016)

Bhttp://jena.apache.org (last accessed March 6, 2016)

4http://www.restlet.org/ (last accessed March 6, 2016)

5https://developers.google.com/android/c2dm/ (last accessed
March 6, 2016)

2 19:50, 2 sigcm

—
ﬁ | Master view |

Washing Machine

Washing Machine has finished. Get... |O
o oy

There is a supermarket nearby. Re...

Healthcare ils:
B renemver you have to take the vit... > metalles
There i a supermarket nearby.

Washing Machine 3
Remember you have to buy water.

=3 Washing Machine is full load of lau...

Shopping >

There s a supermarket nearb...

Weather

[Home Messages N
Buy water urgently!tt

Facebook >

Mary C. posted on Undergro...

Healthcare >
Remember to take the pills

Facebook >

Bill M. invited to you to the .

You should take the umbrella. Warning of
rain at 76%.
2012-02-09 at 10:23:51

Weather >
You should take the umbrella..

Healthcare >
&= Remember you have to take...

S Q

Fig. 6. Implementation of the managed system on iOS and Android.

6.2. Client-side subsystem: managed systems

The client-side subsystem is formed by the managed
systems deployed in the managed devices to adapt their
interaction obtrusiveness. In order to validate our ap-
proach, we have implemented a managed system on
both Android and iOS. We chose those platforms be-
cause they allow interaction components to be easily
managed. On the one hand, Android provides an open
application framework that supports advanced interac-
tion techniques such as text-to-speech synthesis and
easy communication mechanisms to integrate the func-
tionality of applications. On the other hand, iOS is a
closed platform where mechanisms for component in-
teroperability and background processing are very lim-
ited. However, the APNs alleviate these problems by
providing a robust and efficient service for propagating
information to devices using a given configuration.

Specifically, we have implemented a mobile appli-
cation on each platform following a master-detail in-
terface that displays a master list of all the service in-
formation received and the details of the current se-
lected information. When some data of a service is re-
ceived at the managed system, the managed system no-
tifies the user through the appropriate interaction com-
ponents according to the current user situation. The no-
tification is also shown in the master list. When the
user selects a notification from the list, the details of
the notification are shown. Figure 6 shows the views

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 15

for an implementation on iOS and Android'®. When
the application is installed in the device, it registers the
device to the infrastructure.

6.2.1. The managed system on Android

One of the managed systems was implemented on
the Android platform. Although our approach is not
platform-dependent, we took advantage of this plat-
form to implement the adaptation actions. The An-
droid platform provides the Intent messaging facility
for late runtime binding between components. More-
over, it provides loosely-coupled components'’ such
as Service, which provides functionality that is exe-
cuted in the background, and Activity, which provides
the user interface. Also, a more sophisticated user in-
terface can be described in Android by merging differ-
ent fragments defined in an XML layout file that sepa-
rates the presentation from the behavior.

In order to integrate our infrastructure with the
managed system on Android, a controller was imple-
mented as an Android Service running in the back-
ground. This component was developed to act as a lo-
cal broker. It supports the following operations:

Activation and deactivation of components. An-
droid allows the dynamic activation and deac-
tivation of components (services and activities).
The different components that are executed in
the mobile client are activated and deactivated
by the controller as our infrastructure requests
them. The startService/stopService and startAc-
tivity/stopActivity methods defined by Android
are executed by the controller to activate and
deactivate interaction components (implemented
as services or activities). To locate a component
in Android, an Intent is launched that describes
the components to be started. Intents are abstract
descriptions of the components to be activated
(e.g., vibration feedback) regardless of the spe-
cific components that provide the functionality
(e.g., vibrator resource). An Intent can also carry
small amounts of data to be used by the compo-
nent that is started. For example, the pattern to be
followed or the length of time to vibrate can be
included in the vibration intent.

16The Uls have been designed according to the design guidelines
of both platforms

17http://developer.android.com/guide/components/index.html:
Android components (last accessed March 6, 2016)

Dependency changes. Android provides loosely-
coupled communication mechanisms among com-
ponents. To request an external functionality, a
component launches an Intent. In this case, the
controller intercepts the signals from our infras-
tructure (abstract Intents) and translates them to
more specific ones that match the specific under-
lying technology. For instance, if the infrastruc-
ture indicates that a quick view with vibration is
needed for service S, the controller replaces the
general Intent with one that contains the same
data but with the specific data of the component
description. The latter would be the component
corresponding to the Android notification service
that is in charge of showing status bar notifica-
tions (e.g., “es.upv.pros.Notification.StatusBar”).

7. Evaluation

We present the evaluation of our infrastructure by
means of three experiments to measure its correct-
ness and performance and to assess the User eXperi-
ence. We first present the correctness and performance
evaluation by means of objective measures and then
the user experience evaluation by means of subjective
measures that were collected with a questionnaire from
users.

7.1. Correctness of the software infrastructure

This evaluation was based on assessing to what de-
gree the software infrastructure (AdaptlO) performs its
tasks as defined in the specification. In order to evalu-
ate this criterion, we need to calculate if it executes the
specified adaptations correctly. This implies checking
whether the service interaction is adapted to the correct
obtrusiveness level and determining if the new interac-
tion mechanisms to be used are calculated correctly.

To perform this, we analyze system execution traces
[56]. Execution traces produced by software systems
during their operations capture important runtime in-
formation, and thus are valuable sources for validat-
ing software functional properties such as correctness.
Data gathered from a running program has great po-
tential for self-adaptive systems because it relies on di-
rect monitoring mechanisms that describe the system’s
actual behavior [57]. Traditionally, software engineers
have used code-level tracing to capture a running sys-
tem’s behavior. An alternative is to generate and an-
alyze model-based traces, which contain rich seman-

16 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

Table 2

Example of a trace entry: In a Meeting

Title: In a Meeting

Context event: (Bob, PersonLocatedIn,
Laboratory102)

Context condition fulfilled: @inMeeting

New obtrusiveness level: Agenda (Invisible-proactive)

Previous obtrusiveness level: Agenda (slightly appreciable-
proactive)

Reconfiguration actions: Activations: {Iconic},
Deactivations: {QuickView,

Haptic, Vibration}

tic information about the system’s runs at the abstrac-
tion level that its design models define [58]. Since we
use high-level models to define the behavior of adapta-
tions, it is suitable to use model-based tracing to check
the correctness of our infrastructure. Given the seman-
tics of a trace, an engineer can check if a syntactically
correct trace is consistent with regard to a specific run
(is the representation correct?), and, more generally, if
it is realizable. That is, if a system (and a run) exists
from which it could have been generated.

To support model-based tracing, AdaptIO stores
trace entries each time that an adaptation is performed.
Trace entries range from the context events and user
contexts that trigger the adaptations to the calculated
adaptation plan when an adaptation is triggered. Since
the adaptation is driven by models at runtime, our in-
frastructure is able to keep the trace entries at the same
abstraction level as the runtime models. That is, both
the runtime models and trace entries are based on con-
cepts such as services, obtrusiveness levels, and inter-
action components.

The trace entries that our infrastructure stores can
belong to several entry types. We present these entry
types and provide examples of their instance creation
as follows (Table 2 shows an example of a trace entry
for an adaptation scenario):

1. Context event. This entry type provides infor-
mation about the context events that have been
detected. Consequently, these events are the ones
that can trigger an adaptation when the user con-
text changes. This entry type also maintains the
time stamp of the detected event. For example,
an instance of this entry type is created when a
user is detected in the Laboratory102 (Bob, per-
sonLocatedln, Laboratoryl02).

2. Context condition fulfilled. This entry type pro-
vides information about a user’s context that has

been inferred. This fulfilled user’s context trig-
gers an adaptation. For example, an instance of
this entry type is created when the withCompany
context is fulfilled.

3. New obtrusiveness level. This entry type pro-
vides information about the new obtrusiveness
level in which a service has to be adapted and
about the new interaction configuration in terms
of interaction resources. For example, an in-
stance of this entry type is created when our in-
frastructure processes the user context withCom-
pany and detects that an adaptation is needed.

