
lable at ScienceDirect

Applied Ergonomics 65 (2017) 530e540
Contents lists avai
Applied Ergonomics

journal homepage: www.elsevier .com/locate/apergo
Using RGB-D sensors and evolutionary algorithms for the optimization
of workstation layouts

Jose Antonio Diego-Mas a, *, Rocio Poveda-Bautista b, Diana Garzon-Leal c

a I3B, Institute for Research and Innovation in Bioengineering, Universitat Polit�ecnica de Val�encia, Camino de Vera s/n, 46022 Valencia, Spain
b Engineering Projects Department, Universitat Polit�ecnica de Val�encia, Camino de Vera s/n, 46022, Valencia, Spain
c Universidad del Bosque, Av. Cra 9 No. 131 A - 02, Bogot�a, Columbia
a r t i c l e i n f o

Article history:
Received 14 June 2016
Received in revised form
9 January 2017
Accepted 19 January 2017
Available online 31 January 2017

Keywords:
RGB-D sensors
Workstation layout
Genetic algorithms
* Corresponding author.
E-mail addresses: jodiemas@dpi.upv.es (J.A. Dieg

(R. Poveda-Bautista), dgarzonl@unbosque.edu.co (D. G
1 Depth sensors are known by several names (Flash

ranging camera, range sensor …). In this work we wil
because this is currently the most common denomin

http://dx.doi.org/10.1016/j.apergo.2017.01.012
0003-6870/© 2017 Elsevier Ltd. All rights reserved.
a b s t r a c t

RGB-D sensors can collect postural data in an automatized way. However, the application of these devices
in real work environments requires overcoming problems such as lack of accuracy or body parts' oc-
clusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of
workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on
workbenches. Collected data are then used to optimize workstation layout by means of genetic algo-
rithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D
sensors for body tracking are not a problem for this application, and that the combination with intelli-
gent algorithms can automatize the layout design process. The procedure described can be used to
automatically suggest new layouts when workers or processes of production change, to adapt layouts to
specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for
several production processes.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

RGB-D sensors1 are devices capable of detecting the distance to
the objects found in a scene. They are basically composed of an
infrared laser transmitter that projects a speckle pattern on its
environment, and an infrared camera that captures the projected
pattern. The data obtained by the infrared camera is compared with
reference standards, allowing estimating the distance of each im-
age pixel to the sensor (Garcia and Zalevsky, 2007; Henry et al.,
2012; Khoshelham and Elberink, 2012). In addition, the device
has a conventional RGB camera, so pixel color data is added to
distance data.

This technology is not new. There are devices able of capture the
depth of a scene from the late twentieth century. However, two
features of the new RGB-D sensors have contributed to their
increasing use in a wide range of fields and applications. Firstly, the
o-Mas), ropobau@dpi.upv.es
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l use the term RGB-D sensors
ation for this kind of devices.
new RGB-D sensors have a very low cost compared to older devices
(approximately $ 200 in 2016). Secondly, these new sensors can be
used as 3D motion capture systems because the software that
controls the sensor provides information about the position of the
joints of recognized users present in the scene (skeleton data) in
close to real time. Position of body parts are obtained from depth
data using a randomized decision forest algorithm, learned from
millions of training examples (Han et al., 2013).

In 2010 Microsoft released the Kinect RGB-D sensor. Simulta-
neously other sensors appeared on the market such as the ASUS
Xtion. Since then, the availability in the market of RGB-D sensors
fostered the development of promising approaches to usual prob-
lems in many areas like object recognition, 3D reconstruction,
augmented reality, image processing, robotic, or human-computer
interaction. In the field of ergonomics, early research on the uses of
the new RGB-D sensors focused on whether the accuracy of the
data obtained allowed their use as markerless motion capture de-
vices (Bonnech�ere et al., 2013a, 2013b; Clark et al., 2012, 2013;
Destelle et al., 2014; Dutta, 2012; Fern�andez-Baena et al., 2012;
Nixon et al., 2013; Obdrz�alek et al., 2012; Pfister et al., 2014). The
results of these studies suggest that the accuracy of the sensors is
only slightly lower than that of more expensive devices, but reliable
enough to be used for postural assessment. Other studies focused
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on the use of RGB-D sensors in traditional techniques for ergo-
nomics assessment like RULA (Haggag et al., 2013; Plantard et al.,
2015), OWAS (Diego-Mas and Alcaide-Marzal, 2014) or NIOSH lift-
ing equation (Patrizi et al., 2015; Spector et al., 2014).

Although the findings of these studies seem promising, and
RGB-D sensors can be used like a tool to support the tasks of er-
gonomists, its technology is not enough developed to replace hu-
man experts, and certain aspects need further research to use RGB-
D sensors in real working environments. For example, these devices
are good tracking systemwhen the subject is facing the sensor or is
in the range of ±40�. Otherwise, data reliability decreases signifi-
cantly (Diego-Mas and Alcaide-Marzal, 2014). Occlusion and self-
occlusion are major problems too. The position of a joint that is
not visible to the sensor is inferred. Its position is calculated from
surrounding joint data rather than being directly captured (NUI,
2013) dramatically diminishing the reliability of the data. These
situations are very common in real scenarios, where the worker
could handle large objects that occult body parts to the camera,
some part of the body could be behind other part or, simply, the
worker moves outside the sensor field of view. Some researchers
try to solve this problem using multiple sensors oriented at
different angles relative to the tracked subject (Berger et al., 2013).
On the other hand, body tracking may not accurately obtain lower
body kinematic data (Yang et al., 2015), and joint rotations are not
correctly captured or not captured at all for the peripheral limbs or
the head. Moreover, tracking algorithms usually employed may
cause the length of body limbs not to be constant over time (NUI,
2013).

