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Abstract

This paper presents an enhanced Extended State Observer (ESO)-based control strategy to deal with the disturbance
attenuation problem for a class of non integral-chain systems subject to non-linear mismatched uncertainties and external
disturbances. The proposed control strategy does not assume the integral-chain form and it is formed by a state-feedback
plus a dynamic disturbance compensation term, which is designed to reject the disturbance effect in the system output.
From a theoretical point of view, the proposed strategy is reduced to the conventional ESO when the integral chain form
and the matched condition hold. In this sense, this paper is presented as an extension of the ESO principles to cover
a wider class of systems. The theoretical results show that the internal zero-dynamics plays an important role in ESO-
based control design. Also, the closed-loop stability is analyzed and some numerical simulations show the effectiveness
of the proposal in comparison with previous ESO-based techniques.

Keywords: Extended State Observer (ESO), Generalized Extended State Observer (GESO), Active Disturbance
Rejection Control (ADRC), Mismatched Uncertainty, Disturbance Rejection, Nonintegral-chain system.

1. Introduction

Disturbance rejection is a fundamental topic in control
theory [1]. Many control systems are normally affected
by unmeasurable external disturbances and/or unmodeled
internal nonlinearities which may degrade the closed-loop
control performance [2]. Due to the increasing interest in
high precision control, the use of disturbance estimation
techniques, which are capable of attenuating those uncer-
tainties, are often useful in the controller design. The final
objective is that the control operation should not be influ-
enced by those internal or external uncertainties [3].
Many Disturbance Observer Based Control (DOBC)

methods, such as the Disturbance Observer (DOB) [4, 5],
the Equivalent Input Disturbance (EID) [6, 7], the Un-
certainty and Disturbance Estimator (UDE) [8, 9, 10] or
the Extended State Observer (ESO) [11, 12], among oth-
ers, have been developed with this main purpose. Their
principal ideas are: i). to obtain a disturbance estimation
through the plant input-output measurements and ii). to
select a control action which, by means of the disturbance
estimation, attenuates its effect. A detailed DOBC review
can be found in the recent survey paper [1].
Although many results in DOBC have been devel-

oped for systems satisfying the so-called matched condi-
tion, there are fewer results concerning systems with mis-
matched uncertainties as pointed out in [3, 13, 14]. In fact,
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it is mentioned in [13] that “the disturbance-based feed-
forward control for systems with mismatched disturbances
is a longstanding unresolved problem”. Indeed, it is found
that in many practical systems such as magnetic levita-
tion [15], flight control systems [16] or permanent magnet
synchronous motor systems [17], the disturbance does not
affect the system in the same channel than the control ac-
tion. This motivates the development of DOBC techniques
capable of dealing with mismatched uncertainties.

The aforementioned DOBC techniques employ some
kind of plant information for disturbance observation and
control design. The ESO is the one that uses the less infor-
mation as only the system relative degree should be known
[18]. For that reason, the ESO has become very popular
in recent years. It is the core of the Active Disturbance
Rejection Control (ADRC) [18, 19] and many studies pro-
viding theoretical analyses [20, 21, 22, 23], or practical
applications [24, 25, 26, 27], have been proposed. As the
knowledge of the relative degree is its unique requirement,
it is natural to doubt about what kind of plant information
needs to be really considered for control design [13, 28].
However, the original ESO assumes that the plant is ex-
pressed in the Conventional Integral Chain Form (CICF)
satisfying the matched condition [3, 12]. Therefore, its
applicability is restricted to systems which, directly or by
means of a change of variable, can be expressed in the
CICF. In this sense, the advantage of requiring the less
plant information for control design is contrasted with the
limitation of expressing the system in the CICF for anal-
ysis purposes. Performing such transformation is not al-
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ways easy as it is mentioned in [18, 19, 29], specially if the
system has zero-dynamics. Therefore, motivated by the
successful results of the ESO, it was recently pointed out
in [13] that it is imperative to develop ESO-based control
techniques for systems without assuming the CICF.

One of the major results in this area is presented in
[13], where a novel Generalized Extended State Control
(GESO) is proposed in order to extend the ESO princi-
ples to a class of systems with mismatched uncertainties
that are not expressed in the CICF. Concretely, in [13],
a disturbance compensation gain is designed to reject the
disturbance from the system output in steady-state, while
the disturbance, f , is assumed to satisfy limt→∞ ḟ = 0.
Other works in which the CICF is not assumed have been
recently developed. In [28] an ADRC is designed for the
same system considered in [13] but assuming the matched
condition. In that work, it is shown that the knowledge
of the inner plant dynamics led to better control perfor-
mance. In [30] it is shown how the system considered in
[13] can be reduced to the CICF if the plant does not
have zeros. In [31], the GESO is applied to control a cart-
pendulum system.