4. Previous obtrusiveness level. This entry type
provides information about the obtrusiveness
level and the interaction configuration before the
adaptation. For example, an instance of this entry
type is created before the adaptation is performed
to accommodate the new user context (e.g. with
company).

5. Reconfiguration actions. This entry type pro-
vides information about the calculated adapta-
tion actions to perform the interaction adaptation.
This information is stored in terms of interaction
components to activate and deactivate. For exam-
ple, an instance of this entry type is created af-
ter an adaptation plan is performed and the new
obtrusiveness level is reached.

In order to visualize and analyze the generated
traces, we have developed a Trace Monitor tool. Fig-
ure 7 shows a screenshot of the main view of the Trace
Monitor, displaying an adaptation trace with some of
these entry types such as the new obtrusiveness level
and the set of reconfiguration actions to perform the
adaptation.

These trace entries provide a way to formally and
quantitatively characterize and investigate the specific
adaptation the trace was generated from (vertical trace)
and also the overall running of the system (horizontal
trace). On the one hand, vertical traces are related to a
snapshot of an adaptation. They quantitatively reflect
the state of an adaptation at certain time points in the
execution. On the other hand, horizontal traces are re-
lated to an interval of an execution. They are evaluated
over a time interval, typically a complete execution or
a sequence of connected adaptations. In this work, we
analyze vertical traces to check that adaptations are
performed correctly.

Thus, the proposed experiment consists in analyz-
ing that the registered traces match their specification
in the models. To perform this, we have implemented a

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 17

/I\ Home | mmes System Model 8“ Notifications ! Traces Monitor

l System Statistics

Services Configuration History

Show(10+] entries " Event Details

Time Type

15-01-2012 r Service: Agenda
at 14:19:00 2Lz o
15-01-2012 :
at12:38:10 Ltz
14.01-2012
at13:22:00 PECONFIGURATION

14-01-2012

Reconfiguration Traces

Type: Reconfiguration Event
Date Time: 14-01-2012 at 13:22:00

Description: Switch to Proactive-Aware

Reconfiguration Actions

Key New Value
Speech ACTIVATE
Dialog ACTIVATE
Vibration DEACTIVATE

StatusBar DEACTIVATE

at 12:50:00 LR R

12:01-2012

at 00:00:00 L=

1to50f5

Fig. 7. Screenshot of the Trace Monitor tool.

JUnit'® test to assert that both values are equal. Specif-
ically, the JUnit method takes a trace entry and checks
the following:

1. The new obtrusiveness level calculated from a
fulfilled user context is the same as the one de-
fined in the transitions of the unobtrusive adapta-
tion space (see Section 3.1).

2. The reconfiguration actions to be applied (list of
interaction increments and decrements) are cor-
rectly calculated.

To compare the reconfiguration actions of the trace
against their specification in the models, we query the
interaction model and perform a set-theoretic differ-
ence between the interaction mechanisms that are as-
sociated to the new obtrusiveness level and the previ-
ous obtrusiveness level. Finally, we use the assertE-
quals method that is defined in the JUnit framework to
test that the values are equal. When the arguments to
assertEquals are not equal, the test fails.

We applied the JUnit test to the adaptation scenarios
proposed in Section 7.3. The testing of these scenarios
confirmed that the envisaged adaptation behavior was
achieved; consequently, the software infrastructure in-
terprets the models correctly. However, when analyz-
ing the model-based traces, we discovered inconsis-
tent behaviors in some adaptations that were initially
designed because there were sink obtrusiveness lev-
els. Therefore, traces helped us to correct the design of
these adaptations. Despite this, the testing shows that
our infrastructure is capable of executing the unobtru-
sive adaptations correctly as described in the models.

"8http://www.junit.org (last accessed March 6, 2016

7.2. Performance of the software infrastructure

This experiment was based on assessing to what ex-
tent infrastructure performance could be affected by
providing adaptation capabilities based on models at
runtime. The use of the high-level models by the rest of
the components impacts overall system performance.
In particular, the incorporated latency is determined by
(1) the model manipulation frameworks, and (2) the
model population (including the number of services
taken into account). In this experiment, we evaluated
the efficiency of AdaptlO during dynamic adaptations
in terms of execution time. As model manipulation
frameworks, we used SPARQL to manage the context
model and EMF Model Query since the unobtrusive
adaptation space is represented in XMI.

When evaluating the proposed scenario, processing
our designed models did not have a significant impact
on performance. However, to validate whether our in-
frastructure scales to large systems with more services
[59], we quantified this overhead for large models that
were randomly generated with five hundred new ele-
ments each iteration. After the model population, the
following operations were performed: InsertContex-
tEvent, CheckUserContext, triggerTransition, getDif-
ferences, and doWeaving. AdaptlO requires these op-
erations to be efficient enough to gather the necessary
knowledge without drastically affecting the system re-
sponse.

Figure 8 shows the milliseconds that the infrastruc-
ture took to perform each one of the model operations.
The operations with the highest temporal cost were the
operations that were related to triggering transitions
(triggerTransition and getDifferences operations) be-
cause they navigate through the models to obtain the

18 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

Performance Values

=+ InsertContextEvent
~#- CheckUserContext
getDifferences
- triggerTransition
s doWeaving

0 5000 10000 15000 20000 25000 30000 35000
Model Elements

Fig. 8. Values of the infrastructure performance.

appropriate interaction resources for each context. The
operation to manage context with the highest tempo-
ral cost was the CheckUserContext operation, which
provided a reasonably fast response time (<250 ms for
35.000 elements). Although the doWeaving operation
also operates over the models, it got less response time
because it only queries the elements involved to do-
ing the weaving (it does not navigate through the en-
tire model). Even with a model population of 35.000
elements, all these operations provided a fast response
time (<350 ms), at least for the kind of services we
were addressing. Overall, the results showed that our
infrastructure gathers the necessary knowledge from
the models without drastically affecting the perfor-
mance.

7.3. User Experience Evaluation

This third experiment was focused on evaluating the
User eXperience (UX) when using our system (to eval-
uate user’s feelings). User experience describes all as-
pects of interactions between a user and a software
product, not just the ISO 9241-11 factors, effective-
ness, efficiency and satisfaction. User experience in-
troduces new concepts to the quality of software like
fun, beauty and pleasure. This evaluation has become
important in mobile contexts given the ubiquity and in-
telligent capabilities of systems of this kind. Thus, the
goal of this experiment is to measure the user experi-
ence when using an implementation of a managed sys-
tem with obtrusiveness adaptation capabilities. For the
evaluation, we presented the users with a non-adaptive
version of our system (usual notification system) and
the adaptive one (our system with self-adaptive capa-
bilities). In this way, the users could compare both sys-
tems and better measure their UX. Note that we took
counterbalancing measures to avoid order effects (fur-
ther explained in subsection 7.3.3). Afterwards, the
users were handed an AttrakDiff 2 questionnaire (one
of the most influential questionnaires to measure UX)

to fill out to collect their attitudes towards both sys-
tems.

According to the Goal/Question/Metric template
[60] the objective of the experiment was:

Analyze: our self-adaptive software infrastructure
(adaptive system).

For the purpose of : evaluating its user experience.

With respect to: a traditional system without adaptive
capabilities (non-adaptive system).

From the viewpoint: of the end-users.

In the context of: end-users using the managed sys-
tem on a mobile device.

From this objective, the following hypotheses were
derived:

Null hypothesis 1, H1y: The user experience using
our adaptive system is the same as the one ob-
tained using a non-adaptive system.

Alternative hypothesis 1, H;;: The user experience
using our adaptive system is greater than the one
obtained using a non-adaptive system.

7.3.1. Variables
We identified two types of variables:

— Dependent variables: Variables that correspond
to the outcomes of the experiment. In this work,
user experience was the target of the study, which
was measured in terms of pragmatic and hedo-
nic attributes following the model of Hassenzahl
[61]. Specifically, these attributes measure the
pragmatic manipulation, the hedonic stimulation,
the hedonic identification, and the attraction.

