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Abstract

A consistent thermodynamic-based theoretical framewodklaree-dimensional finite element formulation is pre-
sented, capable of coupling elastic, thermal and electidsi The complete set of governing equations are obtained
from conservation principles for electric charge, enengy momentum. The second principle of thermodynamics is
taken into account to introduce the irreversible phenomsuneh as plastic dissipation or Joule heating. The constitu
tive relations are derived consistently from the Helmh&iz-energy potential for each corresponding dual vagiabl
in terms of the defined set of state variables. We considerake of linear isotropic hardening model for plasticity,
and provide the consistent form of the tangent thermo-aesiastoplastic modulus through dual variable computa-
tions. The latter plays the crucial role in ensuring fastvesgence properties of the finite element computations with
the proposed coupled plasticity model. The implementasararried out in a research version of the well-known
computer code FEAP. Several numerical simulations arespted in order to illustrate the proposed model and for-
mulation capabilities for providing an enhanced formwatof an important practical application in terms of Peltier
cells.

Keywords: Thermo-electro-mechanics coupling, Plasticity, Thergmaanics, Finite Element Formulation

Notations
U — Displacements ... (3x 1)
V — Electric potential (Voltage)
¢ — Magnetic scalar potential
T — Temperature
6u — Virtualdisplacements ... (3x 1)
6V — Virtual electric potential (Voltage)
6T — Virtual temperature
€ —  SHAINTENSOr ...\t (6x 1)
S — Entropy
s — Entropy per unit volume
D —  Electricdisplacement ........ ... i (3x 1)
B — Magneticinduction .......... ..o (3x1)
O —  SHESSTIENSON ...ttt (6x 1)
E —  Electricfield ... e (3x 1)
H — Magneticfield ............ i (3x1)
P — Polarization ........ ... e (3x 1)
M —  Magnetization ........ ..ot (3x 1)
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Electric flux . ... . (3x 1)
Thermal flux ... (3x1)
Prescribed traction ........... ... i (3x 1)
Prescribed magnetic induction

Prescribed electric flux

Prescribed thermal flux

Electric charge velocity .......... ..o o, (3x 1)
Linear momentum . ... ...ttt e (3x1)
Volumetricforce ....... ... e (3x 1)

Total internal energy

Power supplied to a system

Heat introduced to a system

Potential internal energy

Kinetic internal energy

Scalar internal energy density potential

Unitnormal vector ... ... (3x1)
Heat source

Free energy potential

Elasticity tensor . ... (6x 6)
Thermal stressStensor ... e (6x 1)
Seebeck cdécient

Electric conductivity

Thermal conductivity

Peltier codicient

Permittivity

Permeability

Mass density

Specific heat per volume unit
Free electric charge density
Plastic multiplier

Yield stress

Isotropic hardening variable
Stress-like conjugate to hardening variable
Isotropic hardening modulus
Dissipation

Yield function

Codficient of plastic influence

Derivative of¢ with respecttar ........... ... ... ... ®1)
Identity tensor ... ... e (3x 3)
Trace operatortensSor . ... ...t (3x 3)
Newmark scheme parameters

Time step

Young modulus
Thermal expansion cdiécient
Lamé’s parameters

Effective tangent sinesmatrix ... (ndf x ndf)
Linearized optimality equation matrix ....................... 12¢< 12
Thermo-electro-elastoplastic modulus matrix ............... 10x 10
Elastoplastic tangent fihes matrix ............. ..., (ndf x ndf)
Damping MatriX . .....ouueeeeiie i i aae et (ndf x ndf)
MaSS MALFiX ... ettt (ndf x ndf)



Na — Shape function

B, — Strain-displacement derivatives of shape function matri. . ... .. (3x 1)
B; — Symmetric part of the derivatives of shape function matrix.... (6x 3)
al — Nodaldisplacement ..............ccoiiiiiiiiniitnnen. (3x 1)
ay — Nodal electric potential

al — Nodal temperature
wy —  Virtual nodal displacement .................oiitimiunnan..s (3x 1)
Y —  Virtual nodal electric potential
ro] —  Virtual nodal temperature
RY — Residual fordisplacement ..................ccoiieaanii... (3x 1)
RY — Residual for electric potential

RI — Residual for temperature

Q — Domain

I' — Domain boundary

Sub-, Supra-indices

e — Elastic
p — Plastic
0 — Reference orvacuum
C — Cauchy
M —  Maxwell
L — Lorentz
J — Joule
¢ — Conduction
m — Mechanic
e — Electric
h — Magnetic
t — Thermal
tr — Trial value
n — Time step
(i) — lteration
t — Topor“hot”side
b — Bottom or “cold” side
a,b — Counters
Operators
vxw — Mectorial productofrandw ............... 31)
vew — Tensorial productofandw ............. ... i, (33)
A-B — Dot product ofA andB
Vo — Gradientofp ... %3)
V-v — Divergence o¥
VXV — Curlofv .. (3x1)
A — First time derivative of
A — Second time derivative af
tr(A) — Trace ofA
dev(A) — Deviatoric part ofA

1. Introduction

This work seeks to provide a novel development of plastmitypled with thermal and electric fields for semicon-
ductor materials. The development is made fully consistattt thermodynamics point of view [1]. More precisely,
the set of state variables is defined in terms of extensiviaas [2] jointly defining the state of material. This
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is formally done in terms of the internal energy density, e ppotential defined (at each point) indicating the cur-
rent state of the material. The objective is twofold. Fitsts paper accounts for the complete set of state variables
characterizing thermo-electro-mechanic coupling, wiaigh all leave their imprint on a particular state of the given
material. Second, this coupling is taken into inelastic dondefined in terms of plasticity theory that accounts for
mechanical, thermal and electric fields in defining the gpoading plasticity criterion. The latter is set in terms of
intensive variables, dual to the chosen state (extensardhbles. The corresponding evolution equations for jalast
part of state variables are obtained from maximum dis®ipgirinciple. This theoretical formulation is accompanied
by the discrete approximation, based upon 3D Finite Elesmaith thermo-electro-mechanic degrees of freedom,
along with simultaneous solution procedure of the weak flmnall governing equations.

