
Research Article
Influence of the Friction Coefficient on the Trajectory
Performance for a Car-Like Robot

Francisco Valero,1 Francisco Rubio,1 Carlos Llopis-Albert,2 and Juan Ignacio Cuadrado1

1Center of Technological Research in Mechanical Engineering, Universitat Politècnica de València, Building 5E, Valencia, Spain
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A collision-free trajectory planner for a car-like mobile robot moving in complex environments is introduced and the influence
of the coefficient of friction on important working parameters is analyzed. The proposed planner takes into account not only the
dynamic capabilities of the robot but also the behaviour of the tire. This planner is based on sequential quadratic programming
algorithms and the normalized time method. Different values for the coefficient of friction have been taken following a normal
Gaussian distribution to see its influence on the working parameters. The algorithm has been applied to several examples
and the results show that computation times are compatible with real-time work, so the authors call them efficient generated
trajectories as they avoid collisions. Besides, working parameters such as the minimum trajectory time, the maximum vehicle
speed, computational time, and consumed energy have been monitored and some conclusions have been reached.

1. Introduction

Trajectory planning in Robotics has been a field of active
work for decades, and, in recent years, its application to
mobile robots and autonomous vehicles has gained particular
relevance, given the importance of industrial use in the case
of robots and safety in the area of vehicles [1, 2].

These uses introduce the need for nonholonomic restric-
tions when the robot is modelled, and in many cases this
raises the issue of obtaining the trajectory as an optimization
problem, as in Peng et al. [3]. In the case of autonomous
vehicles, there are specific problems associated with driving
on different road types (see Katrakazas et al. [4]).

Many authors have based the generation of trajectories
on paths adjusted for different functions using, for example,
Bezier curves [5, 6], B-splines, as in Elbanhawi et al. [7],
clothoid curves (see Broggi et al. [8]), and polynomials [9, 10].

Techniques for trajectory planning seek continuous func-
tions and their derivatives, with the consequent impact on the
robot’s kinematic and dynamic response, which will also be
subject to specific restrictions in each case.

Effectiveness and operating capability of performing a
prescribed trajectory for mobile robots, as for any other
vehicle, will depend heavily on their dynamic behaviour.

In cases where the trajectory is generated along a pre-
viously obtained path without considering the dynamic
constraints of the robot and its ability to transmit forces to
the ground, its feasibility is not guaranteed, nor is the time
required for it to be performed, so the efficiency of work done
by the robot cannot be verified.

Significant simplifications are required to model the
dynamics of the robot so that it can work with reduced
computing times, and in four-wheel (car-type) robots it
is usual to work with the “bicycle” model and different
alternativeswhen considering tire behaviour, fromneglecting
them, as in Wang and Qi [11], to different approaches, as in
Jeon et al. [12] and Cong et al. [13]. See also the dynamic
model proposed by Staicu [14].

This paper presents a planner for obtaining trajectories
for four-wheel robots while considering their dynamic prop-
erties. This planner, which is able to work efficiently, is based
on solving optimization problems recursively.
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The values of the coefficient of friction have been taken
from a normal Gaussian distribution.

One objective of this paper is to determine the influence
of the coefficient of friction on important operating param-
eters such as minimum trajectory time, maximum speed of
the robot, computational time, and consumed energy.

The dynamic approach includes modelling the entire car-
like robot, including tires, engine, brakes, and transmis-
sion system, with the aim of seeking feasible and efficient
trajectories for the robot and analysing the influence of
the coefficient of friction on the working parameters. This
approach marks a clear difference with other planners that
only include kinematic constraints, as in Simba et al. [15, 16].
Those planners either are conservative or do not guarantee
the feasibility of the trajectories, as in Li and Shao [17] and
Tokekar et al. [18].