This paper aims to apply the ESO principles to control
a class of non integral-chain systems subject to non-linear
mismatched uncertainties. The proposed control strategy
does not assume the integral-chain form and it is formed
by a state-feedback plus a dynamic disturbance compen-
sation term. This strategy is able to attenuate an uncer-
tainty whose kd+1 time-derivative is bounded (being kd a
positive integer unequivocally determined by the internal
system structure); and it is able to reject an uncertainty
satisfying limt→∞ f (kd+1)(t) = 0. Some simulation results
show that the disturbance attenuation is enhanced with
this strategy in comparison with the previous ones. Also,
from a theoretic point of view, this scheme can be inter-
preted as an extension of the GESO-based control pre-
sented in [13] in which the requirement of steady-state
is avoided; or as an extension of the conventional ESO
in which the requirements of the CICF and the matched
condition are eliminated. This paper also shows that the
knowledge of the internal zero dynamics plays an impor-
tant role in ESO-based control design.

The rest of the paper is structured as follows. In Sec-
tion 2 the system under consideration is presented and the
GESO-based control law is recalled. Section 3 contains the
main results. First, the proposed ESO-based control law is
defined in general terms. Then, in Section 3.1, an analysis
in order to obtain the explicit expression of the required
control action so that the effect of the mismatched uncer-
tainty is removed from the system output is performed.
The closed-loop stability is analyzed in Section 3.2 and
some examples to show the feasibility of the proposal are
shown in Section 4. Finally, the conclusions and future
works are drafted in Section 5.

2. Problem statement

Let us consider the following class of uncertain non-
linear systems [13]:

{

ẋ = Ax+Buu+Bff
(
x, ω(t), t

)
,

y = Cx
(1)

where x = [x1, . . . , xn]
T ; A ∈ Rn×n; Bu ∈ Rn; Bf ∈ Rn;

and f(·) : Rn × R× R≥0 → R is an uncertain possibly
non-linear function. For the sake of simplicity, let us de-
note f , f

(
x, ω(t), t

)
.

The traditional ESO is proposed for systems which are
expressed in the CICF, that is, with

A =










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0










, Bu =










0
0
...
0
b










, Bf =










0
0
...
0
1










,

C =
[
1 0 0 · · · 0

]
.

(2)
On the other hand, the GESO deals with system (1)

with arbitrary structure [13]. The control law proposed
therein is given by

u = Kxx̂+ kGf̂ (3)

where

kG = −[C(A+BuKx)
−1Bu]

−1C(A+BuKx)
−1Bf (4)

is the disturbance compensation gain, Kx is the feedback
gain, and x̂, f̂ are estimations of x, f , respectively, which
are obtained by constructing the following GESO:

[
˙̂x

˙̂xn+1

]

=

[
A Bf

01×n 0

] [
x̂

x̂n+1

]

+

[
Bu

0

]

u+ L(y − Cx̂),

(5)

being, L ∈ R
n+1 the observer gain and x̂n+1 , f̂ .

Remark 1. The GESO is reduced to the traditional ESO
when the matrices are given by (2).

Remark 2. If Kx, L are chosen such that the system and
the observer closed-loop matrices are Hurwitz, then, the
bounded stability of (1) under (3)-(5) is guaranteed under
the assumption of boundedness of f and ḟ , [13].

In general, the control law (3)-(5) removes the effect of f
from the system output in steady state if limt→∞ ḟ(t) = 0.
In this paper, a further extension of (3) is proposed. First,
an analysis is performed in order to show that, under per-
fect disturbance estimation, a dynamic disturbance rejec-
tion term can be designed such that f is completely re-
jected from the system output without the need of impos-
ing the steady-state requirement. Then, the closed-loop
system stability when observation errors are considered is
analyzed.
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Definition 1. The next definitions are made:
i). Ā , A+BuKx.
ii). zu,j ∈ C, j = 1, . . . ,mu, with zu,j 6= zu,j+1, ∀j, de-
notes the zeros in the triplet (Ā, Bu, C).
iii). nu,j ∈ N denotes the multiplicity of zu,j .
iv). The zeros zu,j, and their respective multiplic-
ities nu,j, are divided into: minimum phase zeros,
zum,j , num,j , j = 1, . . . ,mum

; non-minimum phase ze-
ros, zunm,j, nunm,j , j = 1, . . . ,munm

; and zeros at the
imaginary axis, zu0,j, nu0,j, j = 1, . . . ,mu0

; satisfying
mu = mum

+munm
+mu0

.
v). The total number of zeros in the triplet (Ā, Bu, C)
is denoted by mtot

u =
∑mu

i=1 nu,i. And, in the same
way: mtot

um
=
∑mum

i=1 num,i, mtot
unm

=
∑munm

i=1 nunm,i and

mtot
u0

=
∑mu0

i=1 nu0,i; are the total number of minimum
phase zeros, non-minimum phase zeros and zeros at the
imaginary axis, respectively.
vi). The same notation defined in ii), iii), iv) and v) is
used for the triplet (Ā, Bf , C) by replacing the subindexes
‘u’ by ‘f ’.

Also, the next assumptions are considered.

