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Abstract 

Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both 
the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last 
years as they present an inherent efficiency compared to other transport means. However, in order to further expand 
their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. 
Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of 
different variables and alternatives. With this need in mind, this paper presents the development of consumption 
models based on neural networks that calculate the energy consumption of electric trains. These networks have been 
trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. 
Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route 
when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a 
useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective 
of reducing the costs and environmental impact associated to railways. 
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1. Introduction 

The current context of climatic change and financial crisis points out the need for more efficiency in all aspects of 
our economy. This is particularly important with regards to the transport sector, which is a key element of our society 
and greatly influences the global carbon footprint. Railways are inherently efficient compared to other transport means 
(Barkan, 2007; Garcia, 2007) but there is still ample room for improvement in terms of reducing their energy 
expenditure in order to make them more competitive and environmentally friendly. However, measuring and 
evaluating the energy consumption of trains tends to be problematic and usually only average values and estimations 
are available for railway operators, both in diesel trains (Baumel, 2011) and electric (García and Martín, 2008). 

 
This context points out the need for more comprehensive data and reliable modelling tools, as these two elements 

are essential to achieve a proper assessment of the energy consumption of trains and develop new solutions and 
alternatives in order to improve their efficiency. Taking this into account, the paper aims to develop a modelling tool 
based on neural networks capable of estimating the energy consumed by metro trains during normal operation.  

 
The development, training and validation of the network are described in detail, paying particular attention to the 

network size and the input variables. The data used for training has been gathered during an extensive monitoring 
campaign carried out in the Valencia Metro Network (Spain). 

2. Materials and methods 

2.1. Energy consumption data 

The consumption data used to train and validate the neural network was obtained from a comprehensive monitoring 
campaign carried out in the Valencia Metro Network (Spain) operated by FGV. A Metro Series 4300 train (Vossloh) 
with four carriages was equipped with three DC voltage and current measuring systems model MSAV-DC (Fig. 1) 
developed by Mors Smitt in accordance with EN 50463. These devices provide real time values of voltage, current 
and power. 

 

Fig. 1. DC voltage and current measuring device. Source: Mors Smitt. 

One device was installed in the catenary in order to measure the overall energy consumed by the train (including 
traction and auxiliary systems). Another device measured the energy used by said auxiliary systems (i.e. heating, 
lights, automatic doors, etc.) and the last one measured the energy consumed by the rheostatic braking system. The 
energy solely used for traction was then obtained from the difference between the total energy and the energy 
consumed by auxiliary equipment and braking. Additionally, train speed was also measured through an odometer. The 
sampling frequency of the DC equipment was 1 Hz while the speed was sampled at 100 Hz. 

 
Once fully equipped with the measuring devices, the train operated normally along lines 1, 2, 3, 5 and 7 of the 
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Valencia Metro Network between July and October 2014. The data was measured and stored on a laptop placed on 
board the train cabin. Up to 229 train services were monitored, which accounts for more than 230 hours of data. Data 
thus gathered was then processed in MATLAB 7.12.0 (The MathWorks, Inc.). 

 

Fig. 2. Line 1 of the Valencia Metro Network. Source: FGV. 

For the purpose of this paper, a subset of the whole data measured was chosen; corresponding to train services 
along line 1 (Fig. 2). This line consist on a central underground stretch (‘Empalme-Sant Isidre’) operated automatically 
with ATO, and two surface stretches (‘Bétera-Empalme’ and ‘Sant Isidre-Castelló de la Ribera’) operated manually 
with ATP and FAP. The neural network has been trained only for the subterranean part of the line.   

2.2. Neural network development and training 

Neural networks are computational models based on the underlying structure of biological nervous systems. A 
neural network is a made of components (i.e. the neurons) which work in parallel to provide an output value when fed 
with certain input values. The process of training the network consists on an iterative modification of the parameters 
which regulate the connections between the neurons until an error function is minimised according to pre-established 
criteria. 
 

Although there are several possible network structures, one of the most common and widely used to fit functions 
is the two layer feed-forward network (Bishop, 1995) shown in Fig. 3. 
 

 

Fig. 3. Two layer feed-forward network. 

 
This is the network structure chosen for this study, whose overall equation (1) is:  
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        (1) 

Where Ok is the network output, M is the number of output elements, Ii is the input, N is the number of input 
variables, T is the number of neurons in the hidden layer, wij are the weights of the first layer and w2kj are the weights 
of the second layer (bias values correspond to wj0 and w2k0). Using this configuration it is possible to fit non-linear 
functions to an arbitrary degree of accuracy (Bishop, 1995) and thus it has been extensively used in many applications. 

 
In order to train the network, a Back-Propagation method is used, which aims to minimise the Mean Square Error 

(MSE) between the network output and the target data, as defined in equation (2). 
 

