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ABSTRACT 

 Poly(lactic acid), PLA-based green composites were obtained with hazelnut shell 

flour (HSF) derived from the food industry thus leading to fully biodegradable materials 

with attracting properties. The hazelnut shell flour content varied in the 10 – 40 weight 

% range. An increase in the degree of crystallinity with increasing HSF was detected, 

mainly due to the nucleating effect of lignocellulosic particles. The thermo-dimensional 

stability was noticeably improved with increasing HSF amount as evidenced by a 

remarkable decrease in the coefficient of thermal-linear expansion (CTLE). Increasing 

HSF leads to stiffer materials as HSF particles act as interlock points that restrict polymer 

chain motion. Addition of hazelnut shell flour as filler in PLA-based green composites 

leads to fully biodegradable composites with balanced mechanical and thermal properties. 

Furthermore, it gives a solution to upgrade wastes from the hazelnut industry and 

contributes to lower the cost of PLA-based materials. 

Keywords: poly(lactic acid)-PLA; hazelnut shell; wood plastic composites; mechanical 

properties. 

 



1. Introduction. 

 Recent and increasing concerns about environment protection, sustainability 

petroleum depletion and use of renewable resources has promoted the need of new eco-

efficient materials. These environmentally friendly materials contribute to sustainable 

development by minimizing wastes at the end of the life cycle with potential recycling, 

upgrading and/or biodegradation thus leading to low environmental impact. 

 In this field, research has paid special interest on new polymeric materials from 

renewable resources and/or potentially biodegradable. Natural origin means no petroleum 

dependency, which is positive to avoid petroleum depletion. Biodegradation means 

environment protection as no harmful/durable wastes are generated; on the other hand, 

biodegradation allows readily decomposition of polymers in comparison to petroleum-

based polymers (i.e. poly(ethylene) and poly(propylene) takes 100-150 years to fully 

degrade). Al the research on biobased and/or biodegradable polymers has led to a wide 

variety of materials, most of them currently commercially available. Biopolymers from 

natural resources are characterized by physicochemical properties similar to petroleum-

based polymers. Biopolymers can be divided into three main families. One group includes 

all polymers coming from biomass: polysaccharides such as starch, cellulose, chitosan, 

etc. and proteins such as casein, keratin, collagen, gluten, etc. Some polymers can be 

obtained by chemical synthesis using biological monomers from renewable resources 

such as poly(lactic acid)-PLA or poly(glycolic acid)-PGA. Finally, it is possible to find 

biopolymers obtained by controlled bacterial fermentation as polyhydroxyalkanoates 

(PHAs) such as poly(hydroxy butyrate)-PHB or poly(hydroxy butyrate co valerate)-

PHBV[1, 2]. 

 One of the most used biopolymers at industrial level is poly(lactic acid)-PLA with 

an annual consumption of 140,000 t per year. PLA can be obtained from monomers that 



are readily available from sugar rich compounds, cellulose and starches such as potato, 

corn, wheat, sugarcane, etc.[2-4] PLA is a thermoplastic polymer characterized by high 

fragility and similar mechanical properties to poly(styrene)-PS. Production of PLA begins 

with the starch obtained from corn and then some microorganisms convert this into a 

shorter molecule of lactic acid that is the base monomer for PLA production. 

Conventional PLA is characterized by a crystallinity degree (Xc) of about 37%, a glass 

transition temperature (Tg) between 60-65 ºC, a melt temperature (Tm) in the 173-175 ºC 

range and an elastic modulus between 2.7 to 16 GPa [5]. 

 PLA can be processed in a similar way to commodity plastics. The most common 

uses of PLA include disposable and compostable glasses for cold drinks, bags and 

packages for food, teabags, disposable plates and cutlery, etc. PLA (medical grade) is also 

used for biomedical applications such as resorbable stitches, stents, drug delivery carriers, 

etc.[6-15] 

 As PLA offers similar properties to some commodities, one attracting application 

is its use as matrix in fully biodegradable wood plastic composites (WPCs) which are 

composed of a polymer matrix and a lignocellulosic filler thus leading to materials with 

similar appearance to wood. In the last decades an increasing interest on natural fiber 

reinforced plastics (NFRPs) with lignocellulosic fibers such as hemp, jute, kenaf, flax, 

henequen, Posidonia oceanica seaweed, etc. has been detected[2, 13-21]. Nevertheless, 

conventional WPCs with petroleum-based polymers such as poly(ethylene)-PE, 

poly(propylene)-PP, poly(vinyl chloride)-PVC, and others have a negative impact during 

and at the end of the life cycle [22, 23]. The use of WPCs is increasing in a remarkable 

way as they offer easy processing by conventional processing techniques (injection, 

extrusion, etc.); they also offer shape versatility, cost effective and lightweight materials, 

balanced resistance to external agents, good resistance to salt and sand, attractive surface 



finishing, etc. WPCs represent a remarkable high market share in the building sector with 

uses in decking, solar diffuser, facades, interior floor, profiles, pergola, fencing, handrails, 

etc.[24]. In Europe, WPCs are mainly used in the automotive sector in interior parts[2, 

25-28].  