Assumption 1. The pair (A,Bu) is controllable.

Assumption 2. The pair (Ā, C) is observable.

Assumption 1 is imposed for state-feedback design. As-
sumption 2 is imposed because, for the design of the distur-
bance rejection term, it is needed to compute O−1, being
O the observability matrix of the pair (Ā, C).

3. Proposed scheme

The proposed control law has the following structure:

u = Kxx̂+ ud

(
η̂, f̂ ,

ˆ̇
f, . . . , f̂ (kd)

)
,

{

ξ̇ = Φξ + Γf̂ ,
η̂ = Hξ.

(6)

where Kx is chosen such that Ā is Hurwitz; ud(·)
is a function, subsequently derived, which is designed
to reject the effect of f from the system output;
kd = max{0, mtot

f −mtot
u }; the matrices Φ ∈ R

p×p (Hur-

witz), Γ ∈ Rp and H ∈ R1×p, p = mtot
um

, also subsequently
defined, represent a dynamic component in the control law;

and x̂, f̂ ,
ˆ̇
f, . . . , f̂ (kd), are estimations of x, f, ḟ , . . . , f (kd),

respectively, which are obtained by constructing the next
Extended States Observer:

˙̂xe = Aex̂e +Beu+ Le

(
y − Cex̂e

)
; (7)

where Le is the observer gain and

xe = [x, f, ḟ , . . . , f (kd)]T ,

Ae =





A Bf 0(n×kd)

0(kd×n) 0(kd×1) I(kd×kd)

0(1×n) 0(1×1) 0(1×kd)



 , Be =





Bu

0(kd×1)

0(1×1)



 ,

Ce =
[
C 0(1×1) 0(1×kd)

]
.

(8)

The next section is devoted to find the explicit ex-
pression of ud(·) and the matrices Φ, Γ, H ; then, once
ud(·), Φ, Γ, H are determined, the closed-loop system sta-
bility is analyzed in Section 3.2.

3.1. Rejection of the Mismatched Uncertainty

In order to determine ud(·), let us consider that x̂ = x,

f̂ = f , ˆ̇f = ḟ , . . . , f̂ (kd) = f (kd) and η̂ = η. In this ideal
scenario, the closed-loop system formed by (1), (6) is

{

ẋ = Āx+Buud(·) +Bff,

y = Cx.
(9)

Now, let us show how ud(·) is unequivocally determined
if it is designed to reject the effect of f from the system
output. The next proposition is needed for the subsequent
analysis.

Proposition 1. Under Assumption 2, the system (9) is
input-output equivalent to







v̇1 = v2,

v̇2 = v3,

...

v̇n = CĀnO−1 v + buūd + bf f̄ ,

y = v1.

(10)

being ūd , [ud, u̇d, · · · , u
(n−1)
d ]T , f̄ , [f, ḟ , · · · , f (n−1)]T ,

O the observability matrix of system (9), vi = y(i−1),
v = [v1, . . . , vn]

T and

bu =
( [

CĀn−1Bu CĀn−2Bu · · · CBu

]
− CĀnO−1U

)

,
[
bu,0 bu,1 · · · bu,n−1

]
,

bf =
( [

CĀn−1Bf CĀn−2Bf · · · CBf

]
− CĀnO−1F

)

,
[
bf,0 bf,1 · · · bf,n−1

]
.

(11)
with

U =










0 0 · · · 0 0
CBu 0 · · · 0 0
CĀBu CBu · · · 0 0

...
...

. . .
...

...
CĀn−2Bu CĀn−3Bu . . . CBu 0










F =










0 0 · · · 0 0
CBf 0 · · · 0 0
CĀBf CBf · · · 0 0

...
...

. . .
...

...
CĀn−2Bf CĀn−3Bf . . . CBf 0










Proof. See Appendix A.

The representation (10)-(11) has two remarkable prop-
erties, which are indicated in the following lemma:

3



Lemma 1. The coefficients bu and bf in (11) satisfy:

1. bu,i = 0, ∀ i > mtot
u and bf,i = 0, ∀ i > mtot

f .

2. The roots of bu,0 + bu,1s+ . . .+ bu,n−1s
n−1 and

bf,0 + bf,1s+ . . .+ bf,n−1s
n−1, are equal to the zeros

zu,j, j = 1, . . . ,mu and zf,j, j = 1, . . . ,mf ; respec-
tively.

Proof. See Appendix B.

Proposition 1 shows that, in order to remove the effect
of f from the system output, it is needed to introduce a
disturbance rejection term, ud, which solves the differential
equation buūd + bf f̄ = 0. This is developed in Theorem 1
and Corollary 1.

Theorem 1. If (Ā, Bu, C) does not have non-minimum
phase zeros (munm

= 0), then the effect of f is rejected
from the system output if, and only if,







ud = −η − α0f − α1ḟ − . . .− αkd
f (kd)−

− β1

∫ t

0

f ds− . . .− βki

∫ t

0

. . .