In 2014Microsoft released an improved version of Kinect. Kinect
V.2 has better resolution for the depth sensor and its skeleton-
tracking algorithm (named body-tracking in this version) is able
to track more body joints. The comparison between both sensors
developed by Xu and McGorry (2015) concluded that the accuracy
of joint center location identification is not substantially improved
in Kinect v2. Therefore, given the current state of this technology,
the use of RGB-D sensors in any real applications should take the
limitations of these devices into consideration.

This work presents the use of RGB-D sensors (Microsoft Kinect
™) and Genetic Algorithms (GA) for the automatic rearranging of
working areas to optimize the reaches for working elements and
the movements of the worker. The approach presented allows the
automated optimal distribution of the elements present in the
working plane based on ergonomics and production criteria. To
achieve this, a RGB-D sensor detects themovements of theworker's
hands when performing reaches during the development of their
task. The data recorded by the sensor over a period of time are used
by a GA for obtaining a new distribution based on criteria formerly
set by the designer. The algorithm also considers the geometric
constraints of the working plane and of the elements to be
distributed on it. This procedure can be applied to assembly
workstations, office workstations, packing workstation, super-
market check stand workstations, or any task inwhich the worker's
activity is performed on a plane and in a limited area. RGB-D sen-
sors are suitable for this application as they only have to detect the
position of the worker's hands; occlusion can be avoided by prop-
erly placing the sensor; the worker remains all the time in the field
of view of the camera and is located opposite the sensor.

Besides obtaining optimum layouts from the RGB-D sensor data,
the system can be used for the constant monitoring of the work-
station. The GA continually analyses the sensor data for obtaining
new layouts to better adapt to changes in volumes or production
systems, or to changes inworkers' positions. In this way, the system
will alert the production engineers about a new distribution better
adapted to the new situation, who will then decide whether to
implement it.
The following sections describe the developed procedure and its
application to a case study in a workstation for the assembly of
small components. In Section 2, ergonomic and productive criteria
for proper assembly workstation layout are described. Section 3
shows the use of RGB-D sensors for data recording and their use
in GA for finding optimal layouts based on the sensor data. In
Section 4, the system is applied to a case study. The results and
limitations of this approach are discussed in Section 5. Finally, some
conclusions are drawn in Section 6.

2. Layout of assembly workstations

In assembly workstations workers assemble parts of products to
obtain finished products or sub-assemblies. The parts to be
assembled are in the worker's surroundings, who must reach and
assemble them usually following certain order and using the right
tools. The assembly workstations can be part of an assembly line or
independent posts. According to the Department of Labor of the
United States, in 2015 there were 1,834,000 workstations of this
kind in the USA (Occupational Outlook Handbook, 2015). Although
the general trend is to automate the assembly process, there are
many assembly workstations operated by workers due to technical
problems or the high cost of automation.

In these workstations, a poor layout of the working elements
(usually arranged over a workbench) will result in low efficiency,
premature fatigue, health problems and mistakes (Sanders and
McCormick, 1993). The designer must determine the best loca-
tions for working elements (parts, tools, equipment, etc.) within the
working area, taking into consideration different productive and
ergonomic criteria which may even be conflicting with each other
(Battini et al., 2011; Das and Sengupta, 1996; Deros et al., 2011;
Saptari et al., 2011; Shikdar and Al-Hadhrami, 2012, 2007; Shik-
dar and Al-Kindi, 2007). For this reason designers usually use
intelligent calculation techniques such as GA, neural networks,
fuzzy logic or knowledge-based systems. A review of these tech-
niques could be found in Zha and Lim (2003).

Some ergonomic design principles can be drawn from the
studies mentioned above. For example, frequently used working
items should be kept close to the worker. If products must be
assembled in a specific order, working items that are used in
combination or that are close in the assembly sequence must be
kept together. Placing working items in areas that require extra
effort from the worker to reach them should be avoided; if total
avoidance is not possible, at least those less frequently used
working elements should be placed in these areas. Heavy working
items should be placed in an easy-to-reach area that requires
minimal operator movement, and does not require bending or
twisting to move from the access point to the install point. Parts
requiring inspection or precision handgrip should be placed near
the worker. The zone where the parts are assembled should be
located in front of the worker, avoiding prolonged work periods in
areas requiring neck or trunk twisting. Parts or tools to be handled
with the right or left hand should be placed in the corresponding
part of the working area, avoiding the hands crossing the worker's
sagittal plane to pick them up. Other design principles to be
considered regarding item placement in normal and maximum
working areas (Das and Behara, 1995) can be seen in Das and
Sengupta (1996).

