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One can find many reliability, availability, and maintainability (RAM) models proposed in the literature. However, such models
become more complex day after day, as there is an attempt to capture equipment performance in a more realistic way, such
as, explicitly addressing the effect of component ageing and degradation, surveillance activities, and corrective and preventive
maintenance policies.Then, there is a need to fit the bestmodel to real data by estimating themodel parameters using an appropriate
tool. This problem is not easy to solve in some cases since the number of parameters is large and the available data is scarce. This
paper considers two main failure models commonly adopted to represent the probability of failure on demand (PFD) of safety
equipment: (1) by demand-caused and (2) standby-related failures. It proposes a maximum likelihood estimation (MLE) approach
for parameter estimation of a reliability model of demand-caused and standby-related failures of safety components exposed to
degradation by demand stress and ageing that undergo imperfect maintenance. The case study considers real failure, test, and
maintenance data for a typical motor-operated valve in a nuclear power plant. The results of the parameters estimation and the
adoption of the best model are discussed.

1. Introduction

The safety of nuclear power plants (NPPs) depends on the
availability of safety-related components that are normally on
standby and only operate in the case of a true demand.These
components typically have two main types of failure modes
that contribute to the probability of failure on demand:

(a) by demand-caused failure, associated with a demand
failure probability (𝑑),

(b) standby-related failure, associated with a standby
hazard function (ℎ).

Both are generally associated with constant values in a
standard Probabilistic Risk Assessment (PRA) models, that

is, 𝑑0 and ℎ0, respectively. Such parameters are associated
probability density functions in PRA, which are tailored
based on a priori generic probability distribution function,
for example, exponential, lognormal, Weibull, and beta,
depending on the particular sort of component, for example,
motor-driven pump and motor-operated valve. A Bayesian
approach is used to combine such generic probability density
functions with plant specific failure data for each particular
component [1–4].

However, both failure modes are often affected by degra-
dation such as demand-related stress and ageing, which
cause the component to degrade with chronological time
and ultimately to fail. Maintenance and test activities are
performed to control degradation and the unreliability and
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unavailability of such components, although this has both
positive and negative effects. Thus, different approaches have
been proposed in the literature to model time-dependent 𝑑
and ℎ that take into account such effects in an either implicit
or explicit way.

Samanta et al. [5, 6] proposed a well-organized foun-
dation to account for ageing and the positive and adverse
effects of testing components in modelling demand failure
probability and standby hazard function models. However,
this model does not take into account the positive effect of
maintenance activities as a function of their effectiveness in
managing component degradation due to demand-induced
stress and ageing.

As regards the standby-related failure mode, Martorell et
al. [7] provide an age-dependent reliability model associated
only with standby-related failures which explicitly takes into
account the effect of equipment ageing and the positive
and negative effects of maintenance activities founded on
imperfect maintenance modelling. Mullor [8] proposes an
approach for parameter estimation of such a sort of imperfect
maintenance models. Martón et al. [9] propose an approach
to modelling the unavailability of safety-related compo-
nents associated with standby-related failures that explicitly
addresses all aspects of the effect of ageing, maintenance
effectiveness, and test efficiency.Other authors have proposed
alternative approaches to modelling the effect of ageing and
test and maintenance activities [10–13].

As regards the demand-caused failure mode, this prob-
ability of a safety component is normally considered to
be mainly affected by demand-induced stress, for example,
due to true demands, proof tests, and others. The demand-
induced stress is therefore modelled with a stochastic degra-
dation jump in [14, 15]. These studies consider that random
shocks occur according to a Nonhomogeneous Poisson Pro-
cess, leading to the immediate failure of the component. Shin
et al. [16] propose an age-dependent model that considers,
among others, the effect of “test stress” and maintenance
effects. In general, previous studies have found that the
demand failure probability should be considered as a function
not only of the number of tests but also of the effectiveness
of maintenance activities. Thus, recently, Martorell et al. [17]
have proposed a new reliability model for the demand failure
probability that explicitly addresses all aspects of the effect of
demand-induced stress, maintenance effectiveness, and test
efficiency.

In this context, the objective of this paper focuses on
fitting the bestmodel to represent the real operation of safety-
related equipment, dealing with the problem of estimating a
significant number of parameters considering a small amount
of data. With this aim, a methodology of parameters esti-
mation and model selection is developed. This methodology
allows the joint estimation of reliability and maintenance
related parameters as well as obtaining ameasure of goodness
of fit to select the best imperfect maintenance model for each
failure mode. This study considers a standby-related failure
model assuming linear ageing and a demand-caused failures
model assuming test-induced stress. In addition, it considers
imperfect maintenance adopting Proportional Age Setback
and Proportional Age Reduction for preventive maintenance

modelling. Then, maximum likelihood estimation (MLE)
using a direct search algorithm based on the Nelder-Mead
Simplex (NMS) method is used to estimate maintenance
effectiveness and ageing rate simultaneously. A practical
and realistic case study is included facing the parameters
estimation of a typical motor-operated valve in a nuclear
power plant. Additionally, how the estimates obtained can
be used, for example, in the planning of maintenance and
surveillance test activities with the aim of minimizing equip-
ment unavailability, is shown.

The rest of this paper is organized as follows: Section 2
introduces briefly the demand failure probability model and
the standby-related failure model that addresses component
degradation because of demand-induced stress and ageing,
respectively, and the positive effect of imperfect preventive
maintenance. Section 3 describes the parameter estimation
method used to fit plant data to reliability models introduced
in the previous section. Section 4 describes a case study
involving a motor-operated valve of a pressurized water
reactor nuclear power plant. Lastly, Section 5 presents the
concluding remarks.