The proposed approach provides a number of novelties wibeit to previous developments. In particular, a
vast majority of state-of-the-art developments remairitéchto elastic response from early (e.g. [3] and [4]) or more
recent works (e.g. [5]), and large portion will mostly foayson electromagnetics (e.g. [6], [7], [8], [9] and [10]).
Several another consider the plasticity model for ferrcteiles (e.g. [11], [12], [13], [14]), but without consided the
numerical implementation, nor general multi-field cougliitn terms of completeness of presented developments for
thermomechanics and electromagnetic coupling, the renesd that come closest to this work are homogenization
scheme in [15] and hypo-elastic approach in [16], [17], [D8t they remain limited to elastic behavior.

However, there is a fundamentally new point of view in thiskyavhere the sound thermodynamics framework
is brought to bear upon the general coupled problem of thid.Kilore precisely, our proposal starts from the internal
or free-energy potential rather than directly postulatimg constitutive equations. In other words, we provide the
hyper-elasto-plastic response, rather than hypo-elastfonse given in [17].

The outline of the paper is as follows. In Section 2, the satledmodynamics-based theoretical formulation for
coupled thermomechanical and electromagnetic problempseiented, along with the complete list of all pertinent
principles. In Section 3, we further generalize such a dgureknt to the case of plasticity, by appealing to the priecip
of maximum dissipation to obtain the corresponding evoludquations with respect to the chosen plasticity criterio
for generalized J2-plasticity accounting for thermalceie and magnetic fields. The details of FE implementation,
where the magnetic field has been removed for targeted apiplis, are presented in Section 4 for 3D case using
the discrete approximation constructed with isoparamétrite elements of Peltier cells. The Newmark-type implici
time-integration scheme used for solving the FE discrétinas presented in Section 5 as well as the iterative smiuti
for the local variables and the computation of the consigtstoplastic modulus. Several numerical simulatioes ar
presented in Section 6, and the concluding remarks are giveeaction 7.

2. Formulation

2.1. Kinematic equations

Four fields are considered in formulating the thermomedsaand electromagnetics coupling: displacement
temperaturd, electric potential/ and magnetic scalar potential The state variables are obtained as the correspond-
ing gradients of these fields. The set of resulting kinenmedigation can be written as:

= %[V®u+(V®u)T]
= Zyv (1)
= —V(p

Im e

whereg is the strain tensofE is the electric fieldH is the magnetic field, whil& = [9/dx 8/dy 8/07]" is a
convenient notation for nabla operator of partial deregi With the hypothesis of small displacement gradient
theory, we are limited here to strains defined in terms of ghmarsetric part of displacement gradient, hence the



operatorvs can be used to define the strain tensor, which can also bewmiittVoigt notation as:
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2.2. Conservation principles
2.2.1. Conservation of free electric charge
Electric charge is the physical property of matter that eausto experience a force when placed with an elec-
tromagnetic field. There are two types of electric chargkged to their nature: free, which is associated with the
movements of electrons in a conductor material, and bouhithss related to the orientation of dipoles in a dielectric
The conservation of free charge can be written in agreemigintine conservation equation:

P4+ V- (p4v)=0 (3)

wherepy is the free electric charge densiis the velocity of the charges. By identifying the electricdbsj = pq v,
the free-charge conservation equation can be rewritten as:

PV j=0 (4)

Furthermore, by considering the case with zero rate of étetharge density,q = 0, the first conservation equation
reduces simply to:
V-j=0 ()

The last result is usually referred to as the Gauss Law fartEilstatics, stating that all the charges that come into the
system will also have to leave. It is interesting to note Makwell’s equations in dferential form (e.g. [6]):

VXE=-B

VxH=j+ D

V.-D= pa

V-B=0

(6)

whereD is the electric displacement adis the magnetic induction, can be used to confirm the res@®)inTo that
end, it is enough to apply the divergence operator to thersbabMaxwell’'s equations and combine it with the time
derivative of the third one.

We note in passing an analogous result for the magnetic fiatthg the non-existence of magnetic monopoles
can be deducted from the fourth of (6) leading to Gauss Lawffagnetism.

2.2.2. Conservation of momentum

The classical approach to conservation of momentum (e}y.ighow generalized accounting for the external
electromagnetic Lorentz force. First, by enforcing theildagmomentum conservation we obtain the symmetry of
stress tensor (e.g. [1]) . Second, by postulating linear evdéom conservation principle for a sub-domain, and going
to the limit of this sub-domain shrinking to a point, we obt#ie local form of such a conservation equation:

pml =0V +b+b (7
P



wherepn, is the mass density;© is the Cauchy stress tensgy, is the mechanical linear momentubnare the volume
forces andy, is the Lorentz force, which can be written as:

b, :=pgE+jxB (8)

This force can be transformed using the second of Maxwetjisations (6) to eliminatg. Similarly, in order to
eliminatepg, we can use the third equation in (6) along with the isotrepiastitutive relationd = ¢E andB = uH,
with € as the permittivityu as the permeability. An alternate way of expressing thels¢ioas (as suggested in [6])
by introducing the polarizatio” and the magnetizatiol:

D=gE+P
B =uo(H + M) 9)

where the subindex 0 refers to vacuum properties. This deredion is taken due to plasticity, introducing plastic
electric displacement. Thus, (8) can be recast as follows:

pyE+ixB=E(V-D)-Bx(VxH)-DxB (10)
The last term can be rewritten by exploiting the auxiliarsule pertaining to the product rule:
%(DxB):DxB+DxB (11)
and further using the first of equations (6) in the last tegading to:
paE+j><B=E(V-D)—Bx(VxH)—%(DxB)—D><(V><E) (12)
Adding to the right side of the previous expression the rastitH (V - B) and reordering, we finally obtain:

paE+j><B=—%(D><B)+E(V-D)—Dx(VxE)+H(V-B)—B><(V><H) (13)
| I

The term | is the electromagnetic momentpgp and the term Il can be expressed in the fermV, whereo™ is
the Maxwell stress tensor:

|
aM=EE®E+ﬂH®H—§@£-E+ﬂH-H) (14)

with | denoting unit second order tensor. In (13) above, the @eegnetic momentum can be neglected due to
the diferent order of magnitude between the time constants of tlohaméc and the electromagnetic fields; we thus
obtain an alternative form of momentum balance equatioid)ijwghich can be written as:

pmi=0V+hb (15)
whereo = o° + o™ is the total stress tensor, regrouping the Cauchy and thevelaterms.