There are several techniques for optimizing workplace distri-
bution (Zha, 2003). As a general rule, it is necessary to analyze the
arrangement of the working elements in the workplace and
workers' movements while performing their tasks. The data ob-
tained are analyzed using specific software (Santos et al., 2007),
CAD systems and heuristic or metaheuristic techniques (Zha, 2003)
to obtain the best layout. The capture of theworker's reaches can be
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performed in different ways. For example, recording the task using
a video camera for further frame-to frame analysis (Shinde and
Jadhav, 2012), using three-dimensional motion capture systems
(Best and Begg, 2006) or inertial measurement systems (Brodie
et al., 2008). In general, these systems have limited accuracy or
are difficult to use in real-world applications due to complexity,
bulk and space requirements, considerable initial investment to
purchase the equipment, high costs of maintenance and the
needing of employ highly trained technical staff (Trask and
Mathiassen, 2012).

In current production systems changes in products or produc-
tion volumes are frequent to adapt to market demand. Even,
different products can be processed in the same workstation.
Therefore, workstation layout should be developed simultaneously
considering several production processes, or to be easily adapted to
potential changes in the manufacturing process. In addition, a
particular workstation can be operated by several workers in
different shifts. Even if the assembly order is fixed, there are
anthropometric differences between operators, as well as different
ways of performing each task. It is therefore advisable that work-
station layout considers all workers who occupy the post, or even,
set customized layouts for each worker. It might even be advisable
to set specific layouts for workers with health problems that should
avoid performing certain movements.

For these reasons, the processes of data acquisition, information
analysis and layout design should be simplified. The use of RGB-D
sensors for data recording and metaheuristics, like GA, for
optimal layout design based on sensor data allows the automation
of this process. Moreover, it is a low cost system, requiring little
space, low maintenance costs and not highly qualified staff.

3. Genetic algorithms for solving facilities layout problems

To obtain the best layout of the items in the working area can be
considered a Facility Layout Problem (FLP) (Kusiak and Heragu,
1987). A FLP considers the layout, with no overlaps, of a group of
elements of known and unequal areas in a flat area of given di-
mensions. The layout must be obtained in such a way that costs
related to the interactions between the elements are kept to a
minimum. Finding the optimal layout of workstations can be
considered a case of FLP.

Solving a FLP is a common issue in many types of problems
(plant layout, memory allocation, packing …) (Drira et al., 2007;
Dyckhoff, 1990; Islier, 1998). When the number of objects to be
distributed and the number of constraints to consider is high it is
not possible to find exact procedures to solve the problem (Amaral,
2006). Commonly used techniques are simulated annealing
(Saifullah Hussin and Stützle, 2014), tabu search (James et al.,
2009), ant algorithms (Hani et al., 2007; Jain and Sharma, 2005),
memetic algorithms (Merz and Freisleben, 1999), particle swarm
optimization (€Onüt et al., 2008), genetic algorithms (Diego-Mas
et al., 2009; El-Baz, 2004) or neural networks (Hasegawa et al.,
2002; Zha, 2003).

Of the various techniques for solving the FLP, those based on GA
have given good results (Srinivas and Patnaik, 1994), and within
this group, those based on the slicing tree structure (Tam,1992), are
efficient in the search for geometrically acceptable solutions. GA
perform a stochastic guided search based on the evolution of a set
of structures (chromosomes) as it occurs in natural species
(Goldberg, 1989). GA start with a set of problem solutions (initial
population) represented by chromosomes (finite arrays) randomly
generated. Each chromosome is evaluated using a fitness function
to determine its suitability for the requirements of the problem.
The initial population undergoes several transformations so as to
generate a new set of solutions that inherit the best characteristics
of their predecessors. These transformations are guided by some
genetic operators (usually selection, crossover and mutation),
which combine or modify the chromosomes representing the so-
lutions. This process is repeated until reaching a previously set stop
criterion, for example, a certain number of iterations is reached, or a
certain number of iterations without a new best solution have been
performed.

For the layout obtained to be really applicable the imposed
geometrical restrictions must be strictly respected. Solutions that
do not conform to these limits are considered unacceptable. For this
reason, in this work we propose to use the GA suggested in Diego-
Mas et al. (2009). This GA allows solving facility layout problems
with strict geometric constraints. A detailed description of its
operation can be found in Diego-Mas et al. (2008). This GA is pri-
marily intended for optimizing industrial facilities layouts; how-
ever, it is possible to adapt it to be used for optimizing workstations
layouts by including in its fitness function new terms to consider
ergonomic criteria. Section 4.3 will show how the fitness function
has been modified to operate with the information acquired from
an RGB-D sensor and to consider ergonomic criteria.

4. Material and methods

The system proposed in this work uses an RGB-D sensor to
detect the positions of the worker's hands while performing the
task and a GA that calculates the best workstation layout based on
the criteria set by the designer. This process is developed in three
stages. The first stage involves collecting information about the
workstation under analysis (e.g. the number and dimensions of the
working elements to distribute and the dimensions of the working
area). In the second stage, an RGB-D sensor detects the positions of
theworker's hands while performing the task. Finally, the sequence
of the positions of the hands is sent to the GA that calculates the
best workstation layout. Specific software consisting of three
modules was developed to control the system. The first module
(data module) allows data input about the task to analyze. The
second (tracking module) controls the RGB-D sensor and saves the
sequence of movements. The third (calculation module) imple-
ments the GA for optimum layout design.