2. Reliability Models under
Imperfect Maintenance

In this paper the models presented by Martorell et al. [7, 17]
have been selected to model the standby hazard function and
the demand failure probability, respectively. In the follow-
ing subsections, both models are briefly described and the
expressions involved in the parameters estimation andmodel
selection are obtained under the following assumptions:

(1) Time-directed preventive maintenance effect which
depends on its effectiveness. The effectiveness is
represented by an imperfect maintenance model
with parameter 𝜀, ranging in the interval [0, 1] and
adopting either Proportional Age Setback (PAS) or
Proportional Age Reduction (PAR) model.

(2) Corrective maintenance with minimal repair. That
is, repairing failures do not improve the age of
equipment.Therefore, for correctivemaintenance, we
adopt the Bad As Old (BAO) model.

(3) A linear ageing model which is selected to model the
standby hazard function.

(4) Test-caused stress which is the only degradation
mechanism considered to model the demand failure
probability.

2.1. Reliability Model of Standby-Related Failures. In the con-
text of safety-related equipment of NPP, the most frequently
used function in reliability analysis is the hazard function.
The standby hazard function of equipment depends on its
age, which is a function of the chronological time elapsed
since its installation and the effectiveness of the maintenance
activities performed on it. So, an age-dependent hazard
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function model, in period 𝑚 after the maintenance number𝑚 − 1, can be expressed as [7]

ℎ𝑚 (𝑡) = ℎ (𝑤𝑚 (𝑡)) + ℎ0 𝑤 ≥ 𝑤+𝑚−1, (1)

where ℎ0 is the initial hazard function of the equipment and𝑤+𝑚−1 is the age of the equipment immediately after the (𝑚−1)
maintenance activity.

Adopting a linear model for hazard function, the expres-
sion for the age-dependent hazard function after the mainte-
nance number𝑚 − 1 can be written as

ℎ𝑚 (𝑡) = 𝛼 ⋅ 𝑤𝑚 (𝑡) + ℎ0 𝑤 ≥ 𝑤+𝑚−1, (2)

where 𝛼 is the linear ageing rate and

𝑤𝑚 (𝑡) = 𝑤+𝑚−1 + (𝑡 − 𝑡𝑚−1) 𝑡 ≥ 𝑡𝑚−1 (3)

with 𝑡𝑚−1 being the time in which the equipment undertakes
the (𝑚 − 1)-maintenance activity.

The cumulative hazard function in the period𝑚, after the
maintenance number 𝑚 − 1, can be obtained by integration
from the hazard function given by equation (2) as

𝐻𝑚 (𝑡) = 𝛼2 (𝑤𝑚 (𝑡))2 + ℎ0𝑤𝑚 (𝑡) . (4)

The age of the component immediately after the main-
tenance number 𝑚 − 1, 𝑤+𝑚−1, and, therefore, the hazard
function and the cumulative hazard function depend on the
model of imperfect maintenance selected (PAS or PAR).
In the following subsections, the particularization of the
previous equations to PAS or PAR model is presented.

2.1.1. Proportional Age Setback Model. In the PAS approach,
each maintenance activity is assumed to shift the origin of
time from which the age of the equipment is evaluated.
The PAS model considers that maintenance activities reduce
proportionally to a factor 𝜀, the age the equipment had
immediately before it enters inmaintenance. If 𝜀 = 0, the PAS
model simply reduces to the BAO situation, whereas 𝜀 = 1
corresponds to the Good As New (GAN) situation. Thus,
this model is a natural generalization of both GAN and BAO
models in order to account for imperfect maintenance. Con-
sidering PAS approach the age of the equipment immediately
after the (𝑚 − 1)maintenance activity is given by [7]

𝑤+𝑚−1 = 𝑡 − 𝑚−2∑
𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑚−𝑘−1 𝑡 ≥ 𝑡𝑚−1. (5)

Replacing the expressions corresponding to 𝑤𝑚(𝑡) and 𝑤+𝑚−1
given by (3) and (5), respectively, into (2) the expression for
the induced hazard function becomes

ℎ𝑚 (𝑡) = 𝛼[𝑡 − 𝑚−2∑
𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑚−𝑘−1] + ℎ0. (6)

In a similar way, the cumulative hazard function, 𝐻𝑚(𝑡), in
the period 𝑚, can be obtained by replacing (3) and (5) into
(4) obtaining

𝐻𝑚 (𝑡) = 𝛼2 [𝑡 − 𝑚−2∑
𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑚−𝑘−1]
2

+ ℎ0 [𝑡 − 𝑚−2∑
𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑚−𝑘−1] .
(7)

2.1.2. Proportional Age Reduction Model. In the PAR ap-
proach, each maintenance activity is assumed to reduce
proportionally the age gained from the previous main-
tenance. Thus, while the PAS model considers that each
maintenance activity reduces the total equipment age, the
PARmodel assumes that maintenance only reduces a portion
of the equipment age, the one gained from the previous
maintenance, keeping the rest unaffected. The PAR model
considers that maintenance reduces the age gained between
two consecutive maintenance activities by a factor 𝜀. Again,
one can realize that if 𝜀 = 0, the PAR model simply reduces
to BAO, whereas if 𝜀 = 1 it reduces to GAN.

According to the above conditions, the age of the equip-
ment in instant 𝑡 of period 𝑚, after the (𝑚 − 1)-maintenance
activity using the PAR model, is given by

𝑤+𝑚−1 = 𝑡 − 𝜀𝑡𝑚−1 𝑡 ≥ 𝑡𝑚−1. (8)

Using a similar process as the one described for the PAS
model, but adopting (8) instead of (5), it is possible to derive
the expression for the hazard function and the cumulative
hazard function of imperfect maintenance at instant 𝑡, under
the PAR approach

ℎ𝑚 (𝑡) = 𝛼 (𝑡 − 𝜀𝑡𝑚−1) + ℎ0
𝐻𝑚 (𝑡) = 𝛼2 (𝑡 − 𝜀𝑡𝑚−1)2 + ℎ0 (𝑡 − 𝜀𝑡𝑚−1) . (9)

2.2. Reliability Model of Failures by Demand. The demand
failure probability of a component, which is normally in
standby and ready to perform a safety function on demand,
depends on the number of demands performed on the
component, which are often associated with performing
surveillance tests. In addition, it is necessary to consider
the positive effect that the preventive maintenance activities
performed on the equipment have on the degradation factor
and, therefore, on demand probability failure.

