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Abstract. We present a simple and reliable method for estimating the log-linear
weights of a state-of-the-art machine translation system, which takes advantage
of the method known as discriminative ridge regression (DRR). Since inappro-
priate weight estimations lead to a wide variability of translation quality results,
reaching a reliable estimate for such weights is critical for machine translation re-
search. For this reason, a variety of methods have been proposed to reach reason-
able estimates. In this paper, we present an algorithmic description and empirical
results proving that DRR, as applied in a pseudo-batch scenario, is able to pro-
vide comparable translation quality when compared to state-of-the-art estimation
methods (i.e., MERT [1] and MIRA[2]). Moreover, the empirical results reported
are coherent across different corpora and language pairs. Keywords: statistical
machine translation, log-linear model, discriminative ridge regression

1 Introduction

One important breakthrough in Statistical Machine Translation (SMT) was provided by
the use of log-linear models for modelling the translation process [3,4]. The log-linear

models are defined as follow: given a source sentence f = f1,..., f;,..., fy whichis
to be translated into a target sentence € = ey, ...,€;,...,€J.
M
é = argmax Pr(e | f) = argmax Z Amhm (£, €) = argmax X - h(f, e) (1)
€ € m=1 €
In this framework, we have a set of M features function h,,(f,e),m =1,--- M.
For each function, there exists a weight parameter \,,,m = 1,--- , M. Common fea-

ture functions h,,(f, e) include different translation models (TM), but also distortion
models or even the target language model (LM). Typically, h(-,-) and A = [Ay, ..., Aps]
are estimated by means of training and development sets, respectively.

The use of log-linear models implied an important break-through in SMT, allowing
for a significant increase in the quality of the translations produced. The problem then
arises of how to optimize the weights A, in other words how to find a set of weights
which will offer the best translation quality. In this work, we used the Discriminative
Ridge Regression [5] technique for estimating the weights of such log-linear models
according to a development data set.

The main contributions of this paper are:
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— We present an algorithmic description of Discriminative Ridge Regression in a
batch setting, as applied to estimating the log-linear weights of a state-of-the-art.

— We evaluate empirically the DRR algorithm proposed in two different domains and
with two different language pairs.

— We provide a thorough comparison with state-of-the-art A estimation methods, such
as Minimum Error Rate Training (MERT) [1], and batch Margin Infused Relaxed
Algorithm (MIRA) [6].

The rest of this paper is structured as follows. In Section 2, we perform a brief
review of current approaches to log-linear weight estimation in SMT. In Section 3, we
describe the algorithmic approach for applying DDR in a batch scenario for estimating
A. In Section 4, the experimental design and empirical results are detailed. Conclusions
and future work are explained in Section 5

2 Related work

Once the bilingual phrases have been extracted from a sentence aligned bilingual cor-
pus, the features h can already be computed. However, at this point it is still necessary
to obtain an appropriate value for the scaling factors A. The process of obtaining such
a vector is often called funing. To this end, numerous methods have been proposed.

The most popular approach for adjusting the scaling factors is the one proposed
in [1], commonly referred to as Minimum Error Rate Training (MERT). This algo-
rithm implements a coordinate-wise global optimisation and consists on two basic steps.
However, such algorithm has an important drawback. Namely, it requires a considerable
amount of time to translate the development set several times, and in addition it has been
shown to be quite unstable whenever the amount of adaptation data is small [7].

Various alternatives to MERT have been proposed, motivated primarily by scala-
bility considerations. One popular alternative is the use of margin infused MIRA [2],
[6] which is a perception-like online tuning algorithm with passive-aggressive updates.
Tellingly, in the entire proceedings of ACL 20153, only one paper describing a statistical
MT system cited the use of MIRA for tuning [8], while the others used MERT.

Alternatively, [9] proposed to view the problem as a ranking problem (PRO), where
each step of the tuning procedure consists in deciding whether a given translation hy-
pothesis should be ranked lower or higher within the set of possible hypotheses that are
provided by the search procedure.

3 Discriminative rigde regression for SMT

In this section, the Discriminative Ridge Regression method is for estimating A is re-
viewed. DRR was proposed by [5], uses the concept of ridge regression technique to de-
velop a discriminative algorithm for estimating A online, i.e., as new adaptation samples
are introduced into the system. The key idea is to to find a configuration of the weight
vectors using all the hypotheses within a given N-best list, so that good hypothesis are
rewarded, and bad hypothesis are penalised, trying to narrow the correlation between
the score function o, and the quality criterion used. Since DRR was proposed for an on-
line computer-assisted translation scenario, it requires an N-best list of hypotheses for

3 www.aclweb.org/anthology/P/P15/
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each one of the sentences that are evaluated by the professional translator post-editing
the system’s output. Algorithm 1 shows the procedure. Here, A = {f1,... f,,... fs}
is a bilingual development corpus, .S is the number of sentences in A and s € S, and [
is the maximum number of epochs desired.

