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Abstract – Infrared thermography has been extensively 

applied over decades to areas such as maintenance of electrical 

installations. Its use in electrical machinery has been mainly 

circumscribed to the detection of faults in static machines, such 

as power transformers. However, with regard to the predictive 

maintenance of rotating electrical machines, its use has been 

much more limited. In spite of this fact, the potential of this tool, 

together with the progressive decrease in the price of infrared 

cameras, make this technique a very interesting option to, at 

least, complement, the diagnosis provided by other well-known 

techniques, such as current or vibration data analysis. In this 

context, infrared thermography has recently shown potential for 

the detection of motor failures including misalignments, cooling 

problems, bearing damages or connection defects. This work 

presents several industrial cases that help to illustrate the 

effectiveness of this technique for the detection of a wide range 

of faults in field induction motors. The data obtained with this 

technique made it possible to detect the presence of faults of 

diverse nature (electrical, mechanical, thermal and 

environmental); these data were very useful to either diagnose or 

to complement the diagnosis provided by other tools. 

 
Index Terms— induction motors; fault diagnosis; infrared 

imaging; bearing faults; camera; cooling. 

I.   INTRODUCTION 

NFRARED thermography is a well-known technique in 

the electrical engineering area. Over decades, it has been 

a very useful tool for regular inspections of electrical 

installations and distribution lines [1-4]; for instance, infrared 

cameras have been applied to the detection of defects in 

electrical panelboards, power cables, electric switchgear or 

power meters, among many others. In the area of condition 

monitoring of electrical machines, infrared thermography has 

been a preferred option for the detection of occasional faults 

in power transformers operating in substations, power plants 

and industrial facilities [5-10]. Indeed, intelligent fault 

diagnosis methods based on image processing have been 

proposed in the literature, based on the analysis of infrared 

images of transformers [11-12]. Excellent review works that 

deepen into the use of infrared thermography for electrical 

equipment inspection and other applications can be found in 
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[1-3].  

The use of infrared thermography in the area of condition 

monitoring of electric motors is much more limited. In D.C. 

machines, infrared thermography is a useful tool to detect 

possible defects in the commutator as well as in the brushes 

system [13], which are weak points from a maintenance point 

of view. Furthermore, some works propose the technique for 

detecting faults in the field winding of such machines [13]. In 

wound rotor induction machines and in synchronous motors 

and generators, infrared data analysis can provide very 

interesting information about the condition of the slip rings-

brushes system, indicating possible asymmetries or defective 

contacts [14]. For most of these machines, infrared 

thermography is commonly used in standard off-line tests, as 

the core ring test (or loop test) to detect core inter-laminar 

insulation failures [15]. However, in general terms, the 

application of this technique has been often circumscribed to 

the detection of defective connections, usually external to the 

machine itself [16-17]; the infrared technique has been also 

used to detect problems such as shaft misalignments [26]. 

Some works have even widened the use of infrared 

thermography to analyzing the effect of possible motor faults 

on the kinematic chain [27], while other have proposed the 

incorporation of this technique in regular maintenance and 

inspection of electric motors [28] . 

In spite of the previous facts, infrared thermography seems 

a very interesting option taking into consideration that most 

of the motor faults usually lead to temperature rises (either 

general or located in specific regions) that may be detected 

via infrared data analysis. On the other hand, despite infrared 

cameras came with excessively high costs only a few years 

ago, today there are infrared data acquisition devices with 

very affordable prices and with advanced features (such as 

high image resolution or possibility of acquiring images 

during transient regimes).These facts confer this technique 

with a huge potential, since it can easily become an excellent 

information source for the condition monitoring of rotating 

electrical machines. In the case of induction motors, the 

technique may be very useful, especially for large induction 

motors, the cost of which can easily amount to $1-2 million 

and whose unexpected failures can entail losses of several 

million $ [18]. In these machines, the infrared thermography 

may play an excellent role to diagnose certain failures or to 

complement the diagnostic conclusions obtained with other 

techniques such as vibration or current data analysis [19, 20], 

as will be shown in this paper.       

