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Reviewer #1: In this article, the authors investigated the relationship between the modification of the 
crystal and band structures via substitutions in the Ti sublattice or intercalation with lithium and its 
redox behavior as well as transport properties. The manuscript shows rigorous scientificity and provides 
good theoretical support about studying the applicability of NASICON-type compounds. It is basically 
interesting and worth to be considered for publication after minor revisions. But, there are several 
points that the authors should address and/or clarify: 
 
 

1. As shown in Fig.6a, there are two reduction peaks for Li0.7Ti1.7Nb0.3(PO4)3 between 2.0 V and 
2.8 V, however, others are only one reduction peaks. How to explain it? 

 
Generally, for NASICONs lithium insertion proceeds via a two-phase mechanism, as described in 
equation (2) in the manuscript. This stands behind constant potential vs. reference related to the 
Ti4+/Ti3+ redox couple, as usually observed for LiTi2(PO4)3. Conversely, it seems that for 
Li0.7Ti1.7Nb0.3(PO4)3, beside Ti4+/Ti3+, another redox process appeared. We guess that it could be related 
to partial substitution of titanium with niobium and introduction of Nb5+/Nb4+ (Nb5+ + e- = Nb4+) 
reduction process. We were not able to find any reports on redox processes related to Nb in the 
NASICON structure to support this statement, however, Patoux and Masquelier (Chem. Mater. 2002, 14, 
2334-2341) showed that potential of lithium insertion into NbPO5 coupled with Nb5+/Nb4+ pair could be 
close to 2 V vs. Li+/Li, which makes our guess plausible. 
This explanation was included in page 11 of the manuscript. 
 

2. The LiTi2(PO4)3 exhibits a typical two-phase mechanism as clearly shows in Fig.4 via chemical 
reaction of LiTi2(PO4)3 with n-butyllithium. But what I am interested in is that the phase 
change via electrochemical lithiation process. 

Patoux and Masquelier (Chem. Mater. 2002, 14, 5057-5068) clearly demonstrated a two-phase 
mechanism of electrochemical insertion of lithium to LiTi2(PO4)3, as presented below: 

 
Patoux and Masquelier (Chem. Mater. 2002, 14, 5057-5068) 
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Our preliminary investigations including in situ X-ray diffraction measurements on electrochemically 
lithiated LiTi2(PO4)3 (not included in the manuscript), confirmed two phase type of mechanism for the 
electrochemical lithiation process, similarly as reported by Patoux and Masquelier: 
 

 
Our result. Not published. 

 
To avoid any confusions, we slightly amended the text of the manuscript (page 9, lines 17-39). 
 
 

3. There are some format/grammar errors in the manuscript, Please check through the full 
manuscript and revised them. For example:  
 
"Building on that knowledge, numerous polyanionic framework structures were proposed and 
successfully applied in commercial batteries.[4,5] made it possible to establish the main rules 
governing ionic conductivity in NASICONs". 

This sentence was corrected. We apologize for a formatting error.  
 
In page 3 line 12, the authors should correct a word from "Li3Ti2(PO4)2" to "LiTi2(PO4)3". 

 
In the sentence (page 3 line 12): “Interestingly, transfer from M1 to M2 sites occurs simultaneously with 
lithium insertion and in the fully lithiated Li3Ti2(PO4)2 all of the lithium occupies M2 sites.” The cited 
composition stands for the fully lithiated form of the NASICON. This composition does not need to be 
corrected. 
 
 

4. Maybe some related works could supplement to enrich the paper: (1) Adv. Energy Mater. 
2017, 1700247. (2) Nano Energy. 2016, 28, 224-231. (3) Chem. Mater., 2016, 28(18): 6553-
6559. 