4.1. System configuration

The first stage involves collecting information about the work-
station that is input into the first module of the software. The data
correspond to the dimensions of the working area and the working
elements to be distributed in it. The working area is the area in
which the worker performs his task and where the different
working elements will be distributed. Generally, it matches the
dimensions of the worktable or workbench. The working area
needed data are width (W) and height or depth (H).

The working elements to distribute (hereinafter referred to as
items) are the different elements that take up space in the working
area. Items can be parts, bins, tools or any space for the worker to
develop some kind of activity. The number of items to be distrib-
uted will be called n. The areas occupied by the items are the space
required for the activity associated with them can be performed
normally. The areas of the items are considered to be rectangular
and of flexible geometry, which means that the geometric ratio
(depth divided by width) of the area allocated to each item may
vary within certain limits (geometric constraints).

Let ai be the area occupied by each item i, and rmin_i and rmax_i
the minimum and maximum geometric ratios allowed for each
item i. Fig. 1 shows the possible shapes of a flexible geometry item;
Item area remains constant while the ratio between item depth and
width varies within certain limits (rmin and rmax). For the definition



Fig. 1. Range of variation of the shape of an item given min and max geometric ratios.
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of the geometric ratios allowed for an item it should be considered
that certain activities require a specific orientation. For example,
Fig. 1 shows that with ratios lower than 1 item orientation is hor-
izontal, while ratios higher than 1 allow vertical item orientations.

Finally, information regarding the position of each item in the
initial layout, ie, at the time of data collection, will be provided.
Thus, for each item i, the coordinates of two opposite corners of the
rectangle occupied by the item are calculated. Fig. 2 shows these
vertices ([x1,y1], [x2,y2]) for one item.

4.2. RGB-D sensor configuration and data acquisition

The sensor used in this work was Microsoft Kinect. This RGB-D
sensor calculates the positions of the joints transforming the co-
ordinates into an array of data. The x, y and z-axes are the axes of
the depth sensor. This right-handed coordinate system places the
sensor at the origin with the positive z-axis extending in the di-
rection of the sensor's camera. The positive y-axis extends upward,
and the positive x-axis extends to the left (NUI, 2013).

The RGB-D sensor should be placed in a position where the
worker's upper limbs are visible, avoiding occlusion due to the
presence of objects in the workstation (Fig. 2). The sensor will be
placed as close as possible to the sagittal plane of the worker or in a
range of ±40� (Diego-Mas and Alcaide-Marzal, 2014). With this
sensor configuration, the lower limbs are unlikely to be detected by
the sensor; however, this application only requires data of the
upper limbs.

Using the information of the positions of the items on the
working plane, the sensor control software defines a rectangular
prism for each item. The prism base is the area occupied by the
item, and its height is a parameter (h), which may be the same for
all items or different depending on the height of the objects
occupying that position on the working plane (Fig. 2). These prisms
are called Virtual Sensors (VS), and are defined by the coordinates
Fig. 2. Schematic view of the configuration of motion capture system.
of its vertexes in the coordinate system of the sensor.
During data capture the sensor determines the position of the

worker's hands. Kinect V1 skeleton-tracking algorithm is able to
track two joints of the hand, one in the wrist and the other in the
palm. Kinect V2 has introduced two new joints in the hand (hand-
tip and thumb). The sensor control software can use any of these
joints to detect the position of the hand. In this paper, the joint
located in the center of the hand was used with satisfactory results.

When the sequence of the worker's movements varies (for
example, when the assembly sequence is not fixed) it can be
preferable to capture data from several work cycles. Thus, a layout
can be obtained considering the variations in the sequence of
movements. When the sequence of movements is fixed it suffices
with the data obtained from only one work cycle.

When the coordinates of the position of a hand are inside one VS
an event is recorded. This event indicates the time, the hand (left or
right) and which VS has been activated. During access to a partic-
ular item, for example, to pick up a tool, the worker's hand can pass
through other items. To prevent the recording of these intermedi-
ate items, the software only captures the event if the hand remains
inside the VS for a time longer than a time threshold (th).

By placing the sensor in a suitable position, it is unlikely to have
occlusion of the upper limbs. However, the worker must handle
objects with his hands while performing his task. Kinect body
tracking algorithm has limitations in its capacity to detect hands'
joints when handling objects. The sensor cannot track the hands
position if the manipulated object is large. As a hypothesis of our
work, there is not large objects that must be handled in the target
workstation.

In addition, it is difficult to track the hands when their positions
are very close to the table surface. To deal with this problem the th
parameter and the height (h) of the VSmust be carefully defined by
the evaluator. The proposed system only needs to detect when the
hand reaches the VS and stays inside it during a time larger than th.
Generally, when a worker must pick up an object placed in a given
VS, he is not transporting other object on his hand. To ensure the
detection before the object is picked up, the height of the VS must
be larger than the height of the object. In this way, the hand is free
of objects and it is not in contact with the working surface when it
enters the VS, therefore, the system properly detects the access to
the corresponding VS. The important point here is establishing a
suitable th value. Preferably, thmust be small, doing it easy to detect
that the worker's hand has stayed inside the target VS enough time.
However, if th is too small, others VS crossed during the hand
movement to reach the target VS, can be detected causing false
positives.