Efficient computation time is achieved by simplifying the
dynamic model, rapidly evaluating collisions, as explained
in Rubio et al. [19], and generating a trajectory based on
a path that is composed of parts which are defined by
coordinates corresponding to polynomial functions of time.
The efficiency of the trajectory is due to the fact that it uses the
full dynamic capability of the robot. It starts from an initial
minimum time trajectory that is adapted to environmental
obstacles, the efficiency of which is shown in the examples
analysed. A lot of examples (up to 100) have been solved
by varying the coefficient of friction. The results have been
monitored using the corresponding graphs in Section 5.

2. Dynamic Model of the Robotic Vehicle

In this section, we present the modelling of the dynamic
behaviour of a mobile robot with tires. This model will
be used in an iterative process that requires a sequence of
optimization problems to be solved. Dynamic restrictions
are essential to find feasible trajectories and are based on
simplified but safe modelling.

Other authors have also used a simplified dynamicmodel,
demonstrating its efficiency. For example, in Cazalilla et al.
[20], the authors reduce the number of relevant dynamic
parameters for the sake of simplicity of the model. Another
example of simplified dynamic model can be found in Iriarte
et al. [21]. To work in real time, Pastorino et al. [22] also resort
to simplification in the modelling of the vehicle.

The robot used as an example has four wheels arranged
symmetrically about its central axis, with the driving torque
acting on the rear wheels, with braking on all wheels, and
with front-wheel steering. The tire behaviour is crucial for
determining the dynamic performance of the robot.

In addition, the following simplifying assumptions are
considered:

(i) There are no roll and pitch motions.
(ii) There is no side load transfer.
(iii) There are no aerodynamic effects.
(iv) A “bicycle” type, planar model is used with three

degrees of freedom and a restriction associated with
the steering angle.The front wheels are simplified and
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Figure 1: Geometry and its simplification.
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Figure 2: Robot configuration.

replaced by one that will account for the force exerted
by the two.The same simplification applies to the rear
wheels.

(v) The steering angle is equal for each front wheel and
corresponds to the steering angle of the “bicycle
model.”

The geometry of the robot is shown at the top of Figure 1, in
a side view, and the reduction to the “bicycle model” can be
seen in the plan view.

2.1. Features of the Trajectory. A trajectory is establishedusing
time-dependent Cartesian components of the position (see
Figure 2).
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Figure 3: Robot kinematics.

The position (𝐺) of the COG of the robot is

𝑥 = 𝑎𝑥 + 𝑏𝑥𝑡 + 𝑐𝑥𝑡2 + 𝑑𝑥𝑡3,
𝑦 = 𝑎𝑦 + 𝑏𝑦𝑡 + 𝑐𝑦𝑡2 + 𝑑𝑦𝑡3.

(1)

By differentiatingwith respect to time, theCOG’s velocity and
acceleration are obtained.

The orientation of the velocity of 𝐺 is

𝜑 (𝑡) = tan−1 ( ̇𝑦
𝑥̇) . (2)

Considering the small sideslip angles both in the vehicle
and in the tires and ̇𝛽 negligible compared to 𝜑̇, the robot
kinematics can be written as a function of (1) and its
derivatives.

The sideslip angle in the rear wheel is obtained from the
components of its velocity in local coordinates 𝑋𝐺𝑌𝐺 (see
Figure 3):

󳨀→𝑉𝑙𝑅 ≈ (𝑥̇2 + ̇𝑦2)1/2 ⃗𝑖𝑙
+ ((𝑥̇2 + ̇𝑦2)1/2 𝛽 − 𝑏𝑥̇ ̈𝑦 − ̇𝑦𝑥̈

𝑥̇2 + ̇𝑦2 ) ⃗𝑗𝑙,
(3)

where

𝛽𝑅 ≈ 𝛽 − (𝑥̇ ̈𝑦 − ̇𝑦𝑥̈) 𝑏
(𝑥̇2 + ̇𝑦2)3/2 . (4)

Proceeding in a similar way to that used to obtain (4), the
sideslip angle in the front axle is

𝛽𝐹 ≈ 𝛿 − 𝛽 − (𝑥̇ ̈𝑦 − ̇𝑦𝑥̈) 𝑎
(𝑥̇2 + ̇𝑦2)3/2 , (5)

where 𝛿 is the steering angle.
Lateral acceleration in local coordinates (𝑌𝐺) direction is

𝐴𝑌𝐺𝐺 ≈ (−𝑥̈ sin𝜑 + ̈𝑦 cos𝜑) − (𝑥̈ cos𝜑 + ̈𝑦 sin𝜑) 𝛽. (6)
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Figure 4: Lateral forces on tires.