As a matter of fact, recent works have proposed the 

combination of infrared data analysis with the analysis of 

currents (both in steady-state and in transient regime) in order 

to reach a more reliable conclusion about the condition of 

Application of infrared thermography to failure 
detection in industrial induction motors: case stories 

D. Lopez-Perez and J. Antonino-Daviu 

I
T 



  

certain parts of the machine [20]. In these works, it was 

proven, via laboratory tests, that the infrared thermography 

technique could be especially useful for the complementary 

diagnosis of bearing failures or cooling problems, among 

others. 

   This paper presents several case studies referred to the 

use of infrared thermography in field motors operating in a 

petrochemical plant [21]. The results included here are a part 

of a more general study that was intended to diagnose the 

condition of a set of motors with different sizes and operating 

conditions; in twenty of them, the infrared technique was 

showing evidence of diverse anomalies. The interesting 

conclusions of the study revealed that the infrared technique 

was able to diagnose or provide very useful information for 

the diagnosis of faults of very different nature such as bearing 

lubrication problems, incorrect belt tightening, deficient 

cooling, damaged bearings or defective connections, among 

others.   The paper is structured as follows: Section II reviews 

the foundation of the infrared thermography technique; 

Section III presents the results obtained after applying the 

technique to the field motors as well as the discussion of these 

results; finally, in Section IV, the conclusions of the work are 

summarized.  

II.   INFRARED THERMOGRAPHY 

   Basically, the infrared thermography technique allows the 
visualization of the superficial temperatures of an object with 
high resolution and in a non-invasive way, i.e., not needing 
any contact with the object [20]. The physical basis of the 
method relies on turning infrared radiation measurements 
(captured via an infrared detector) into temperature 
measurements. This is carried out by measuring the radiation 
emitted by the object surface within the infrared portion of 
the electromagnetic spectrum and by subsequently translating 
these measurements into electrical signals. The infrared 
detectors are the core of the infrared thermography systems 
which are classified into different categories (thermal vs. 
semiconductor) depending on the detector employed [1]. An 
infrared camera basically consists of the optical components 
(lens, mirrors, etc.), detector elements, cooling system and 
associated electronics [1]. Infrared cameras have strongly 
evolved over the last few decades, from the initial versions 
based on scanning mirrors to modern models relying on focal 
plane arrays (FPA) [1, 30-31].  An excellent revision of the 
operation of different infrared sensors, as well as of the 
available technology in the field can be found in [32]. 
   As mentioned in [3], there are certain factors that exert 
influence when applying the infrared thermography 
technique. These factors can be classified into procedural 
(which concern the thermographer), technical (emissivity of 
the inspected equipment, load variation, distance from the 
inspected object, infrared camera specifications) and 
environmental (ambient temperature, humidity, wind or other 
convection, solar radiation, etc…) [3]. All these factors 
should be considered when carrying out an inspection even if 
the temperatures can be measured accurately [34]. An 
interesting analysis of the influence of each particular factor 
under a practical perspective can be found in [3].   
   According to the energy source over which the infrared 
inspection is carried out, two possible infrared readings exist: 

direct and indirect. Direct readings are obtained when 
measuring the radiation from the main energy source point 
while indirect readings are those that are done in neighboring 
or close points, where the heat has been transmitted via 
conduction, radiation or convection. Some authors define 
direct readings as those where there is little or no thermal 
insulation between the infrared camera and the energy source, 
while indirect readings are those where there is a considerable 
thermal insulation between both elements [22]. Fig. 1 
illustrates the differences between direct (Fig. 1 (a)) and 
indirect (Fig. 1 (b)) infrared thermography. 
 
 
 
 
 
 
 
 
 
                     (a)                                                      (b) 
            Fig. 1. Direct (a) versus Indirect (b) infrared readings. 

       
On the whole, dynamic equipment or components, such as 
motors, bearings, gear reducers, etc… are analyzed via 
indirect infrared readings since the fault is started inside the 
equipment. Hence, it is necessary to assess these elements by 
taking into consideration both constructive, environmental 
and operational aspects in order to determine incorrect 
temperatures or heat transfer trends or patterns that would 
inform about the presence of developing failures. Fig. 2 
shows an example of the evolution of the measured 
temperature values (weekly intervals) by means of direct and 
indirect infrared readings for the same fault. 
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 Fig. 2. Direct and Indirect thermography curves. 