A time-dependent demand failure probability model that
addresses the demand-induced stress and the effect of 𝑚 − 1
maintenance activities can be formulated for the period𝑚 as
follows [17]:

𝑑𝑚 (𝑡) = 𝑑0 + 𝑑0 ⋅ 𝑓𝑚 (𝑡) (10)

with 𝑑0 being the residual demand failure probability and𝑓𝑚(𝑡) being the degradation function.
Assuming, the same degradation factor, 𝑝1, for all types

of demands, the evolution of the degradation function in the
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period number𝑚, that is, betweenmaintenance𝑚−1 and𝑚,
can be expressed as

𝑓𝑚 (𝑡) = 𝑓+𝑚−1 + 𝑝1 ⋅ ⌈ 𝑡 − 𝑡𝑚−1𝑇 ⌉ , (11)

where 𝑓+𝑚−1 is the degradation function immediately after
maintenance𝑚 − 1 which depends on the selected imperfect
maintenance model (PAS or PAR) and ⌈𝑥⌉ is the floor
function that gives the largest integer less than or equal to 𝑥,
which returns the number of tests performed in the interval[𝑡𝑚−1, 𝑡] that are performed with periodicity 𝑇.

Time-dependent evolution of the cumulative demand
failure probability,𝐷𝑚(𝑡), over the period𝑚, can be obtained
by adding the cumulative distribution function in the 𝑚 − 1
maintenance to the demand probability functions in each test
performed over the period𝑚. Generally,𝐷𝑚(𝑡) does not have
a closed-form expression.

In the following subsections, the particularization of
equations 𝑑𝑚(𝑡) and 𝐷𝑚(𝑡) for the PAS or PAR model is
presented.

2.2.1. Proportional Age Setback Model. If a PAS model
is considered, the degradation function after maintenance
number 𝑚 − 1 assuming preventive maintenance activities
are performed on a regular basis with constant maintenance
interval given by𝑀 can be formulated by [17]

𝑓+𝑚−1 = 𝑝1 ⋅ 𝑀𝑇 ⋅ 𝑚−2∑
𝑘=0

(1 − 𝜀)𝑘+1

= 𝑝1 ⋅ 𝑀𝑇 ⋅ (1 − 𝜀)𝑚−2∑
𝑘=0

(1 − 𝜀)𝑘 .
(12)

Substituting (11) and (12) into (10) the function of demand
failure probability for the period𝑚 can be obtained as

𝑑𝑚 (𝑡)
= 𝑑0(1 − ⌈𝑡𝑚−1𝑇 ⌉𝑝1𝑚−2∑

𝑖=1

(1 − 𝜀)𝑖 + ⌈𝑡 − 𝑡𝑚−1𝑇 ⌉𝑝1) . (13)

The distribution function of the cumulative demand
failure probability, 𝐷𝑚(𝑡), in the period 𝑚, after the (𝑚 − 1)-
maintenance activity, can be obtained, as it is mentioned
above, by summing the distribution function immediately
after the (𝑚 − 1) maintenance activity and the probability
functions in the tests performed between the 𝑚 − 1 main-
tenance and 𝑡 to yield:

𝐷𝑚 (𝑡) = 𝑑0(1 + ⌈𝑡𝑚−1𝑇 ⌉
⋅ 𝑝1(𝑚−1∑

𝑖=1

((⌈𝑡𝑚−1𝑇 ⌉ + 1) 𝑖 + 1) (1 − 𝜀)𝑚+1−𝑖

+ (𝑚 + 1) (⌈𝑡𝑚−1/𝑇⌉ + 1)2 )) + 𝑑0(1

+ ⌈𝑡 − 𝑡𝑚−1𝑇 ⌉ ⌈𝑡𝑚−1𝑇 ⌉𝑝1𝑚−1∑
𝑖=1

(1 − 𝜀)𝑖

+ ⌈(𝑡 − 𝑡𝑚−1) /𝑇⌉ (⌈(𝑡 − 𝑡𝑚−1) /𝑇⌉ + 1)2 𝑝1) .
(14)

2.2.2. Proportional Age Reduction Model. In the PAR
approach the degradation function immediately after
maintenance number 𝑚 assuming preventive maintenance
activities are performed on a regular basis with constant
maintenance interval,𝑀, is given by

𝑓+𝑚−1 = 𝑝1 ⋅ (1 − 𝜀) ⋅ 𝑀𝑇 ⋅ (𝑚 − 1) . (15)

Using an analogous procedure as the one described for the
PAS model, a time-dependent model for the demand failure
probability can be obtained substituting (15) into (10) and (11)
to yield

𝑑𝑚 (𝑡)
= 𝑑0 (1 + 𝑚⌈𝑡𝑚−1𝑇 ⌉𝑝1 (1 − 𝜀) + ⌈𝑡 − 𝑡𝑚−1𝑇 ⌉𝑝1) . (16)

In addition, the cumulative demand failure probability,𝐷𝑚(𝑡), considering a PAR model is given by

𝐷𝑚 (𝑡) = 𝑑0 (1 + (𝑚 − 1) ⌈𝑡𝑚−1/𝑇⌉ (⌈𝑡𝑚−1/𝑇⌉ + 1)2 𝑝1
+ ((⌈𝑡𝑚−1𝑇 ⌉ + 1) 𝑚 (𝑚 − 1)2 − ⌈𝑡𝑚−1𝑇 ⌉ (𝑚 − 1))
⋅ ⌈ 𝑡𝑚−1𝑇 ⌉𝑝1 (1 − 𝜀)) + 𝑑0 (1 + ⌈𝑡 − 𝑡𝑚−1𝑇 ⌉ ⌈𝑡𝑚−1𝑇 ⌉
⋅ (𝑚 − 1) 𝑝1 (1 − 𝜀)
+ ⌈(𝑡 − 𝑡𝑚−1) /𝑇⌉ (⌈(𝑡 − 𝑡𝑚−1) /𝑇⌉ + 1)2 𝑝1) .