∫ t

0
︸ ︷︷ ︸

ki

f (ds)ki

ξ̇ = Φξ + Γf,

η = Hξ,
(12)

where α0, α1, . . . , αkd
∈ R, kd = max{0,mtot

f −mtot
u }, are

given by (21); β1, . . . , βki
∈ R, ki = max{0, mtot

u0
−mtot

f0
},

are given by (20), and the matrices Φ ∈ C
p×p, Γ ∈ C

p×1,
H ∈ C1×p, p = mtot

um
, being Φ Hurwitz, are determined by

Φ =








Φ1 0 . . . 0
0 Φ2 . . . 0
...

...
. . .

...
0 0 . . . Φmum







, Γ =








Γ1

Γ2

...
Γmum







,

H =
[
H1 H2 . . . Hmum

]
,

(13)

where Φj ∈ C(num,j)×(num,j), Γj ∈ C(num,j)×1,
Hj ∈ C

1×(num,j) are given by

Φj =










zum,j 1 0 . . . 0
0 zum,j 1 . . . 0
0 0 zum,j . . . 0
...

...
...

. . .
...

0 0 0 . . . zum,j










, Γj =








0
0
...
1








Hj =
[

r
j,(num,j)
gs r

j,(num,j)−1
gs . . . rj,1gs

]

,

(14)
with the coefficients rj,kgs

∈ C, with j = 1, . . . ,mum
,

k = 1, . . . , num,j determined by (18).

Proof. From (10) it is concluded that if ud is chosen such
that the following differential equation holds

buūd + bf f̄ = 0, (15)

then the effect of f is removed from the system output. As
(15) is linear in ud and f , the Laplace transform can be
used to solve it. Applying the Laplace transform to (15)
leads to

Ud(s) = −
bf,0 + bf,1s+ . . .+ bf,n−1s

(n−1)

bu,0 + bu,1s+ . . .+ bu,n−1s(n−1)
F (s). (16)

By Lemma 1 it is known that the roots of the numerator
and the denominator in (16) are the zeros of (Ā, Bf , C)
and (Ā, Bu, C), respectively. Therefore, by means of the
partial fraction expansion, equation (16) can be always
decomposed as

Ud(s) = −
(

Gs(s) +Gu(s) + pd(s) + pi(1/s)
)

F (s). (17)

with

Gs(s) =

mum∑

j=1

(
num,j∑

k=1

rj,kgs

(s− zum,j)k

)

, Re{zum,j} < 0

(18)

Gu(s) =

munm∑

j=1

(
nunm,j∑

k=1

rj,kgu

(s− zunm,j)k

)

, Re{zunm,j} > 0

(19)

pi(1/s) =

ki∑

j=1

βj

(
1

s

)j

, ki = max
{
0, mtot

u0
−mtot

f0

}

(20)

pd(s) =

kd∑

j=0

αjs
j , kd = max{0, mtot

f −mtot
u }

(21)

with rj,kgs
, rj,kgu

∈ C and αj , βj ∈ R.
The proof follows by imposing the condition of the

absence of non-minimum phase zeros, munm
= 0, which

forces Gu(s) = 0. Therefore, if the inverse Laplace trans-
form is applied to (17)-(21), it leads to (12)-(14), where
(13)-(14) is the Jordan canonical form of (18).

Remark 3. Note that, by Theorem 1, the explicit form of
the disturbance rejection term, ud(·), is exclusively deter-
mined by the zeros of the system. This illustrates that the
internal zero-dynamics plays an important role in ESO-
based control design.

Remark 4. The coefficients αj , βj in (12), and rj,kgs
in

(14), need to be computed in order to implement the con-
trol law. Those coefficients can be directly obtained by a
wide number of mathematical tools, e.g. by the command
residue(bf , bu) in MatLab R©.

Remark 5. The disturbance rejection term, ud(·), is re-
duced to the one in the GESO-based control by imposing
the steady-state in the differential equation (15). In this
case, ud

(
η, f, . . . , f (kd)

)
= kdf , where kd = −bf,0/bu,0.

Also, it can be easily verified that, if the matrices are given
by (2), then (12) leads to the conventional ESO-based con-
trol law ud(t) = −bf .
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In Theorem 1 it is necessary to impose the condition
munm

= 0. Otherwise, when applying the inverse Laplace
transform, the matrix Φ in (12) would be the state space
realization of Gs(s)+Gu(s) containing unstable poles. The
next Corollary establishes a result when munm

6= 0.

Corollary 1. If (Ā, Bu, C) has non-minimum phase zeros
(munm

6= 0), then the effect of f is attenuated from the
system output if its maximum frequency, ωmax

f (rad/s),

satisfies that ‖ωf‖ < minj

{
Re{zunm,j}

}
and







ud = −η − α0f − . . .− αkd
f (kd) − γ0f − . . .− γkd

f (kd)

− β1

∫ t

0

f ds− . . .− βki

∫ t

0

. . .

