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Abstract
Engine modelling has become an essential tool in the design of internal

combustion engines, allowing considerable reductions in development time and
cost. Classical design methodologies are based on prototype manufacturing
and trial-and-error tests, but currently, most of those tests have been replaced
by numerical computations, so that only the most promising design options
are actually tested on engine bench.

For years, one-dimensional gas dynamics codes in the time domain have
offered sufficiently good solutions for modelling both engine performance and
intake and exhaust noise. However, for a more demanding level of design,
a 1D representation may not be sufficient to describe accurately the flow in
certain elements. This is especially important in the case of silencers, where
the one-dimensional assumption can only be applied to simple geometries and,
even in that case, suitable results can only be obtained for frequencies below
the cut-off frequency of higher order modes. In the case of duct junctions,
the existence of complex 3D flow structures is what sets the applicability
limit for a simple zero-dimensional description. In view of these limitations,
the first option would typically be the use of a computational fluid dynamics
(CFD) model; however, the application of such a model to a complete intake
or exhaust system entails an excessive computational time.

A possible compromise solution is given by quasi-3D models, based on
three-dimensional schemes, but with certain simplifications able to signifi-
cantly reduce the calculation time without excessively affecting the accuracy.
Such solutions have become standard in commercial codes and have been suc-
cessfully applied to silencers with perforated tubes and absorbing material,
both in the linear acoustic regime and in real engine conditions, typically
non-linear.

The objective of this thesis is the development a new quasi-3D numerical
method in a staggered-grid, based on the simplification of the momentum equa-
tion, to be included in an existing one-dimensional code. Such method how-
ever, is not hassle free. In particular, it is affected by the appearance of non-
physical oscillations, specially near significant pressure gradients. From the
literature review it is determined that this behaviour is typical among second-
order schemes and it can be aggravated by the simplifications adopted. After
researching the possible solutions to face this problem, three different flux lim-
iters are developed, based on the MDT (momentum diffusion term), FCT (flux
corrected transport) and TVD (total variation diminishing) methodologies. In
the case of the two latter methods, its effectiveness is well established for finite
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differences schemes, thus defining a clear improving line for quasi-3D models.
Once the numerical method is defined and its stability assured, proper

boundary conditions that allow its use must be developed. With this objective,
a pressure pulse inlet and an anechoic termination boundary condition are
developed, which allow the simulation of an impulse test rig. It should not
be forgotten, however, that the ultimate objective is the connection with a
one-dimensional code, therefore the compatibility of the quasi-3D numerical
method created with the existing one-dimensional methods has to be tested,
showing some preliminary results.

Eventually, with a fully operative method, the validation process for the
applications which it has been mainly developed for, takes place, namely, muf-
flers and duct junctions modelling. In the case of mufflers, increasingly com-
plex devices are modelled, from constant section geometries to real geometry
systems. The results obtained are validated with both linear and non-linear
tools. In the case of duct junctions, the main objective is to establish the po-
tential of the new numerical method against the traditional one-dimensional
schemes, consequently, results from both approaches are compared to experi-
mental measures, obtaining promising results.
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Resumen
El modelado se ha convertido en los últimos años en una herramienta

esencial en el diseño de motores de combustión interna alternativos, ya que
permite reducir considerablemente el tiempo y los costes de desarrollo. Las
metodologías de diseño clásicas se basan en la fabricación de prototipos y la
realización de pruebas de ensayo y error. Actualmente, la mayoría de estas
pruebas han sido sustituidas por cálculos numéricos, de modo que sólo las
opciones de diseño más prometedoras se prueban en realidad en banco motor.

Durante años, los códigos unidimensionales de dinámica de gases en el do-
minio del tiempo han sido suficientes para modelar tanto las prestaciones y el
consumo del motor como el ruido de admisión y escape. Sin embargo, para un
nivel más exigente de diseño, una representación 1D puede no ser suficiente
para describir con precisión el flujo en ciertos elementos. Esto es especialmente
importante en el caso de silenciadores, donde la hipótesis unidimensional sólo
se puede aplicar a geometrías simples e, incluso en ese caso, sólo se pueden ob-
tener resultados adecuados para frecuencias inferiores a la frecuencia de corte
de los modos de orden superior. En el caso de las uniones de conductos es la
existencia de estructuras tridimensionales de flujo complejas lo que establece el
límite de la aplicabilidad de una descripción simple cero-dimensional. En vista
de estas limitaciones, la primera opción sería típicamente el uso de un modelo
de dinámica de fluidos computacional (CFD); sin embargo, la aplicación de
un modelo de este tipo para un sistema de admisión o de escape completo
conlleva un tiempo de cálculo excesivo.