2.2.3. Conservation of energy
The global form of the first principle of thermodynamics canstated in domait:

d
i E = Pm+ Pen+Q (16)

whereE is the total energyPy, is the mechanical poweRBg, is the electromagnetic power a@@is the total heat
supplied to the system. The total energy can further beigptithe potentiall and kinetick energy:

1 o
E=ﬂ+K=fe(s,sD,B)dQ+§fpmu-udQ a7
Q Q
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Fields | Mechanic| Thermal| Electric | Magnetic
State var. & S D B
Dual var. o T E H

Table 1: List of the state variables and their correspondimng variables for coupled thermoelasticity and electrgmesism

wheree is the scalar potential of the internal energy density tlegtethds on the state variables. The list of state
variables in the absence of plasticity is as defined in Tabldhg with their corresponding dual variables (wétis
the entropy per unit volume).

The mechanical power source inserted into the materiainvthrticular domair©2 can be written:

Pm:=fb~UdQ+ft”~UdF=fb-UdQ+fV~(o-U) do (18)
Q r Q Q

where the power source from the boundary traction vectdineiéwith respect to unit normal vectoby the Cauchy
principle t" = o n, has been transformed into corresponding volume integralde of the divergence theorem.
Similarly, the boundary term for electromagnetic powerrseusee [6]) is transformed into corresponding volume
integral defined as:

%Wz—lkExHynmEul£V(EXMdQ (19)

We note in passing that the negative sign is in agreementthétlabove expression representation of total power
exiting the volumeQ bounded by the surfade Similar interpretation for negative sign holds for the thpawer
source that stems from the outgoing heat fiialong with the heat soureewhich can be stated as:

Q::frdQ—fq-ndF:frdQ—fV-qu (20)
Q r Q Q

In the limit case of domaif shrinking to a point, we obtain from (16) the local form of firet principle that can
be written as:
e(e,sD,B)+pmi-u=b-U0+V-(cU)+r-vV-q-V-(ExH) (21)
By using furthermore the kinematic equations in (1) and tpea¢ion of motion in (15), along with the following
identity V- (o u) = (o V) - U + o - (V® U), we can obtain the reduced form of energy conservation iplic

eé(e,8D,B)=0-+r-V.-q-V-(ExH) 22)

The final ingredients pertain to provide definition of elec&ind heat fluxes through the generalized form of Ohm'’s
and Fourier’s laws, as suggested in [10] and [17]:

j=yE-yaVT,;

) (23)
g=-«VT +11]

wherey is the electric conductivityy is the Seebeck cigcient, x is the thermal conductivity and = T « is the
Peltier codficient.

3. Plasticity under thermo-electro-mechanics coupling

We seek to develop here the general form of associativeigtadior a coupled problem of this kind. Such a
development will first require the use of the second prircigdlthermodynamics in order to define the corresponding
dissipation. For a particular domaih the second principle imposes that the rate of increasetad@nS = fg sdQ
should never be smaller than the amount of heat divided bgitelute temperature, which we can write as:

~. Q

S> ? (24)
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In the limit case of shrinking this domain to a point, we canaidri the local form of the second principle. In
the simplest case of rigid conductor (corresponding to ggdecttion of all other fields but temperature) the second
principle provides the proper definition of dissipation lsahconduction [1], which is always positive as long as the
Fourier law applies:

1 .
—?q-VT:sz—(r—V-q)zo (25)

————
@C

Here, we are targeting much more general case of loadinggmowith corresponding contributions from all

fields. The second principle, combined with the result offittst principle in (22), can now be used to define the local
dissipation that always remain non-negative:

2:=Tés-€(e,sD,B)+0-£-V-(ExH)>0 (26)

where we dropped the dissipation by conduction. Furtheeminyrscalar multiplying the two first Maxwell’'s equations
in (6) with H andE respectively, and by exploiting the following identity:

V- (ExH)=H-(VXE)-E-(VxH) (27)
the local dissipation can be recast in an equivalent format:
P=Té-¢e+0-£+j-E+E-D+H-B>0 (28)

We next turn to the case when plasticity is activated. In taenework of linear kinematics defined in (1), it is
generally accepted to use the additive decomposition dofttite variables into elastic and plastic parts:

e=¢&%+6P;
s=s+¢5";
D= D¢+ DP;
B=B®+BP

(29)

The internal energy potential is now defined in terms of thestad part of the state variable$, ¢, D¢, B®. For
describing eventual hardening phenomena, which makesakelrmore predictive than perfect plasticity [1], we also
need to add a new state variable that can monitor the progfesssticity threshold, here chosen in terms of isotropic
hardening variablé. Furthermore, we introduce the free energy poteutiay means of the Legendre transformation
(e.g. [1]), which allows to exchange the roles between theestariables and their duaks, D¢, B® versusT, E, H:

v, T,ELH) =e(6%¢,8°, D5, B ) - TS-E-D°-H-B° (30)
The time derivative of the last expression leads to:

é:%-.’e‘3+a—w 6—¢T+a—¢-E+a—¢-I'—|+Tse+T'se+E-De+E-De+H-Be+H-Be (31)
£

Crar Tt aE aH

4
N——
-q

whereq is stress-like variable thermodynamically conjugaté,tavhich controls the evolution of plasticity threshold.
With this result on hand, the dissipation in (28) can be exqed as:

059 =[o- o) i (s F)T- (00 GE) - (o )

e aT 9E aH (32)
+ql+0-8*P+T&P+E-DP+H-B +j-E
The last term is often referred to as Joule’s dissipation¢clvban be written as:
2 =j-E (33)
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By considering the elastic process, where (possibly noozaues of) internal variables remain frozen enforcing
thatgP = 0,4;“ =0, =0, DP = 0, B® = 0, and putting aside the Joule’s dissipation, we can conduodethe
local plastic dissipation remains equal to zero. The d&®ip inequality will become an equality providing the skt o
constitutive equations to be defined in agreement with tloseh free energy potential. Here, we choose a quadratic
form of that potential, which can be written as follows:

W (&% ¢, T,E, H) = Ym + Yp + Yt + Ve + Un + Ymt + Yme + Ymn ;

1 1
wmzise-Cse; zphz—EH-,uH;

1
Yp = 5¢KE Yme=—B- (T - To) &°; (34)

Vi = PG (T—To)—Tlnl] ; wme=e[(E®E)-se—3(E- E)tr(se)] ;
To 2

1 1
o= —3E-€E b =n| (W0 5 (- H) ()
where( is the elasticity tensoiK is the isotropic hardening modulus, is the specific heat anl = Ca; | is the

thermal stress tensor witla. as the expansion cfizcient. The constitutive equations can then be obtained from
derivatives of such a potential, and written in tensor notat

W

o= prche C(S—Sp)—ﬂ(T—T0)+6E®E+/JH®H—I—Z(EE-E+/JH-H)
e ._ _a_lp_ () _ €
D®:= 3E = e{[1 +tr(&®)] E - &°E}
e._ _a_lp_ (5) _ o€
BY:= —o5 = will+uw(e)H-H) (35)
-
ai= 5= K
oy T
= _6_T = mepln(T—O)+ﬂ'(8—8p)

By assuming that such constitutive equations also remdiith ivean inelastic process, the dissipation can now be
defined as the sum of plastic and Joule terms. Furthermar@)aistic dissipation can be split into mechanic, thermal
and electromagnetic terms defined explicitly as:

D=9P+ P, _ .
PP =ql+0- &P+ T +E-D°+H-BP (36)
74 e 25,

With these results on hand, we can rewrite (28) in terms oég#izing the heat equation for inelastic case which
can be written as:
Ts=r-v-q+2 = T&=r-V-q+Zh+25+P (37)

where the results (29) and (36) are used. Furthermore, bg tise constitutive equation faf in (35), we can write
explicitly: _
T =pmcpT+TP-(e-&") (38)

By introducing (38) into (37) and using (35), the generaliheat equation can finally be restated as:

pmCp T=r=-V-q-TB-(6-&") + 2" + D + 75, (39)



In summary, the strong form of the equations to be solvecorgas the results written in (5), (6), (15) and (39),
here restated in tensor notation:

pmi= V-o+b

V.j= 0

vV-B= 0
pmCpT = 1=V-q-TB-(-&°)+ D>+ Dh+ I},

(40)

3.1. Evolution equations for internal variables

We will further consider the case where magnetic field doésaee influence in the applications studied in this
paper, so that it can be dropped from subsequent developro@msidering it remains equal to zero. This includes a
number of practical applications, such as Peltier cellgnetve need to account for plasticity phenomenain metallic
materials. We here use generalized form of von Mises aotetihat builds upon the proposal in [12] for perfect
plasticity, which allows to determine if the material is itagtic or plastic regime based upon its stress state and
electric field values. The first generalization of such cidte concerns the possibility to include the thermal field,
leading to:

3| devp) I N IEI?

¢(0-’ d. T7 E) = 2 O'?,(T) E(Z) -1=0 (41)

where devA) = A - % [tr(A)] is the deviatoric part of the tensdy, || Al = tr(AT A) is the Euclidean norm oA,

oy(T) is the temperature dependent yield stresstd reference value.

The same criterion can be recast in a more standard forngat[(d) by making the yield stress dependent upon
thermal and electric field variations, which also allows te@unt for potential hardeningfect in terms of isotropic
hardening. Such a generalized von Mises criterion can hi¢enras:

¢(0-» q7 T» E) = ||deV(0')|| - \/é[o'y (T» E) - q(T’ E)] = 0 1 q = _K (Tv E)( (42)

where the yield stress and the isotropic hardening modukimaw assumed dependent upon thermal and electric
fields, according to the following dependency:

Oy (T.E) = Oy [1 - (T —To)][1 — we(llEIl - Eo)]

(43)
K(T,E) = Ko[l-wi(T —To)][1 - we(llEll - Eo)]
wherew; andwe are some cdécients to define the influence of the temperature and therieléelds respectively in
oy andK.

By using the principle of maximum dissipation [1], we willgkiamong all plastically admissible values of dual
variables (which satisfg(o, g, T, E) = 0) the one which will maximize the plastic dissipation. Wa ¢arther recast
such a constrained optimization problem in terms of min-meoblem of unconstrained minimization where the
plastic admissibility constraint is enforced by using thetihod of Lagrange multipliers leading to plastic Lagrangia

max P(0,09,T,E) © min maxZP(o,q,T,E, y° 44
q}(o-,q,T,E):O@ (O' q ) Y(o,0,T,E) yP>0 (0- q Y ) ( )

where the Lagrange multiplier is equal to the plastic mliétipyP. The plastic Lagrangian will incorporate the yield
criterion constraing = 0, which can be written as:

The solution to such constrained minimization problem cawolbtained by using the Kuhn-Tucker optimality condi-
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tions, which allows to write:

AR Ty
= =Y o -8
p :
0:=%=&p2—z—§;
ozzaé_'ipzj,pg_i_-sp; (46)

Y20, ¢<0; y¢=0

Using the first two previous equationg} can further be simplified:

=0
. 2 . |2 . 2
Dh =P 0'~V—\/;(O'y—C]) +yp\/;(7y=yp\/;ay (47)
[devi)ll

wherey := d¢ /00 = dev(r)/||dev()||.