(17)

3. Methodology of Parameters Estimation and
Model Selection

Manymethods for parameter estimation of reliability models
have been proposed in the literature, such as the maximum
likelihood, methods of moments, and Bayesian estimators.
In this paper, the maximum likelihood estimation method
has been selected to estimate the parameters of the reliability
models presented in Section 2. For a given model and a set
of observed data, the likelihood function 𝐿 is the product of
probabilities of the observed data as a function of the model
parameters. It can be applied to reliability and imperfect
maintenance models for standby-related failures and for
demand-caused failures. Thus, the likelihood function for
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standby-related failures, 𝐿1(𝜉), and the likelihood function
for demand-caused failures, 𝐿2(𝜉), can be formulated as

𝐿1 (𝜉 | model, observed data)
= ∏

failures
ℎ (𝑡) ∏

maintenance
exp [−𝐻 (𝑡)]

𝐿2 (𝜉 | model, observed data)
= ∏

failures

𝑑 (𝑡)1 − 𝐷 (𝑡) ∏
maintenance

(1 − 𝐷 (𝑡)) .
(18)

The maximum likelihood estimation (MLE) method pro-
vides estimators, called maximum likelihood estimators, of
parameters involved in reliability and maintenance models.
The maximum likelihood estimations of these parameters
are those values which make the likelihood function as
large as possible, that is, which maximize the probability
of the observed data. Since the natural logarithm is an
increasing function, the likelihood function and its logarithm
achieve their maximum at the same values of their objective
parameters. For computational purpose it is preferable to
maximize the log likelihood function. By maximizing the
expressions corresponding to log𝐿(𝜉), the maximum like-
lihood estimators of the objective parameters are obtained.
In this paper, the Nelder-Mead Simplex [18, 19] algorithm is

used to maximize the likelihood functions for each proposed
model.

The maximum likelihood estimation method provides,
in addition to the parameter estimates, information on its
variability through the Fisher information matrix, which
is defined as the opposite of the partial second derivative
matrix, that is, the opposite of its Hessian. So, for the set of
estimated parameters the variance-covariance matrix as the
inverse of the information matrix divided by the sample size
can be obtained.

In particular, taking advantage of the asymptotic normal-
ity of the maximum likelihood estimation, if the sample size
is large enough, we can obtain the standard deviations of the
parameter estimation as the square root of the main diago-
nal of the variance-covariance matrix to obtain confidence
intervals for each of the parameters, as well as information
on the relationship between the parameters through their
covariance.

3.1. Likelihood Function for Standby-Related Failures, 𝐿1(𝜉).
Let 𝑟𝑝,𝑚 be the number of standby-related failures of com-
ponent 𝑝, during the maintenance period 𝑚 which occur at
times 𝜏𝑝,𝑚,1, 𝜏𝑝,𝑚,2, 𝜏𝑝,𝑚,3, . . ., and let 𝑡𝑝,𝑚 be the chronological
time for the𝑚-maintenance in component 𝑝. The likelihood
function for 𝑃 identical components of equipment under
imperfect preventive maintenance is given by

𝐿1 (𝜉) = 𝑃∏
𝑝=1

{{{
𝑀𝑝+1∏
𝑚=1

[
[
𝑟𝑝,𝑚∏
𝑗=1

ℎ𝑝,𝑚 (𝜏𝑝,𝑚,𝑗) ⋅ exp(−𝑀𝑝∑
𝑚=1

𝐻𝑝,𝑚 (𝑡𝑝,𝑚) −𝐻𝑀𝑝+1 (𝑡∗𝑝))]
]
}}} , (19)

where 𝜉 is the vector of unknown parameters, (𝛼, 𝜀). For each
component 𝑝, 𝑀𝑝 is the number of preventive maintenance
activities performed during the observation period 𝑡∗𝑝, withℎ𝑝,𝑚(𝜏) and 𝐻𝑝,𝑚(𝑡) being the induced hazard function and

the cumulative hazard function in period𝑚, respectively, and𝐻𝑀𝑝+1(𝑡∗𝑝) the cumulative hazard function in censoring time𝑡∗𝑝.
The log likelihood function is given by

log 𝐿1 (𝜉) = 𝑃∑
𝑝=1

[
[
𝑀𝑝+1∑
𝑚=1

𝑟𝑝,𝑚∑
𝑗=1

log (ℎ𝑝,𝑚 (𝜏𝑝,𝑚,𝑗)) − 𝑀𝑝∑
𝑚=1

𝐻𝑝,𝑚 (𝑡𝑝,𝑚) −𝐻𝑀𝑝+1 (𝑡∗𝑝)]] . (20)

Equation (21) must be particularized depending on the
imperfect maintenance model considered. If a PAS imper-
fect maintenance model is considered, the expressions cor-
responding to ℎ𝑝,𝑚(𝜏𝑝,𝑚,𝑗), 𝐻𝑝,𝑚(𝑡𝑝,𝑚), and 𝐻𝑀𝑝+1(𝑡∗𝑝) are
obtained from (6) evaluated in the failure times and (7)
evaluated in the preventive maintenance activities times and
censure time:

ℎ𝑝,𝑚 (𝜏𝑝,𝑚,𝑗)
= 𝛼(𝜏𝑝,𝑚,𝑗 − 𝑚−2∑

𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑝,𝑚−𝑘−1) + ℎ0 (21)