— Independent variables: Variables that affect the
dependent variables and were intentionally varied
during the experimentation. The managed system
was identified as a independent variable that af-
fects the dependent variable. This variable had
two alternatives: (1) adaptive system (based on
our self-adaptive software infrastructure) and (2)
non-adaptive system (traditional system without
adaptation capabilities).

7.3.2. Experiment context

The context in which the experiment was carried out
is described below. We describe the subjects that par-
ticipated in the experiment, the objects that were stud-
ied in the experiment, and the instruments that were
chosen to carry out the experiment.

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 19

Participants. Fifteen people participated in this ex-

periment (9 men and 6 women). Their ages
ranged from 19 to 50. Most of them were com-
puter science students (master or PhD) and daily
mobile device users. The participants received no
compensation for their participation.

Objects of study. The objects used in the experiment

were two managed systems: one running over our
self-adaptive software infrastructure with interac-
tion obtrusiveness adaptation capabilities (as the
one explained in Section 6) and another with-
out adaptation capabilities. Both systems had the
same user interface to manage notifications. They
were running on an iPhone 4 (i0S 5.1). The in-
teraction components available for delivering the
notifications in this system were: vibration (vibra-
tion feature), loud and soft audio (sound features),
voice notifications (speech feature), a badge icon
(icon feature), an alert (highlight feature), a mo-
mentary banner on the screen (momentary fea-
ture), and a static banner on the locked screen
(quick view feature). By means of these interac-
tion components and combinations of them, we
were capable of giving support to all of the ob-
trusiveness levels for the adaptive system. In the
case of the non-adaptive system, the default mo-
bile configuration was used to deliver all the no-
tifications (i.e., sound with a dialog alert corre-
sponding to the completely-aware level of atten-
tion).

On the server side, the target platform that was
used in our experiment was the open source im-
plementation of OSGi Equinox Release 4. To run
the instance of Equinox, we used a host with
an Intel Core i7 1.8 GHz processor and 4 GB
RAM 1333 MHz with Mac OS X Lion and Java
1.6.0_29 installed.

Instrumentation. The instruments used to carry out

the experiment were:

— A case study: We used a case study scenario
that describes different services notifications of
users’ daily life. Specifically, we defined a case
study for the services notifications of a routine
day in the context of a university professor. The
experiment was conducted using an adaptive
version of the scenario for the adaptive system
and a non-adaptive one for the traditional sys-
tem. The scenario focused on the interaction
notification mechanisms used in different con-
texts because the adaptation of attentional re-

sources is a key factor in the user experience
of services of this kind [62]. In the adaptive
version, the different service notifications were
adapted dynamically at different obtrusiveness
levels depending on the user context. In the
non-adaptive version, all the notifications were
presented at the same obtrusiveness level using
the same interaction mechanisms regardless of
the user context. This allowed us to identify the
relevance of the obtrusiveness adaptation in the
user experience for the interactions. The adap-
tive version of the case study is described as
follows:

The scenario focuses on the daily routine of
a university professor named Matt. He lives
in a smart home with pervasive services with
his wife and his son. Every day, he gets up
at 7 a.m. and takes a shower. On this partic-
ular day, while he was in the bathroom, the
washing machine notified him that it was fully
loaded and ready to start. Because he had the
mobile device in his room, the notification was
presented at a slightly appreciable level of at-
tention since he was not going to be aware of
it at that moment. Then, during breakfast, the
healthcare service reminded him to take his vi-
tamins. Since he was alone with the mobile
device on the table, the notification appeared
at the aware level of attention by voice no-
tifications. When he was leaving home to go
to work, the weather service suggested that he
takes an umbrella. Since he had the mobile de-
vice at hand, the notification was presented at
the slightly level of attention.

While he was driving to work with a workmate,
the agenda service reminded him of a meet-
ing to attend at work. Because he was driving
with someone, the notification was presented
at a slightly appreciable level of attention. At
work, Matt was having coffee with his work-
mates and the facebook service notified him
of a post on his timeline. The notification ap-
peared at a slightly level of attention in order
not to disturb the conversation. However, this
service has less priority for the user and a mo-
mentary banner with vibration were used. Dur-
ing the meeting, the agenda service reminded
Matt about a deadline that was approaching.
Because he was in the meeting, the notifica-
tion appeared in an invisible manner so as not
to interrupt the meeting. After the meeting, he

20

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

nearSupermarket and alone

User adds an item to the shopping
list manually or when s/he throws

the product to the garbage i

Completely
s aware

Shopping
User is notified about a
supermarket nearby and

Home Messages
User is notified about important
messages of home and family issues

Washing Machine items to buy
User is informed when the ’ i
ashing machine is full and ready ‘moPleNearby productToGarbage P45V e kegend) MawornEorousy Io)
to start and when it finishes withCompany or inMeeting
{proactive level)
® (o]

Q@ 0 withCompany or working Healthcare
=220 mobileAtHand L
s © ° T_he service informs users_about the
®9 Weather Q pills to take and the appointments to
7 "g It warns users about the weather the doctor

€ forecasts when the user leaves a busy or sleeping

e littleProduct
building

The item is added to the shopping
list by the system when there is
little product

attention —»
invisible

Reactive

o\l

inMeeting

Facebook
It notifies users about the alerts from
Agenda facebook

User is notified about important events
and tasks-to-do from the user's agenda

Proactive

© Services with high priority
® Services with low priority

Fig. 9. Unobtrusive adaptation spaced defined for the services of the case study.

was having lunch with his workmates, and the
healthcare service reminded him that he had to
take his pills. This notification was presented
in a slightly appreciable manner due to the pri-
vacy of the message. In the afternoon, Matt was
giving a course at the university and two noti-
fications were made that required different lev-
els of attention: one from the facebook service
in an invisible manner (using an icon) and an-
other one from the home messages service in a
slightly appreciable manner (using a static ban-
ner with soft sound).

When he was going back home, he was near
a supermarket and the mobile device notified
him about an item to buy. Because he was alone
and there was an urgent item on the shopping
list, the notification was completely aware us-
ing the voice notification of the car. When Matt
arrived home, he was watching TV and the
washing machine reminded him at the highest
level of attention to get the laundry out because
he was not engaged in an important task. Then,
Matt went running, listening to music with
headphones. A notification from the agenda
about a deadline approaching increased its at-
tention level because Matt had not been aware
of the notification that morning. This time, the
notification was presented at the aware level of
attention. At the end of the day, Matt was sleep-
ing and the facebook service suggested to him
a friend request Since he was sleeping, the no-
tification was invisible in order not to disturb
him (using an icon).

The goal of this adaptive version of the sce-
nario was to show users the capabilities of
AdaptIO by emphasizing the following points:

* The notification interaction is adjusted ac-
cording to the user’s context in terms of ob-
trusiveness (e.g., when the user is in a meet-
ing, the notification is presented silently).

* In the same context, different services can
be presented in different obtrusiveness lev-
els based on user preferences about services
(e.g., when the user is giving a course, the
facebook and home messages are presented
at a different obtrusiveness level).

+ Different unobtrusive adaptation spaces can
be designed with a different mapping to in-
teraction resources in order to differentiate
priorities between services (e.g., the health-
care and the facebook service in the slightly
obtrusiveness level use different interaction
resources because they have different priori-
ties and they are modeled in different unob-
trusive adaptation spaces).

Figure 9 shows the design of the services of
the case study in the unobtrusive adaptation
space for Matt according to the different con-
texts, priorities of services and obtrusiveness
demands. In order to represent the priorities be-
tween services we have classified services in
two unobtrusive adaptation spaces: one with
high priority and another with low priority. In
this way, interactions of services with less pri-
ority are more subtle and less obtrusive. For

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

Table 3

Interaction features for each obtrusiveness level of the unobtrusive
adaptation spaces for the high and low priority.