4. Finite element implementation

In this section we present the details of the discrete apmation constructed by the the finite element method,
as a particular case of the Galerkin method. The startingtpsiprovided by the weak form of the conservation
equations in (40), which can be stated in tensor notationlasifs:

—fV56u~o-+5u~(me—b) dQ+f5u~f°dl"=O;
Q r

fV6V~de—f6Vj_dF=0;
Q r

deT-q—(ST mepT—r+Tﬂ~(é—ép)—j-E—j/p\/gdy—E~Dp—H~Bp dQ
Q

—f&TGdT:O
r

wherede denotes a virtual field or variation. It can be noticed that¢bnservation equation for the magnetic field
has been dropped as already stated above. We can readily thstaliscrete approximations for all the fields, along
with their space and time derivative by appealing to separatf variables:

(48)

u= Nbat’; V = NbaL(/; T= Nbag;
Su~r Naty; 6V~ Nawl; 6T~ Naw/;

Viur Bial; VWa By a)(/; VI~ Bpal; (49)
Vssur Bamy ; VéV=x Bawy; V6T~ Baw];
U~ ANpag; Vux Bial;, Tx Mal

wherea represent the nodal values offerent fields (yet called degrees of freedom), whereaspresent the nodal
values of their variations. In last expressidvl, denotes the standard isoparametric shape function for ages.,
[1]), with their gradients gathered in matrix form as:

Ba=VNa;

BZ = VSNa (50)
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By introducing the corresponding finite element approxioretinto the weak form of the conservation equations,
and switching from tensors to matrices by means of the Vaitsition, we can finally obtain:

- [ (B2} o+ (N2 (o Mo 8 -~ B) G2+ [ (Nawod) T ar =0

L(Bamav)Tde—eramg jdr=0;

[ e a-rare] [pm o No 8 — 1+ N a7 (85 40— 57) + (1 + D)’ By a
+(B°) 8y ai‘;—j/p\/g(fy} dg—fr/vam;adrzo

where the plastic variable values are those calculatedciiogses.2, and where we introduce the discrete approxima-
tions of dual variables and fluxes:

(51)

2 1 T
= Con (B, — &) = B(No o] ~To) + 0 BF (a}) - 5 [e0(Bo ) Bo |
i= vBoal -vaBpa] ;
q= -«Byp ag + Np agaj

(52)

featuringl = (1,1,1,0,0,0)" and the subscripp as the tensor multiplication into Voigt notation; in thisseaB® =
By ® By:
Nba Noba
Nb2 Nb2
o _ | NoaNbs
By = No1 No2 (53)
Nb2 N3
Nb1 No3

with My, is the derivative of the shape function in the direction
By considering that the nodal values of virtual fieWh§) can be picked arbitrarily, it is possible to obtain from)51
the final set of non-linear residual equations that need spbed:

Rgz_fggTa+Na(pmNbag—b) dQ+fNaFdr;
Q r

RX:fB;de—fNaj_dr;
Q r

R = [ B1a- N,
Q
L 2 _
“Y 3% dQ - | Naqdl
T

5. Time Discretization

_ (54)
pmCo No g — 1+ No ag BT (B85 ap — &°) +(j + Dp)TBb ay

5.1. Global solution step by Newmark scheme

The Newmark scheme is used for the time discretization ofjtbbal solution step. This scheme requires two
parametersy andg that will determine the numerical damping and order of theeste (e.g. [1]):

) 1 .. ..
Apnel = Gpn + At app + At? [(E _ﬂ) apn+ B apni] ; (55)

Apnet = App + At[(1 =) dpp + ¥ Gpnet]
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where we denoted the time step &is= t,,; — t,. These equations, often referred to as Newmark equatioas, a
accompanied by the residual equations enforcing the zédue @t time stem + 1, which can be explicitly written as:

R:’rg?-l =~ L BgT 0'23.1 + Na (pm No &t’é?l - bn+1) dQ + fl:Na F:n+1 dar;
jogil = fB; J’ﬂ)ﬂ daQ - fNa jnar dI;
Q r
T.0) _ T @)
Ra,nlJrl - L'Ba an+1 - Na
0 2B V8o 52 2040~ [N Gy dr
+ (Jn+l + n+l) b nt1 ™ Vns1 § Oy - - a On+1

Wherg the f:orresponding values for velocitiéﬁ%l and accelerationagll
resulting with:

(56)

ST T,(3i) T( s = U,(i)
Pm Cp No Clb,n+1 i1 + Nb CLb,n+lﬂ Bb ab,n+1

: P»(i))

“&ni1

are obtained by recasting the result (55)

al) = ann+At[(L=y) don+y d@lh.,|

‘ : 57
2 (i) ag,)n+1 —apn — At app 1). (57)
- ~ 55| %bn

ab,n+1 - IB At2
and the plastic variables can be discretized by the backizaler scheme:

p_ P
P €hi1~ En .
Ch1 = At !

. DP . - DP
p n.,
Dri1 = 7’”1& ; (58)

p
P _ yn+l
7n+l - At

Thus, the time stepping scheme of this kind will finally rendhee set of nonlinear algebraic equations. To solve
such a nonlinear problem, we use Newton’s iterative methioekevat each iteratiom € 1) we perform the consistent
linearization of residual leading to:

6Ra,n+l ¢
ac‘b,n+1

T.(0)
an+l

RID -0 = RO

)
N _n- @0  _[pU @V @T
an+l — an+l Aay 0; R [R ,RY,R ]

bn+1 — an+l — (59)
whereAay, are iterative contributions to nodal values of temperatlectric field, along with displacements, velocities
and accelerations. At each iterative sweep, we can theorpethe corresponding state variable updates according
to:
(i+1) _ (@) 0]
ab,n+l - ab,n+l + AC‘b,nJrl (60)
In the first iteration within each time step we will take tharihg guess equal to the converged value at the previous
step:
Gyt = G (61)
The mechanics part of the residual vector at particulaaiten can be further compressed, reducing it to the form

presented explicitly in (56). Namely, the first term in (58nde reduced to so-calleéfective tangent sfiness for
mechanical part, which is directly used to compute theftitegaontributions to displacement increments:

6Rg 0] 0]

oay

R o,
day, dap

0) oRY i,

SY0 = -
oay Oayp

ab

(62)

where time-step subscript+ 1 was dropped to simplify notation. By exploiting the redais between the nodal
displacements and its first and second derivatives provijethe Newmark scheme, we can provide the closed
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form final linearized problem to be solved. More precisatyyiew of the Newmark result for constructing discrete
approximations for nodal velocities and acceleration&),(we can write:

% _ 1 . % (9ab (9ab '}/ (63)
oay B B At? ' oay 6ab 6ab ﬂAt
Thus, the final form of the tangent operator for mechanicsqzar now be written as:
Se0 =)+ Ll 4 MG (64)

B At ab B At2

R, . . . . ORa . . .
whereKa, = _aTj is the elastoplastic tangentfftiess matrixDap = _BTLS is the damping matrix andMy, =

a

dayp _ _ _ _ _

Given the solution for displacement increment at iterafignwe proceed to compute the displacement updates
a3 by using the result in (60).

n+l

5.2. Local iterative solution for plasticity with isotraphardening

This local computation has to be performed for every Gaust poagreement with the corresponding resgfﬂtl
obtained in the global phase. For proposed generalizatismroMises plasticity, we first define the yield function for
coupled problem of this kind:

2
¢n+1 0 = ||deV(0'n+1)|| - \/;(O'y (Tn+l» En+1) - qn+1) (65)

n+l

The elastic trial step is computed first, with the zero valiielastic multiplieryrﬁ’fl = 0. This result with:

ptr _ p.
€1 = &ns
tr .
n+l ¢n;
Ss,tr _ 3’1) . (66)
+1 !
ptr _ p.
I:)nJrl = Dn;

These results are exploited in computation of the corredipgrtrial values of stress and hardening stress-like
variable:

1
o-ngl =C (8n+1 - 8n) B(Thi1 —To) + EE ) Eni1- Eni1; (67)
anr]_ qn =-K gn
To ensure that the elastic step is acceptable, the triaéva#lyield function must remain negative or zero

02t = [dev(et)] - 2 (T Ev) k) 9

If such a condition is not verified, the step is plastic. Thgelaimplies that all the internal variables must be
recomputed by integrating the evolution equations in (46):

P _ P P .
i1 = 8n T V1 Vel s

2
dnvr=4n+ le )
2 .
Sn+l + 7n+l é Wy (O—YO + Ko §n+l) )

E 2
DP., =D+ )’Eﬂﬁ \/; we (O'y0 + Ko §n+1) :
14
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The plastically admissible value of stresses can be cord@ste

— plr P
Onil = 01 = Ynyp € Vit

70
On1 = —K éni1 (70)

We note that the final value of plastic multiplijall\’+1 can be obtained from,,1 = 0, by taking into account that:

Vn+1 - VnJrl 1
. (7)
Idev(orn)l = |[dev(et,,)|| - 2 78,
whereu is the shear modulus. We finally obtain:
tr
Yoi= 5 (72)

2K
u+ 5

5.3. Consistent tangent thermo-electro-elastoplastidumhas

The computation of the consistent tangent thermo-elesitastoplastic modulus is carried by generalizing the
scheme first proposed for classical plasticity in [19]. Ateerged values of local computation, we take a new iterative
sweep brought by an increment of total strain. The corredipgriinearized form of local problem is obtained in terms
of dual variables:

9¢
Sre1+1 + Sn + Aggll 7n+160. "
Aonig _ A 94
ATn+1 §+1 + i + SE1+1 yn+l aT 1
LY | AE - 0 0¢ 73
n+l Ayrl?:ll - D§+l + De +A Dnl+l r’:+l aEn+l ( )
AQn+1 dn1
0
Cnir—Cn— '}’2+1 6q¢ L
n+
where the tangent matrix is, for the most general case:
o2y |t 0> 5 5 d
v Y N ¢ yp_¢ ¥P ¢ o9 0
0g® 0g® Jo oo oo oT do 0E oo
o 99 32¢ &y o 99 ¢
Y Y o2 T a2 Y 9T 0
aT do aT?2 a7 dT JE aT
¢ o 0% Py Py oy
® _ p p _ 99 0
Lo Y E 60 YaEar V' 9EGE GEOE oE (74)
o' % o' 0 2
do oT O0E aq
op 0% [0y
o' 0 o' — YW—=-|=
oq o |0
The subsequent iterative values can then be obtained withlsiadditive updates:
oD = 60 4 Agy
TED = 70 4 AThes
E<k+1) E(k) + AEpi (75)
(k 1 _
n+l+ + A'}’ml
ofy = q‘” + A1



With the converged values of internal variables in the l@cahputation phase, we can write the result in (73) as:

A0t As(i:i)
ATni Asﬁf )
Lo AEni1 =| A DEL (76)
yn+l
qn+l - qn 0
Further, by using the static condensation method (e.gw#&]¢an reduce the size of this system:
Ao Ae +D
(Laa— Lab Log Loa)| AT | =| As (77)
AE n AD
+1 n+1
where: L
oy | 0% 0%¢ 0%
+yP yP yP—
0e® 0g® oo oo 0o OT oo 0E
Laa(mxm) = yp 62¢ 62_¢ _ 62_l// Yp 62¢ ;
T 00 7 aT2 _ a12 T OE
o 09 b 09 o 9 Py
Y 9E oo Y"9EOT Y GEGE OEGE (78)
o¢
— 0 0¢
Jdo 0 —
_| 9¢ . " aq ) . pT
Lab(mxz) o 3_T 01; Lbb(2x2) | d¢ 32¢ 621ﬁ -1 ] -Eba(leo) =Ly
o¢ aa a2 [—2]
- q 0 0
3E 0 q q

Due to the zero column and row df,, and £, respectively, the only relevant term Jﬂ;é for the multiplication
in (77) is the first one:
b

L= -Lyp1)= 5 (79)
where: )
o¢ ¢ oA |
= 1’2 = 2’1 = —, b:: 2,2 =P | L 80
a:= Lpp(1,2) = Lon(2,1) aq Lon(2,2) =y pr [an (80)
so that this multiplication is simplified to:

—Lap Log Loa=LEET (81)
wheref is a vector containing the first column &%, By substituting (81) into (77), after some further simp#fiions,
we obtain: ’

Ao A (i+1)
(Laa+ ﬁggT)[ AT ] =[ As ] (82)
—— | AE AD
< n+1 n+l

featuringC as a consistent tangent thermo-electro-elastoplastiziasdor the given variables. By exchanging the
roles between variablesande, we can obtain the final form of tangent modulus for the glgbeseC; namely, with
the split ofC: ) )
é _ ( ?aa(exs) ?ab(sn) ) (83)
Cba(7><6) Cbb(7><7)
we can easily constru@ which can be written as:

Ail Ail)\

— Caa(exs) [ - Caa Cab] _ AE AO-

c=|,. ., e = c|at | =| as (84)
[CoaCas| |G~ CunCanlin| sE ), Lap) .
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6. Numerical examples

In this section, the results of numerical simulations amespnted for plasticity problem with thermo-electro-
mechanic coupling of this kind, including the practical Bggtions in terms of Peltier cells. All computations are
performed by a research version of the well-known compuwded-EAP ([20]).