𝐻𝑝,𝑚 (𝑡𝑝,𝑚)
= 𝛼2 (𝑡𝑝,𝑚 − 𝑚−2∑

𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑝,𝑚−𝑘−1)
2

+ ℎ0
𝑀𝑝∑
𝑚=1

(𝑡𝑝,𝑚 − 𝑚−2∑
𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑝,𝑚−𝑘−1)
(22)

𝐻𝑀𝑝+1 (𝑡∗𝑝)
= 𝛼2 (𝑡∗𝑝 −

𝑀𝑝−2∑
𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑝,𝑚−𝑘−1)
2
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+ ℎ0(𝑡∗𝑝 −
𝑀𝑝−2∑
𝑘=0

(1 − 𝜀)𝑘 𝜀𝑡𝑝,𝑚−𝑘−1) .
(23)

In the case of PAR imperfect maintenance model, the
expressions corresponding to the failure rate, ℎ𝑝,𝑚(𝜏𝑝,𝑚,𝑗), and
the cumulative failure rates, 𝐻𝑝,𝑚(𝑡𝑝,𝑚) and 𝐻𝑀𝑝+1(𝑡∗𝑝), are
obtained from (9) as

ℎ𝑝,𝑚 (𝜏𝑝,𝑚,𝑗) = 𝛼 (𝜏𝑝,𝑚,𝑗 − 𝜀𝑡𝑝,𝑚−1) + ℎ0
𝐻𝑝,𝑚 (𝑡𝑝,𝑚) = 𝛼2 (𝑡𝑝,𝑚 − 𝜀𝑡𝑝,𝑚−1)2

+ ℎ0 (𝑡𝑝,𝑚 − 𝜀𝑡𝑝,𝑚−1)
𝐻𝑀𝑝+1 (𝑡∗𝑝) = 𝛼2 (𝑡∗𝑝 − 𝜀𝑡𝑝,𝑀𝑝)2 + ℎ0 (𝑡∗𝑝 − 𝜀𝑡𝑝,𝑀𝑝) .

(24)

3.2. Likelihood Function for Demand-Caused Failures, 𝐿2(𝜉).
In the same way as in the previous section, let 𝑟𝑝,𝑚 be
the number of demand-caused failures of component 𝑝,
during the maintenance period 𝑚 which occur at times𝜏𝑝,𝑚,1, 𝜏𝑝,𝑚,2, 𝜏𝑝,𝑚,3, . . ., and let 𝑡𝑝,𝑚 be the chronological time
for the 𝑚-maintenance in component 𝑝. The log likelihood
function for 𝑃 identical components of equipment under
imperfect preventive maintenance is given by

log𝐿2 (𝜉) = 𝑃∑
𝑝=1

[
[
𝑀𝑝+1∑
𝑚=1

𝑟𝑝,𝑚∑
𝑗=1

log( 𝑑𝑝,𝑚 (𝜏𝑝,𝑚,𝑗)1 − 𝐷𝑝,𝑚 (𝜏𝑝,𝑚,𝑗))

+ 𝑀𝑝∑
𝑚=1

log (1 − 𝐷𝑝,𝑚 (𝑡𝑝,𝑚))

+ log (1 − 𝐷𝑀𝑝+1 (𝑡∗𝑝))]] .

(25)

The probability function, 𝑑𝑝,𝑚(𝜏𝑝,𝑚,𝑗), and the cumulative
probability functions, 𝐷𝑝,𝑚(𝑡𝑝,𝑚) and 𝐷𝑀𝑝+1(𝑡∗𝑝), depend on
the imperfect maintenance model considered. In the case of
a PAS model these functions are obtained from (14) and (15)
as

𝑑𝑝,𝑚+1 (𝜏𝑝,𝑚+1,𝑗) = 𝑑0(1 + ⌈𝑡𝑝,𝑚𝑇 ⌉𝑝1 𝑚∑
𝑖=1

(1 − 𝜀)𝑖

+ ⌈𝜏𝑝,𝑚+1,𝑗 − 𝑡𝑝,𝑚𝑇 ⌉𝑝1) .
𝐷𝑝,𝑚+1 (𝑡𝑝,𝑚+1) = 𝑑0(1 + ⌈𝑡𝑝,𝑚𝑇 ⌉

⋅ 𝑝1( 𝑚∑
𝑖=1

((⌈𝑡𝑝,𝑚𝑇 ⌉ + 1) 𝑖 + 1) (1 − 𝜀)𝑚+1−𝑖

+ (𝑚 + 1) (⌈𝑡𝑝,𝑚/𝑇⌉ + 1)
2 ))

𝐷𝑝,𝑚+1 (𝑡∗𝑝) = 𝐷𝑝,𝑚 (𝑡𝑝,𝑚) + 𝑑0(1 + ⌈𝑡∗𝑝 − 𝑡𝑝,𝑚𝑇 ⌉
⋅ ⌈𝑡𝑝,𝑚𝑇 ⌉𝑝1 𝑚∑

𝑖=1

(1 − 𝜀)𝑖

+ ⌈(𝑡∗𝑝 − 𝑡𝑝,𝑚) /𝑇⌉ (⌈(𝑡∗𝑝 − 𝑡𝑝,𝑚) /𝑇⌉ + 1)
2 𝑝1)

(26)

If a PAR maintenance model adopted the expressions
corresponding to demand failure probability and cumulative
demand failure probability is obtained by particularizing (16)
in 𝜏𝑝,𝑚,𝑗 and (17) in 𝑡𝑝,𝑚 and 𝑡∗𝑝,
𝑑𝑝,𝑚+1 (𝜏𝑝,𝑚+1,𝑗) = 𝑑0 (1 + 𝑚⌈𝑡𝑝,𝑚𝑇 ⌉𝑝1 (1 − 𝜀)