 The new generation of WPCs are called “green-composites” or “biobased 

thermoplastic composites” and are characterized by the use of a biopolymer matrix 

together with a lignocellulosic filler from industrial wastes; these components allow 

obtaining fully biodegradable WPCs with high environmental efficiency[25, 29-32]. 

Although the typical lignocellulosic filler in WPCs is sawdust from the wood industry, 

the use of lignocellulosic wastes obtained from agroforest and food industry is increasing 

continuously. In the last decades, a wide variety of lignocellulosic materials such as husk 

rice, almond husk, spent coffee grounds, cotton gin waste, pine needle, stalks of cereal 

crops, corncobs, peanut shells, etc. have been proposed for green composites[33, 34].  

The annual crop of hazelnut is about 800,000 t. It is worth to note that the hazelnut 

shell represents between 50 – 60 % of the total weight thus leading to an important amount 

of wastes around the world. These lignocellulosic wastes can be used as biomass fuel for 

different industries. Despite this, these wastes can be powdered to give hazelnut shell 

flour with similar appearance to wood. In addition, hazelnut shell is characterized by a 

relatively low density as other lignocellulosic filers. Copur et al. determined the 

composition of the hazelnut shell resulting in 55.1% holocellulose, 34.5% -cellulose, 

35.1% lignin and 8.2% ashes. It is important to remark the high lignin content that leads 

to hard shells[23, 35-37]. 

 The aim of this research work is the development of biobased thermoplastic 

composites from poly(lactic acid)-PLA and hazelnut shell wastes to assess their potential 

as WPCs with potential uses in technical applications. The effect of the hazelnut content 



is evaluated in terms of the mechanical, thermal and thermomechanical properties of 

PLA/HSF composites. 

 

2.- Experimental. 

2.1.-Materials. 

A poly(lactic acid)-PLA commercial grade Ingeo 6201D supplied by 

NatureWorks LLC (Minnesota, USA) was used as matrix for composites. This PLA 

possesses a density of 1.18 g cm-3 and a melt flow index of 15-30 g/10 min at 210 ºC. 

Hazelnut shell (Corylus avellana variety) obtained as a byproduct of the food industry 

was used as lignocellulosic filler for composites. 

 

2.2. Composite manufacturing. 

 Prior to further processing, hazelnut shell was grinded in an ultra-centrifugal mill 

(Retsch GmbH, Hann, Germany) at a rotating speed of 10000 rpm. After this, the 

powdered hazelnut shell flour was dried at 60 ºC for 24 h. Particle size and distribution is 

shown in Fig. 1 with predominant particle size lower than 63 m. 

 

Figure 1 

 

 PLA was subjected to the same drying process (60 ºC for 24 h) to remove residual 

moisture. PLA/HSF composites were manufactured as follows: initially, exact amounts 

of PLA and HSF were weighed and mechanically mixed in a zipper bag to homogenize. 

The HSF content was varied in the 10 – 40 wt.%. After the initial homogenization, 

mixtures were compounded in a twin screw co-rotating extruder from DUPRA S.L. 

(Alicante, Spain) with a temperature profile of 176 ºC (hopper), 180 ºC, 185 ºC and 192 



ºC (die) at a constant rotating speed of 40 rpm. The obtained compounds were pelletized 

for further processing by injection molding in a Meteor 270/75 from Mateu & Solé 

(Barcelona, Spain) to obtain standard samples for testing. 

 

2.3.- PLA/HSF composite characterization.   

 Thermal characterization of PLA/HSF composites was carried out by differential 

scanning calorimetry (DSC) in a Mettler-Toledo DSC mod. 821 (Schwerzenbach, 

Switzerland). Dynamic DSC analysis was carried out in three consecutive temperature 

steps. The first step (heating from 30 ºC to 200 ºC at 10 ºC min-1) was applied to remove 

the previous thermal history due to prior processing. After this, a controlled cooling cycle 

(from 200 ºC to -50 ºC at -10 ºC min-1) was applied to slowly cool PLA and, finally, the 

last step was a heating program from -50 ºC to 350 ºC at 10 ºC min-1 which is the base 

cycle for determining all thermal parameters. All three steps were carried out under 

nitrogen atmosphere (66 mL min-1). 