∫ t

0
︸ ︷︷ ︸

ki

f (ds)ki

ξ̇ = Φξ + Γf,

η = Hξ,
(22)

where the new coefficients γ0, γ1, . . . , γkd
∈ R, are given

by (23).

Proof. From the proof of Theorem 1, if Gu(s) 6= 0 then,
by means of the Taylor expansion around s = 0, Gu(s) can
be approximated by a kd-order polynomial:

Gu(s) ≈

kd∑

j=0

γjs
j , pu(s), ∀ ‖s‖ < min

j

{
Re{zunm,j}

}
.

(23)
As this Taylor expansion is only defined when

‖s‖ < minj
{
Re{zunm,j}

}
, then frequencies higher than

minj

{
Re{zunm,j}

}
in the disturbance may cause distur-

bance amplification.

Remark 6. It can be seen that (12) and (22) match with
the definition ud

(
η, f, ḟ , . . . , f (kd)

)
in (6).

Remark 7. The integrals appearing in (12), (22) may
cause confusion as it may be thought that, in general, con-
stant uncertainties will cause unbounded control actions.
However, the theorem states that the integrals only appear
when mtot

u0
−mtot

f0
> 0, and these are very singular systems

which rarely appear in practice. For this reason, this case
will not be considered in the sequel.

3.2. Closed-loop stability

The closed-loop stability is analyzed when system (1) is
controlled by (6). The following assumptions are imposed.

Assumption 3. The pair (Ae, Ce) is observable.

Assumption 4. The triplet (Ā, Bu, C) does not have ze-
ros at the imaginary axis.

Assumption 5. f , f(x, ω(t), t) ≡ f̄(ω(t), t), [13]

Assumption 6. f (kd+1) is bounded.

Assumption 3 is imposed for observer pole-placement.
Assumption 4 rules out the case pointed out in Remark 7
in which the system only responds to the rate of variation
of the control input rather than its actual value. It is
considered in order to simplify the stability analysis as it
forces that no integrals appear in ud(·). Assumptions 5-6
are widely employed in the ESO-based control literature
[12, 13, 25, 32]. In fact, dealing directly with f

(
x, ω(t), t

)

without assuming boundedness led to important technical
difficulties, being an actual challenging topic [1, 10]. These
assumptions, are reasonable when the system stability is
not affected by the lumped disturbance. In that case, x(t)
in f is interpreted as an external time-varying function
(in the same way as ω(t)) and f(x, ω(t), t) ≡ f̄(ω(t), t).
This happens in many control applications whose major
dynamics are stabilized by feedback and the resulting
lumped disturbance term is weak enough so that the
stability is not affected [13].

Now, let us define the observation error as eo , xe− x̂e,
with xe defined in (8); and eη , η − η̂. The following
lemma proves that these errors are bounded.

Lemma 2. Under Assumptions 3, 5, 6, the boundedness
of eo and eη is guaranteed if Le in (7) is chosen such that
Ae − LeCe is Hurwitz.

Proof. First, let us prove that eo is bounded. Rewrite (1)
as 





ẋ = Ax+Bfxf,0 +Buu

ẋf,0 = xf,1

...

ẋf,kd
= f (kd+1)

(24)

where [xf,0, xf,1, . . . , xf,kd
]T = [f, ḟ , . . . , f (kd)]T . Ex-

pressing (24) in matrix form lead to

ẋe = Aexe +Beu+Be,ff
(kd+1) (25)

with xe, Ae, Be defined in (8) and Be,f = [ 01×(n+kd), 1 ]
T .

By differentiating eo , xe − x̂e and incorporating (24)
and (7) it is concluded that

ėo = (Ae − LeCe)eo +Be,ff
(kd+1) (26)

which is bounded, for any f (kd+1) bounded, since
(Ae − LeCe) is Hurwitz [25].
Let us now show that eη is bounded. As eo is bounded,

it implies that ef , f − f̂ is also bounded. From (6), one
has that

{

ξ̇ = Φξ + Γf̂ = Φξ + Γ
(
f − ef

)
,

η̂ = Hξ,

then, by the superposition principle, η̂ = η + eη, where eη
is given by

{

ξ̇ = Φξ − Γef ,

eη = Hξ.

5



As Φ is Hurwitz, and ef is bounded, then eη is also
bounded.

Now, the next lemma expresses the control action u,
defined in (6), in terms of the actual states, x, and the
actual disturbances, η, f, ḟ , . . . , f (kd), plus some terms
depending on the previously defined errors.

Lemma 3. Suppose Assumption 4 is satisfied. Then, con-
trol law (6) is

u = Kxx+ ud

(
η, f, . . . , f (kd)

)
− [Kx, −λ]eo − eη, (27)

where λ = [λ0, . . . , λkd
], with λi = αi + γi, i = 0, . . . , kd.

Proof. It is verified that

u = Kxx̂− η̂ − λ0f̂ − . . .− λkf̂
(kd) = [Kx − λ]x̂e − η̂,

and that

Kxx+ ud

(
η, f, . . . , f (kd)

)
= Kxx− η − λ0f − . . .− λkf

(kd)

= [Kx − λ]xe − η.