+ ⌈𝜏𝑝,𝑚+1,𝑗 − 𝑡𝑝,𝑚𝑇 ⌉𝑝1)
𝐷𝑝,𝑚+1 (𝑡𝑝,𝑚+1) = 𝑑0(1 + 𝑚⌈𝑡𝑝,𝑚/𝑇⌉ (⌈𝑡𝑝,𝑚/𝑇⌉ + 1)

2
⋅ 𝑝1 + ((⌈𝑡𝑝,𝑚𝑇 ⌉ + 1) 𝑚 (𝑚 + 1)2 − ⌈𝑡𝑝,𝑚𝑇 ⌉𝑚)
⋅ ⌈𝑡𝑝,𝑚𝑇 ⌉𝑝1 (1 − 𝜀))

𝐷𝑝,𝑚+1,𝑗 (𝜏𝑝,𝑚+1,𝑗) = 𝐷𝑝,𝑚 (𝑡𝑝,𝑚) + 𝑑0(1
+ ⌈𝜏𝑝,𝑚+1,𝑗 − 𝑡𝑝,𝑚𝑇 ⌉⌈𝑡𝑝,𝑚𝑇 ⌉𝑚𝑝1 (1 − 𝜀)
+ ⌈(𝜏𝑝,𝑚+1,𝑗 − 𝑡𝑝,𝑚) /𝑇⌉ (⌈(𝜏𝑝,𝑚+1,𝑗 − 𝑡𝑝,𝑚) /𝑇⌉ + 1)

2
⋅ 𝑝1) .

(27)

4. Case Study

This section encompasses the estimation of the parameters
associated with the reliability models presented in Section 2
for a motor-operated valve (MOV) of a nuclear power plant.
The parameters are estimated and the reliability models
that best fit the plant data are selected using the methods
presented in Section 3. Then, the estimates obtained are used
to predict the performance of the MOV as a function of test
and maintenance intervals. In particular, the MOV average
unreliability contribution of each failure mode and the total
MOV unavailability are computed and plotted as a function
of maintenance and test intervals for a 10-year horizon.

4.1. Historical Maintenance and Testing Data. Historical fail-
ure, maintenance, and test data have been collected from a
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Table 1: Failure data collected for two identical motor-operated valves of a nuclear power plant.

Failure time [h] Equipment Failure cause Failure mode
384 MOV2 Motor circuit breakers degraded Standby
23472 MOV1 Fail to open. Limit switches fail Demand
24336 MOV1 Fail to open. Limit switches fail Demand
27024 MOV2 Fail to open. Limit switches fail Demand
56424 MOV1 Motor circuit breakers burned Standby
94512 MOV1 Fail to open. Limit switches fail Demand
94584 MOV1 Fail to open.Throttle misadjusted Demand

Table 2: MLEs of parameters of the reliability model of standby related failures under PAS and PAR models.

ℎ0 [h−1] 𝛼 [h−2] 𝜀 [-] 𝐿
PAS model 5.860𝐸 − 06 3.424𝐸 − 10 ± 1.0798𝑒 − 10 0.716 ± 0.084 5.202𝐸 − 10
PAR model 5.860𝐸 − 06 5.793𝐸 − 10 ± 1.757𝐸 − 10 0.995 ± 0.012 2.215𝐸 − 10

Table 3: MLEs of parameters of the reliability model of demand caused failures under PAS and PAR models.

𝜌0 [-] 𝑝1 [-] 𝜀 [-] 𝐿
PAS model 6.420𝐸 − 03 5.415𝐸 − 3 ± 1.127𝐸 − 03 0.886 ± 0.084 1.136𝐸 − 18
PAR model 6.420𝐸 − 03 1.141𝐸 − 3 ± 1.999𝐸 − 4 0.719 ± 0.1 1.776𝐸 − 20
nuclear power plant for two identical motor-operated safety
valves. The data set contains all the failures, preventive
maintenance, and surveillance test activities registered during
an observation period of 27 years.

Table 1 shows the failure times of the two MOVs
studied obtained from the plant operational data. Table 1
provides also a brief description of the corresponding failure
cause and failure mode. The failures have been classified as
either standby-related or demand-caused failure taking into
account the information available for the failure cause.

A total of 432 surveillance tests and 17 preventive mainte-
nance tasks were performed onMOV1, distributed uniformly
with periodicity 22 and 572 days, respectively, along the 27-
year period analysed. In addition, a total of 424 surveillance
tests and 18 preventive maintenance tasks were performed
onMOV2, distributed uniformly with periodicity 22 and 528
days, respectively, within the same period.

4.2. Results of the Maximum Likelihood Estimation. This
section presents the results of the joint estimation of the
effectiveness ofmaintenance, 𝜀, and the reliability parameters,𝛼 for standby-related failures and 𝑝1 for demand-caused
failures, under PAS and PAR imperfect maintenance models
using the plant data introduced in the previous section. The
model that provides the best fit is identified for each of the
two failure modes.

The maximum likelihood estimations of parameters 𝜀,𝛼, and 𝑝1 are obtained maximizing the log likelihood func-
tions given by (20) for standby-related failures and (25)
for demand-caused failures using the Nelder-Mead Simplex
algorithm. Table 2 gives MLEs of parameters corresponding

to reliability model of standby-related failures considering
PAS and PAR imperfect maintenance models, the double
of the standard deviations, 2𝜎, which are obtained from
the Fisher information matrix, and the values of likelihood
functions 𝐿. Table 3 shows the same information for the case
of the reliability model of demand-caused failures.

The best model for standby-related failures and demand-
caused failures is the PAS model in both cases since it
provides the higher value for the likelihood function shown
in Tables 2 and 3, respectively. So that, the reliability model
that considers PAS imperfectmaintenance is selected for both
failure modes with the value of the corresponding model
parameters given in Tables 2 and 3.