Under the small sideslip hypothesis, it is usual to consider the
lateral behaviour of the tires linearly, so as the front and rear
tires are equal, the lateral forces are

𝐹𝑅𝑇 = −𝐾𝑇𝛽𝑅
𝐹𝐹𝑇 = −𝐾𝑇𝛽𝐹

(7)

with a direction normal to the rim and opposite to the sideslip
(see Figure 4).

The equilibrium equation of the side forces of the robot
considering small 𝛿 is

𝐹𝑅𝑇 + 𝐹𝐹𝑇 = 𝑚𝐴𝑌𝐺𝐺 . (8)

The equation of moments is

𝑎𝐹𝐹𝑇 − 𝑏𝐹𝑅𝑇 = 𝐼𝑧𝜔̇, (9)

where 𝐼𝑧 is the moment of inertia of the vehicle around an
axis parallel to 𝑍 passing through 𝐺.

Equations (8) and (9) are a linear system that enables 𝛽
and 𝛿 to be obtained as functions of the kinematics, tire’s
lateral stiffness, and the inertial characteristics of the vehicle.
Using these values, 𝛽𝑅 and 𝛽𝐹 can be obtained from (4) and
(5), respectively.

2.2. Forces Transmitted by the Tire. A force at the contact
point of the tire with the ground is considered, so, in local
coordinates,

𝐹⃗𝐹 = 𝐹𝑋𝐺𝐹 ⃗𝑖𝑙 + 𝐹𝑌𝐺𝐹 ⃗𝑗𝑙 + 𝐹𝑍𝐺𝐹 𝑘⃗𝑙,
𝐹⃗𝑅 = 𝐹𝑋𝐺𝑅 ⃗𝑖𝑙 + 𝐹𝑌𝐺𝑅 ⃗𝑗𝑙 + 𝐹𝑍𝐺𝑅 𝑘⃗𝑙.

(10)

In 𝑋𝐺 direction, assuming a small steering angle, the follow-
ing equilibrium equation is set:

𝐹𝑋𝐺𝐹 + 𝐹𝑋𝐺𝑅 = 𝑚𝐴𝑋𝐺 , (11)

where

𝐴𝑋𝐺 = 𝑥̈ cos (𝛽 + 𝜑) + ̈𝑦 sin (𝛽 + 𝜑) . (12)
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In the front wheel,
𝐴𝑋𝐺 > 0 󳨀→
𝐹𝑋𝐺𝐹 = 0,
𝐴𝑋𝐺 ≤ 0 󳨀→
𝐹𝑋𝐺𝐹 = 0.6𝑚𝐴𝑋𝐺 + 𝐹𝑋𝐺𝐹𝑟

(13)

with losses due to rolling motion:

𝐹𝑋𝐺𝐹𝑟 = 𝜇𝑟𝐹𝑍𝐺𝐹 , (14)

where 𝜇𝑟 is considered constant because the velocity and
sideslip angles are small.

The force on the rear wheel is
𝐴𝑋𝐺 > 0 󳨀→
𝐹𝑋𝐺𝑅 = 𝑚𝐴𝑋𝐺 + 𝐹𝑋𝐺𝑅𝑟 + 𝐹𝑋𝐺𝐹𝑟 ,
𝐴𝑋𝐺 ≤ 0 󳨀→
𝐹𝑋𝐺𝑅 = 0.4𝑚𝐴𝑋𝐺 + 𝐹𝑋𝐺𝑅𝑟

(15)

with
𝐹𝑋𝐺𝑅𝑟 = 𝜇𝑟𝐹𝑍𝐺𝑅 . (16)

Equations (13) and (15) are in line with the torque applied to
the rear wheels (for positive𝐴𝑋𝐺), while the braking torque is
divided between the front (60%) and rear wheels (40%) when
the acceleration is negative.