 
As suggested, references were added to the manuscript to broaden the introductory section. 
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Abstract 

The location of redox couples in transition metal compounds is among the key factors that 

determine their applicability. AM2(PO4)3 NASICONs (A = Na, Li; M = Ti, Zr, Hf, Ge, Sn, 

Fe, ...) form an intriguing group that feature fast ion diffusion and tunable reduction/oxidation 

potentials and can therefore find numerous applications. The present study focuses on the 

LiTi2(PO4)3 member of this family and the possibility of controlling its transport and redox 

properties. It highlights the close relationship between the modification of the crystal and 

band structures via substitutions in the Ti sublattice or intercalation with lithium and its redox 

behaviour as well as transport properties. The correlation between ionic conductivity and the 

position of the Ti
4+

/Ti
3+

 redox potential is discussed. UV-VIS reflectance spectra revealed a 

significant impact of the type of dopant as well as the level of intercalation on the position of 

the fundamental absorption edge, indicating the possibility of modifying the electronic 

structure. In the case of some of the examined dopants (Nb, Sn, In), more complex interaction 

was observed, since they introduce their own redox activity, and thus enable the material’s 

behaviour to be modified even further. 
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Keywords: Electroceramics; Superionic conductor; Electrode potential; Optical 

spectroscopy; Li-ion battery. 

Introduction 

Along with energy production, energy storage is one of the key issues faced by 

modern civilization. Aside from portable electronics, energy grids and transportation 

are also expected to benefit considerably from improved electrochemical energy 

storage.[1] Prospective technologies comprise various types of supercapacitors and 

batteries. Progress in the performance, safety and cost of these systems largely 

depends on improvements in materials, especially electrodes and electrolytes. 

NASICON compounds, represented by the general formula AM2(XO4)3 (A=Li,Na; 

M=Ti,Fe,V,Zr,…; X=P,Si,S), form an intriguing group of compounds. They were first 

discovered in 1970s by Goodenough et al.[2] Later, in 1980s Delmas et al.[3] observed 

reversible intercalation of alkali metal ions in Na1+yTi2(PO4)3 compounds (0≤y≤2), 

indicating their electrochemical activity and applicability as electrode materials. 

Interestingly, due to growing interest in Na-ion batteries recent research efforts 

returned to NASICONs exhibiting reversible sodium incorporation. [4–6] Building on 

that knowledge, numerous polyanionic framework structures were proposed and 

successfully applied in commercial batteries.[7,8]  Subsequent research made it 

possible to establish the main rules governing ionic conductivity in NASICONs.[9–11] 

It was found that it is the size of the tunnels through which mobile ions migrate that 

determines ionic mobility, and that the optimum tunnel size for Li
+
 conduction is 

formed in the LiTi2(PO4)3 crystal lattice. Ionic conductivity can be enhanced further by 

increasing the population of interstitial sites by the appropriate substitution of Ti
4+

 

with aliovalent ions, such as Al
3+

. This was reported to deliver one of the highest pure 

Li
+
 conductivity values – up to 6·10

-3
 S/cm at room temperature for 
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Li1.3Ti1.7Al0.3(PO4)3.[12] The detailed description of NASICON crystal structure can 

be found elsewhere.[11,13–15] Briefly, there are two types of distinct sites for lithium 

(named M1 and M2) inside a skeleton formed by corner-sharing TiO6 octahedra and 

PO4 tetrahedra.[16] For stoichiometric LiTi2(PO4)3, only M1 sites are populated, while 

the M2 ones remain vacant. Additional lithium ions can be inserted chemically or 

electrochemically and they settle into M2 sites. The occupation of M2 sites is thought 

to be essential for ionic diffusivity. Interestingly, transfer from M1 to M2 sites occurs 

simultaneously with lithium insertion and in the fully lithiated Li3Ti2(PO4)2 all of the 

lithium occupies M2 sites.[12,16] Similarly, increased temperature causes lithium to 

be transferred from M1 to M2 sites.[12,17] 

In addition to alkali ion mobility, the location of redox couples in transition metal 

compounds is also a key factor that determines their applicability in electrochemical 

systems. Few water-stable materials offer as many possible applications as 

NASICONs.[18–22] It was found that polyanions actively participate both in the 

formation of the skeleton structure and the positioning of the M
n+

/M
(n-1)+

 redox 

potential through the inductive effect.[23,24] However, there are few papers that 

discuss the effect of aliovalent substitution at the M-site on the location of redox 

couples. López et al.[25] showed that the substitution of titanium with calcium raises 

the Ti
4+

/Ti
3+

 potential by 0.3 V. Since the electrochemical intercalation of lithium 

involves both ionic and electronic components, a correlation between the electronic 

band structure of materials and its reduction (lithiation) potential is expected. In this 

work we investigate the relation between the partial substitution of Ti in LiTi2(PO4)3 

and its crystal structure, transport properties, and band structure as well as redox 

behaviour. The investigated substitutions include 3+ ions (Al
3+

, Ga
3+

, In
3+

), 4+ ions 

(Ge
4+

, Sn
4+

, Zr
4+

) and 5+ ions (Nb
5+

) at concentrations of 0.3 mol per formula unit, for 
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a total of eight compositions: LiTi2(PO4)3, Li1.3Ti1.7M0.3
3+