Performing some tests over the workstation to be analyzed
helps to establish the suitable th value. In our tests, once the hand
touches the object inside the VS, and depending on the size of the
object, the sensor can infer the position of the hand using previous
positions and the surrounding joints' positions. If the inferred po-
sition is inside the VS, the th value is easily reached without using a
very small value and avoiding false positives.

Finally, th value should be set also considering the frequency at
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which the RGB-D sensor captures hand positions. Kinect obtains
depth images at a rate of up to 30 frames per second. However, data
processing to detect if hands are inside VS is time consuming.
Therefore, the frequency of data acquisition and image processing
depends on the number of VS. Obviously, th must be greater than
the time between two consecutive images (preferably there must
be several images in a th period).
4.3. Calculation process

After the time set for the collection of data by the RGB-D sensor,
the data is sent to the calculation module to be used by the GA. The
information consists of two arrays, one with right hand data and
one with left hand data. The arrays have as many columns as VS
were activated during the observation period and three rows. The
first row indicates the VS code, the second row indicates the time
when the VS was activated from the beginning of the observation
period, and the third row indicates the time when the VS was
deactivated. This data allows to know how many times a worker's
hand reached an item and the number of times the worker's hand
moved from one item to another.

As it has been aforementioned in Section 3, in a GA each chro-
mosome is evaluated using a fitness function (or cost function) to
determine its suitability for the requirements of the problem.
Therefore, in our case, it is necessary to identify the criteria for
measuring the quality of a workstation layout and to include them
in the fitness function. As indicated in Section 2, many criteria can
be considered. Which should be considered in a particular case
depend on the characteristics of theworkstation and the developed
task. So that, the evaluator must determine the most suitable
criteria for each particular problem including them in the cost
function. Generally, a function for measuring the cost (C) of a layout
in the GA proposed in Diego-Mas et al. (2009) may have the form of
Equation (1) where n is the number of items to be distributed.

C ¼ Cr
Xn

i¼1

Xn

j¼1

dijrij þ Cg
Xn

i¼1

igi (1)

In the second member of Equation (1) there are two terms. The
first term (called Relational Cost) measures the cost derived from
the distance between items. This cost depends on the distance
between items in the resulting distribution layout (dij) and the
relationship among them (rij). Although there are other options
(Tompkins et al., 2010), the distance is usually measured as the
euclidean distance between the geometric centers of the items. The
rij ratio must be defined in such a way that measures the need for
closeness between two items in the workstation. For example, rij
value should increase with the number of worker's hand move-
ments from item i to item j (data obtained from the RGB-D sensor).
rij value may also be higher if the objects handled between the
items are heavy or if they require careful handling. Therefore, the
first term of Equation (1) penalizes the layouts in which frequently
accessed items are far of the worker, especially if these items are
heavy objects or require special handling. This term minimizes the
distance traveled by the worker’ hands and the energy needed to
develop the task.

The second term of Equation (1) (Geometrical Cost) measures
the degree of compliance with the geometric constraints of the
items in the layout. igi value is 0 if the geometric ratio of an activity
i is within the range [rmin_i,rmax_i]. If not, its value increases pro-
portionally to the distance to the nearest end of that range. Cr and
Cg are weighting coefficients of each of the terms of the cost
equation. These coefficients allow the designer to give more or less
weight to each criterion.
These two terms (Relational and Geometrical costs) must be
always present in the fitness function of the GA proposed in Diego-
Mas et al. (2009). However, the designer can add as many terms as
necessary to Equation 1to consider other ergonomic criteria.

5. Experimental application

To verify the operation of the proposed system an experiment
was performed in an assembly workstation of a toy factory. In this
post, small parts and sub-assemblies are assembled using different
types of tools. All needed parts and required tools were distributed
in a workbench. The assembly sequence was fixed, and the opera-
tions were always carried out in the same order. Fig. 5a illustrates
the initial layout of the items in the work area.

The workstation was observed over several work cycles. The
average assembly cycle time was 380.2 s with small deviations of a
few seconds in some cycles. Item distribution and their required
areas were analyzed and minimum andmaximum geometric ratios
were determined. Plant engineers were consulted to set the
maximum and minimum ratios. In addition, it was determined
which items should be placed on the left or right of the worker
because they had to be employed or reached preferably with one of
his hands. The analysis provided a list of 20 items to be distributed
(identified with numbers from 1 to 20) whose characteristics are
described in Table 1. Work area dimensions were W ¼ 157.0 and
H ¼ 73.1 cm.

The second column of Table 1 indicates the area of each item.
The next three columns show theminimum andmaximum ratios of
each item and the ratio in the initial layout of the workstation. The
sixth column shows the side where the item should preferably be
located. The eighth and ninth columns indicate whether the
handled object was heavy and if it required precision or careful
handling. Asterisks in the third column of Table 1 indicate if the
item was considered as having free orientation. An item meets its
geometric constraints when its ratio lies in the range between the
minimum andmaximum ratio. In the case of a free orientation item
the symmetric interval relative to 1, that is [1/rmax, 1/rmin], is also
considered valid. For example, in the case of item 3 the validity ratio
was [0.50, 0.80]. As it is a free orientation item the ratios in the
range [1.25, 2.00] were also considered valid.