Components in direction 𝑌𝐺, for small sideslip angles,
correspond to a linear lateral slip behaviour of the tire and
are given by (7).

Components in direction𝑍𝐺, taking into account only the
load transfer due to longitudinal acceleration (direction𝑋𝐺),
are

𝐹𝑍𝐺𝐹 = 𝑚𝑙 (𝑏𝑔 − 𝐴
𝑋𝐺ℎ) ,

𝐹𝑍𝐺𝑅 = 𝑚𝑙 (𝑎𝑔 + 𝐴
𝑋𝐺ℎ) .

(17)

A circle is set, limiting the friction force for the combined
forces at each wheel, which prevents them fromworking with
higher friction forces than those defined by 𝜇𝑡.

√(𝐹𝑋𝐺𝐹 )2 + (𝐹𝑌𝐺𝐹 )2 < 𝜇𝑡𝐹𝑍𝐺𝐹 ,

√(𝐹𝑋𝐺𝑅 )2 + (𝐹𝑌𝐺𝑅 )2 < 𝜇𝑡𝐹𝑍𝐺𝑅 .
(18)

2.3. Driving Force. The car-like mobile robot has an electric
engine with rear wheel driving and steering on the front
wheels. The maximum torque that can be transmitted to
the rear wheels is conditioned by the characteristics of the
transmission and the limitations of the engine, so a driving
force is achieved which is limited by the curve in Figure 5.

Using this restriction, both the integrity of the transmis-
sion and the possibility of achieving the best performance
required of the engine transmission system are guaranteed.
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Figure 5: Driving force versus velocity.

3. Modelling of the Trajectory

The trajectory equations between successive configurations
are

∀𝑡 ∈ [0, 𝑡𝑗]
↓

𝑥𝑗 = 𝑎𝑥𝑗 + 𝑏𝑥𝑗𝑡 + 𝑑𝑥𝑗𝑡2 + 𝑒𝑥𝑗𝑡3
𝑦𝑗 = 𝑎𝑦𝑗 + 𝑏𝑦𝑗𝑡 + 𝑑𝑦𝑗𝑡2 + 𝑒𝑦𝑗𝑡3,

(19)

where 𝑗 = 1, . . . , 𝑚 − 1.
A robot configuration is given by the position and

orientation of the center of gravity of the mobile robot in
global coordinates.

The following conditions associated with the given con-
figurations are considered in order to ensure continuity.

(i) Position. For each interval, the initial and final configura-
tions are known, so (4 (𝑚 − 1)) equations are established:

𝑥𝑗 (0) = 𝑥𝑗,
𝑦𝑗 (0) = 𝑦𝑗,
𝑥𝑗 (𝑡𝑗) = 𝑥𝑗+1,
𝑦𝑗 (𝑡𝑗) = 𝑦𝑗+1.

(20)

(ii) Velocity. The initial and final velocities of the trajectory
must be zero, so four new equations are established:

𝑥̇1 (0) = 0,
̇𝑦1 (0) = 0,

𝑥̇𝑚−1 (𝑡𝑚) = 0,
̇𝑦𝑚−1 (𝑡𝑚) = 0.

(21)
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At each intermediate step, the final velocity of the previous
interval must be equal to the start of the next, leading to
(2 (𝑚 − 2)) equations:

𝑥̇𝑗 (0) = 𝑥̇𝑗−1 (𝑡𝑗−1) ,
̇𝑦𝑗 (0) = ̇𝑦𝑗−1 (𝑡𝑗−1) .

(22)

(iii) Acceleration. At each intermediate step, the final acceler-
ation of the previous interval must be equal to the start of the
next, leading to (2 (𝑚 − 2)) equations:

𝑥̈𝑗 (0) = 𝑥̈𝑗−1 (𝑡𝑗−1) ,
̈𝑦𝑗 (0) = ̈𝑦𝑗−1 (𝑡𝑗−1) .