(PO4)3, LiTi1.7M0.3
4+

(PO4)3 

and Li0.7Ti1.7M0.3
5+

(PO4)3. 

 

Experimental 

Li1.3Ti1.7M0.3
3+

(PO4)
3
, LiTi1.7M0.3

4+
(PO4)3 and Li0.7Ti1.7M0.3

5+
(PO4)3 samples were 

prepared using a high-temperature solid-state reaction. Stoichiometric amounts of 

Li2CO3 (99%, Acros Organics), NH4H2PO4 (99.5%, Avantor Materials), TiO2 

(anatase, 99%, Aldrich), γ-Al2O3 (obtained through the decomposition of Al(OH)3, 

99.9%, Acros Organics), Ga2O3 (99.999%, Alfa Aesar), In2O3 (99.9%, Alfa Aesar), 

GeO2 (99.99%, Alfa Aesar), SnO2 (99.9%, Aldrich), ZrO2 (99.5%, Alfa Aesar) and 

Nb2O5 (99.9%, Roth) were mixed and calcined at 275°C. The precursor powder was 

then homogenized in a Spex SamplePrep high-energy ball mill, pressed into pellets 

and fired at 900°C for 12 h.  

Phase composition and crystal structure were investigated via X-ray diffraction, using 

the PANalytical Empyrean diffractometer with Cu Kα radiation filtered by means of 

nickel foil. The crystal structure parameters were calculated using the Rietveld method 

as implemented in the GSAS/EXPGUI software[26,27]. Ionic conductivity as a 

function of temperature was investigated via AC impedance spectroscopy, using the 

Solartron 1260 frequency response analyser, with an excitation voltage of 100 mV, 

and over the 1 MHz – 1 Hz frequency range. Prior to measurements, both sides of 

polished disk samples were covered with an Au paste, and the paste was fired at 850°C 

for 10 minutes. Impedance spectra were measured in air at temperatures ranging from 

ambient temperature to 200°C, in steps of 25°C. 
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The spectral dependence of the total reflectance (Rtot), consisting of specular and 

diffused reflectance, was measured using the Jasco V-670 UV-VIS-NIR double-beam 

spectrophotometer equipped with a 150 mm integrating sphere. Spectra were collected 

at room temperature over the range of 220-2200 nm, at the rate of 200 nm∙min
-1

 and 

with a 0.5 nm step. Samples were placed in a powder holder with a quartz window. 

The thickness of the powder layer was sufficient to neglect transmittance, and it can 

thus be assumed that absorbance (A) equals A=1-R (R=0-1). The band-gap energy 

(Eg), which is associated with the optical transitions from the valence to the 

conduction band, was calculated from the Kubelka-Munk function[28,29], with an 

error of ±0.02 eV. 

Chemical lithiation of LiTi2(PO4)3 was carried out for a fine powder sample in a 

hexane solution and an argon atmosphere. A 0.5 M solution of n-butyllithium in n-

hexane (Sigma Aldrich) was used as the lithiating agent. To ensure that the reaction 

was complete after LiTi2(PO4)3 had been added, the suspension was stirred for 12h. 

The performed chemical lithiation can be represented as follows: 

                        
        
                                                      (1) 

 

The obtained powder was then rinsed with n-hexane and dried. The amount of 

introduced lithium was controlled by adding a stoichiometric volume of an n-

butyllithium solution. 