Data: Development corpus A
Result: A
Initialize: \°;
forall desired number of iterations I do
forall number sentences in dev-corpus S = |A| do
optimization: compute gradient vector A$;
estimation: \; = (1 — )X ! + aX§;
end
end

selection: output vector A5
Algorithm 1: Pseudo-code for DRR estimating A as described in Section 3

During the optimization step, we obtain the gradient vector A for each one of the
development sentences as. Within DRR, this optimisation is performed by computing
the solution to an overdetermined system, described in detail in next section, so that
changes in the scoring function ¢ are correlated to changes in the objective function
(potentially BLEU).

3.1 Sentence-based optimisation in DRR

As exposed in the previous section, DRR obtains A based on obtaining the best log-
gradient vector for each one of the sentences of a development corpus. In order to
compute the new log-linear weight vector A°®, the previously learned A* ! needs to be
combined with an appropriate update step A°. The aim is to compute an appropriate
update term A® that best fits the translation search space (approximated as an n-best
list) of the development sentence pair observed at s. This is often done as a linear
combination [10], where A* = (1 — a)A*~! 4 aA* for a certain learning learning rate
. Let n-best(f) be such a list computed by our models for sentence f. To obtain A%, we
define an N x M matrix H¢ that contains the feature functions h of every hypothesis,
where M is the number of features in Equation 1, and [V is the size of n-best(f).

Hf = [h(f;el)a"'ah(f7eN)]/ (2)
Additionally, let Hf be a matrix such that
Hi = [h(f,e"),...,h(f,e")] 3)

where all rows are identical and equal to the feature vector of the best hypothesis e*
within the n-best list. Then, Ry is defined as: R = Hy — He

The key idea is to find a vector X such that differences in scores are reflected as
differences in the quality of the hypotheses. That is R¢ - X o l¢ where 1¢ is a column
vector of N rows such that:

le = [i(e1),....,l(en), ..., l(en)]’, Ve € nbest(f) 4)
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The objective is to find A’ such that:

A* = argmin [R¢ - X — l¢| = argmin ||Rg¢ - X — l¢[|? )
N A

where || - ||2 is the Euclidean norm. Although 5 is equivalent (i.e., the A” that mini-

mizes the first one also minimizes the second one), equation 5 allows for a direct im-
. . . S .

plementation thanks to the ridge regression. A can be computed as the solution to the

overdetermined system Ry - A" = 1¢, which is given by
A= (R, -Re+ 807 - Ig (6)

where a small (3 is used as a regularization term to stabilize R;( - Ry and to ensure that
it is invertible.

He, + [h(fs,e51),...,h(fs, es n)]', Ve, ; € nbest(fs)
Algorithm 2 shows the pseudo-code for obtain X’. In this work, we apply the original

for each of the sentences fs in A do
Hg, < [h(fs,es5,1),...,h(fs,esn)]’, Ves,; e nbest(fs) ;
H; « [h(fs,e}),...,h(f,e})];
Rfs — Hfs* — fv‘IfS ;
A (RE, Re, + 817! 1, 5
A (1— )Xt 4 aX®

end

Algorithm 2: Pseudo-code for computing the vector A* as described in Section 3.1

DRR approach proposed by [5] to a batch scenario, so that the method proposed is
effectively able to compete with state-of-the-art A estimation approaches. In this case,
DRR obtains an estimation of A by previously adjusting the A vector to each one of the
sentences in a development corpus, i.e., the optimal A is computed after performing a
complete epoch on the development set.

4 Experiments

In this section, we describe the experimental framework employed. Then, we show a
comparative by our strategy with two optimization methods (MERT and MIRA).

4.1 Experimental setup

All experiments were carried out using the SMT toolkit Moses [11]. The LM used was a
5-gram, with modified Kneser-Ney smoothing [12], built with the SRILM toolkit [13].
The phrase table was obtained with GIZA++ [3].

Translation quality was assessed by means of the BLEU [14]. BLEU measures n-
gram precision with a penalty for sentences that are too short. However, it must be noted
that BLEU is not well defined at the sentence level, since it implements a geometrical
average of n-gram counts which is zero whenever there is no common 4-gram between
reference and hypothesis, even if the reference has only three words. In our experiments,
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we used the smoothed BLEU approximation in [15] to calculate sentence-level BLEU.
Note that the original work by [5] applied DRR to optimise TER scores [16], ignoring
the problem of BLEU not being well defined at the sentence level. In this work we
favour the use of BLEU because of its wider acceptance in the SMT community.

For each corpus, we trained baseline systems with which to compare the systems.
This baseline was obtained by training the SMT system without tuning process obtain-
ing the baseline-emea and baseline-nc. Since optimization methods require a
random initialisation of A that often lead to different local optima being reached, ev-
ery point in each plot of this paper constitutes the average of 10 repetitions with 95%
confidence intervals, with the purpose of providing robustness to the results.