A Kinect sensor and a desktop PC with a 3.6 GHz processor and
12 GB RAM were used to analyze 10 consecutive work cycles
(Fig. 3). After some tests, the height of all VS (h) was set at 35 cm
and th was set at 0.3 s. Since the assembly order was fixed, the
sequence of activation of the VS was equal in all work cycles with
only some small differences in their activation times. Therefore,
instead of using the data of 10 cycles, only one cycle with the mean
activation times of 10 cycles was analyzed. VS activation sequence
andmean activation times are shown in Fig. 4. The number of times
that each VS was activated is shown in the seventh column of
Table 1.

As it has been aforementioned in Section 4.3, the fitness func-
tion of the GA must be adapted to the characteristics of the work-
station and the developed task. In this case, two terms were added
to Equation (1) to consider two ergonomic criteria, giving place to
Equation (2), which was used as fitness function. In addition to the
Relational Cost and Geometrical Cost of Equation (1), Equation (2)
includes two additional terms.

The third term of Equation (2) was called Positional Cost. When
a workstation is analyzed the evaluator must state the suitable side
for each item. If an object is usually reached or used with the right
hand, it is convenient to place this item in the right side of the
worker. In this term, di depends on the distance from the center of
item i to an axis that divides the working plane into two equal
halves, left and right (E in Fig. 5). di takes the value 0 if the center of



Table 1
Characteristics of the items to be distributed in the case study. Asterisks in the third column indicate if the item was considered as having free orientation.

Item ID Area (m2) Ratio Preferred side Access count Heavy
item

Precision required r1j

initial min max

1 0.1476 0.65 0.40 0.8 center 1 No No e

2 0.0682 1.41 0.60 1.66 right 2 No No 0.4
3 0.1342 1.38* 0.50 0.80 left 2 No No 0.8
4 0.0517 1.07 0.33 1.23 right 3 No No 0.8
5 0.0359 0.37 0.33 0.66 indifferent 2 No Yes 1.6
6 0.0799 0.69* 0.57 0.75 indifferent 3 No No 0.8
7 0.0320 1.73 0.50 2.00 right 5 No Yes 1.6
8 0.0341 0.70 0.57 1.72 right 1 Yes Yes 2.6
9 0.0341 0.70* 0.57 1.72 indifferent 4 No No 0.4
10 0.0343 0.71* 0.50 0.80 left 4 Yes No 2.2
11 0.0341 0.70* 0.57 0.92 right 2 No No 2.0
12 0.0378 2.54* 0.30 0.75 indifferent 3 No No 0.8
13 0.0260 0.54* 0.42 0.75 indifferent 1 No Yes 1.6
14 0.0804 0.69 0.57 0.92 right 1 No No 0.4
15 0.0664 1.37* 0.42 0.92 indifferent 4 No No 0.4
16 0.0216 1.60* 0.32 0.75 left 5 No No 1.6
17 0.0335 1.03 0.80 1.25 right 2 No No 2.0
18 0.0577 0.60* 0.50 0.80 right 2 No Yes 1.2
19 0.0815 0.42* 0.37 0.90 right 1 No No 0.8
20 0.0569 0.61 0.50 1.94 left 1 No No 0.4

Fig. 3. Right and left hands activating two virtual sensors in the tracking module.
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Fig. 4. VS activation sequence and mean activation times.
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item i is placed on the preferred side of the axis (Table 1). Other-
wise, di takes the value of the distance from the center of item i to
the axis. Thus, layouts where items are placed on the preferred side
have a lower Positional Cost. More the layout breaches these con-
ditions, the more the Positional Cost increases. If a layout accom-
plish all the positional conditions, the Positional Cost becomes 0.

The fourth term of Equation (2) was called Fixed Cost. Some-
times some items should be located at specific positions in the
layout. For example, in this case, item 1 was the area that the
worker used for assembly operations. The worker reached pieces
and tools from other items and conducted operations in the area
defined by item 1. For this reason, the item 1 should be located
opposite the worker. For this end, Fixed Cost was added to Equation
(2). In this term dp1 takes the value 0 if the center of item 1 is on the
E axis and one side coincides with the edge of the working area.
Otherwise dp1 takes value 1.

Finally, heavy objects and precision handling were also
considered in the analysis (Table 1). To this purpose, Equation (3)
was used to calculate each rij. In this equation, Accij is the num-
ber of times the handsmoved from item i to j or from j to i.Hij takes
value 1 for heavy objects and 0 otherwise, Pij takes the same values
depending on whether the item demands precision handling, and
Ca, Cw and Cp are weighting coefficients. In this case study they
were assigned values 0.4, 0.2 and 0.4 respectively. The items
handled in the workstation were not too heavy, therefore it was
considered convenient to assign a lower value to Cw. All move-
ments began or ended in item 1 (the assembly area in front of the
operator), therefore, rij took the value 0 except when i or j were
equal to 1. These values are shown in the last column of Table 1.
Coefficients Cr, Cg, Cs and C1 of Equation (2) were assigned values 1,
150, 10 and 200, respectively. The values of these coefficients were
set according to the range of absolute values of each cost and their
relative importance.