4.3. Average Unreliability Contribution as a Function of
Maintenance and Test Intervals. The average unreliability
contribution to the unavailability of a component normally in
standby over its renewal period can be formulated as follows
[9, 17]:

𝑢𝑅 = 𝑢𝑅,𝑆 + 𝑢𝑅,𝐷, (28)

where 𝑢𝑅,𝑆 is the standby-related unreliability contribution
and 𝑢𝑅,𝐷 is the demand-caused unreliability contribution.

On one hand, adopting the PAS model to represent
the behavior of the imperfect maintenance for the standby-
related failures of the component according to the results in
the previous section, 𝑢𝑅,𝑆 is given by [9]

𝑢𝑅,𝑆 ≈ 12 (ℎ0 + 12𝛼𝑀(2 − 𝜀𝜀 ))𝑇. (29)
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Figure 1: 𝑢𝑅,𝑆 and 𝑢𝑅,𝐷 as a function of the test interval for different
maintenance periods.

On the other hand, adopting the PAS model to represent
the behavior of the imperfect maintenance for demand-
caused failures of the component according to the results in
the previous section, 𝑢𝑅,𝐷 is given by [17]

𝑢𝑅,𝐷 = 𝑑0 + 12𝑑0 ⋅ 𝑝1 ⋅ 𝑀𝑇 ⋅ (2 − 𝜀𝜀 ) . (30)

Figure 1 shows the evolution of 𝑢𝑅,𝑆 and 𝑢𝑅,𝐷 as a
function of the test interval, regarding different preventive
maintenance intervals for a 10-year horizon renewal period.
It can be seen that 𝑢𝑅,𝑆 increases significantly for high 𝑇 and𝑀 values. Nevertheless, the effect of maintenance is positive
for both unreliability contributions.Moreover, an increase on
test frequency between maintenances, that is, low 𝑇 values,
has a very negative effect on 𝑢𝑅,𝐷 for very low 𝑇 intervals.

In addition, Figure 1 shows confidence intervals for the
values predicted for the unreliability contributions 𝑢𝑅,𝑆 and𝑢𝑅,𝐷 for different couples 𝑇 and 𝑀. One can realize large
confidence intervals exist, which even increase with 𝑇 and𝑀 because of the RAM model and the uncertainty in the
estimation of the model parameters shown in Tables 2 and
3.

4.4. Average Unavailability as a Function of Maintenance and
Test Intervals Regarding Unreliability and Downtime Effects.
In accordance with [9], the averaged unavailability of a
component is the sum of the average unreliability contri-
bution and the unavailability contributions due to detected
downtimes for performing testing andmaintenance activities
with the plant at power, which can be formulated as follows:

𝑢 = 𝑢𝑅 + 𝑢𝑇 + 𝑢𝑀 + 𝑢𝐶 + 𝑢𝑂, (31)

where 𝑢𝑇 represents the unavailability contribution due to
testing, 𝑢𝑀 is the unavailability contribution due to perform-
ing preventivemaintenance, 𝑢𝐶 is the unavailability contribu-
tion due to performing corrective maintenance conditional
to detecting a failure during a previous test, and 𝑢𝑂 is the
contribution due to replacement of the equipment, if any.
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Test interval T (h)
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Figure 2: 𝑢𝑅,𝑆 and 𝑢𝑅,𝐷 + 𝑢𝑇 + 𝑢𝑀 as a function of the test interval
for different maintenance periods.

These downtime contributions can be evaluated using the
following equations [9]:

𝑢𝑇 = 𝜑𝑇 (32)

𝑢𝑀 = 𝛿𝑀 (33)

𝑢𝐶 = 1𝑇𝜌∗𝜇 (34)

𝑢𝑂 = 𝜃
RP

, (35)

where 𝜑 is the downtime for testing, 𝛿 is the downtime for
preventive maintenance, 𝜇 is the downtime for corrective
maintenance or repair, and 𝜃 is the downtime for replacement
or renewal.

For the sake of simplicity, the last two contributions, 𝑢𝐶
and 𝑢𝑂, are not included in the sensitivity analysis due to
both are negligible as compared with the downtime effect of
preventive maintenance and testing activities. Therefore, the
averaged unavailability of the component is given by

𝑢 = 𝑢𝑅,𝑆 + 𝑢𝑅,𝐷 + 𝑢𝑇 + 𝑢𝑀. (36)

Figure 2 shows the evolution of 𝑢𝑅,𝑆 versus 𝑢𝑅,𝐷 + 𝑢𝑇 +𝑢𝑀 as a function of the test interval considering different
preventive maintenance intervals for a 10 years horizon
renewal period. The term 𝑢𝑅,𝑆 allows quantifying the benefit
of developing test and maintenance activities on the total
component unavailability while the sum of contributions𝑢𝑅,𝐷 + 𝑢𝑇 + 𝑢𝑀 represents their negative effect.

Figure 2 shows confidence intervals for the values pre-
dicted for the unavailability contributions for different cou-
ples 𝑇 and 𝑀. Again, large confidence intervals exist, which
even increase with 𝑇 and 𝑀 because of the RAM model and
the uncertainty in the estimation of the model parameters
shown in Tables 2 and 3.
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Figure 3: Unavailability for different maintenance and test intervals under PAS model.