         (2) 

 
Where N is the number of data, ti is the target output and oi is the network output. The Levenberg-Marquardt 

Algorithm of minimisation, combined with an Early Stopping Method, was used to effectively carry out the training. 
Early stopping consists, as its name suggests, on stopping the training before the MSE is completely minimised. This 
is done by dividing randomly the data in three subsets: a larger one used for Training and two smaller (Validation and 
Test) used to control the process. This training methodology is efficient and reliable (Bishop, 1995) and ensures 
generalisation while avoiding overfitting i.e. an excessive learning of the network, which becomes affected by the 
errors and noises of the specific data used for training. 

 

Two criteria were defined to assess the goodness of the training process. The first one was to require the Pearson 
correlation coefficient (R) between target and output to be 0.9 or greater. The second one was that the relative MSE 
(i.e. the ratio between the MSE and the variance of the target data) must be lower than 0.2. This means that less than 
20% of the network variance estimated by the MSE is due to the training data variance (Molines, 2011). 

 

An element of the network required special attention during training: the network size i.e. the number of neurons 
in the hidden layer. A larger network is more powerful and capable of modelling complex trends, but too large a 
network may experience overfitting even after training with early stopping. Therefore, a balance between complexity 
and capacity must be achieved. This was done by testing different networks sizes and comparing the MSE obtained 
for the training and the validation datasets. When the latter started to rise with the addition of more neurones (while 
the former kept decreasing), an optimum size was reached (Van Gent et al., 2007). 

3. Results and discussion 

Table 1 shows the results obtained during the training process for different combinations of input variables, namely 
train speed and acceleration and the track longitudinal slope and radius of curvature, taking into account the two 
criteria previously defined (R coefficient and rMSE). 

     Table 1. Training, validation and test results for different input combinations. 

Input variables Training Validation Test 

R rMSE R rMSE R rMSE 

Speed 0.35 0.872 0.33 0.883 0.42 0.874 
Acceleration 0.74 0.460 0.76 0.441 0.69 0.488 
Speed & acceleration 0.88 0.230 0.91 0.185 0.89 0.201 
Speed, acceleration & slope 0.89 0.208 0.88 0.232 0.89 0.217 
Speed, acceleration & radius 0.89 0.220 0.88 0.236 0.88 0.192 
Speed, acceleration, radius & slope 0.90 0.190 0.90 0.200 0.90 0.159 
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As the table shows, using the speed or the acceleration as a single input variable gives a rather poor result, although 
the latter seems to provide more information to the network. Combining both variables gives a result that almost fulfils 
both criteria, but there is still room for improvement. By adding information regarding the track geometry (i.e. the 
longitudinal track slope and the radius of curvature) the network finally reaches a 0.9 value of the R coefficient and 
an rMSE below 20% for the three stages of development. Therefore, the combination of the four variables is chosen 
as input for the network. 

 
Regarding the network size, Fig. 4 shows the evolution of the MSE for training and validation as the number of 

neurons in the hidden layer increases. Notice that each marker in the figure represents the average MSE after twenty 
training processes. As expected, the training MSE tends to decrease as the network complexity increases, while the 
validation MSE decreases at first and then tends to rise, thus pointing out the size after which the network is overfitting. 
Therefore, the optimum size network is set to 15 neurons in the hidden layer.   

 

 

Fig. 4. Training and validation MSE vs number of neurons. 

Once the network main features have been settled, the training process has been completed. Fig. 5 shows the 
comparison between network output and target data. 
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Fig. 5. Network output vs target data. 

As Fig. 5 shows, there is a good agreement between the network and the data. The overall energy consumption 
measured for that service is 83.852 kWh, while the network yields a value of 83.131 kWh. 

 
As a further test, the trained network was used to model the energy consumption of a different service along the 

same line (but in the opposite direction), and the output was compared to the measured energy. This comparison is 
shown in Fig. 6. 

 
 

 

Fig. 6. Energy consumption modelled vs measured. 
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In this case the agreement is not as good, as the network apparently underestimates the negative peaks of power, 
which correspond to braking events and energy generated back to the catenary. For this reason, the network yields a 
total energy consumed equal to 44.579 kWh while the energy actually consumed was 38.974 kWh. Nevertheless, both 
criteria are still fulfilled as the R coefficient in this case is 0.9 and the rMSE is 0.192. This points out that, although 
the network has been fully trained and provides a good estimation of the energy consumption, there is still room for 
improvement. 

4. Conclusions 

In order to develop a useful tool to estimate the train energy consumption of electric trains, a neural network has 
been built, trained and validated using real consumption data measured in line 1 of the Valencia Metro Network 
(Spain). Different input variables were considered, including train speed and acceleration and track longitudinal slope 
and radius of curvature. 

 
The training process was carried out by means of a combination of the Levenberg-Marquardt Algorithm of 

minimisation and the Early Stopping Method. The optimum network size was also assessed and found to be 15 neurons 
in the hidden layer.  

 
The network was properly trained according to predefined criteria, and shows a good agreement with the target 

data. As an additional test, the network output was compared with another subset of measured data and once again it 
provided a good estimation of the energy consumption, although a slight underestimation of negative energy peaks 
was observed, pointing out the need for further refinement of the network with additional data.  
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