    
   In order to clearly confirm the presence of the fault, a fault 
indicator based on infrared thermography must be established 
so that it must be robust enough to be able to set a reliable 
alarm threshold and it must show a progressive variation 
versus the evolution trend that enables to establish 
appropriate time intervals between successive measurements. 
In general, indirect infrared readings have fault indicators that 
show exponential evolutions, so if the time intervals between 



  

successive measurements are too long, the fault can develop 
before it is detected.   
      With regard to the fault indicator, there are two ways of 
applying the infrared thermography to rotating electrical 
equipment: quantitative and qualitative [3]. The first one 
considers the fault indicator in absolute terms (i.e. absolute 
temperature of the equipment) while the second one considers 
relative temperature values of a point with regard to other 
parts under similar operating conditions [3]. Qualitative 
infrared analysis is widespread in many industrial 

applications [34] and, often, it relies on the use of the T 
criterion [35-36] which, according to the NETA Standard 
[37], evaluates the temperature rise above a defined reference 
that can be either the ambient air temperature, the temperature 
of an analogue component under similar conditions or the 
maximum permitted temperature of the component [3]. 

Depending on the obtained T, a recommended maintenance 
action is given (see, for instance Table I, which displays the 
suggested actions based on the temperature rise according to 
the NETA standard [37]). Other available standards such as 
ASTM-E1934 [38] or NFPA70-B [39] also provide 
equivalent guidelines for infrared inspection.      

 

TABLE I. THERMOGRAPHIC SURVEY SUGGESTED ACTIONS BASED 

ON T IN ELECTRICAL EQUIPMENT ACCORDING TO NETA [37] 

Temperature 

difference (ΔT) based 

on comparisons 

between similar 

components under 

similar loading. 

Temperature 

difference (ΔT) based 

upon comparisons 

between 

component and 

ambient air 

temperatures. 

Recommended 

Action 

1ºC - 3ºC 1ºC – 10ºC Possible deficiency; 
warrants 

investigation 

4ºC - 15ºC 11 ºC – 20ºC Indicates probable 
deficiency; repair 
as time permits 

---- 21ºC – 40ºC Monitor until 
corrective measures 
can be accomplished 

>15ºC >40ºC Major discrepancy; 
repair 

immediately 

 
   Qualitative infrared analysis has provided good results for 
inspection of electrical equipment, especially switchgear, 
cables or static machines. In these cases, comparison with 
other components under similar operating conditions is often 
feasible. As [3] points out, the advantage of qualitative 
thermography is that it is a practical procedure to establish 
whether or not there is a failure and, also, whether the 
emissivity has a minor impact on the results [35].  
   However, in the case of rotating electrical machines, such 
as electric motors, its application may not be so 
straightforward.  In electric motors, the temperature rise 
(alarm threshold) to consider if there is failure or not will vary 
depending on a number of factors related to both the  
constructive characteristics of the machine and the 
operational conditions; each machine or component may have 
different temperature alarm thresholds. More specifically, the 
qualitative infrared-based diagnosis of electric motors will be 
based on factors such as: threshold values defined by the 
manufacturer, duty cycle, environmental factors, operation 

conditions (load, supply voltage, etc…) and previous 
experience. Some thermographers prefer to build their own 
testing specification chart based on their experience, which 
can be partially based on the available standards [3]. 
   In the present work, the set of motors that were inspected 
were operating under rather stable conditions (both 
environmental and operating) and their sizes were rather 
similar. This allowed the plant engineers to establish some 
approximate temperature thresholds for each motor part or 
component (see Table II). These thresholds were 

approximately based on the T criterion guidelines shown in 
Table I. If these alarm thresholds were surpassed, this would 
become an indication of a possible anomaly in the motor, so 
that further analysis should be carried out.  
   Note that, in many cases, the temperature distribution of the 
surface -thermal pattern- also gives very important 
information; sometimes, although the temperature thresholds 
are not surpassed, the thermal pattern can inform on the 
development of a certain fault in the motor. In this regard, the 
experience of the thermographer plays an important role for 
detecting these deviations in the thermal patterns in 
comparison with previous inspections.  
      