Obtrusiveness Level

Active Interaction Features

Concrete Interaction Components

High Priority

(proactive, aware)

(proactive, slightly noticeable)

(proactive, invisible)

(reactive, aware)

(reactive, slightly noticeable)

(reactive, invisible)

visual, text, property, momentary,
auditory, speech

visual, text, property, quick view,
auditory, sound, soft sound

visual, image, property, iconic,
haptic, vibration

visual, text, property, highlight,
auditory, loud sound, radio, pointing
visual, text, property, quick view,
haptic, vibration, radio, touching

radio, scanning

momentary banner, speech
static banner, soft sound
badge icon, vibration

alert, loud sound, QR Code
static banner, vibration,

RFID/NFC
bluetooth or GPS

Low Priority

(proactive, aware)

(proactive, slightly noticeable)

(proactive, invisible)

(reactive, aware)

(reactive, slightly noticeable)

(reactive, invisible)

text, property, highlight,

auditory, loud sound

visual, text, property, momentary,
haptic, vibration

visual, image, property, iconic,

text, property, highlight,

auditory, loud sound, radio, pointing
visual, text, property, quick view,
auditory, soft sound, radio, touching

radio, scanning

alert, loud sound

momentary banner, vibration

badge icon
alert, loud sound, QR Code

static banner, soft sound,
RFID/NFC
bluetooth or GPS

21

the sake of brevity, we do not have shown in
the Fig. the opposite transitions with the corre-
sponding opposite context (e.g., withCompany
vs alone) and services with different priorities
are represented in the same unobtrusive adap-
tation space but with different color.

Then, in order to support the behavior of the
services in the different obtrusiveness levels,
we have linked each obtrusiveness level with
the appropriate interaction resources. Specifi-
cally, we have used the interaction features of
Fig. 2. Table 3 shows the interaction configu-
rations (active features) for each obtrusiveness
level of both unobtrusive adaptation spaces and
their corresponding concrete interaction com-
ponents for the devices of the case study. With
regard to the interaction of the high priority un-
obtrusive adaptation space, in the aware lev-
els, the interaction is mainly auditory with vi-
sual support. In the slightly noticeable levels
the interaction is visual (static banner) with lit-
tle support of soft sound or vibration and fi-

nally in the invisible levels the interaction is
minimal using an icon and vibration. In the re-
active levels, the radio medium is used to pro-
vide identification capabilities by means of us-
ing QR Codes (pointing), RFID (touching) or
scanning the environment using bluetooth or
GPS. Regarding the low priority space, an alert
dialog with sound support are used in the aware
levels (mainly visual support); a banner with
soft sound or vibration are used in the slightly
levels; and a badge icon is used in the invisi-
ble levels. In the case of the radio mechanisms
the classification is the same as the high prior-
ity space. Figure 10 shows some screenshots of
the interaction provided for some services in its
corresponding obtrusiveness level according to
the context of the case study. It is worth notic-
ing that the obtrusiveness of services for the
adaptive version was adjusted for a professor’s
profile and his needs. For each user, this de-
sign should be adjusted based on his/her needs
following a user-centered design process, such

22

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

Reactive

Completely
aware

Slightly
noticeable

invisible

attention —

Ioﬂ\fs{{n vt :
y A e T,

Proactive

Fig. 10. Screenshots of the interaction provided by some services in different obtrusiveness levels.

as the one presented in [7]. Regarding the non-
adaptive version of the case study, all the notifi-
cations were presented in the same order but in
the aware level of attention regardless the user
context.

— Guidelines: The description of the activities

that the subjects should carry out in the experi-
ment in order to adopt Matt’s role and perform
the scenario of the case study. These guidelines
guided the participants to perform the activi-
ties of the case study and simulate the different
user contexts during the experiment (e.g., hav-
ing lunch, in a meeting, etc.). In each context,
users received the appropriate notifications ac-
cording to the case study description. An exam-
ple of guideline is "now take a coffee", "simu-
late to go to work", or "now you are in a meet-
ing". These guidelines helped us to take more
enclosed the experiment and avoid test errors.
These guidelines correspond to the tasks that
the users have to do in the experiment for each
system scenario.

— A video prototype: A conceptual video pro-

totype was created to show the key concepts
of the interaction obtrusiveness adaptation and
the different user situations and activities that
the users should perform. A video prototype
makes users to be familiar with the adaptations
and provides a quick exploration of the user ex-
perience by using our system. This video also

helped to clarify the guidelines to be followed
by users!®.

— A questionnaire: To measure the UX, we fol-
lowed one of the most influential models pro-
posed by Hassenzahl [63]. According to this
model, each interactive system has a pragmatic
(related to usability) and hedonic (related to
users’ self) quality that contributes to the UX.
Based on this model, we use the AttrakDiff 2
questionnaire [63] to measure UX. The ques-
tionnaire consists of twenty-one 7-point items
with bipolar verbal anchors, ranging from -3
to 3, where zero represents the neutral value
between the two anchors of the scale. It is
composed of four main constructs: Pragmatic
Quality (PQ), which is related to traditional
usability issues (e.g., effectiveness, efficiency,
learnability, etc.); Hedonic Quality Stimulation
(HQ-S), which is related to the personal growth
of the user and the need to improve personal
skills; Hedonic Quality Identification (HQ-I),
which is focused on the human need to be per-
ceived by others in a particular way; and Az-
traction (ATT), which is about the global ap-
peal of the system. The questionnaire also in-
cluded questions about personal information
and background.

— A notification management system: To sim-
ulate the different services and deliver the noti-

19The video can found at: https:/tatami.dsic.upv.es/adaptio/dissemination.php

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 23

Notifications
Show| 10

Title Text Icon Service Ob. Space Cl’;::i:ﬂ
tf;'ﬂ:' P wesningMachine OsMediumpricsity u]g"jzgéj
Healthcare t Healthcare DEHighPriority cié“g?&'z
Weather \ Weather O5MediumPriority CQ].:CL‘%.S;E
Agenda [EH] Agenda OSHighPriority ci?si‘fﬁ‘
Facebook 'I'ﬁ Facebook O5MediumPriority ci?g’.‘?{z
Agenda [EH Agenda 05HighPriority C?I:;:"g fs‘?r:z
Healthcare Q,_, Healtheare OzHighPriority C‘.:PTAE;E‘EII;E
Facebook f Facebook O5MediumPriority C?I'cj:l":?g;?
LI'E';'l:I;?ch B | Homemessages OSHighPriarity
Shapping 0 Shopping OSMediumPriority r: > ”_;?;?

1to 100f14

© Add Notification

: |entries

e e L X e
e ol Bt Bl
etz | | ves Y No & %
R S R T
B =~ (2%
02012 e e Yes Mo B
No ‘=p Yes No ,/ 3

10/02/2012 — | — No B Y Mo &K
- - mBlw | |23
oz ne B Y No B
06/03/2012 Ne B8 Ne No a4

19:49:53

>

Fig. 11. Notification management system.

fications to subjects while they were in the dif-
ferent user contexts, we implemented a notifi-
cation management system (see Fig. 11). This
system supports the introduction of notifica-
tions for the different services and their deliv-
ery to the managed systems. With this system,
we were able to simulate the notifications from
pervasive/mobile services in order to deliver
them in the timing of the case study. Note that
this system is transparent to users. An operator
provides the appropriate notifications accord-
ing to the user context using another device. In
this way, the user is immersed in an environ-
ment that behaves like a working system, but it
is much easier to test in an experimental con-
text.

7.3.3. Experimental design and procedure

We followed a within-subjects design where all sub-
jects were exposed to every treatment/system (adaptive
and non-adaptive). In order to minimize the effect of
the order in which the subjects applied the systems, the
order was assigned randomly to each subject. Also, we
had the same number of subjects starting with the first
system as with the second in order to have a balanced

design and to minimize order effects. In this way, we
minimized the threat of learning from previous experi-
ence. As all the subjects had experience in the use of
traditional notification systems (notification systems in
their mobile phone), influences between systems were
minimal.