 The crystallinity degree of PLA (XcPLA) was calculated from DSC thermograms 

by using the following equation:  

𝑋𝑐𝑃𝐿𝐴 (%) = [
|∆𝐻𝑚|− |∆𝐻𝑐𝑐|

|∆𝐻100%|∙𝑤𝑃𝐿𝐴
] · 100   Eq. 1  

 

where Hm is the melt enthalpy, Hcc is the cold crystallization enthalpy, H100% is the 

theoretical melt enthalpy for 100% crystalline PLA (-93.7 J g-1) and wPLA is the weight 

fraction of PLA in PLA/HSF composites[7, 8, 11, 38, 39]. 

 Thermal degradation of PLA/HSF composites was followed by 

thermogravymetric analysis (TGA) in a horizontal thermobalance Mettler-Toledo 

TGA/SDTA 851 (Schwerzenbach, Switzerland) with a temperature program from 30 ºC 

to 700 ºC at 20 ºC min-1 in nitrogen atmosphere (66 mL min-1). 



  Thermomechanical properties of PLA/HSF composites were evaluated by 

measuring the Vicat softening temperature (VST) and heat deflection temperature (HDT) 

in a VICAT/HDT station mod. VHDT 20 from Metrotec S.A. (San Sebastián, Spain). 

VST tests were carried out as indicated in ISO306 with a load of 5 kg and a heating rate 

of 50 ºC h-1. With regard to HDT test, the ISO 75 (ASTM D 648) was followed with a 

load of 296 g and a heating rate of 120 ºC h-1. In addition, the coefficient of linear thermal 

expansion (CLTE) of PLA/HSF composites was determined in a TMA analyzer from TA 

Instruments mod. Q400 (Delaware, USA). The heating program was set from -100 ºC to 

80 ºC at a heating rate of 3 ºC min-1 and a constant force of 0.02 N. 

 Mechanical characterization of PLA/HSF composites was carried out by flexural, 

impact and hardness tests. The flexural test was done as described in the ISO 178 standard 

with rectangular samples sizing 10x80x4 mm3 in a universal machine ELIB 30 from 

S.A.E. Ibertest (Madrid, Spain). The load cell was 5 kN and the crosshead speed was 5 

mm min-1. The flexural deformation (f), strength (f) and modulus (Ef) were calculated 

following these equations: 

 

𝜀𝑓 =  
6 · 𝑠 · ℎ

𝐿2
 

Eq. 2  

𝜎𝑓 =  
3 · 𝐹 · 𝐿

2 · 𝑏 · ℎ2
 

Eq. 3  

𝐸𝑓 =  
𝜎𝑓2 −  𝜎𝑓1

𝜀𝑓2 −  𝜀𝑓1
 

Eq. 4  

  

Where s is the sample deflection (mm), h is the sample thickness (mm), L is the 

distance between supports (mm), F is the applied force (N), b is the sample width (mm). 

The flexural modulus is calculated as the ratio between the change in flexural stress (f2 

– f1) and the difference between two flexural deformations of f2 (0.0025) – f1 (0.0005). 



The impact absorbed energy was determined following ISO 179 standard in a 

Charpy pendulum (1 J) on unnotched samples with dimensions 10x80x4 mm3. With 

regard to hardness, Shore D values of PLA/HSF composites were measured using a Shore 

D durometer mod. 673-D from J. Bot S.A. (Barcelona, Spain). At least five different 

samples were tested for each mechanical test and average values of the corresponding 

parameters were calculated. 

 Morphology of fractured surfaces from impact tests was evaluated with scanning 

electron microscopy (SEM) in a PHENOM microscope from FEI Company (Eindhoven, 

Netherlands). The acceleration voltage was 5 kV and prior to surface observation, 

samples were subjected to a sputtering process with an aurum-palladium alloy in a 

sputter-coated mod. EMITECH mod. SC7620 from Quorum Technologies Ltd (Sussex, 

UK). 

 

3.- Results and discussion. 

3.1.- Surface morphology of PLA/HSF composites.  

 Surface morphology of fractured samples from impact tests was evaluated by 

scanning electron microscopy to qualitatively assess particle-polymer interactions. Fig. 2 

shows the typical surface morphology of unfilled PLA. It is possible to observe some 

irregularities with different linear microcrack fronts representative for fragile fracture. No 

evidences of plastic deformation can be detected so that, typical fracture is characterized 

by highly smooth surfaces. 