TABLE II. GENERAL ALARM THRESHOLDS ADOPTED FOR 

DIFFERENT DIAGNOSED COMPONENTS OF THIS WORK BASED ON 

OWN AUTHORS EXPERIENCE 

Element Temperature Threshold  

Motor frame >70 ºC 

Gears (reducers, multipliers, etc..) >80 ºC 

Bearings >70 ºC 

Couplings >80 ºC 

Belt transmissions >90 ºC 

 
 
   All the previous facts show the potential of the infrared 
thermography technique to indicate an abnormal operation of 
certain parts of the machine, which can indicate a fault or can 
advise the application of other techniques (currents, 
vibrations) to confirm the presence of the damage.  There are 
four main possible sources of abnormal temperature values or 
irregular heat transmission patterns: electrical, mechanical, 
environmental or thermal. Each of them can respond to 
different faults or anomalies in the machine, as shown in 
Table III [25]. Therefore, the potential range of failures or 
anomalies that may be detectable with infrared thermography 
is of unquestionable value to consider it an interesting 
information source for the diagnosis. 
 
 
TABLE III. SOURCES OF ABNORMAL TEMPERATURES AND THEIR 

POSSIBLE CAUSES 

Origin Fault/anomaly  

Electrical 

Harmonic distortion, voltage unbalances, 
incorrect supply voltage, erroneous motor 
selection, connection defects, shorted turns, 
broken rotor bars… 

Mechanical 

Misalignment, operational overload, 
transmission problems, bearing faults with 
thermal emission…   

Environmental 
Dust, winding insulation humidity, lubricant 
contamination, dirtiness… 

Thermal 
Deficient cooling, incorrect lubricant 
refrigeration… 

 



  

III.   CASE STORIES: APPLICATION TO FIELD MOTORS 

   A survey was carried out based on the infrared inspection of 
a group of motors operating in a petrochemical plant. In 
twenty of these machines, the infrared thermography 
technique was showing the presence of abnormal temperature 
values or irregular thermal patterns that informed about the 
presence of diverse types of anomalies and faults. These 
anomalies had different origin, namely; twelve were 
attributed to mechanical problems (deficient bearing 
lubrication (8), damaged bearings (1), deficient belt 
tightening (1) and operational overload (2)), six were due to 
electrical causes (defective connections (4), winding 
problems (1) and rotor damages (1)), five had thermal origin 
(obstructed cooling channels (5)), and one was due to 
environmental factors (oil contamination).   
   In this section, the most representative cases are detailed; 
they help to illustrate the potential of the infrared 
thermography for the detection of different types of failures 
and anomalies. All measurements were taken with the same 
infrared camera (model Fluke Ti-100) and maintaining 
similar distances with respect to the analyzed machine in 
successive revisions. The motors included in this paper were 
operating at a fixed speed and were operating at rated 
conditions during the inspections. The room temperature was 
registered in each measurement so that the measured values 
could be properly normalized. On the other hand, the 
emissivity in each case was calculated using a tape with 
known emissivity obtaining an approximate value of 0.94. 

A. Motor 1: Lubricating pump motor (deficient cooling)   

   This motor was a L.V. machine that was driving a pump for 
bearing lubrication. The infrared inspection revealed a motor 
overheating, since the frame temperatures were reaching 
values above 70ºC in some points (Fig. 3). After a more 
detailed analysis of the motor, it was observed that the 
cooling air flow was insufficient; the cause was an obstruction 
of the cooling channels that was produced by product wastes. 
The cooling channels and fins were properly cleaned and the 
subsequent infrared inspection revealed an abrupt decrease in 
motor frame temperatures up to values around 30-40ºC with 
the motor operating under similar conditions as in the first 
inspection (see Fig. 4). Hence, in this case, infrared 
thermography enabled to detect the source of the problem. 
   

 
Fig. 3. Infrared inspection of Motor 1: deficient cooling. 

 

    
Fig. 4. Infrared inspection of Motor 1 after cleaning. 