Voltammetric analysis was carried out for Li|Li
+
|LiTi2(PO4)3-type cells in two-

electrode R2032 stainless steel casings. Metallic lithium was used as a counter 

electrode. A 1 M LiPF6 solution in ethylene carbonate and diethyl carbonate 

(EC/DEC=50/50 (v/v)) soaked in a fibreglass filter was applied as an electrolyte. The 

working electrode consisted of LiTi2(PO4)3 mixed with carbon black (25 wt.%) and 
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polyvinylidene difluoride (5 wt.%) spread on aluminium foil. Voltammetric scans 

were run in the 1.2-4.0 V range using the Autolab PGSTAT 302N electrochemical 

analyser. During discharge, the electrochemical lithiation of LiTi2(PO4)3 proceeded 

according to the following equation: 

                        

                    
                                          (2) 

Results and discussion 

X-ray diffraction powder patterns for the obtained samples revealed a single-phase 

NASICON-type crystal structure with rhombohedral symmetry (R  c space group). 

Sharp peaks, e.g. full width at half maximum was 0.07° for Li1.3Ti1.7Al0.3(PO4)3 at 

peak from (113) planes, indicated well-crystallized samples and allowed precise 

insight into the unit cell structure. In NASICONs, lattice parameters are controlled by 

at least two factors: the ionic radius of dopants and the population of M1 and M2 

lithium sites. Fig. 1 depicts the relation between the dopant’s ionic radius and a, c and 

unit cell volume values obtained via Rietveld refinement. For LiTi2(PO4)3 with 

isovalent (4+) dopants in the Ti-site, a linear relation was observed, indicating 

unaffected Li- site occupancy. For 3+ dopants, for which the difference between the 

charge of the dopant and that of the host ion entails an increased number of lithium 

ions, the same type of dependence was preserved, although with a more gradual slope. 

This might be associated with changes in the electrostatic interactions in the crystal 

lattice, caused by altered occupancy of the M1 and M2 sites – perhaps the 

depopulation of M2 sites along with formation of vacancies at M1 sites; however, it is 

not possible to describe these effects quantitatively based on the obtained data alone. 

The observed trends are consistent with previous reports.[9,30] To the best of our 

knowledge, no detailed studies on the occupancy of lithium sites in Li1-xTi2-xNbx(PO4)3 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Page 7 of 16 
 

have been published; however, a significant expansion of both a and c as well as 

increased unit cell volume was observed when comparing these parameters with those 

reported for other dopants with a similar ionic radius. This may suggest that lithium 

does not undergo transfer to M2 sites and that the occupancy of M1 sites is decreased. 

 

Impedance spectra measured for the studied samples were used to determine the bulk 

(grain interior) and grain boundary contributions to the ionic conductivity of the 

samples. The highest room temperature Li-ion bulk conductivity (1.7 mS cm
-1

) and 

lowest activation energy (0.16 eV) was observed for Li1.3Ti1.7Al0.3(PO4)3. The obtained 

values remain in agreement with previous reports.[9] All studied 3+ dopants yielded 

highly conducting samples with RT bulk conductivity in the range of 1.7 – 0.3 mS cm
-

1
 and activation energies of 0.16 – 0.23 eV. As discussed by Pérez-Estébanez at 

al.,[12] the creation of vacant M1 sites together with the displacement of lithium into 

M2 sites upon the substitution of Ti with 3+ dopants increases the configurational 

entropy and, in consequence, the mobility of lithium ions. Aside from entropy 

contribution, the size of the bottlenecks which can be controlled via the ionic radius of 

a dopant also affects lithium mobility, as indicated by changes in activation energy. It 

seems that the optimum is reached for Al-doped LiTi2(PO4)3. As 4+ dopants do not 

affect the occupancy of lithium sites, considerably lower bulk ionic conductivity (4·10
-

6
 – 4·10

-7
 S cm

-1
 at 30°C) and higher activation energy (0.27 – 0.51 eV) was observed 

for this group of compositions; nevertheless, also among 4+ dopants, the smallest Ge
4+

 

ion provided the highest conductivity and the lowest activation energy, indicating that 

in this case bottleneck size is the most suitable for Li+ transport. The lowest Li
+
 bulk 

conductivity among the studied samples, i.e. 8·10
-8

 S cm
-1

 at room temperature, with a 

high activation energy (0.48 eV), was measured for the Li0.7Ti1.7Nb0.3(PO4)3 sample. 
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This suggests that vacancies at M1 sites and bottleneck size are not the only factors 

that control transport properties; the displacement of excess lithium into M2 sites (as 

in the case of 3+ dopants) is also necessary to achieve a highly conducting NASICON 

material. A graphical comparison of all measured Li
+
 conductivity values and the 

corresponding activation energies is presented in Fig. 2. 