 

Figure 2 

 



 Fig. 3 shows the surface morphology of fractured PLA/HSF composites with 

different HSF content (20 wt.% and 30 wt.% as representative images). It is possible to 

observe quite well dispersed hazelnut shell particles surrounded by PLA matrix thus 

indicating that compounding with twin-screw co-rotating extruder followed by injection 

moulding is appropriate to achieved good particle dispersion. In addition, previous drying 

of both components allows obtaining composite materials without typical porosity caused 

by moisture. Fracture surface is quite regular and homogeneous with small roughness due 

to the impact but no evidences of plastic deformation can be observed. It is clearly 

detectable the lack of strong interactions between the lignocellulosic hazelnut shell 

powder and the surrounding PLA matrix, which gives evidences of the poor particle-

polymer interface adhesion. It is possible that some hydroxyl groups in cellulose could 

react with PLA end chains but this has not a relevant influence on microstructure. This 

phenomenon leads to lack of particle-polymer continuity, which is responsible for stress 

concentration phenomena and poor load transfer from the particle to the matrix. There is 

a high surface area covered by HSF particles. Due to the lack of interaction, the sum of 

all the gaps between particles and surrounding matrix increases with the HSF content thus 

leading to early fracture [6-9, 13, 14, 17, 23, 26, 27]. This could be minimized by surface 

treatment of HSF or by adding coupling agents and/or compatibilizers as reported in 

bibliography [40, 41]. 

 

Figure 3 

 

3.2.- Thermal properties of PLA/HSF composites. 

 Fig. 4 shows a comparative plot of the DSC thermograms corresponding to 

unfilled PLA and PLA composites with different HSF content. 



 

Figure 4 

 

 As it can be observed, all samples show a step in the baseline at about 60-70 ºC 

which corresponds to PLA glass transition temperature (Tg). By taking the Tg at the 

inflection point, its value is located at around 66.5 ºC. Addition of HSF particles do not 

lead to a remarkable change in Tg as observed by DSC analysis; this can be representative 

for lack of interaction (or very low) between the hazelnut shell powder and the 

surrounding PLA matrix[4]. The first exothermic peak in the DSC curves is related to the 

cold crystallization process due to polymer chain re-arrangement. The cold crystallization 

temperature (Tcc) for unfilled PLA is located at about 111.5 ºC. The addition of HSF filler 

leads to a slight decrease in the Tcc values up to 104 ºC. This decrease in the cold 

crystallization temperature is due to presence of lignocellulosic particles from hazelnut 

shell that enables early crystallization as they provide a nucleating effect. On the other 

hand, the total amount of HSF does not affect the Tcc value in a noticeable way. The 

second peak (endothermic) corresponds to PLA melting. Unfilled PLA melts at 170.8 ºC 

and no significant changes are obtained for PLA/HSF composites with different HSF 

content (i.e. the melt temperature for a PLA/HSF composite with 40 wt.% HSF is 169 

ºC). 

 Table 1 summarizes the main thermal parameters obtained from DSC analysis. 

The normalized enthalpies for the cold crystallization and melting (Hcc and Hm 

respectively) are obtained by dividing the corresponding enthalpy (peak integral) values 

between the total weight of the samples; nevertheless these values are diluted due to the 

presence of HSF as it doesn’t take part in both the cold crystallization and melting. For 

this reason, the corresponding enthalpies were corrected by considering the real weight 



of PLA, since PLA is the only component that contributes to cold crystallization and 

melting. These corrected values appear as Hcc corrected and Hm corrected respectively 

in Table 1. We can see a slight increase in crystallinity as the HSF content increases. This 

fact indicates a slight nucleating effect of HSF particles that promote crystallization. The 

chemical nature of the solid lignocellulosic particles favours crystallite formation on 

PLA/HSF composites. Perinovik et al. have suggested that lignin (which appears in 

hazelnut shell in a great amount) could act as nucleating agent thus leading to an increase 

in crystallinity. Though PLA can achieve high crystallinity degree, the final crystallinity 

is highly affected by the cooling process after injection moulding. For this reason, it is 

important to remove the previous thermal history. The final crystallinity is a direct 

consequence of two competing processes; on the one hand, the nucleating effect provided 

by the lignin and cellulose structures that leads to an increase in crystallinity but on the 

other hand, the filler particles can act as obstacle for polymer chains to form stable 

crystals, thus having a negative effect on crystallinity. The overall effect of these two 

competing process is a slight increase in crystallinity and it is possible to expect that the 

nucleating effect is slightly higher than that related to the obstacle for crystal formation 

[4, 8, 11, 30, 42]. With regard to the cold crystallization enthalpy (Hcc corrected), we 

observe a slight increase due to the nucleating phenomena provided by the lignocellulosic 

filler. The evolution of the melt enthalpy (Hm corrected) is similar and we can observe 

a slight increase in crystallinity due to the nucleating effect of HSF particles. 

 

Table 1 

 

 Thermal stability of PLA/HSF composites at high temperatures was studied by 

thermogravymetric analysis (TGA). Fig. 5 shows a comparative plot of the TGA and DTG 



thermograms corresponding to individual PLA and hazelnut shell flour together with the 

TGA thermograms for all PLA/HSF composites. 