Procedure. The study was initiated with a presen-
tation in which general information and instructions
were given. Next, we asked users some questions to
capture the user’s background such as their experience
in the use of smart phones and notification systems.
Afterwards, the guidelines were given to the subjects
and the video was shown to familiarize users with the
case study. Then, users started to follow the guidelines,
adopting Matt’s role, and performing the activities de-
scribed in the case study (to simulate the different user
contexts). Meanwhile, notifications were presented to
the users in the different situations according to the
case study description (we sent notifications by means
of using the notification management system to send
the notification in the adequate moment). Half of the
subjects started the study with the non-adaptive sys-
tem and the other half started with the adaptive system.
The users performed the same tasks for both systems
following the guidelines. For each system, users filled

24 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

in the questionnaire to capture the user experience per-
ception (their emotional feeling) about the used sys-
tem. Specifically, they rated each system based on the
notifications (interfaces) presentation in the different
user contexts. Between the evaluation of systems, we
gave a break to minimize the interference between sys-
tems. The whole study took about 30 minutes per user
with a short break of 5 minutes in the middle.

7.3.4. Validity evaluation

The various threats that could affect the results of
this experiment and the measures that we took were
the following:

— Conclusion validity: This validity is concerned
with the relationship between the treatment and
the outcome. Our experiment was threatened by
the random heterogeneity of subjects. This threat
appears when some users within a user group
have more experience than others. In the context
of our experiment, this threat was minimized by
selecting users with similar background in the use
of smartphones and notification systems and in-
troducing personal questions in the questionnaire.
Also, our experiment was threatened by the reli-
ability of measures threat since the validity of an
experiment is highly dependent on this. In gen-
eral, objective measures, that can be repeated with
the same outcome, are more reliable than subjec-
tive measures. In order to reduce this threat, we
used the AttrakDiff 2 questionnaire that measures
hedonic stimulation and identity and pragmatic
qualities of software products.

— Internal validity: This type of validity concern is
related to the influences that can affect the factors
with respect to causality, without the researcher’s
knowledge. Our evaluation had the maturation
threat: the effect that users react differently as
time passes (because of boredom or tiredness).
We solved this threat by giving a five-minutes
break between the evaluation of the two systems.
Another internal validity threat that our evalua-
tion had was instrumentation: even though tasks
and questionnaires are the same for all subjects,
a wrong interpretation of the task may affect the
results. This threat was minimized by showing a
video prototype of the activities to be performed
by users before the experiment.

— Construct validity: Threats to construct validity
refer to the extent to which the experiment set-
ting actually reflects the construct under study.
Our experiment was threatened by the hypothesis

desired Medium value of the dimensions
self- self- with the non-adaptive version
orfanted oriented [B]]
Confidence rectangle
[E1 Medium value of the dimensions
with the adaptive version

neutral task-
oriented Confidence rectangle

too
task-
oriented

. pragmatic quality (PQ)

g
=
S
£
®
3
T
=
=
S
S
|1
2

Fig. 12. Average values of the dimensions PQ and HQ and the re-
spective confidence rectangles of both versions.

guessing threat: when people might try to figure
out what the purpose and intended result of the
experiment is and they are likely to base their be-
havior on their guesses. We minimized this threat
by hiding the goal of the experiment.

7.3.5. Analysis and interpretation of results

This section presents the analysis and interpretation
of results related the user experience. Figure 12 rep-
resents the values of hedonic quality on the vertical
axis (bottom = low value) and pragmatic quality on
the horizontal axis (left = a low value) and the respec-
tive confidence rectangles for both versions. A small
confidence rectangle is an advantage because it means
that the investigation results are more reliable and less
coincidental. As Fig. shows, in the case of the non-
adaptive version of the system, it was rated as "neu-
tral". The pragmatic confidence interval overlaps into
the neighboring character zone. The user is assisted
by the system, however the value of pragmatic quality
only reaches the average values. Consequently, there is
room for improvement in terms of usability. Regarding
the adaptive version, users rated it as "desired". Prag-
matic quality is clearly the classification, which means
that the adaptive version assists its users optimally. In
terms of hedonic quality the character classification
applies positively which means that the user identifies
with this version and is motivated and stimulated by it.
In both cases, the confidence rectangle is small, mean-
ing that the users are at one in their evaluation and in
their ratings of both dimensions.

Figure 13 illustrates the mean values of the UX
dimensions for both systems?’. As mentioned earlier
each answer gets a value from -3 to 3, with zero as the
neutral value between the anchors of the question.

20Complete dataset of results at
https://dl.dropboxusercontent.com/u/14910519/UX_RawData.sav

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 25

Table 4

Results of the paired t-test for each pair of measures

Diff. between

Confidence interval
95 % for the diff.

means Std. deviation Std. error Lower Bound t Sig.

Pair PQ -,98 93 24 -1,49 -,46 -4,07 ,001
Pair HQ-I -1,86 1,15 ,29 -2,50 -1,22 -6,28 ,000
Pair HQ-S -3,28 1,06 27 -3,87 -2,69 -11,99 ,000
Pair ATT -2,67 ,99 25 -3,22 2,12 -10,43 ,000

Average UX Values

m Non-Adaptive Version
2 m Adaptive Version

Average Values
L o

PQ HQ- HQS ATT

Fig. 13. Mean UX values of the four dimensions for both systems.

According to the results, we observed considerable
deviation between the instances in HQ-S and ATT. In
HQ-S, the mean scores for the non-adaptive system
were -1.27 and 2 for the adaptive one. In ATT, the
mean scores for the non-adaptive system were -0.30
and 2.37 for the adaptive one. These values indicate
that the users perceived a huge difference in the hedo-
nic quality (stimulation) and overall appeal (attraction)
between both versions, considering our system better
in these aspects. Stimulation is enhanced by presenting
things in a novel way or by a new interaction style. In
the case of the HQ-S for the non-adaptive version, the
system is located in the below-average region mean-
ing that the system does not have a stimulating effect
on users. For the PQ, we observed less difference be-
tween the mean values. Even so, the PQ results were
higher in the adaptive system (1.72), indicating that
the users considered this system more usable and en-
ables them to achieve better their aims. In the case of
the non-adaptive version, the PQ is located in the aver-
age region (0.74), meeting ordinary standards. Results
also indicate that HQ-I does not primarily affect any of
the systems, since it is intended for evaluation of prod-
ucts rather than software. However, the HQ-I of the
adaptive version is located in the above-average region
(1.75), while for the non-adaptive version is located in
the average region.

In order to study the comparison of independent
variables in depth, we performed a statistical analysis
of results called paired t-test. This test is a parametric
statistical test used to compare two sets of scores that
come from the same participants. In our experiment, it
is used to evaluate whether there was a difference in
overall user experience under two versions of systems:
non-adaptive versus adaptive. Statistical analysis has
been carried out using the IBM SPSS Statistics V20
at a confidence level of 95% (a=0.05) [64]. When the
critical level (the significance) is higher than 0.05, we
cannot reject the null hypothesis because there is high
probability that the differences of values happened due
to randomness.