6.1. Electro-thermo-mechanical coupling for transierdading

In this first example we consider a transient problem whefferdint coupling ffects are easier to validate, thus
providing the sort of benchmark result. Namely, we computelactro-thermo-mechanical coupling in 3D domain in
the form of a bar, with one dimension significantly biggenthiae other two. The boundary conditions are chosen in
agreement with propagation along the bar with a displacétirar variation imposed at the left end while the right
end of the bar is free; we also impose adiabatic boundarphétttermal and isolated contour for the electromagnetic
field (see Figure 1). The chosen material properties aresimowable 2. The choice of Newmark scheme parameters
v = 1.5 andB = 1 results with the highest numerical dissipation (see [21])

Property Units Value
Young ModulusE GPa 200

Mass density, | kg/m® | 7.8x 10°

Specific heat, | JkgK | 1.2x1C°

Seebeck cdBicienta | V/K 2x10%

Thermal expansion coed, K 15x10°
Thermal conductivitx | W/K m 0.15

Electric conductivityy | A/V m 10°

Table 2: Properties of the material used in validation examp

The bar is set in motion by a displacement pulse imposed deftrend (see Figure 1) that propagates through the
bar, with its period being much lower than the one correspuaia inertia of the bar. This displacement produces the
corresponding local change in the time derivative of thaistiwhich further generates the structural heating defined
in (39) and leads to a temperature change. These tempechnges also lead to change in the electric field, which is
affected through the constitutive behavior of the materia) &3uming = 0 due to the isolated boundary conditions.

u(o, t)
u(o, t)

I

250At t o

Figure 1: Scheme of the geometry considered and the puldieéppthe left end

In Figure 2 we present the computed response for the digpkaein the bar longitudinal direction, the electric
voltage and the temperature for the point in the middle oftttuiex = 1/2 through the transient sequence. The time
scale used is the step sizae=5x 108 s.

Regarding the evolution of the mechanical field, this prob&an be seen as a wave propagation. When the wave
arrives to the right end, the reflected wave keeps the samasithe wave that originally came, and when it arrives to
the left side the sign changes due to the restricted moveribig problem is considered in elastic regime so there is
no plastic dissipation. Nonetheless, the maximum dispece is gradually reduced due to dissipation by conduction,
which is produced for non-homogenize temperature didiohwalong the bar. Moreover, the wave length is increased
in the course of this wave propagation.

The evolution of other two fields are directlyfected by the evolution of displacement field. The tempeeatur
in particular is proportional to the time derivative of thieagn or strain rate, which changes the sign within the
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Figure 2: Computed displacement, voltage and temperatuteibar middle poink = 1/2.

displacement pulse. Moreover, when the wave passes by ttdlerpoint, the strain will be positive or negative,
which depends upon the direction of the wave and the signeoflitplacement. As it can be seen in Figure 2, a wave
passing from left to right in the ascending part generatéissata positive strain rate, but once passed the maximum
displacement, the same wave produces negative strairilitaesoltage evolution is directlyfiected by the evolution

of the temperature, but with the sign changed as stated jn (23

6.2. Peltier cells with stress evolution under plasticionstraint

In this numerical example, we simulate the behavior of halfexmocouple of a pulsed Peltier cell, representing
a cooler based on the Peltidfert under the action of an electric flux. This cell consistéoof different materials:
thermoelectric material (here chosenBi3), copper, alumina and a tin-lead solder.

A complete simulation for elastic regime can be found in [18he material properties for this problem are
presented in Table 3. Moreover, some of these propertighédBi, Te; are chosen as temperature dependent:

o(T) = 1.988x 107 + 3.353x 1077 T + 7.52x 10710 T2
K(T) = 1.663— 3.58x 103 T + 3.195x 10°° T2 (85)
¥(T) = 1.096x 10° — 5.59x 102 T + 2.498T2

Finally, the alumina is considered to remain elastic matdggetting very high value for yield stress) because the
plasticity begins well after the ultimate stress is reacHdg: same values for the Newmark parameters are chosen as
in the last example.

The finite element mesh constructed with the hexaedral & fiaite elements used for computing the solution
to this problem is shown in Figure 3. fdérent materials are presented ifffelient colors. The boundary conditions
are shown in Figure 3 right. We fix the displacements in dioect andz at the respective end faces, along with the
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Property Units Alumina Copper Tin-Lead Bi,Tes

Hardening modulu& GPa 5 5 5 1
Yield stressry | MPa 15,400 100 180 55
Mass density | kg/m® 3,570 8,960 7,310 7,530
Specific heat, | Jkg K 837 385 226 544

Expansion coficiente, | 1/°C | 5.00x 10° | 1.70x 10> | 270x 10 | 1.68x 10™°
First Lamé parameter | N/m? | 1.63x 10 | 7.16x 10 | 3.25x 10™° | 6.71x 10'°
Shearstress | N/m? | 1.51x 10" | 4.39x 10" | 1.68x 10™° | 1.68x 10™°

Thermal conductivitx | W/K'm 35.3 386 48 k(T)
Electric conductivityy | A/V m 0 581x10" | 472x 1P ¥(T)
Seebeck cd&ciente | V/K 0 0 0 a(T)

Table 3: Material properties for every material used in thki€r Cell

Tt
I
| i
e V=0
Iz /I/I/
— Z
J
X

Tp

Figure 3: Left, mesh used in this numerical example, eaclemahtrepresented in aftierent color: BjTes in red, copper in blue, solder in green
and alumina in yellow. Right, boundary conditions imposethis problem.

symmetry condition in the plang = 0. The temperature is prescribed at the top féce- 50 °C (called hot side)
along with a zero heat flux imposed at the bottom (cold siderethe temperaturh, is left free. The electric flux is
introduced at the bottom left end of the copper while grouaithge is assumed at the top right end copper.