DRR has different parameters that affect the experimental result, the most critical
one being a. We conducted experiments with different a. Another meta-parameter is
the regularization term [, which was fixed to 0.02 according to the work in [5]. The
initial weight \" used by our method was obtained using Moses random method.

4.2 Corpora

The experiments conducted in this paper were carried out on two different corpora
(EMEA and NewComentary). The EMEA* corpus [17] contains documents from the
European Medicines Agency. The News Commentary® (NC) corpus [18] is composed
of translations of news articles. We focused on the English-French (Fr-En) and German-
English (De-En) language pairs. Table 1 shows the main figures of the corpora.

Table 1: Main figures of the corpora. Train is the training set, Dev is development set,
and Test is the test data. M denotes millions of elements and k thousands of elements,
|S| for number of sentences, |W| for number of words and |V| for vocabulary size.

Corpus  |S| [W] V] Corpus |S| [W| |V|

. 12.1M 98.1k , 2.4M 27.6k
EMEA-Train 1.0M 141M 112k NC-Train 120k 2 8M 33.7k
21.4k 1.8k 56k 4.8k

EMEA-Test 1000 26.9k 1.9k NC-Test 3000 61k 5.0k
9850 979 43k 3.9k

EMEA-Dev 501 116k 1.0k NC-Dev 1600 A7k 4.1k

4.3 Comparison between DRR and MERT and MIRA

We compare our method with MERT and MIRA. We study the effect of increasing the
number of development samples made available to the system. Figure 1 and Figure 2
show the effect of adding sentences to development corpus and confidence intervals.
These results show the quality translations in BLEU terms of each test corpus (EMEA-
Test and NC-Test). Confidence intervals are displayed in different plots, instead of

4 www.opus.lingfil.uu.se/EMEA.php
> www.statmt.org/wmt13
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Fig. 1: Performance comparison across the corpus EMEA with different language pairs
analysed. The two plots on the left display BLEU, while two plots on the right display

the confidence intervals.
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Fig. 2: Performance comparison across the corpus NC. (See Figure 1 for an explanation

of the figures.)
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using error bars, because otherwise the translation quality plots would present vertical
lines across the complete plot, rendering it unreadable. We only show results for the
best learning rate « for clarity and the best configuration obtain to MERT and MIRA.
Figures 1 shows the principal result obtained using the EMEA corpus.

— Results obtained with our DRR method are similar than the ones obtained with
MIRA and MERT. Behavior DRR results is increase when the amount of develop-
ment corpus larger.

— Confidence interval sizes are shown in Figure 1b and 1d. Our DRR technique have a
behaviour more stable that the MERT and MIRA that that shown more inestability.

Figures 2 shows the principal result obtained using the NC corpus.

— Increase the number of adaptation sample all the method obtain similar results, buy
we can see MERT and MIRA are only to able to yield improvements when provided
with at least 500 (MERT) and 200 (MIRA) development sample displaying a very
chaotic behaviour until these point.

— Confidence interval sizes are shown in Figures 2b and 2d. MERT and MIRA yields
large confidence intervals (as large as 3 BLEU points for less than 100 samples),
turning a bit more stable from that point on, where the size of the confidence in-
terval converges slowly to 0.5 BLEU point. In contrast, our DRR technique yields
small confidence intervals, about 1 BLEU point in the worst case. This is worth
emphasising, since estimating A by means of MERT or MIRA when very few de-
velopment data is available may improve the final translation quality, but may also
degrade it to a much larger extent. In contrast, our DRR technique shows stable and
reliable improvements from the very beginning.

Table 2 shows the best results in terms of BLEU achieved by the three methods, i.e.,
DRR, MERT and MIRA. As shown, our method is able to yield competitive results in
all scenarios considered. We understand that is important, since it proves the competi-
tiveness of our proposal in this task, with respect to the other techniques state-of-the-art.

Table 2: Sumary of the best result obtained for each corpus and languege.

EN-FR DE-EN
Corpus Strategy BLEU BLEU
MERT 28.7+0.3 23.5+£0.2
EMEA MIRA 28.9£0.2 23.7+0.1
DRR 28.8+0.2 23.6 £0.1
MERT 18.4+0.2 19.3£0.2
NC MIRA 18.6 £ 0.2 19.3+0.1
DRR 18.5+0.1 19.2+0.1

5 Conclusion and future work

We have proposed a simple technique for log-linear weight optimization an SMT sys-
tem based in discriminative ridge regression method that is on par with the leading tech-
niques, exhibits reliable behaviour and is remarkably easy to implement and use. We
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have demonstrated, via an empirical experiments, that our DRR method obtain compa-
rable result than MERT and MIRA. In future work, we will carry out new experiments
with large amounts of corpus, and languages diversity.
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