The electronic band structure and redox activity of materials are factors that are crucial 

for many applications, such as electronics, optics, photoelectrochemistry, catalysis, or 

electrochemical energy storage. The band structure of the investigated materials was 

studied by means of UV-VIS diffused reflectance spectroscopy. The obtained results 

are presented in Fig. 3. 

For each of the studied materials, it was possible to identify an absorption edge in the 

UV range (300 – 400 nm), and for some of them the edge had a complex shape. The 

band gap was calculated using the Kubelka-Munk method, under the assumption that 

the optical transition is direct and allowed. The band gaps calculated for the main 

edges were between 3.52 and 3.74 eV, which indicates that these materials belong to 

the group of wide-band-gap semiconductors. Partial substitution of Ti
4+

 ions with Al
3+

, 

Ga
3+

, Ge
4+

, and Zr
4+

 did not change the shape of the reflectance characteristics, but 

instead slightly shifted its position, suggesting that these elements remain 

electrochemically inert. When it came to In
3+

, Sn
4+

 and Nb
5+

, however, distinct two-

edge absorption appeared, with a second band gap of 2.94 – 3.00 eV. The most 

pronounced change in the spectral dependence of Rtot was observed for the pentavalent 

Nb
5+

 dopant, for which the 3.6 eV band gap was hardly visible and all reflectance was 

red-shifted (3.11 eV). Interestingly, a smaller ionic radius of a doping ion or lower unit 

cell parameters resulted in an increased band gap, as in the case of III-V or II-VI 

semiconductors.[31] Furthermore, another concurrent trend was noted. Namely, the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Page 9 of 16 
 

altered population of lithium sites, as for 3+ dopants or Nb
5+

, narrowed the band gap. 

For example, Li1.3Ti1.7Ga0.3PO4 with similar ionic radii of the host ion and the dopant 

and only slightly different unit cell parameters exhibited a significantly lower band 

gap when compared with the undoped material. 

In order to test and verify the applicability of the observed fundamental relations, the 

entire series of investigated materials were examined in an electrochemical cell as 

working electrodes, which involved the transfer of both lithium ions and electrons. For 

such a process, a correlation between the crystal and electronic structure and reduction 

(lithiation) potential was to be expected. 

Firstly, to investigate the evolution of the band structure of lithium titanium phosphate 

upon lithiation, five compositions at different stages of lithium insertion were prepared 

via the chemical reaction of LiTi2(PO4)3 with n-butyllithium. The crystal structure of 

the lithiated powders was examined by means of X-ray diffraction. A selected region 

showing the evolution of the diffraction peak for reflex (113) is given in Fig. 4. It can 

clearly be seen that increased lithium content resulted in the formation of a new phase, 

Li3Ti2(PO4)3, which is distinct but isostructural with the initial compound and the 

LiTi2(PO4)3:Li3Ti2(PO4)3 ratio gradually evolved from pure LiTi2(PO4)3 to pure 

Li3Ti2(PO4)3. This observation leads to the conclusion that chemical lithiation of 

LiTi2(PO4)3 NASICON proceeds via a two-phase mechanism. The same type of 

mechanism was observed for the electrochemical insertion of lithium. [32,33] 

Diffuse reflectance spectra obtained for chemically lithiated Li1+yTi2(PO4)3, in which y 

varies from 0 to 2, were obtained (Fig. 5). Lithiation leads to extensive changes in 

reflectance across the whole wavelength range, which is already clear at y = 0.5. 

Firstly, it was possible to notice that an increase in y during intercalation was 

accompanied by a shift in the fundamental absorption edge towards longer 
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wavelengths, indicating a decrease in the band gap and the appearance of a second, 

lower-energy transition in the 2.65 – 2.71 eV range. Moreover, the higher-energy 

transition disappeared for y ≥ 1.5. Secondly, an additional absorption band was 

observed between 410 and 1200 nm – in the case of y = 0.5 – and in the range of 460 – 

900 nm – for y ≥ 1. Two minima of reflectance were observed at λ=562 and 690 nm. 