(23)

Once the times needed to perform the trajectory between the
different configurations for each interval are known, a linear
system of equations is established, which makes it possible
to obtain the coefficients of the cubic polynomials, providing
an efficient solution using the normalized time method (see
[23]).

3.1.MinimumTimeTrajectory. Theminimum time trajectory
must also meet the following restrictions:

(i) The driving force cannot exceed the value determined
by the limit transmitted to the wheel according to Figure 5:

𝐹𝑋𝐺𝑅 (𝑡) ≤ 𝐹𝑋𝐺𝑅max ∀𝑡 ∈ [0, 𝑡𝑗] with 𝑗 = 1, . . . , 𝑚 − 1. (24)

(ii) Forces on the tiresmust not exceed the limit of friction
force at any point of the trajectory, so that, according to (18),
the following equations are fulfilled:

√(𝐹𝑋𝐺𝐹 (𝑡))2 + (𝐹𝑌𝐺𝐹 (𝑡))2 < 𝜇𝑡𝐹𝑍𝐺𝐹 (𝑡)

√(𝐹𝑋𝐺𝑅 (𝑡))2 + (𝐹𝑌𝐺𝑅 (𝑡))2 < 𝜇𝑡𝐹𝑍𝐺𝑅 (𝑡)
∀𝑡 ∈ [0, 𝑡𝑗] with 𝑗 = 1, . . . , 𝑚 − 1.

(25)

(iii) The maximum velocity at any point of the trajectory
is limited:
󵄨󵄨󵄨󵄨󵄨𝑉⃗𝐺 (𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝑉max; ∀𝑡 ∈ [0, 𝑡𝑗] with 𝑗 = 1, . . . , 𝑚 − 1, (26)

where 𝑉⃗𝐺(𝑡) is the velocity of the center of gravity in global
coordinates.

The minimum time is obtained by solving an optimiza-
tion problemusing the restrictions detailed above as variables
of time for each interval of the trajectory, and the objective
function is as follows:

𝑚−1∑
𝑗=1

𝑡𝑗 = 𝑡min. (27)

3.2. Obstacles. Patterned obstacles such as spheres, cylinders,
and rectangular prisms are used (see [19]), so any geometry
will be wrapped up by combinations of these basic obstacles.
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Figure 6: Wire-frame vehicle with grown obstacle.

3.3. Collision Detection. The wire-frame model of the robot
with grown obstacle techniques (Figure 6) is used to check
for collisions (see [24]).

3.4. Generation of the Trajectory without Collision. The
problem posed is that of obtaining a feasible and efficient
trajectory for a robot in an environment with static obstacles,
which enables motion between two given configurations (𝑐𝑖
and 𝑐𝑓). An efficient trajectory is one which is close to the
minimum time with a relatively low computational cost and
respects the limitations of the robot dynamics. Obviously, the
feasibility of the trajectory implies the absence of collisions.

The process proposed to solve the problem includes the
following steps.

3.4.1. Calculation of the Initial Minimum Time Trajectory.
Trajectory 𝑇min, linked to the sequence of configurations
𝐶 = {𝑐𝑖, 𝑐𝑓}, is obtained using the procedure described in
Section 3.1.

3.4.2. Search for Collisions. The first configuration from 𝑇min
which presents a collision cc is identified, and then a previous
and near configuration 𝑐𝑎 is sought.
3.4.3. Generation of Adjacent Trajectories. Four configura-
tions around 𝑐𝑎 are generated (𝑐𝑎𝑗, 𝑗 = 1, . . . , 4).
3.4.4. Generation of Offspring Trajectories. For each collision-
free 𝑐𝑎𝑗 configuration obtained in the previous section, the
offspring trajectory 𝑇𝑘 is calculated and is added to the set
of 𝐶𝑇 trajectories, where they are stored and ordered from
smaller to longer time.