Then, the proof immediately follows by subtracting both
expressions.

Finally, the next theorem establishes the bounded sta-
bility of y(t).

Theorem 2. Suppose Assumptions 1-6 are satisfied, then
the bounded stability of y(t), when system (1) is being con-
trolled with (6)-(7) is guaranteed if Le is chosen such that
Ae − LeCe is Hurwitz and Kx is chosen such that Ā is
Hurwitz.

Proof. The closed-loop system (1), (27) is







ẋ = Āx+Buud(η, f, . . . , f
(kd)) +Bff−

−Bu[Kx, −λ]eo −Bueη,

y = Cx,

which proves that y(t) is stable since Buud(η, f, . . . , f
(kd))

exactly rejects the effect of Bff in the system output (it
has been designed for that purpose in section 3.1), and
eo, eη are bounded by Lemma 2.

Theorem 2 proves that the system output is bounded for
any kind of disturbance satisfying that f (kd+1) is bounded.
However, it is important to note that the disturbance at-
tenuation capabilities may be better, in general, for low-
frequency disturbances rather than for high-frequency dis-
turbances. This fact can be easily seen in equation (26),
which shows that the observation error produced by the
observer (7)-(8) is driven by f (kd+1). Therefore, high-
frequencies, which imply ‖f (kd+1)‖ >> 0, may cause non-
negligible observation errors, degrading the disturbance re-
jection capabilities of (12) or (22).
However, it is also important to realize that equation

(12) constitutes a sufficient, and necessary, condition in

order to reject the mismatched uncertainty. Therefore,
even under perfect observation conditions, rejecting high-
frequency disturbances may imply that high control ac-
tions are needed, and the maximum value of u(t) is limited
in practical applications. So, if high-frequency mismatched
disturbances are going to affect the system, then, depend-
ing on each particular case, it may be more convenient to
implement an approximation of the control law (12), (22)
by eliminating some of the higher derivatives.

4. Numerical examples

In this section some comparative examples are consid-
ered to illustrate the main ideas of the paper. In Example 1
a comparison with respect to the GESO is considered. In
Example 2, the proposed control law is applied to an un-
certain unstable system with an internal minimum-phase
zero. It is compared with the GESO and also, for the sake
of completeness, the system is also simulated under the
conventional ESO when the internal zero is neglected. Fi-
nally, Example 3 is introduced to show the feasibility of
the proposal when attenuating periodical signals in non-
minimum phase systems.

Example 1. Let us consider the system presented in [13]:






ẋ1 = x2 + ex1 + ω(t)

ẋ2 = −2x1 − x2 + u(t)

y = x1

(28)

being f
(
x, ω(t), t

)
, ex1 + ω(t), with ω(t) = 0, 0 ≤ t < 5

and ω(t) = 3, t ≥ 5. The system matrices are:

A =

[
0 1
−2 −1

]

, Bu =

[
0
1

]

, Bf =

[
1
0

]

C =
[
1 0

]
.

The feedback control law (6) is set with Kx = [−4, −4]
so that Ā = A+BuKx is

Ā =

[
0 1
−6 −5

]

with poles at p = [−2, −3]T . The coefficients bu, bf
are computed by (11) resulting in bu = [bu,0, bu,1] = [1, 0],
bf = [bf,0, bf,1] = [5, 1]. By Lemma 1 it is known
that the zeros of (Ā, Bu, C) and (Ā, Bf , C) are the
roots of bu,0 + bu,1s = 1 and bf,0 + bf,1s = 5 + s, re-
spectively. Hence, mtot

u = mtot
u0

= mtot
um

= mtot
unm

= 0;
mtot

f = mtot
fm

= 1; and mtot
f0

= mtot
fnm

= 0. As the system
does not have non-minimum phase zeros, the term ud(·)
in the control law (6) is obtained by direct application of
Theorem 1 with kd = 1, ki = 0, p = 0, leading to:

ud(f, ḟ) = −α0f − α1ḟ .

where the coefficients α0 = 5, α1 = 1 are given by (21).
Therefore, control law (6) results in

u = Kxx̂− 5f̂ −
ˆ̇
f (29)
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Figure 1: Simulation of Example 1.

where the estimations x̂, f̂ ,
ˆ̇
f are obtained by the ESO (7)

with kd = 1.
In order to establish a comparison, another simulation

is performed with the GESO-based control law (3), which
results in

u = Kxx̂+ kGf̂ = Kxx̂− 5f̂ (30)

where kG is given by (4) and the estimations are obtained
by (5).
Simulation results can be seen in Figure 1. The observer

gains has been set in order to place the observer poles at
s = −5. The system initial state is x0 = [1, 0]T while the
observer initial state has been set to zero. The GESO-
based control law produces an Integral Amplitude Error
(IAE) of 3.12, while with this proposal the IAE is reduced
in a 56% (IAE = 1.76).