First, we verified whether or not the dependent vari-
ables followed a normal distribution. To achieve this,
we applied a one-sample Kolmogorov-Smirnov (K-S)
test. The results of the K-S test showed that all the de-
pendent variables where normally distributed since all
the values were greater than 0.05. Then, we performed
the paired t-test. Table 4 shows the results obtained.
The analysis showed that difference in mean scores
non-adaptive and adaptive was significant in all the di-
mensions: PQ (meanDiff = -,98, t = -4,07, Sig = .001),
HQ-I (meanDiff = -1,86, t = -6,28, Sig = .000), HQ-S
(meanDiff = -3,28, t = -11,99, Sig = .000), ATT (me-
anDiff = -2,67, t = -10,43, Sig = .000). As the mean
scores for all the dimensions of the adaptive version
are higher than the mean scores of the non-adaptive
version and the difference of means is statistically sig-
nificant between both systems, we can reject the null
hypothesis Hi (the user experience using our adaptive
system is the same as the one obtained using a non-
adaptive system) with a two-tailed test at the 0.05 level.
Based on this test, we have given evidence that the kind
of system influences the user experience. Specifically,
the user experience with the obtrusiveness adaptations
(adaptive version) is significantly better than without
adaptations (non-adaptive version); thus, the alterna-

26

Description of word pairs

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

® Non-Adaptive Version
B Adaptive Version

> N
> &\e \o"’z
e N e
¥ e L SIS e . OO S
P LELFIS &SP e LS e IS
Ko & & O PRI S R 4 SRS S Q. O AN
S < LSS S FEL S F ¥ F S & & obqubé@
AN < 2 & O
3 e AT T TEC T AT IFF IR
2 i
- 1]
4 1
=
2
v 0 7
o)
©
S
g
-1
< ! 1 1 [
2 i
5 -S ATT
- N
B O LN > L ©. & < e
& &*'o“o.)o(‘ B RO RIS b&&(\(? S £ S '&9 ’bb\&g Y
O SEFEETE LLEIF L TLEF VL OO
oy &L (& &L LSS DL CISING & ¢ Q&
& K ° S PLLEE T O P
S 8 FL S & & & &

Fig. 14. Mean values of the word pairs for both versions.

tive hypothesis Hy; is fulfilled: the user experience us-
ing our adaptive system is greater than the one ob-
tained using a non-adaptive system.

With regard to the mean values of the word pairs,
in our research, there were some that were of partic-
ular interest. Figure 14 shows the detailed mean val-
ues of these pairs. The results indicated that the adap-
tive system is significantly more human and cautious
than the non-adaptive one. This is because the adap-
tive system attunes notifications to the user attention
and context behaving like a human and avoiding in-
terrupting the user. The users rated the adaptive sys-
tem as being a bit more complicated since it had more
configuration features to take into account compared
to the non-adaptive system, which only had basic con-
figuration features. Also, the users considered our sys-
tem as being a little more unpredictable compared to
the non-adaptive one, since at first they were not sure
how they would receive the notifications. Despite these
detected issues, the adaptive version was considered
more likeable, pleasant, and attractive for users be-
cause they considered that with this version they can
have a smoother everyday experience. Some users said
they might become frustrated with the everyday in-
terruptions of service notifications. Thus, the results
give first insights that the user experience is better with
our obtrusiveness adaptations. It is worth noticing that
this experiment (small-scale study) is a first attempt

to explore if the obtrusiveness of interactions affects
the user experience. In order to generalize the results a
large-scale exploration should be carried out.

8. Discussion

During the application of our proposal, we observed
some benefits and limitations. Our proposed approach
has two main aspects:

— Reuse of the design knowledge to achieve
adaptation. In order to guide the adaptation of
the interaction, we leverage models at runtime
without modification (i.e., we keep the same
model representation at runtime that we use at
design time). The models can provide us with a
richer semantic base for runtime decision-making
related to system adaptation since all the informa-
tion analyzed at design time is also available at
runtime.

Support system evolution. The fast changing na-
ture of user preferences and the technological het-
erogeneity of ubiquitous devices suggest that sys-
tems in this area must be designed to evolve. As
the provided software infrastructure directly in-
terprets the design models at runtime, this facili-
tates considerably the evolution of the system at

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 27

runtime: as soon as the models are changed, the
evolutions are applied by the infrastructure. Thus,
the models become the primary means to under-
stand, interact with, and modify the service inter-
actions and their obtrusiveness level.

Although the application of the approach achieved
satisfactory results, some complaints that are com-
monly found in adaptive systems were present in our
proposal to some extent. These are the extent to which
users have control over adaptations, the handling of
failures due to imperfect context sensing and a particu-
lar demand on handling special messages. More detail
about the issues detected is provided below.

— Intelligibility. During the experiments, we found
that intelligibility can become an issue that af-
fects user satisfaction because the adaptation is
transparent to users and automatically performed.
This causes loss of control over the system and
the feeling that the system is doing something
“behind our backs". Context-aware applications
should be intelligible (also called transparent,
comprehensible, scrutable), capable of generat-
ing explanations for their behavior [65]. Thus, our
system should explain its decisions to the user
in some way that is not intrusive for him/her. A
way to incorporate intelligibility in our approach
is by means of generating explanations of the sys-
tem behavior [66]. These explanations usually an-
swer the questions (Input, Output, What, Why,
Why Not, How To, What If, Certainty, Descrip-
tion) generated from the knowledge models.

— Handling failures and conflicts. The designed
adaptations are exposed to possible failures due
to imperfect context sensing or failures in the mo-
bile device. As Bellotti and Edwards pointed out
[65], a context-aware system cannot be expected
to understand the entire user context and therefore
must adjust to its own limitations. Furthermore,
this situation is aggravated when systems run in
an unpredictable environment and they have to
deal with high levels of uncertainty both in as-
sessing what the context really is and what the
appropriate reaction of the system should be. In
this situations, the system should be able to han-
dle these failures and self-heal accordingly at run-
time. This can be achieved in our approach by
means of defining reconfiguration rules to indi-
cate the behavior of the system when a failure is
detected. Also, probabilistic logic could be used
for improving the quality of context information

through multi-sensor fusion as well as for deriv-
ing higher-level probabilistic contexts [67]. An-
other way of dealing with complex situations that
are difficult to resolve autonomously is involving
humans in the adaptation process to help the sys-
tem facing these conflicts difficult to solve by it-
self ("human in the loop") [68].

— Handling special messages. Our system cur-
rently works at per-service level by acting on
user’s context changes. However, in the case of a
notification system, the same service could pro-
vide different messages that could need differ-
ent attention level based on the relevance of the
message for the user. Message relevance has been
shown as a primary factor that affects attention-
aware interactions [69]. Our system could be able
to work also at per-message level by introduc-
ing temporal transitions in the unobtrusive adap-
tation space. A temporal transition allows a ser-
vice to temporarily transition to another obtru-
siveness level when a special message is received
(e.g., an urgent message), handle the service in
that level, and then return back to the previous
level. In order to support these temporal transi-
tions, services should have associated metadata
with certain messages, for instance, specifying
that the message is urgent. Finally, the conditions
of these temporal transitions should refer to the
metadata associated with these special messages
(e.g., message = urgent). However, this limitation
is specific for notification services.

9. Conclusions and future work

In this work, we have used model-based adaptation
techniques to self-adapt service interactions in terms of
obtrusiveness. With the increase in the capabilities of
mobile and pervasive devices, user attention becomes
a bottleneck for the system. Therefore, it is important
to be able to manage it in an effective manner. A self-
adaptive software infrastructure has been defined in or-
der to automatically adapt the interaction of the dif-
ferent services according to the momentary attentive
state of users. High-level design models are exploited
at runtime to drive the autonomic adaptation of inter-
action obtrusiveness. AdaptlO takes into account ob-
trusiveness aspects in order to adapt the way in which
service interactions are provided in each situation to
avoid overwhelming the user.

28 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

The mechanisms provided for adapting interaction
obtrusiveness at runtime help services to be consider-
ate with the user according to his/her context. Also, the
use of design models at runtime offers new opportuni-
ties for adaptation capabilities without increasing de-
velopment costs. This is accomplished by means of a
planned reutilization of the efforts invested at design
time. In addition, the definition of the infrastructure at
the modeling level allows the system to be sustainable
since it can support its evolution to new technologies.

In our approach, the design effort dedicated to an-
alyze the system is reused at runtime: the design of
the system constitutes its adaptation behavior at run-
time. Also, we facilitate the systematic reuse of con-
textual knowledge (user situation rules) and adaptation
rules (obtrusiveness levels and interaction resources)
between services. Another advantage is dealing with
user attention as a separate concern from other aspects.
In this way, a given service can be presented to the
user in a complete different manner by only changing
the obtrusiveness specification, without altering its de-
scription. Moreover, we provide tools for specifying
the obtrusiveness levels of each service in a graphical
way, facilitating the adaptation description and the in-
tegration of the obtrusiveness with the service interac-
tions.