3.4.5. Trajectory Selection. Then, the minimum time trajec-
tory𝑇1 of𝐶𝑇 is selected and collisions are checked as detailed
in Section 3.4.2. If 𝑇1 has a collision, it is taken out of 𝐶𝑇 and
the process returns to the step in Section 3.4.3 and is repeated
until a solution is reached.

The proposed solution to the problem is an efficient
trajectory without collisions which is an offspring trajectory
resulting from the minimum time trajectory 𝑇min.

4. Case Study

The example shown in Figure 7 has been solved. The initial
and final configurations are 𝐶𝑖 (𝑥1, 𝑦1) and 𝐶𝑓 (𝑥2, 𝑦2).
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Figure 7: Initial and final car-like robot configuration.

The coefficient of adhesion between the ground and the
tire may vary depending on several factors due to working
conditions and time. These factors cover environmental
conditions (such as wet, dry, or dirty road surfaces, moisture
content, and temperature), technical characteristics of the
tire, tire pressures, tire wear and maintenance standards, and
so forth. The variations of the coefficient of adhesion have an
important effect on the optimal trajectory time of the car-like
autonomous robot, that is, the execution time of the robot
task. Furthermore, they play a major role in how the robot
performs its tasks appropriately, its productivity, and safety
considerations.

This paper carries out an assessment of uncertainty based
on the effects of the coefficient of adhesion regarding the
optimal trajectory time bymeans ofMonteCarlo simulations.
Furthermore, the effects of the coefficient of adhesion over
different variables are also analysed, which cover minimum
trajectory time, maximum drive torque, maximum velocity,
maximum braking torque, and consumed and dissipated
energy. In addition, the computational time to generate an
optimal trajectory is also provided.

4.1. Monte Carlo Simulations. The Monte Carlo simulations
are based on the same case study and make use of the same
car-like autonomous robot. 100 simulations have been run.
All simulations share the sameworking conditions, initial and
final configuration, and obstacles in the generated collision-
free trajectories. The only changed parameter is the coeffi-
cient of adherence. Values of the coefficient of adherence are
sampled from a Gaussian statistical distribution with a mean
(𝑚) of 0.25 and a standard deviation (𝑠) of𝑚/3, that is, 0.0833.
In this way, we reproduce the actual values of the coefficient
of adherence which we find in real working conditions.

4.2. Results and Findings. Figure 8 shows the optimal trajec-
tory time versus the coefficient of adherence for an ensemble
of a hundred simulations and also its trend line. Results show
that, as expected, lower minimum times are achieved for
higher values of the coefficient of adherence due to the greater
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Figure 8: Optimal trajectory time (s) versus the coefficient of
adherence for an ensemble of a hundred simulations (blue dotted
points) and also its trend line (red line).
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Figure 9: Frequency distribution and univariate statistics for the
minimum trajectory time.

grip forces between tires and terrain. The minimum time is a
discontinuous function due to numerical discrepancies in the
coupling of the kinematic and dynamic model of the robot
and the SQP method to solve the nonlinear optimization
problem.

The frequency distribution and univariate statistics for
the minimum trajectory time are depicted in Figure 9. The
distribution has a mean of 57.1s and a standard deviation
of 8.5s, where the minimum trajectory time ranges from
0.04s to 0.5s. These results show that the minimum trajectory
time also follows a Gaussian distribution with a lower
standard deviation in response to the Gaussian statistical
distribution of the coefficient of friction. On the other hand,
the results also show the importance of taking into account
the uncertainty in the coefficient of adherence and the worth
of the presentedmethodology.This is evenmore critical when
considering that a robot task may be repeated constantly,
for instance, in an assembly line. In this case, the minimum
time has a great influence in production and economic
considerations. The uncertainty assessment carried out may
help in defining an efficient scheduling process of the robot’s
tasks.



Mathematical Problems in Engineering 7

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6
Coefficient of adherence

0

25

M
ax

im
um

 v
elo

ci
ty

 (K
m

/h
)

Figure 10: Maximum velocity (km/m) versus the coefficient of
adherence for an ensemble of a hundred simulations (blue dotted
points) and also its trend line (red line).