 

B. Motor 2: Blower motor (deficient bearing lubrication)   

   In this case, the inspected element was a bearing of a motor 
that was driving a blower. An initial infrared inspection 
revealed an excessive heating of the bearing. This can be 
noted in Fig. 5 which shows superficial temperatures above 
90ºC (and even 100ºC) in the bearing region. We can also 
observe the deposit of product waste over the bearing cage. 
The bearing was properly cleaned and a new inspection was 
carried out. However, no significant temperature drop was 
detected. Therefore, it was finally decided to re-lubricate the 
bearing. This measure was much more effective, as a new 
infrared inspection revealed: the temperatures were not higher 
than 60ºC in the bearing region for the motor operating under 
similar conditions (Fig. 6).  
    It is important to emphasize that, in the past, this motor had 
an episode of catastrophic failure caused by problems in the 
bearings: in 2010, the lack of proper bearing lubrication was 
not properly detected via vibration analysis; finally, this fact 
led to the collapse of the bearings and to the damage of the 
stator insulation (see Fig 7). This is an illustrative case that 
shows how the infrared thermography may provide very 
interesting information for the diagnosis in situations where 
other techniques may fail. 

   In order to prevent the occurrence of this type of bearing 

lubrication problems, the plant engineers proposed not only 

the use of the infrared technique to detect such anomalies in 

advance, but they also suggested the lubrication of the 

bearings by means of ultrasounds; this lubrication method 

may bring interesting benefits, such as the reduction of the 

possibility of an inexact lubrication, amongst others. 

Moreover, the accurate study of this failure enabled to plot a 

P-F curve associated with bearing faults; this curve shows, for 

the corresponding fault, the minimum detectable alarm level 

for each considered technique. This curve is plotted in Fig. 8 

and shows how primary bearing defects (wear, indentations, 

smearing, corrosion…) are best detected via infrared 

thermography and ultrasounds while vibrations and oil 

analysis are best suited for the detection of secondary defects.  

 
 
 



  

 

 
Fig. 5. Infrared inspection of bearing of Motor 2: deficient bearing 

lubrication. 

 
 
 

 
Fig. 6. Infrared inspection of bearing of Motor 2 after re-lubrication. 

 

 

 
Fig. 7. Insulation damage occurred in 2010 in the same motor due to 

catastrophic failure of the bearings. 

 

 
Fig. 8. Developed P-F curve for bearing faults as a function of alarm levels 

 

Anyway, this field case has shown the usefulness of the 

infrared technique to detect bearing problems that lead to 

abnormal levels of heat transmission. This was also proven by 

another of the field inspections carried out in the survey 

which enabled to detect similar faults in other bearings.   

C. Motor 3: Deodorization fan motor (insufficient belt 
tightening)   

The inspected motor in this case was an L.V. machine 

driving a fan for deodorization purposes. Oddly enough, the 

infrared inspection revealed a very high heat dissipation in the 

belt transmission system (see Fig. 9), with a maximum 

temperature of 129.8 ºC that was read on the pulley. The 

deficient tension leads to belt slip on the pulley and increases 

the heat dissipation due to the friction, which results in 

decreased efficiency and a reduction of the belt service life. 

To solve the problem, the belts were properly tightened 

and, afterwards, a new inspection was carried out. Fig. 10 

shows the new thermal map after the belt tightening that 

reveals much lower temperatures in the transmission system 

(30ºC in average lower than in the previous case).  

 
Fig. 9. Infrared inspection of Motor 3: deficient belt tightening. 



  

    
Fig. 10. Infrared inspection of Motor 3 after belt tightening. 

 

D. Motor 4: Motor driving a blower (defective connection) 

  The inspected motor was an L.V. machine driving a 
blower. The infrared inspection revealed an excessive heat 
dissipation that was localized in the upper part of the frame, 
close to the motor terminal connection box, as shown in Fig. 
11. The temperatures there reached high values (76.8 ºC). 

While the motor was switched-off, the winding resistances 

were measured, obtaining very similar values. The 

connections were checked and a weak connection was found 

as well as a partial damage in one of the terminals (Fig. 10, 

top). After replacement of the terminal and after fixing the 

connections, the new infrared inspection showed lower 

temperature values (Fig. 12, bottom).   