 

Figure 5 

 

 The TGA curve of hazelnut shell flour (HSF) is characterized by an initial weight 

loss of approximately 8 wt.% at about 100 ºC that is related to moisture removal. The 

highest weight loss is 64 wt.%; this wide degradation process starts at about 230 ºC and 

it is prolonged up to 500 ºC. This degradation stage corresponds to the degradation of 

several components of the lignocellulosic filler. The first components to degrade are 

hemicellulose (firstly) followed by cellulose and finally lignin degrades at higher 

temperatures in a wide temperature range. Perinovic et al. determined that 

polysaccharides such as cellulose and hemicellulose tend to degrade at temperatures in 

the 220 ºC – 290 ºC range while lignin is characterized by a lower degradation rate than 

cellulose and hemicellulose and consequently, lignin is more heat resistant at high 

temperatures. It is important to remark that degradation of hemicellulose, cellulose and 

lining overlaps but their contribution to the weight loss is different depending on the 

temperature range. The initial weight loss in the 200 – 220 ºC range is mainly attributed 

to hemicellulose degradation as its degradation rate is higher to that of cellulose and 

lignin. At higher temperatures, cellulose degradation continues with slower degradation 

rate than hemicellulose but lignin degradation is still lower as it degrades very slowly. 

[43]   That is why the last degradation section offers a soft slope up to 500 ºC which 

corresponds to the slow and progressive degradation of lignin. Finally, the full 

degradation occurs at about 500 ºC leading to a carbon char residue that represents almost 

28 wt.% (mainly ashes from lignin)[4, 14, 23, 43-46]. 



 The TGA curve of unfilled PLA shows an initial section without significant 

weight loss up to 345 ºC. Over this temperature, thermal degradation starts. PLA degrades 

in a quick one-step process in which almost all the weight is lost at temperatures of 368 

ºC. As some authors suggest, the main products from PLA degradation are lactic acid 

oligomers, acetaldehydes, carbon dioxide, carbon monoxide and ketones[4]. 

 TGA curves of PLA/HSF composites show a slight decrease in the onset 

degradation temperature, changing from 345 ºC for unfilled PLA up to values in the 306 

ºC – 331 ºC for all PLA/HSF composites. The initial degradation stage of PLA/HSF 

composites is related to the HSF degradation. As it has been indicated previously, there 

is a lack of interaction (or very poor) between HSF particles and the surrounding PLA 

matrix so that degradation initially proceeds with the lowest thermal stable component 

(hemicellulose contained in HSF) followed by the more thermally stable components 

(PLA and lignin from HSF). The residual carbon char is directly related to the HSF 

content, as PLA does not generates significant amounts of carbon char after full 

degradation. The degradation process finishes at temperatures of 361 ºC – 368 ºC and the 

weight loss percentage decreases as the HSF increases: 95 wt.%, 90.6 wt.%, 90.4 wt.% 

and 85.5 wt.% for PLA/HSF composites containing 10, 20, 30 and 40 wt.% HSF. In 

general terms, as hazelnut shell powder is less thermally stable tan PLA, addition of HSF 

leads to a slight decrease in the thermal stability of PLA which is not a drawback for 

industrial uses as this decrease is detectable at high temperatures[4, 13, 15, 24, 47]. 

 Table 2 shows some physical properties and parameters representative for the 

thermomechanical stability of PLA/HSF composites together with the density. As one 

can see, the density increases slightly as the HSF increases, i.e. for PLA/HSF composites 

containing 40 wt.% HSF density is close to 6% more than unfilled PLA, so that, in general 

terms, PLA/HSF composites are lightweight materials. With regard to the Vicat softening 



temperature (VST), it is detectable a remarkable increase in VST values as the HSF 

content increases. The VST value of unfilled PLA is around 52.8 ºC and this value 

increases up to 64.4 ºC for PLA/HSF composites containing 40 wt.% HSF. The evolution 

of the heat deflection temperature (HDT) is similar but the increase is slightly lower. The 

increase in the thermomechanical stability is related to two main phenomena: on the one 

hand, the increase in crystallinity due to the slight nucleating effect provided by the 

lignocellulosic HSF particles. On the other hand, HSF particles themselves lead to an 

increase in thermal stability, as they are rigid particles dispersed in a plastic matrix with 

a positive effect on overall composite stiffness [6, 24]. It is also worth to note that VST 

and HDT values are directly related to density so that, as density increases (due to 

crystallinity and packed HSF particles), thermomechanical stability increases. 