Substituting (29), (30), (31), and (32) into (36) yields the
following formulation of the total average unavailability of a
component:

𝑢 = 12 (ℎ0 + 12𝛼𝑀(2 − 𝜀𝜀 ))𝑇 + 𝑑0
+ 12𝑑0𝑝1𝑀𝑇 (2 − 𝜀𝜀 ) + 𝜑𝑇 + 𝛿𝑀. (37)

The last study involves the analysis of the total average
unavailability of the component as a function of the couple{𝑀, 𝑇} for a 10-year horizon, which is shown in Figure 3.
The highest values of 𝑢 are reached adopting the highest
maintenance and test intervals. The main contributor to
the total unavailability, 𝑢 (see (37)), is the standby-related
unreliability contribution given by equation (29) as it can be
seen in Figure 2. This explains the direct and proportional
dependence between 𝑢 and 𝑇 and 𝑀. Nevertheless, the
sum of the demand unreliability contribution and downtime
effects considered, that is, downtime effect of preventive
maintenance and testing activities, become more relevant for
very low 𝑇 values. This fact is appreciated in Figure 2 too.

5. Concluding Remarks

This paper presents a methodology of parameters estimation
and model selection for safety-related equipment. In the
literature, complex reliability, availability, and maintainabil-
ity (RAM) models have been proposed with the aim of
capturing equipment performance in a more realistic way,
such as explicitly addressing the effect of component ageing

and degradation, surveillance activities, and corrective and
preventive maintenance policies. A major challenge for the
adoption of the newmodels in practice is to estimate reliabil-
ity and maintenance parameters with the aim of selecting the
best model for describing the real operation of safety-related
equipment.

Then, there is a need to fit the best model to real data by
estimating the model parameters using an appropriate tool,
which could be a problem in some cases because the number
of parameters is large and the available data is scarce.Thismay
have great influence in the confidence intervals of the values
found for the model parameters that better fit the data.

The paper considers a standby-related failure model
assuming linear ageing and a demand-caused failures model
assuming test-induced stress. In addition, it considers imper-
fect maintenance adopting Proportional Age Setback and
Proportional Age Reduction for preventive maintenance
modelling. Maximum likelihood estimation (MLE) using a
direct search algorithm based on the Nelder-Mead Simplex
(NMS) method is used to estimate maintenance effectiveness
and ageing rate simultaneously.

A practical and realistic case study is included facing the
parameters estimation of a typical motor-operated valve in a
nuclear power plant.The case study considers real failure, test,
and maintenance data for a typical motor-operated valve in a
nuclear power plant.The results of the parameters estimation
include confidence intervals and the selection of the best
model.

Equipment RAM is quantified based on the best model
fitted to make the impact of such an estimation in a testing
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and maintenance-planning context clear. Thus, the results of
such a predictive model may help to plan in a more efficient
way the test andmaintenance program,which should provide
appropriate balance among the different contributions to the
unavailability of the MOV, with the aim of minimizing its
unavailability assuring a low level of unreliability.

However, the effect of the uncertainties introduced in the
estimation of the model parameters, because of the avail-
ability of scarce data, can jeopardize the decision-making.
Thus, the example of application shows large confidence
intervals for the unreliability and unavailability contributions
for different 𝑇 and 𝑀 couples, which even increase with 𝑇
and𝑀 because of the RAMmodel and the uncertainty in the
estimation of the model parameters shown in Tables 2 and 3.

It can therefore be concluded that estimating the param-
eters and, consequently, fitting these models, it is possible
to manage in a more efficient way the test and maintenance
program, by providing appropriate balance among the differ-
ent contributions to the unreliability and unavailability of the
component. However, there is a need to increase the data set
used to reduce the uncertainty in the decision-making.

Acronyms and Notations

BAO: Bad As Old
GAN: Good As New
MLE: Maximum likelihood estimation
MOV: Motor-operated valve
NPP: Nuclear power plant
PAR: Proportional Age Reduction
PAS: Proportional Age Setback
PFD: Probability of failure on demand
PRA: Probabilistic Risk Assessment
RAM: Reliability, availability, and maintainability𝑑0: Residual demand failure probability𝑑𝑚(𝑡): Time-dependent demand failure

probability for the period𝑚𝐷𝑚(𝑡): Cumulative demand failure probability in
the period𝑚𝑓+𝑚: Degradation function of the component
immediately after maintenance𝑚𝑓𝑚(𝑡): Degradation function of the component
associated with demand-related stress for
the period𝑚ℎ0: Residual standby-related hazard function𝐻𝑚(𝑡): Cumulative hazard function in the period𝑚𝐿1(𝜉): Likelihood function for 𝑃 identical
components of an equipment under
imperfect preventive maintenance for
standby time-related hazard function𝐿2(𝜉): Likelihood function for 𝑃 identical
components of an equipment under
imperfect preventive maintenance for
demand failure probability𝑚: Preventive maintenance number𝑚𝑀: Preventive maintenance interval𝑛(𝑡): Cumulative number of demands at time 𝑡

𝑝1: Test degradation factor associated with
demand failures𝑟𝑝,𝑚: Number of failures of component 𝑝 during
the maintenance period𝑚

RP: Replacement interval (overhaul
maintenance)𝑡: Chronological time𝑡𝑚: Time at which the component undertakes
the maintenance number𝑚 − 1𝑇: Test interval𝑢: Averaged unavailability of a component𝑢𝐶: Averaged unavailability contribution due
to performing corrective maintenance𝑢𝑀: Averaged unavailability contribution due
to performing preventive maintenance𝑢𝑂: Averaged unavailability contribution due
to replacement or component renewal𝑢𝑅: Unreliability contribution to the
component averaged unavailability over
the component useful life𝑢𝑅,𝐷: Demand-caused unreliability contribution𝑢𝑅,𝑆: Standby-related unreliability contribution𝑢𝑇: Averaged unavailability contribution due
to testing𝑤+𝑚−1: Age of the component immediately after
the maintenance𝑚 − 1𝑤𝑚(𝑡): Age of the component in the period𝑚𝛼: Linear ageing rate𝛿: Downtime for preventive maintenance𝜀: Preventive maintenance effectiveness𝜑: Downtime for testing𝜇: Downtime for corrective maintenance or
repair𝜃: Downtime for replacement or renewal𝜎: Standard deviation𝜏: Failure times.
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