C ¼ Cr
Xn

i¼1

Xn

j¼1

dijrij þ Cg
Xn

i¼1

igi þ Cs
Xn

i¼1

di þ C1 dp1 (2)

rij ¼ Ca$Accij þ Cw$Hijþ Cp Pij (3)

5.1. Sensitivity of the procedure to parameters variations

In the presented procedure, the th parameter and the height (h)
of the VS must be defined by the evaluator. If th value is too small,
false positives could occur when the hand crosses others VS to
reach the target VS. On the other hand, if the value is too big, the
access to some items could not be detected. By definition, the h
value in each VS must be greater than the height of the VS. In our
experimental application the same value (35 cm) was used. This
value was 15 cm greater than the height of the higher item. In order
to establish the robustness of this procedure to the variations of th
and h, the values of these parameters were varied and the VS
activation sequence was recalculated for each combination of
parameters.

th was varied between 0.1 and 1.0 s with increments of 0.1 s. For
each of these values of th, h took the values 20, 25, 30, 35, 40, 45 and
50 cm. The solution obtained by the GA depends only on the VS
activation sequence, therefore, if there is not changes in the acti-
vation sequence there will not be changes in the final solution. The



Fig. 5. Initial (a) and optimized (b) workstation layout. Thickness of white lines is proportional to the relationships between the linked areas.
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worker activity during the task development was captured using
Kinect Studio 2.0. Then, it was not necessary to capture the data
again for each combination of parameters.
6. Results

The GA used in this work was a genetic algorithm in two stages
(Diego-Mas et al., 2009). Both stages were executed for 1000 gen-
erations. The probabilities of crossover andmutationwere set at 0.9
and 0.01 respectively, and the population size was 50. The time
taken by the calculation module on a desktop PC with a 3.6 GHz
processor and 12 GB RAM was 4 min and 20 s.

The best workstation layout generated by the GA is shown in
Fig. 5b. The cost of this layout, calculated with Equation (2), is
977.51. In this solution all items are located on the preferred side to
facilitate access with the correct worker's hand, and geometric
constraints of all items are met. Item 1 is located opposite the po-
sition of the worker. Thus, Geometrical, Positional and Fixed costs
of the GA solution are 0, so that the overall cost of the solution is
due to the Relational Cost.
The thickness of the white lines in Fig. 5 is proportional to the
level of relationship of the activities that these lines connect. The
items joined by thicker lines require more closeness. In the work-
station layout generated by the GA, the length of the thicker lines is
lower than in the initial layout. The Relational Cost of the initial
layout was 1315.65; therefore, the GA solution achieved a reduction
of 25.76%. The Positional Cost of the GA solution is 0, while in the
initial layout some items were placed on the wrong side.
6.1. Results of the sensitivity analyses

Two kind of errors could be make when th and h values are
improperly set: missing the access to an VS that the hand of the
worker really reaches (Missing VS accesses in Table 2) and detecting
the access to a VS when the hand crosses others VS to reach the
target VS (False positives in Table 2). Table 2 presents the number of
each kind of error for each combination of parameters. The number
of errors was calculated comparing each obtained sequence with
the original sequence. The original sequence had been previously
checked to ensure that it was free of errors. The only h value that



Table 2
Results of the sensitivity analysis.

th value (s.) h value (cm.) Missing VS accesses False positives

0.1 20 1 4
Rest of values 0 4

0.2 20 1 1
Rest of values 0 1

0.3 20 1 0
Rest of values 0 0

0.4 20 1 0
Rest of values 0 0

0.5 20 1 0
Rest of values 0 0

0.6 20 1 0
Rest of values 0 0

0.7 20 2 0
Rest of values 1 0

0.8 20 4 0
Rest of values 3 0

0.9 20 5 0
Rest of values 4 0

1.0 20 7 0
Rest of values 6 0
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changes the activation sequence is 20 cm. For this reason, the re-
sults are grouped in two intervals for h value (20 cm and Rest of
values).
7. Discussion

The use of RGB-D sensors as 3D motion capture systems in the
field of ergonomics is promising. The tracking algorithms of these
devices automatically record body positions at high sampling fre-
quency without the disadvantages of other systems based on
markers placed on the skin or inertial sensors (cost, setup times,
skilled technical staff, discomfort) (Clark et al., 2012). However, this
technology should be further developed to be used widely in real
working environments. It is necessary to solve certain problems
like the position of the worker facing the sensor or lack of accuracy
when a body part is hidden by an object or another part of the body.
Recent studies try to solve these problems through the simulta-
neous use of several sensors placed in different sites (Asteriadis
et al., 2013; Berger et al., 2013; Geiselhart et al., 2016; Zhang
et al., 2012). However, the use of several sensors must deal with
problems such as interference in the speckle patterns projected
onto the scene or differences in the positions of the tracked joints of
each sensor (Sarbolandi et al., 2015). Moreover, the accuracy of the
lower body data is poor (Yang et al., 2015), and joint rotations are
not correctly captured or not captured at all for the peripheral limbs
or the head.