 

Table 2 

 

 Fig. 6 shows the plot evolution of the coefficient of linear thermal expansion 

(CLTE) (below and over the glass transition temperature, Tg) of PLA/HSF composites as 

a function of the HSF content. Below the glass transition temperature Tg, the linear 

expansion is lower than over the glass transition temperature due to polymer chain 

mobility. Below the glass transition temperature, polymer chain mobility is highly 

restricted and this leads lo low linear expansion values. With regard to the evolution of 

the CLTE below Tg, a decrease in CLTE values as the HSF content increases can be 

observed thus indicating higher dimensional stability. Unfilled PLA is characterized by a 

CLTE of 78.41 µm m-1 ºC-1 which is progressively reduced to values of 64.34 µm m-1 ºC-

1, 61.07 µm m-1 ºC-1 and 54.91 µm m-1 for PLA/HSF composites containing 20 wt.%, 30 

wt.% and 40 wt.% HSF respectively. With regard to the evolution of CLTE values over 



the glass transition temperature, it is possible to observe similar tendency but with higher 

values due to higher chain mobility. The CLTE of unfilled PLA over the Tg is 171.4 µm 

m-1 ºC-1 and this is reduced up to 167.8 µm m-1 ºC-1 with the sole addition of 10 wt.% 

HSF. All the CLTE values for PLA/HSF composites are lower than the value 

corresponding to unfilled PLA. Similar findings have been reported for PLA-based 

composites regarding mechanical and thermo-mechanical properties [48, 49]. 

 

Figure 6 

 

 Dynamic mechanical thermal analysis (DMTA) allows evaluating PLA/HSF 

composites in dynamic load conditions as a function of temperature. Fig. 7 shows the 

comparison of the storage modulus (G’) in terms of temperature for PLA/HSF 

composites. It is clearly observable the temperature dependence of the storage modulus. 

Below the glass transition temperature, Tg, PLA/HSF composites behave as elastic 

materials with high G’ values. In the temperature range comprised between 30 ºC and 60 

º C, the storage modulus, G’ curve is moved towards higher G’ values as the HSF content 

increases thus indicating that addition of HSF filler to PLA leads to stiffer materials. Table 

3 shows a summary of the storage modulus, G’ at four different temperatures. At 30 ºC, 

G’ of unfilled PLA is 1380 MPa and this value is increased up to 2392 MPa for PLA/HSF 

composite containing 30 wt.% HSF which represents almost a 74% increase.  

 

Figure 7 

 

Table 3 

 



 At about 60 ºC we observe a dramatic decrease in the storage modulus due to the 

glass transition temperature range (Tg). In Table 3 it is possible to detect that G’ values at 

90 ºC are similar to rubbers. Despite this, the same tendency described for G’ below Tg is 

observed. Lignocellulosic particles restrict polymer chain mobility and this gives stiffer 

materials. Over 90 ºC an increase in storage modulus can be observed; this phenomenon 

is related to the cold crystallization of PLA. Polymer chains rearrange to a more packed 

structure thus leading to an increase in mechanical response. The cold crystallization 

increases density due to a more packaged structure and subsequently, the storage modulus 

is also increased [12]. As one can see, the cold crystallization temperature decreases due 

to the nucleating effect that lignocellulosic particles can provide. This decrease is in total 

agreement with previous DSC results. As previously described, two overlapping 

phenomena can be produced by the lignocellulosic filler: on the one hand, a nucleating 

effect can lead to increased crystallinity but on the other hand, dispersed lignocellulosic 

particles can obstacle chain packing with a negative effect on crystallinity. Both processes 

occur simultaneously but the nucleating effect is clearly evident through the observation 

of the cold crystallization process in both DMTA and DSC analysis. Table 3 shows that 

the storage modulus increases up to values in the 100 – 400 MPa range due to the cold 

crystallization. As expected, the crystallization is more intense for PLA/HSF composites 

with higher HSF content which leads to higher storage modulus after cold crystallization, 

i.e. G’ at 120 ºC for PLA/HSF composite with 40 wt.% HSF is 6 times higher than unfilled 

PLA at the same temperature. Presence of lignocellulosic particles contributes to stiffer 

materials by promoting crystallization and by restricting polymer chain mobility[10, 42]. 

Fig. 7 also shows the comparison of the damping factor (tan ) for PLA/HSF 

composites with varying HSF load. The highest peak corresponds to unfilled PLA. As the 

HSF content increases, a decrease in the peak height related to the dilution effect provided 



by hazelnut shell filler can be observed. In addition, it is possible to detect a displacement 

of the peak towards slightly higher temperatures, which is related to some restrictions for 

polymer chain motion (slight increase in Tg) in the surrounding area around the dispersed 

HSF particles. As previously indicated, the lignocellulosic filler can obstacle polymer 

chains thus making difficult the chains to pack. It is also possible to observe a small hump 

in the temperature range comprised between 90 ºC and 100 ºC which is related to the cold 

crystallization process as described previously[7, 10, 12]. 