The research presented here is not a closed work
and there are several interesting directions that can be
taken to provide the proposal with a wider spectrum of
application. Thus, for future work, we plan to (1) of-
fer users the possibility to check the adaptations in or-
der to reduce the uncertainty and lack of control over
the adaptive systems, (2) introduce mechanisms to dis-
cover new environments and the services that are in
these new environments and adapt the interaction with
these services in a considerate manner, and (3) extend
the infrastructure to take into account special messages
by working also at per-message level.

Acknowledgements
This work has been developed with the support of

MINECO under the project SMART-ADAPT TIN2013-
42981-P, and co-financed by the Generalitat Valen-

ciana under the postdoctoral fellowship APOSTD/2016/042.

References

[1] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn,
J. Lorenzo, A. Mamelli, G. Papadopoulos, A development

framework and methodology for self-adapting applications in
ubiquitous computing environments, Journal of Systems and
Software 85 (12) (2012) 2840 — 2859.

[2] D. J. Patterson, C. Baker, X. Ding, S. J. Kaufman, K. Liu,
A. Zaldivar, Online everywhere: evolving mobile instant mes-
saging practices, in: Proceedings of the 10th international con-
ference on Ubiquitous computing, UbiComp ’08, ACM, New
York, NY, USA, 2008, pp. 64-73.

[3] H. Chen, J. P. Black, A quantitative approach to non-
intrusive computing, in: Mobiquitous ’08: Proceedings of the
5th Annual International Conference on Mobile and Ubiqui-
tous Systems, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), ICST,
Brussels, Belgium, Belgium, 2008, pp. 1-10.

[4] M. Tedre, What should be automated?: The fundamental ques-
tion underlying human-centered computing, in: Proceedings of
the 1st ACM international workshop on Human-centered mul-
timedia, HCM ’06, ACM, New York, NY, USA, 2006, pp. 19—
24.

[5S] M. Weiser, J. S. Brown, The coming age of calm technolgy,
in: P. J. Denning, R. M. Metcalfe (Eds.), Beyond calculation,
Copernicus, New York, NY, USA, 1997, pp. 75-85.

[6] W. W. Gibbs, Considerate computing, Scientific American
292 (1) (2005) 54-61.

[7] M. Gil, P. Giner, V. Pelechano, Personalization for unobtrusive
service interaction, Personal Ubiquitous Comput. 16 (5) (2012)
543-561.

[8] L. Chittaro, Distinctive aspects of mobile interaction and their
implications for the design of multimodal interfaces, Journal
on Multimodal User Interfaces 3 (3) (2010) 157-165.

[9] A. Campbell, T. Choudhury, From smart to cognitive phones,
Pervasive Computing, IEEE 11 (3) (2012) 7 -11.

[10] A. Ferscha, 20 years past weiser: What’s next?, Pervasive
Computing, IEEE 11 (1) (2012) 52 -61.

[11] E. Horvitz, C. Kadie, T. Paek, D. Hovel, Models of attention
in computing and communication: from principles to applica-
tions, Commun. ACM 46 (3) (2003) 52-59.

[12] S. Rosenthal, A. K. Dey, M. Veloso, Using decision-theoretic
experience sampling to build personalized mobile phone inter-
ruption models, in: Proceedings of the 9th international con-
ference on Pervasive computing, Pervasive 2011, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 170-187.

[13] D. Warnock, M. McGee-Lennon, S. Brewster, The Role of
Modality in Notification Performance, Human-Computer In-
teraction — INTERACT 2011 6947 (Chapter 43) (2011) 572—
588.

[14] E. Horvitz, P. Koch, R. Sarin, J. Apacible, M. Subramani,
Bayesphone: precomputation of context-sensitive policies for
inquiry and action in mobile devices, in: Proceedings of the
10th international conference on User Modeling, UM 2005,
Springer-Verlag, Berlin, Heidelberg, 2005, pp. 251-260.

[15] M. Valtonen, A.-M. Vainio, J. Vanhala, Proactive and adap-
tive fuzzy profile control for mobile phones, in: IEEE Interna-
tional Conference on Pervasive Computing and Communica-
tions, 2009. PerCom 2009., 2009, pp. 1 -3.

[16] E. Serral, Automating routine tasks in smart environments: A
context-aware model-driven approach, Ph.D. thesis, Universi-
tat Politecnica de Valencia (2011).

[17] J. Kephart, D. Chess, The vision of autonomic computing,
Computer 36 (1) (2003) 41 — 50.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems 29

D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause,
N. Moraveji, K. Reiger, J. Shaffer, F. L. Wong, Sensay: A
context-aware mobile phone, in: Proceedings of the 7th IEEE
International Symposium on Wearable Computers, ISWC 03,
IEEE Computer Society, Washington, DC, USA, 2003, pp.
248-.

P. Korpipaa, E.-J. Malm, T. Rantakokko, V. Kyllonen, J. Kela,
J. Mantyjarvi, J. Hakkila, I. Kansala, Customizing user interac-
tion in smart phones, IEEE Pervasive Computing 5 (3) (2006)
82 -90.

L. Barkhuus, A. Dey, Is context-aware computing taking con-
trol away from the user? three levels of interactivity examined,
in: UbiComp 2003: Ubiquitous Computing, Vol. 2864 of Lec-
ture Notes in Computer Science, 2003, pp. 149-156.

C. Evers, R. Kniewel, K. Geihs, L. Schmidt, The user in the
loop: Enabling user participation for self-adaptive applications,
Future Generation Computer Systems 34 (0) (2014) 110-123.
J. Floch, C. Fra, R. Fricke, K. Geihs, M. Wagner, J. Lorenzo,
E. Soladana, S. Mehlhase, N. Paspallis, H. Rahnama, P. A.
Ruiz, U. Scholz, Playing MUSIC - Building context-aware and
self-adaptive mobile applications, Software - Practice and Ex-
perience 43 (3) (2013) 359-388.

C. Duarte, L. Carri¢o, A conceptual framework for developing
adaptive multimodal applications, in: Proceedings of the 11th
international conference on Intelligent user interfaces, IUI °06,
ACM, New York, NY, USA, 2006, pp. 132-139.

T. Clerckx, C. Vandervelpen, K. Coninx, Task-based design
and runtime support for multimodal user interface distribu-
tion, in: Engineering Interactive Systems, Vol. 4940 of Lecture
Notes in Computer Science, 2008, pp. 89-105.

M. Aleksy, T. Butter, M. Schader, Context-aware loading for
mobile applications, in: Network-Based Information Systems,
Vol. 5186 of Lecture Notes in Computer Science, 2008, pp.
12-20.

M. Blumendorf, G. Lehmann, S. Albayrak, Bridging models
and systems at runtime to build adaptive user interfaces, in:
Proceedings of the 2nd ACM SIGCHI symposium on Engi-
neering interactive computing systems, EICS *10, ACM, New
York, NY, USA, 2010, pp. 9-18.

V. Motti, J. Vanderdonckt, A computational framework
for context-aware adaptation of user interfaces, in: IEEE
Seventh International Conference on Research Challenges
in Information Science (RCIS), 2013, 2013, pp. 1-12.
doi:10.1109/RCIS.2013.6577709.

S. Ramchurn, B. Deitch, M. Thompson, D. De Roure, N. Jen-
nings, M. Luck, Minimising intrusiveness in pervasive com-
puting environments using multi-agent negotiation, in: Mobile
and Ubiquitous Systems: Networking and Services, 2004. MO-
BIQUITOUS 2004. The First Annual International Conference
on, 2004, pp. 364 — 371.

J. Ho, S. S. Intille, Using context-aware computing to reduce
the perceived burden of interruptions from mobile devices, in:
Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI 05, ACM, New York, NY, USA,
2005, pp. 909-918.

B. Poppinga, W. Heuten, S. Boll, Sensor-Based Identification
of Opportune Moments for Triggering Notifications, Pervasive
Computing, IEEE 13 (1) (2014) 22-29.