The new absorption bands can be explained by the presence of Ti
3+

 ions, which are 

electron colour centres, formed as a result of lithiation[34]. The band-gap energy 

values calculated for Li1+yTi2(PO4)3 are shown in Fig. 5b. The higher-energy band gap 

initially decreased from 3.68 eV (y = 0) to 3.36 eV (y = 1) and subsequently faded 

away for y ≥ 1.5. On the other hand, the lower-energy Eg slightly increased from 2.59 

eV (y = 0) to 2.71 eV (y = 1.5). Two distinct band gaps that might be associated with 

two phases – LiTi2(PO4)3 and Li3Ti2(PO4)3 – were observed in the X-ray diffraction 

patterns measured for lithiated samples during lithiation; the former was characterized 

by a higher band-gap energy, while the band-gap energy of the latter was lower by ca. 

1 eV. The direction in which the band gap evolved remained consistent with the 

tendencies observed previously for changes of lattice parameters and occupancy of M1 

and M2 lithium sites induced by dopants, as noted above – larger unit cell values and 

shift of lithium ions from M1 to M2 sites lead to a lower band gap. Lithiation might 

therefore be treated as another method of modifying the intrinsic properties of 

functional materials. 

When reducing potential is applied to LiTi2(PO4)3, the Ti
4+

 ions present in this 

compound can be reduced to Ti
3+

 with simultaneous incorporation of additional 

lithium ions. This process can be utilized and investigated in an electrochemical cell 

when LiTi2(PO4)3 is used as an electrode against metallic lithium. Voltammograms 

showing cathodic (reduction) peaks are presented in Fig. 6a. According to Masquelier 
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and Croguennec, the Ti
4+

/Ti
3+

 redox couple in LiTi2(PO4)3 is located at 2.48 V vs. 

Li
+
/Li.[7] In our study, we observed a cathodic peak for LiTi2(PO4)3 cathode at 2.38 

V, which is consistent with previous reports. Certain doping procedures, especially the 

partial substitution of titanium with 3+ elements like Al
3+

, can improve bulk Li-ion 

conductivity by several orders of magnitude; however, there are no reports on the 

effect of dopants on electrochemical behaviour. The position of redox potential was 

therefore investigated for all studied materials: LiTi2(PO4)3, Li1.3Ti1.7M0.3
3+

(PO4)3, 

LiTi1.7M0.3
4+

(PO4)3 and Li0.7Ti1.7M0.3
5+

(PO4)3. Fig. 6b presents the location of the 

redox peak potential for the family of investigated materials.  

It can be noted that – when charge of a dopant was constant – the reduction potential 

shifted towards lower (more reducing) potentials with decreasing dopant radius, which 

entails the contraction of the lattice. As with the previously discussed properties, the 

valence of the dopant also played important role in this case. Isovalent (4+) dopants 

resulted in the most negative potentials, 2.30 V vs. Li
+
/Li. Aliovalent (3+ and 5+) 

dopants exhibited higher reduction potentials, up to 2.55 V for Nb
5+

. The observed 

trend may be understood taking into account the fact that it closely follows the 

dependence of the band gap vs. the ionic radius of dopant and that the Ti
3+

 ion is larger 

than the Ti
4+

 ion, and a smaller space available for titanium ions should stabilize the 

charge state of Ti
4+

 against that of Ti
3+

. The mobility of lithium seems to play a 

secondary role only. For a constant charge of the dopant, the highest Li
+
 conductivity 

coincided with the most reducing redox potential; however, this trend was not 

sustained for all of the dopants. As discussed above, the occupancy of lithium sites 

strongly affects lithium mobility. The two-phase mechanism of insertion of lithium 

stands behind constant potential vs. reference related to the Ti
4+

/Ti
3+

 redox couple 

resulting in a single peak in voltammograms. On the other hand, it seems that for 
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Li0.7Ti1.7Nb0.3(PO4)3, beside Ti
4+

/Ti
3+

, another redox process appeared, as the second 

peak was observed. We guess that it could be related to a partial substitution of 

titanium with niobium and introduction of Nb
5+

/Nb
4+

 (Nb
5+

 + e
-
 = Nb

4+
) redox activity. 