Example 2. Let us now consider the following unstable
system whose nominal part has an internal minimum-
phase zero:







ẋ1 = 3x1 − 1.5x2 + 0.5x3 + 2u(t),

ẋ2 = 2x1,

ẋ3 = x2 + tanh(x3) + ω(t)

y = 0.25x2 + 0.75x3.

(31)

with f
(
x, ω(t)

)
, tanh(x3)+ω(t); ω(t) = 0, 0 ≤ t < 5 and

ω(t) = 5t̄e−
1

2
t̄, t ≥ 5 being t̄ = t − 5, as depicted in

Figure 2. The system matrices are

A =





3 −1.5 0.5
2 0 0
0 1 0



 , Bu =





2
0
0



 , Bf =





0
0
1





C =
[
0 0.25 0.75

]
.
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Figure 2: Simulation of Example 2.

being det(λI −A) = (λ − 1)3.
In what follows, the proposed control law, the GESO-

based control law and the conventional ESO are developed
for system (31).

Proposed scheme: The feedback gain is set to
Kx = [9, 18, 31.5] so that the the matrix Ā becomes:

Ā =





−15 −37.5 −62.5
2 0 0
0 1 0



 .

with poles at s = −5.
The coefficients bu, bf are computed by (11) leading

to bu = [3, 1, 0] and bf = [25, 11.25, 0.75]. Hence, by
Lemma 1 the zeros of (Ā, Bu, C) and (Ā, Bf , C) are given
by the roots of (3 + s) and (25 + 11.25s+ 0.75s2), respec-
tively. Then, mtot

u = mtot
um

= mum
= 1 and zum,1 = −3,

nzum,1
= 1; while mtot

f = mtot
fm

= mfm = 2 and
zfm,1 = −12.287, nzfm,1

= 1, zfm,2 = −2.713, nzfm,2
= 1.

As the triplet (Ā, Bu, C) does not have non-minimum
phase zeros, then ud(·) is determined by direct application
of Theorem 1 with kd = 1, ki = 0, p = 1, resulting in







ud(η, f, ḟ , f̈) = −η − α0f − α1ḟ ,

ξ̇ = Φ1ξ + Γ1f,

η = H1ξ,
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Figure 3: Simulation of Example 2 when the traditional ESO is
applied neglecting the internal zero.

with α0 = 9, α1 = 0.75, determined by (21); and Φo = −3,
Γo = 1 and Ho = −2, determined by (13)-(14) with r1,1gs

given by (18). Then the resulting control law is given by
(6) where the estimations are obtained by (7) with kd = 1.
GESO-based control: The matrix Kx is set with same

values. Therefore, the control law is given by

u = Kxx̂+ kGf̂ = Kxx̂− 8.33f̂ (32)

where kG is given by (4) and the estimations are obtained
by (5).

The simulation is presented in Figure 2, where the
proposed control law and the GESO-based control law
are introduced into (31). The system initial state is
x0 = [1, 0, 0]T and the observer gains has been set to
place the observer poles at s = −5. It can be seen how the
GESO rejects the disturbance when the steady-state is
reached, while with the proposed scheme the disturbance
is rejected before, i.e. when it is satisfied that f̂ ≈ f ,
ˆ̇
f ≈ ḟ .

Conventional ESO-based control: For the sake of com-
pleteness, let us show what would happen if the traditional
ESO is designed for system (31) neglecting the presence of
the internal zero. First, the system is expressed in cascade
form: 





v̇1 = v2,

v̇2 = v3,

v̇3 = ω
(
v, f, u̇

)
+ 3u

y = v1.

(33)

where

ω
(
f(t), u̇

)
= v1 − 3v2 + 3v3 + u̇+ 2.5f − 2.25ḟ + 0.75f̈

is considered as the lumped disturbance.
The feedback matrix is set to Kv = [−41.7, −25, −5]

so that the closed-loop poles of the nominal part of (33)
are placed at s = −5. An extended state v4 = ω(·) is
considered so that the ESO control law results in

u(t) = Kvv̂ −
v̂4
3
, (34)

where the estimations are obtained by constructing an
ESO for system (33) with poles at s = −5.
A simulation is depicted in Figure 3 where it can be

seen that the conventional ESO-based control produces
oscillations in the control action due to the presence of
u̇ in the lumped uncertainty. If the observer gains are
increased, it becomes more unstable. Instability appear
when the observer poles are placed at s = −6. This shows
that the knowledge of the internal zero-dynamics is crucial
in ESO-based control design.

Example 3. Let us change system (31) by the following
one having an internal non-minimum phase zero:







ẋ1 = −3x1 − 1.5x2 − 0.5x3 + u(t),

ẋ2 = 2x1

ẋ3 = x2 + sin
(π

5
t
)

+ sin(x3) cos(x2),

y = 0.5x1 − x2,

(35)

whose new matrices are

A =





−3 −1.5 −0.5
2 0 0
0 1 0



 , Bu =





1
0
0



 , Bf =





0
0
1





C =
[
0.5 −1 0

]
.