 
Fig. 11. Infrared inspection of Motor 4: defective connection. 

 

 
Fig. 12. Defective connection and terminal in motor connection box (top) 

and Infrared inspection of Motor 4 after repair (bottom). 

 

E. Motor 5: Cooling tower fan motor (winding asymmetry) 

   In this case, the considered motor was driving a fan of a 
cooling tower. The infrared inspection of that motor (Fig. 13) 
showed a significant heating in the motor frame (85.2 ºC in 
the surface and, probably, above 100 ºC inside the motor). No 
cooling anomalies were found during the inspection. As a first 
measure, the bearings were re-lubricated and repaired in a 
workshop but no temperature drop was observed.  
   Then, the motor terminal box was inspected and only a little 
temperature difference between connections was found. The 
winding resistance of each phase was measured with an 
ohmmeter and the results were very interesting (see Table IV, 
which compiles the results of the measurements): a significant 
winding asymmetry was detected between phases, leading to 
a Max Delta R value of near 9%. This could indicate internal 
high resistance connections, broken turns or internal shorts. 
This may be the potential cause of the abnormal heat 
dissipation. A motor re-winding was finally suggested. 
   Hence, the advantage of the technique in this case is that it 
informed about the existence of an anomaly in the stator 
winding, suggesting the adoption of further maintenance 
actions. Note that these anomalies are not always easily 
detectable with other techniques (e.g. current analysis), 
therefore, the information provided by infrared thermography 
may be very interesting to prevent eventual catastrophic 
consequences.        

 
TABLE IV. MEASURED VALUES OF WINDING RESISTANCE IN EACH 

PHASE 

Resistance Measured value 

RR 87.80 m 

RS 100.04 m 

RT 87.70 m 

 



  

 
Fig. 13. Infrared inspection of Motor 5: winding asymmetry. 

IV.   CONCLUSIONS 

Infrared thermography is a well-known technique in the 

electrical engineering area. However, its industrial use in the 

area of condition monitoring of induction motors is still 

scarce. This is not coherent with the extraordinary potential of 

this technique that can provide very useful information about 

the presence of different faults in machines; this may be very 

useful to either determine the motor health when there is no 

other diagnostic method available or to complement the 

diagnosis provided by other techniques (currents/vibrations 

analysis). 

This work has presented some industrial case stories 

extracted from a more general survey that was carried out in 

induction motors operating in a petrochemical plant. The 

infrared inspections of these motors enabled to detect several 

types of failures in the inspected motors that had rather 

different causes. The results and discussions included here 

show that this technique was able to detect faults such as 

bearing lubrication failures, problems in the transmission 

system, defective connections, cooling system problems and 

even to give some clues about the presence of stator winding 

problems. Note that, in most of the analyzed cases, the study 

of alternative quantities, such as vibrations or currents, did 

not make it possible to detect the presence of the anomaly in 

the machine, a fact that, in the past, led to failures of 

catastrophic consequences. All these results prove the 

potential of this technique and the importance of 

incorporating it within induction motor predictive 

maintenance programs.  

Note that every technique (current, vibration analysis…) is 

likely to create false alarms caused by a variety reasons, and 

infrared thermography is not an exception. In this sense, 

motor overheating can be caused by reasons that are not 

related to a fault, such as operational overload. However, 

even under these conditions, previous works [19-20] have 

reported the appearance of different thermal patterns that can 

be used to discriminate between motor failures and other 

anomalies that are not related to the motor. In this regard, the 

thermographer expertise to interpret the thermal images 

accurately plays a crucial role; in order to avoid this 

dependence on the user, expert systems based on artificial 

intelligence techniques are being developed to enable an 

automatic interpretation of infrared images and reach a 

diagnosis of the condition discriminating between faults and 

other effects [29]. 

Future works will deal with the analysis of the robustness 

and reliability of the proposed strategy with respect to 

uncertainty and disturbance affecting the monitored 

processes, taking into consideration the issues explained in 

[23-24], among others. 
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