The applied loading is presented in Figure 4 top. First, antat flux jgs = lop/Ais introduced, wheré, is an
optimal electric current that maximizes the temperatuffiectncerl; — Ty, in steady-state (more details in [18]) with A
as the transversal area of the copper. This electric fluxevalkept fixed until evolution for all the degrees of freedom
have been stabilized, and a steady-state has been readiwths moment, the flux is increment@dimes, where
P = j/jssis the pulse gain, which implies automatically tHatdecreases until a minimum is reached, but with an
overheating penalty reached right afterwards. The stestatg-temperature is reached eventually after reimposing
P =1 if no other pulse is introduced.

Figure 4 provides the representation of the maximum von $/éteess values calculated in Gauss points for each
material in both elastic and plastic regime. In the steddyesthe maximum stresses are similar since the yield
stress has not been reached yet. However, with the incréasectric flux, the stress increments seen in [18] due to
accumulation of Joule heating, are no longer the same.

When the pulse is introduced reaching the yield stvgs$he subsequent stress-rate increase is reduced, due to the
corresponding increase in plastic strains. These chaegalt in a noted decrease of the maximum stresses computed
with activated plasticity constraint compared to the étastse, specially in the copper and in the thermoelectric ma
terial. Once the steady-state gain is restated, the asyimptesses are reduced as a result of the plastic defanmati
in the copper and the solder. Moreover, due to the stresdissdrilbution, enforced by plasticity constraint, the stes

19



o
OO P N W b

150
100

a
o

Max V.M. stress (MPa) Pulse Gain (-)

0 50 100 150 200 250 300
Time (s)

Figure 4: Maximum von Mises stress for solder (red), coppkrck) and B Tes (blue) when an electric square pulse of gRie 3.5 and duration
Atp = 5sis applied at = 125 s. Full line, computed result with elastoplastic resgomashed line, computed results for elastic response.

are increased in the Bie;. Thus, a new study of the introduction of another pulse dfterapplication of the first is
needed.

. “"‘ 11.2 11.2
Eg==== 35.2 34.4
"4‘.= 59.2 57.6
&V Hsa2 80.8

: !’i-.i 107 , 104

'; T .- - g ’ 127

=

Figure 5: Von Mises stress [MPa] contour in deformed conéigan for elastic (left) and plastic regime (right). All neaials but the alumina.
Detailed zoom at the bottom side of the Peltier cell.

In Figure 5 the nodal von Mises projection distribution i®wh at the end of the pulse= 130 s, when the
maximum stresses take place, along with a detailed zoorneafdh side, the most stressed part of the structure. The
alumina has been omitted in order to show more clearly thieréinces with respect to the plastic materials.

In both cases the maximum is located at the bottom since itéshes a bigger tlierence with respect to the
reference temperature than the hot side. The maximum vaheesather similar in both regimes. This is due to the
influence of alumina that remains elastic, which stabilthescorresponding stress distribution inside with no merke
changes.

The first noticeable dlierence is that the stress distribution of the lower valueguite diferent. This can be
appreciated specially for the copper, where the part on ditedm left has quite reduced values of stress, and in the
Bi,Tes where they have increased in average in a homogenizati@megso This further explains what was already
observed in Figure 4, as in general in the copper the strasstsady-state will be reduced and the opposite for the
thermoelectric material.

It is interesting to note (as shown in Figure 6 bottom) tha&t tbmperature evolution is not veryfected by
the presence of plasticity unlike the stress distributidhe latter is due to rather small contribution of the plastic
dissipation towards total power sources, especially coatpagainst the Joule dissipative term or Peltier cooling.
Thus, it would appear that if the main goal in this problema@med the temperature evolution, the plasticity would

20



o O = N w SN
T
I

| | |
W N =
o O o

|
N
o

50 100 150 200 250 300
Timet (s)

Figure 6: Top: electric flux pulse gain introduced in the pealn Bottom: temperature at the cold side for elastic (ral) &nd plastic regime
(blue, dashed).

Bottom temp.Ty, (°C) Pulse Gain (=)

o

not have decisive role for computing theflstiently good results.

7. Conclusions

A number of novelties for solving the coupled thermo-eleatrechanic problems for conductor materials is pre-
sented in this work. In particular, a complete formulationthermo-electro-elastoplastic behavior has been dpeélo
in a consistent manner by using conservation principlesgailgith the definition of a free-energy potential leading
to corresponding constitutive relations. This formulatieas been implemented in the most general 3D framework,
by using 8-node hexahedral finite element for constructergigliscretization, along with the global phase of time
discretization by the Newmark scheme and local computadfotme internal variables for plasticity. Finally, the
thermo-electro-elastoplastic tangent modulus has betinga assuming that every possible interaction is notineg|
gible.

This development provides the sound basis to analyze pahetkamples, which either did not include an electric
coupling to the thermomechanical formulation or have ngilemented a plastic model in a thermo-electro-elastic
framework. Moreover, the proposed formulation providesdtarting point for further developments in plasticityttha
would include non-negligible magnetic field contribution.

The first validation numerical example has proven that &ldbuplings considered in this paper for the resulting
element provide logica implemented, leading to the rebaltwas expected, when the plastic behavior is not activated
In the second example, majorflidirences between the elastic and plastic types of behavier ieen found. In
particular, the distribution of the stresses changes aplmicity reduces the maximum value of von Mises by
overcharging other parts of the domain, so the materialsare compensated. The increase of the plastic variables
in the pulsed partféects the stress distribution in the steady-state, by redubie maximum von Mises in the copper
and the alumina and increasing it in the B#; so a more complete study on the application of another palftes
irreversible changes take place is needed, and possibtigadavork to study the lifetime of the pulsed Peltier Cells.
Also, the plastic dissipation in this example is not veryn#figant when only the electric and the thermal fields are
considered as the temperature in the cold side remaindgatycthe same.
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