If x(0) = 0 and u(t) = 0, then this system is sta-
ble for all t = [0,∞). Therefore, Kx is set to zero
and just the performance of u(t) = ud(t) in attenuating
f(x, t) = sin

(
π
5 t
)
+ sin(x3) cos(x2) will be evaluated.

The coefficients bu, bf are computed by (11) leading
to bu = [−2, 1, 0] and bf = [−3.5, −3, −1]. Hence, by
Lemma 1 the zeros of (A,Bu, C) and (A,Bf , C) are given
by the roots of (−2 + s) and (−3.5− 3s− s2), respectively.
So, mtot

u = mtot
unm

= munm
= 1. As munm

6= 0, the results
of Corollary 1 are applied.
The zeros of the system establish the form of ud, which,

in this case, it is determined by kd = 1, ki = 0, p = 0
leading to:

ud(t) = −α1f − α2ḟ − γ1f − γ2ḟ (36)

with α1 = −1, α2 = −5 given by (21) and γ1 = 3.375,
γ2 = 6.75 given by (23). The final term ud results in:

ud = −1.75f̂ − 2.375 ˆ̇f. (37)

where the estimations are obtained by (7) with poles
placed at s = −10.
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Figure 4: Simulation of Example 3.

It is not hard to see that the GESO-based control law,
which is constructed by imposing the steady-state in (36),
leads to:

ud = −1.75f̂. (38)

A simulation result is presented in Figure 4. It can be
seen how, with the proposed method, the disturbance re-
jection capabilities of ud(t) are enhanced. This is because
ḟ has a strong effect in (37). See how the generated control
action (green line) has small oscillations when compared
with the GESOBC (dashed blue line). This is precisely

the effect of
ˆ̇
f in (37).

As a matter of fact, if the conventional ESO is applied
to this system in the same way as in (33), the closed loop
is found to be unstable.

5. Conclusions and Future Works

This paper presents an ESO-based control strategy to
solve the disturbance attenuation problem for a class
of non integral-chain systems subject to non-linear mis-
matched uncertainties. In order to improve these results,
future works could be focused in providing a closed-loop
stability analysis relaxing the assumptions which have
been imposed. Another research direction is the design
of new observers being able to accurately estimate all the
states and disturbance derivatives, even in the presence of
high-frequency disturbances. Finally, the proposal could

be extended to deal with MIMO systems with multiple un-
certainties, to handle uncertainties in the system nominal
matrices.

Appendix A. Proof of Proposition 1

Let us set






v1 = Cx

v2 = Cẋ = CĀx+ CBu ud + CBf f

v3 = Cẍ = CĀ2x+ CĀBu ud + CBu u̇d+

+ CĀBf f + CBf ḟ

...

vn = · · · = CĀn−1x+
[
CĀn−2Bu . . . CBu 0

]
ūd

+
[
CĀn−2Bf . . . CBf 0

]
f̄

(A.1)
being vi = y(i−1). System (A.1) can be written in matrix
form:

v = Ox+ U ūd + F f̄ , (A.2)

where, by Assumption 2, x can be obtained as

x = O−1v −O−1U ūd −O−1F f̄ . (A.3)

Obviously, (A.1) has been constructed to satisfy







v̇1 = v2,

v̇2 = v3,

...

v̇n = CĀnx+
[
CĀn−1Bu CĀn−2Bu · · · CBu

]
ūd+

+
[
CĀn−1Bf CĀn−2Bf · · · CBf

]
f̄ ,

y = v1.

where, by substituting (A.3), leads to (10)-(11).

Appendix B. Proof of Lemma 1

1). It is well-known [29] that

CĀkBu = 0, ∀ k < n−mtot
u − 1

CĀkBf = 0, ∀ k < n−mtot
f − 1.

Therefore, the prove immediately follows as it is straight-
forward to show that

CĀnO−1U =
[
b̄u,0 . . . b̄u,mtot

u
0 . . . 0

]
,

CĀnO−1F =
[

b̄f,0 . . . b̄f,mtot
f

0 . . . 0
]

.

2). System (9) can be seen as one of the multiples state-
space realizations of the following differential equation

y(n) + a1y
(n−1) + . . .+ any =β0u+ . . .+ βn−1u

(n−1)+

+γ0f + . . .+ γn−1f
(n−1).
(B.1)
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The zeros of (Ā, Bu, C) and (Ā, Bf , C) are determined by
the roots of β0 + β1s + . . . + βn−1s

n−1 and γ0 + γ1s +
. . .+γn−1s

n−1, respectively. By writing (B.1) as

y(n) =− a1y
(n−1) − . . .− any + β0u+ . . .+ βn−1u

(n−1)

+γ0f + . . .+ γn−1f
(n−1),

it can be seen that it exactly match with the last state
equation in (10) with the coefficients βi, γi, identified with
bu,i, bf,i in (11), respectively.
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