It means that we can use the Gaussian distribution of
the coefficient of friction to predict, if necessary, the optimal
trajectory times for the car-like robot to travel or do a task.

Figure 10 presents the maximum velocity versus the
coefficient of adherence. It can be seen that higher velocities
are achieved for greater grip forces, that is, for greater
coefficient of adherence values. These results are in line with
those obtained for the minimum trajectory time. Again, a
wide dispersion in the velocity is obtained for the different
simulations. The followed path will not always be the same
and small radius of curvature limits the robot’s speed. Also
note that the velocities values stabilize from the mean value
of the Gaussian distribution of the coefficient of adherence
(0.25). It is advisable to work with values of velocities as
high as possible. Also bear in mind that velocities range
from 8 km/h to 24 km/h. The maximum value is also limited
by the driving torque and the kinematics and dynamics
characteristics of the car-like robot.

Figure 11 represents the maximum driving torque on
the rear wheels versus the coefficient of adherence, which
shows that the driving torque is limited by the value of the
coefficient of adherence. With small values of the coefficient
of adherence, the driving torque cannot be bigger than the
friction force in tires to avoid slippage. The maximum values
are also limited by the maximum torque provided by the
engine and the followed path which can be very sinuous.
Initially, the path is sinuous and the engine cannot give
the maximum driving torque. Also, at higher velocities, the
driving torque decreases.

The maximum braking torque in the front wheels also
strongly depends on the coefficient of adherence (Figure 12).
It is shown that the higher the grip force is the higher the
braking torque obtained is.

Figure 13 shows the computational time for the different
simulations. They present low computational cost for all
simulations with a mean of 1.8s, very small value that shows
the efficiency of the algorithm. It can also be seen that the
trend line slightly decreases for higher values of the coefficient
of adherence due to better behaviour of those values in the
nonlinear optimization procedure to obtain minimum time
trajectories.
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Figure 11:Maximumdriving torque on rearwheels (N⋅m) versus the
coefficient of adherence for an ensemble of a hundred simulations
(blue dotted points) and also its trend line (red line).
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Figure 12:Maximum braking torque in the front wheels (N⋅m)with
regard to the coefficient of adherence for an ensemble of a hundred
simulations (blue dotted points) and also its trend line (red line).

Finally, Figure 14 presents the energy consumed and
dissipated for the autonomous robot for the different sim-
ulations. It shows that the energy balance is equal to the
energy consumed minus the energy dissipated. It also shows
that the energy dissipated increases with the coefficient of
adherence, while the energy balance remains almost constant
for all simulations, with a mean value of 6678 (J).

5. Conclusions

The simplified dynamic model of the robotic vehicle makes
it possible to achieve safe, collision-free, feasible trajectories
while fulfilling the dynamic capabilities of the robot, with
moderate computation times.

Efficient trajectories are obtained for complex environ-
ments with scattered obstacles, always respecting the limita-
tions of the robot dynamics.

The methodology allows determining all the impor-
tant working variables in the calculation of an optimal
robot trajectory (i.e., minimum trajectory time, maximum
velocity, torque on wheels, braking torque, computational
cost, consumed and dissipated energy, and energy balance).
Furthermore, themethodology allows dealingwith uncertain
environments and a wide range of real case studies by
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Figure 14: Consumed and dissipated energy for the autonomous
robot and energy balance (J).

taking in consideration the kinematics and dynamics of the
autonomous robot and providing optimal and collision-free
trajectories.

From the graphs, it can be concluded that a relatively
large coefficient of friction is good for most of the working
parameters except for the consumed and dissipated energy.
Because the energy is not recovered, high consumption is not
recommended. Becausewe are using as objective function the
time needed to perform the trajectory, this has an energetic
cost.

Finally, based on this algorithm, a trajectory planner for
robotic vehicles equipped with instrumentation to detect
moving obstacles can be developed, since the computation
times would allow trajectories to be recalculated according
to the obstacles’ motion. This is a topic that could be further
developed in future work.
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