 

3.3.- Mechanical properties of PLA/HSF composites. 

 Table 4 summarizes the main parameters from mechanical tests of PLA/HSF 

composites. All PLA/HSF composites show a higher flexural modulus as expected. 

Composites containing 40 wt.% HSF offer a flexural modulus of 4.73 GPa which is 

remarkably higher if compared to unfilled PLA with a flexural modulus of 3.24 GPa. In 

general, addition of lignocellulosic particles leads to stiffer materials in terms of modulus 

as previously observed by DMTA. Nevertheless, the flexural strength decreases as the 

hazelnut shell content increases. The maximum flexural strength is achieved for unfilled 

PLA with 108 MPa and this reference value is reduced up to 67 MPa for PLA/HSF 

composites with 40 wt.% HSF. This remarkable decrease is related to poor particle-

polymer interactions, which lead to embrittlement. Load transfer from particles to the 

matrix is not good due to the lack of interaction between the dispersed HSF particles and 

the surrounding PLA matrix so that, dispersed particles act as stress concentrators. As the 

hazelnut shell content increases, the matrix-particle continuity is lost in a great extent and 

this leads to early fracture[2, 6, 7, 9, 11, 12, 17, 27, 44]. 

 

Table 4 



 

 Table 4 also shows the values of impact absorbed energy for PLA and PLA/HSF 

composites. The impact resistance of unfilled PLA is 16.5 kJ m-2 and this is remarkably 

reduced up to the half for composites with 40 wt.% HSF (8.7 kJ m-2). This important 

decrease is due to poor particle-polymer interactions as described before. The lack of 

strong interactions between the dispersed HSF particles and the surrounding PLA matrix 

promotes microcrack formation and subsequent growing due to stress concentration 

during impact conditions. 

 On the other hand, as the hazelnut shell content increases, Shore hardness 

increases. Table 4 shows that the hardness of PLA/HSF with 10 wt.% HSF is close to 71 

HSD and this is increased up to 78 HSD for composites containing 40 wt.% HSF. This 

increase is in total agreement with previous results; the addition of a more stiff 

lignocellulosic filler together with the crystallinity increase provided by the nucleating 

phenomena, leads to increased hardness values[12, 14, 17, 23]. 

 

4.- Conclusions. 

 The results obtained in this study indicate that hazelnut shell flour, a byproduct of 

the food industry, can optimally be used as reinforcing filler in fully biodegradable 

composites with poly(lactic acid)-PLA matrix. These composites offer high 

environmental efficiency and they can positively contribute to sustainable development. 

Characterization of PLA/HSF composites shows that addition of HSF in particle form 

leads to stiffer materials (as much stiffer as the HSF content increases). Lignocellulosic 

hazelnut shell particles provide a slight nucleating effect on poly(lactic acid) chains thus 

leading to an increase in crystallinity which has a positive effect on dimensional stability 

of PLA/HSF composites together with highly dispersed HSF that act as interlock points. 



The storage modulus, G’, increases in a remarkable way with the hazelnut shell content. 

This situation is even more pronounced in the temperature range comprised between 90 

ºC and 100 ºC due to the crystallization promoted by dispersed HSF particles. The flexural 

modulus increases in a remarkable way but the impact absorbed energy decreases up to 

values around the half value of unfilled PLA. SEM study reveals the lack of strong HSF 

particle-PLA matrix interactions and this is responsible for stress concentration 

phenomena that promotes early fracture. 

 Globally this study defines the potential of PLA/HSF composites for uses that 

require high stiffness together with high dimensional stability. The thermoplastic nature 

of this materials allows easy processing by conventional extrusion + injection moulding 

processes with high filler content up to 40 wt.% and attractive wood-like surface 

finishing. PLA-based green composites with a hazelnut shell flour content in the 30-40 

wt.% are the most attracting formulations from an industrial point of view as they offer 

balanced mechanical properties, full biodegradability and a remarkable decrease in 

material cost. These formulations could find applications as wood plastic composites 

(WPCs) in the building industry (fencing, decking, flooring, etc.), automotive interior 

parts and furniture. 
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Table captions 

Table 1.- Thermal properties of PLA/HSF composites with different HSF content, 

obtained by differential scanning calorimetry (DSC). 