M. Pielot, R. de Oliveira, H. Kwak, N. Oliver, Didn’t you
see my message?: Predicting attentiveness to mobile in-
stant messages, in: Proceedings of the 32Nd Annual ACM

[32]

(33]

[34]

[35]

[36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

Conference on Human Factors in Computing Systems, CHI
14, ACM, New York, NY, USA, 2014, pp. 3319-3328.
doi:10.1145/2556288.2556973.

J.-Y. Mao, K. Vredenburg, P. W. Smith, T. Carey, User-centered
design methods in practice: a survey of the state of the art, in:
Proceedings of the 2001 conference of the Centre for Advanced
Studies on Collaborative research, CASCON 01, IBM Press,
2001, pp. 12—

D. M. Brown, Communicating Design: Developing Web Site
Documentation for Design and Planning (2nd Edition), New
Riders Press, 2010.

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas,
A. Ranganathan, D. Riboni, A survey of context modelling and
reasoning techniques, Pervasive and Mobile Computing 6 (2)
(2010) 161-180.

E. Serral, P. Valderas, V. Pelechano, Towards the model-driven
development of context-aware pervasive systems, Pervasive
and Mobile Computing 6 (2) (2010) 254-280.

W. Woensel, M. Gil, S. Casteleyn, E. Serral, V. Pelechano,
Adapting the obtrusiveness of service interactions in dynami-
cally discovered environments, in: K. Zheng, M. Li, H. Jiang
(Eds.), Mobile and Ubiquitous Systems: Computing, Network-
ing, and Services, Vol. 120 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, Springer Berlin Heidelberg, 2013, pp. 250-
262.

M. de S4, C. Duarte, L. Carrigo, T. Reis, Designing Mo-
bile Multimodal Applications, Information Science Reference,
2010, Ch. 5, pp. 106-136.

K. Czarnecki, S. Helsen, U. Eisenecker, Staged configuration
using feature models, in: Software Product Lines, Vol. 3154 of
Lecture Notes in Computer Science, 2004, pp. 162—164.

D. Benavides, P. Trinidad, A. Ruiz-Cortés, Automated reason-
ing on feature models, in: Proceedings of the 17th interna-
tional conference on Advanced Information Systems Engineer-
ing, CAiSE’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp.
491-503.

Y. Bachvarova, B. van Dijk, A. Nijholt, Towards a unified
knowledge-based approach to modality choice, in: Proc. Work-
shop on Multimodal Output Generation (MOG), 2007, pp. 5—
15.

N. O. Bernsen, Foundations of multimodal representations:
a taxonomy of representational modalities, Interacting with
Computers 6 (4) (1994) 347 — 371.

Z. Obrenovic, J. Abascal, D. Starcevic, Universal accessibility
as a multimodal design issue, Commun. ACM 50 (5) (2007)
83-88.

S. Lemmeld, A. Vetek, K. Mikeld, D. Trendafilov, Design-
ing and evaluating multimodal interaction for mobile contexts,
in: Proceedings of the 10th international conference on Multi-
modal interfaces, ICMI *08, ACM, New York, NY, USA, 2008,

pp. 265-272.
Model validation with fama framework,
https://tatami.dsic.upv.es/moskitt4spl/features.php (Jun.

2016).

Y. Cao, M. Theune, A. Nijholt, Modality effects on cognitive
load and performance in high-load information presentation,
in: Proceedings of the 14th international conference on Intel-
ligent user interfaces, IUI ’09, ACM, New York, NY, USA,
2009, pp. 335-344.

30 M. Gil and V. Pelechano / Self-adaptive unobtrusive interactions of mobile computing systems

[46] R.E.Mayer, R. Moreno, Nine ways to reduce cognitive load in
multimedia learning, EDUCATIONAL PSYCHOLOGIST 38
(2003) 43-52.

[47] E. Haapalainen, S. Kim, J. F. Forlizzi, A. K. Dey, Psycho-
physiological measures for assessing cognitive load, in: Pro-
ceedings of the 12th ACM international conference on Ubig-
uitous computing, Ubicomp *10, ACM, New York, NY, USA,
2010, pp. 301-310. doi:10.1145/1864349.1864395.

[48] E. Rukzio, K. Leichtenstern, V. Callaghan, An experimental
comparison of physical mobile interaction techniques: Touch-
ing, pointing and scanning, in: 8th International Conference on
Ubiquitous Computing, UbiComp 2006, Orange County, Cali-
fornia, 2006.

[49] M. Gil, Additional details of the adaptio infrastructure,
https://tatami.dsic.upv.es/adaptio/system.php (Jun. 2016).

[50] Author, Tool support to design unobtrusive service interaction
adaptation, https://tatami.dsic.upv.es/moskitt4spl/adaptio.php.

[511 M. Gil, Video of adaptio design suite,
https://tatami.dsic.upv.es/adaptio/dissemination.php (Jun.
2016).

[52] R. Murch, Autonomic Computing, IBM Press, 2004.

[53] B. Cheng, R. De Lemos, H. Giese, P. Inverardi, Software engi-
neering for self-adaptive systems.

[54] IBM, An architectural blueprint for autonomic computing,
Tech. rep. (2006).

[55] M. Gil Pascual, Adapting Interaction Obtrusiveness: Mak-
ing Ubiquitous Interactions Less Obnoxious. A Model
Driven Engineering approach, Ph.D. thesis, Universi-
tat Politecnica de Valencia, Valencia (Spain) (jul 2013).
doi:10.4995/Thesis/10251/31660.

URL https://riunet.upv.es/handle/10251/31660

[56] F. Chang, J. Ren, Validating system properties exhibited
in execution traces, in: Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software
Engineering, ASE *07, ACM, New York, NY, USA, 2007, pp.
517-520.

[57] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,
R. Koschke, A systematic survey of program comprehension

through dynamic analysis, Software Engineering, IEEE Trans-
actions on 35 (5) (2009) 684—702. doi:10.1109/TSE.2009.28.

[58] S. Maoz, Using model-based traces as runtime models, Com-
puter 42 (10) (2009) 28-36.

[59] D.J. Cook, S. K. Das, Review: Pervasive computing at scale:
Transforming the state of the art, Pervasive and Mobile Com-
puting 8 (1) (2012) 22-35.

[60] R.van Solingen, E. Berghout. Goal/question/measures [online]
(1999).

[61] M. Hassenzahl, N. Tractingsky, User experience — a research
agenda, Behaviour & Information Technology 25 (2) (2006)
91-97.

[62] M. H. Vastenburg, D. V. Keyson, H. Ridder, Considerate home
notification systems: a field study of acceptability of notifica-
tions in the home, Personal Ubiquitous Comput. 12 (8) (2008)
555-566.

[63] M. Hassenzahl, The interplay of beauty, goodness, and us-
ability in interactive products, Hum.-Comput. Interact. 19 (4)
(2008) 319-349.

[64] J. Bruin, Statistical analyses using Spss
http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm#1sampt
(2011).

[65] V. Bellotti, K. Edwards, Intelligibility and accountability: hu-
man considerations in context-aware systems, Hum.-Comput.
Interact. 16 (2) (2001) 193-212.

[66] B. Y. Lim, Improving trust in context-aware applications with
intelligibility, in: Ubicomp ’10 Adjunct: Proceedings of the
12th ACM international conference adjunct papers on Ubig-
uitous computing - Adjunct, ACM Request Permissions, New
York, New York, USA, 2010, p. 477.

[67] R. Fagin, J. Y. Halpern, N. Megiddo, A logic for reasoning
about probabilities, Inf. Comput. 87 (1-2) (1990) 78-128.

[68] J. Cdmara, G. Moreno, D. Garlan, Reasoning about Human
Participation in Self-Adaptive Systems, in: SEAMS 2015,
2015, pp. 146-156.

[69] C. Roda, Human attention and its implications for human-
computer interaction, Cambridge University Press, 2011.