We were not able to find any reports on redox processes related to Nb in the 

NASICON structure to support this statement, however, Patoux and Masquelier [33] 

showed that potential of lithium insertion into NbPO5 coupled with Nb
5+

/Nb
4+

 pair 

could be close to 2 V vs. Li
+
/Li, which makes our guess plausible. 

The correlation between the location of the reduction peak vs. band gap is presented in 

Fig. 7. The widest band gap corresponded to the lowest reduction potential – both 

were observed for the Ge-doped sample. Conversely, the opposite was noted for the 

Nb-doped NASICON. 

Conclusions 

Both the partial substitution of Ti
4+

 ions in LixTi1.7M0.3(PO4)3 with Al
3+

, Ga
3+

, In
3+

, 

Ge
4+

, Sn
4+

, Zr
4+

 or Nb
5+

 and the intercalation of Li1+yTi2(PO4)3 with Li
+
 ions (y = 0 – 

2) significantly affected the crystal and band structures of the investigated materials, 

resulting in ability of tuning ionic conductivity as well as optical and redox properties. 

For a constant charge of a dopant decreasing ionic radius resulted in decreased lattice 

constants, increased ionic conductivity, wider band-gap and Ti
4+

/Ti
3+

 redox potential 

shifted towards more reducing potentials. However, these tendencies were overlapped 

and modified by the changes in occupancy of M1 and M2 lithium sites, which can be 

induced via doping at Ti-sublattice, or via intercalation with lithium. With increasing 

occupancy of M2 and decreasing occupancy of M1 sites Li
+
 mobility increased, band 

gap decreased and Ti
4+

/Ti
3+

 potential became less reducing. 
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Fig. 1. Crystal lattice parameters for LiTi2(PO4)3, Li1.3Ti1.7M0.3
3+

(PO4)3, LiTi1.7M0.3
4+

(PO4)3 and 

Li0.7Ti1.7M0.3
5+

(PO4)3. 

*Figure1



 

 

 

 Fig. 2. (a) Li
+
 bulk conductivity at 30°C and (b) its activation energy for LiTi2(PO4)3, 

Li1.3Ti1.7M0.3
3+

(PO4)3, LiTi1.7M0.3
4+

(PO4)3 and Li0.7Ti1.7M0.3
5+

(PO4)3. 
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Fig. 3. Diffuse reflectance spectra of LiTi2(PO4)3, Li1.3Ti1.7M0.3
3+

(PO4)3, LiTi1.7M0.3
4+

(PO4)3 and 

Li0.7Ti1.7M0.3
5+

(PO4)3. (a) reflectance vs. wavelength, (b) Kubelka-Munk function vs. wavelength 

(band-gap energy values calculated from the Kubelka-Munk plot are displayed next to the 

spectra), (c) band-gap energy vs. ionic radius of the dopant. 

*Figure3



 

Fig. 4. Evolution of the (113) X-ray diffraction reflex during chemical lithiation. The average 

composition is given on the right vertical axis. 
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Fig. 5. Diffuse reflectance spectra for chemically lithiated LixTi2(PO4)3. (a) Reflectance 

vs. wavelength, (b) Kubelka-Munk function vs. energy. Band-gap energy values 

calculated from the Kubelka-Munk plot are displayed next to the spectra. 
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Fig. 6. (a) Voltammetric reduction curves, and (b) location of Ti
4+

/Ti
3+

 reduction peak for 

LiTi2(PO4)3, Li1.3Ti1.7M0.3
3+

(PO4)3, LiTi1.7M0.3
4+

(PO4)3 and Li0.7Ti1.7M0.3
5+

(PO4)3. 
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Fig. 7. (a) Reduction potential vs. band gap for LiTi2(PO4)3, Li1.3Ti1.7M0.3
3+

(PO4)3, 

LiTi1.7M0.3
4+

(PO4)3 and Li0.7Ti1.7M0.3
5+

(PO4)3. 

*Figure7
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