 

HSF 

Content 

(wt. %) 

Tg (ºC) Tcc (ºC) ΔHcc 

(J g-1) 

ΔHcc 

corrected * 

(J g-1) 

Tm (ºC) ΔHm  

(J g-1) 

ΔHm 

corrected * 

(J g-1) 

Xc 

(%) 

0 66.4 ±0.2 111.5 ±0.5 23.6 ±0.2 23.6 170.8 ±0.4 -33.8 ±0.1 -33.8 11 

10 66.8 ±0.4 104.2 ±0.4 22.2 ±0.2 24.7 170.8 ±0.4 -34.1 ±0.1 -37.9 14 

20 66.5 ±0.4 104.80 ±0.5 20.9 ±0.1 26.2 169.9 ±0.6 -32.4 ±0.2 -40.5 15 

30 66.4 ±0.3 104.4 ±0.6 19.0 ±0.2 27.2 169.5 ±0.5 -31.1 ±0.2 -44.5 18 

40 66.7 ±0.5 103.0 ±0.4 18.0 ±0.1 30.0 169.1 ±0.5 -28.0 ±0.1 -46.7 18 

*ΔHcc corrected y ΔHm corrected, correspond to normalized crystallization and melt enthalpies by 

considering the real weight % PLA on PLA/HSF composites.  

 

Table 2.- Vicat softening temperature (VST), heat deflection temperature (HDT) and 

density of unfilled PLA and PLA/HSF composites with different HSF content. 

HSF content 

(wt.%) 

VST (ºC) HDT (ºC) Density (g cm-3) 

0 52.8 ±0.7 47.6 ±2.2 1.18 ±0.04 

10 54.1 ±1.8 53.1 ±3.2 1.19 ±0.03 

20 54.5 ±2.1 53.1 ±4.1 1.20 ±0.03 

30 58.4 ±0.8 54.6 ±2.5 1.23 ±0.05 

40 64.4 ±2.5 54.5 ±1.3 1.26 ±0.04 

 

 



Table 3.- Effect of the hazelnut shell flour (HSF) content on the storage modulus (G’) 

of PLA/HSF composites at four different temperatures.  

                       

HSF content (wt. %) 

Storage Modulus, G’ (MPa) 

At 30ºC At 50ºC At 90ºC At 120ºC 

0 1380 ±4 954 ±6 1.54 ±0.21 61.74 ±0.51 

10 1737 ±7 1661 ±8 3.22 ±0.14 119.83 ±0.42 

20 1935 ±8 1877 ±8 5.99 ±0.09 177.25 ±0.98 

30 1677 ±5 1615 ±4 8.34 ±0.08 233.82 ±0.62 

40 2392 ±2 2272 ±8 18.99 ±0.32 393.10 ±1.01 

 

 

Table 4.- Mechanical properties of PLA/HSF composites with different HSF content.  

HSF content 

(wt.%) 

Flexural 

modulus (GPa) 

Flexural 

strength (MPa) 

Impact absorbed 

energy 

(KJ m-2) 

Shore D 

hardness (HSD) 

0 3.24 ±0.05 108.5 ±2.2 16.5 ±1.2 70.2 ±0.5 

10 3.74 ±0.04 101.1 ±3.8 14.6 ±1.8 74.0 ±1.2 

20 3.93 ±0.09 83.7 ±1.8 12.4 ±2.6 75.6 ±0.5 

30 4.54 ±0.09 75.8 ±1.7 10.0 ±1.5 76.6 ±0.5 

40 4.73 ±0.04 67.6 ±2.9 8.7 ±1.3 78.4 ±0.9 

 

 

  



Figures 

Figure 1.- SEM image showing the hazelnut shell flour surface morphology, a) rounded 

shapes with similar size at 500x and b) simple size measurement at 4000x. 

  



 

Figure 2.- SEM image showing the morphology of the impact-fractured surface of 

unfilled PLA at different magnifications, a) 200x and b) 500x. 

 

 



 

Figure 3.- SEM images showing the IMPACT-fractured surfaces of PLA/HSF 

composites with different HSF content and different magnifications, a) 20 wt.% HSF, 

200x, b) 20 wt.% HSF, 500x, c) 20 wt.% HSF, 3000x, d) 30 wt.% HSF, 200x, e) 30 wt.% 

HSF, 500x, f) 30 wt.% HSF, 3000x. 

  



 

 

Figure 4.- Comparative plot of DSC curves of unfilled PLA and PLA/HSF composites 

with different HSF content. 

  



 

 

Figure 5.- TGA and DTG curves corresponding to unfilled PLA, hazelnut shell flour 

(HSF) and PLA/HSF composites with different HSF content. 

  



 

 

Figure 6.- Bar plot of the evolution of the coefficient of linear thermal expansion (CLTE) 

for PLA/HSF composites with different HSF content. 

  



 

 

Figure 7.- Comparative plot of the DMTA curves (storage modulus, G’ and damping 

factor tan ) for PLA/HSF composites with different HSF content. 

 

 

 

 

 

 

 

 

 

 