In this paper we have used data from RGB-D sensors for the
optimization of the layout of working elements in workstations. In
this proposal, current limitations of RGB-D sensors and tracking
algorithms have been taken into account. The level of development
of the sensors is enough to automate this process since only data
from the upper limbs are needed, the work area is limited and the
sensor can be placed conveniently relative to the worker. The
presented system combines the data obtained by the sensor with
genetic algorithms for solving the FLP problem. This model can
generate workstation layouts adapted simultaneously to several
workers or to various production processes in the same post. In
addition, the system can automatically generate new layouts when
the workers' sequence of movements change and, since tracking
algorithms can capture several workers simultaneously, it could be
adapted for designingworkstations for group interaction (Mahoney
et al., 2015).
Different kinds of sensors could be used to detect the positions
of the hands (motion capture systems, inertial sensors, presence
detectors placed in the working area …). These devices are able to
detect the hand's positions more accurately than RGB-D sensors.
However, accuracy is not a big advantage in this application
because it only need to detect if the hands are inside or outside the
virtual sensors. Using RGB-D sensors are less invasive, cheaper and
do not require complex calibration processes. Therefore, although
other methods can be preferred for research purposes, RGB-D
sensors are suitable for use in real work situations where porta-
bility, usability and low cost are critical.

Optimizing the arrangement of the working elements should
take productive and ergonomic criteria into consideration. There
are many ergonomic criteria so that their selection depends on the
type of task and objectives. The proposed system is flexible as it
allows designers to consider as many criteria as necessary. The GA
used to optimize workstation layout employs a cost function
(Equation (2)) that can be modified by introducing new terms to
consider other criteria. For example, in this paper we have only
considered the position of the worker's hands. Although for the
purpose of the present study this information is sufficient, it might
be interesting to track the position of other body joints. For
example, if the position of the shoulders and elbows is tracked
during the development of the task, the abduction angle of the
arms could be calculated and used as criterium.

The tests have revealed certain limitations in the system. For
example, handling large objects can prevent the correct detection
of hand position. Therefore, the procedure described is suitable for
small parts assembly workstations. In the case study, the worker
was handling small parts and tools, so this problem did not occur.
However, when testing with larger items, in some cases the hand
positions were inferred or not tracked. Although in these test the
accuracy of the inferred positions was sufficient to activate the
correct VS, this can be a problem if the size of the VS is small.
Similarly, when the worker's hands are close to the work plane the
number of inferred positions increases. This occurs mainly when
the angle between the line of sight of the sensor and the working
plane is very large (sensor placed very high relative to the work
plane) or when the sensor is too close to the working plane. When
the working plane is horizontal or close to horizontal, this problem
can be solved with proper placement of the RGB-D sensor and a
suitable definition of th. However, when the angle of the working
planewith the horizontal is large it can be difficult to find a suitable
position for the sensor.

RGB-D sensors have non-ignorable measurement errors. To deal
with this problem, some parameters of the presented procedure (th
and h) must be correctly set by the evaluator. In order to measure
the robustness of this method when these parameters change, a
sensitivity analysis was performed. th and h were varied in the
intervals [0.1,1.0] seconds and [20,50] centimeters respectively, and
the number of missing real VS accesses and false positives were
measured. In Table 2 can be seen that the number of false positives
increases when th is lower than 0.3, and the number of missing VS
accesses increases when th is over 0.6. However, the activation
sequence does not vary when the th value ranges between 0.3 and
0.6 s, except when the h value is 20 cm. In this regard, it seems that
the h value does not influence the activation sequence except when
its value is too low. In the workstation used in our experimental
application the height of the higher item was 20 cm. When h is set
to 20 cm the VS corresponding to this item has the same height
than the item, avoiding that the hand can be properly detected. In
Table 2 could be seen that, when h is 20 cm, there is always one
more missing VS access than when h is bigger. In all the cases, this
added missing VS access corresponds to the higher item of the
workstation.
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Considering the limitations of our experimental application, it
seems that this procedure has enough robustness when the pa-
rameters change. The evaluator should take the precaution of
setting h value at least 5 cm bigger than the actual item. On the
other hand, although setting th value requires some previous test,
the interval of values that produces good results is wide enough,
and it is not critical to set some specific value.

Another limitation of our work is related with the real ergo-
nomic performance of the solutions obtained using this procedure.
In the proposed method, the fitness function used in the GA guides
the search for the best layout. Therefore, to consider correctly the
necessary ergonomic criteria in the fitness function is crucial. If the
fitness function is correctly defined the probability of obtaining a
good ergonomic performance in the found layout is high, however,
it is necessary to ensure this through a real ergonomic post-
assessment. In this regard, our future research will be focused on
measuring the ergonomic quality of the solutions obtained using
this algorithm, and how the definition of the fitness function of the
GA, and its weighting coefficients, affects the ergonomics of the
workstation. Meanwhile, a human expert must validate the solu-
tion obtained before putting it into practice. In its current form, this
procedure is a tool to support the tasks of the ergonomists, but
human experts must take the final decision.

Other future work may try to extend the capacity of the system
to workstations with several working planes in different orienta-
tions. Achieving this objective implies to adapt the GA in order to
distribute the items in different working surfaces.

8. Conclusions

Although RGB-D sensor technology should be further developed
so that its use is widespread in real work environments, nowadays
it is possible to use them in applications that take into account their
current limitations. In this paper a RGB-D sensor has been used for
acquire body postural data which were further processed by a ge-
netic algorithm to optimize workstation layout. The results show
that this application allows automating and simplifying this pro-
cess. The system can generate layouts adapted to several produc-
tion processes for workstations where several products are
manufactured, or layouts optimized for several workers that
occupy the same workstations in different shifts.
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