Una posible solución de compromiso alternativa viene dada por los modelos
cuasi-3D, basados en esquemas tridimensionales, pero con ciertas simplifica-
ciones capaces de reducir significativamente el tiempo de cálculo sin afectar
excesivamente a la precisión. Tales soluciones se han convertido en estándar en
los códigos comerciales y se han aplicado con éxito a los silenciadores con tu-
bos perforados y materiales absorbentes, tanto para excitaciones acústicas en
el régimen lineal como en condiciones reales de motor, típicamente no lineales.

Esta tesis tiene como objetivo el desarrollo de un nuevo método numérico
cuasi-3D en una malla escalonada, basado en la simplificación de la ecuación
de la cantidad de movimiento, para ser incluido en un código unidimensio-
nal existente. Tal método, sin embargo, no está libre de inconvenientes. En
particular, se ve afectado por la aparición de oscilaciones no físicas, especial-
mente en gradientes de presión significativos. De la revisión bibliográfica se
determina que este comportamiento es típico en esquemas de segundo orden
y se puede ver acentuado por las simplificaciones adoptadas. Tras estudiar las
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posibles soluciones aplicables a este problema, se desarrollan tres limitadores
de flujo diferentes, basados en las metodologías MDT (momentum diffusion
term), FCT (flux corrected transport) y TVD (total variation diminishing).
En el caso de los dos últimos métodos, su efectividad está bien establecida
para los esquemas de diferencias finitas, lo que define una clara vía de mejora
para los modelos cuasi-3D.

Una vez definido el método numérico y asegurada su estabilidad, es nece-
sario desarrollar las condiciones de contorno adecuadas que permitan su uti-
lización. Con este objetivo, se desarrollan las condiciones de pulso de presión
de entrada y de extremo anecoico, los cuales permiten simular un banco de
impulso. No hay que olvidar, sin embargo, que el objetivo final es la conexión
con un código unidimensional, por lo que hay que comprobar que el método
numérico cuasi-3D creado es compatible con los unidimensionales existentes,
mostrando algunos resultados preliminares.

Finalmente, con el método ya completamente operativo, se procede a su
validación en las aplicaciones para las que ha sido diseñado principalmente,
las cuales son, modelado de silenciadores y uniones de conductos. Para el caso
de los silenciadores, se modelan dispositivos de complejidad creciente, pasando
por geometrías de sección constante hasta sistemas con geometrías reales. Los
resultados obtenidos se validan con otras herramientas tanto lineales como no
lineales. En el caso de las uniones de conductos, el objetivo principal es el de
establecer el potencial del nuevo método numérico frente a los tradicionales
unidimensionales, por lo que los resultados de ambos se comparan con datos
experimentales, obteniendo resultados prometedores.
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Resum
El modelatge s’ha convertit en els últims anys en una eina essencial en

el disseny de motors de combustió interna alternatius, ja que permet reduir
considerablement el temps i els costos de desenvolupament. Les metodologies
de disseny clàssiques es basen en la fabricació de prototips i la realització de
proves d’assaig i error. Actualment, la majoria d’aquestes proves han sigut
substituïdes per càlculs numèrics, de manera que només les opcions de disseny
més prometedores es proven en realitat en banc motor.

Durant anys, els codis unidimensionals de dinàmica de gasos en el domini
del temps han sigut suficients per a modelar tant les prestacions i el consum del
motor com el soroll d’admissió i escapament. No obstant això, per a un nivell
més exigent de disseny, una representació 1D pot no ser prou per a descriure
amb precisió el flux en certs elements. Açò és especialment important en el cas
de silenciadors, on la hipòtesi unidimensional només es pot aplicar a geometries
simples i, inclús en eixe cas, només es poden obtindre resultats adequats per
a freqüències inferiors a la freqüència de tall dels modes d’orde superior. En
el cas de les unions de conductes és l’existència d’estructures tridimensionals
de flux complexes el que establix el límit de l’aplicabilitat d’una descripció
simple zero-dimensional. En vista d’estes limitacions, la primera opció seria
típicament l’ús d’un model de dinàmica de fluids computacional (CFD); no
obstant això, l’aplicació d’un model d’aquest tipus per a un sistema d’admissió
o de escapament complet comporta un temps de càlcul excessiu.

Una possible solució de compromís alternativa ve donada pels models
quasi-3D, basats en esquemes tridimensionals, però amb certes simplificacions
capaços de reduir significativament el temps de càlcul sense afectar excessi-
vament la precisió. Tals solucions s’han convertit en estàndard en els codis
comercials i s’han aplicat amb èxit als silenciadors amb tubs perforats i ma-
terials absorbents, tant per a excitacions acústiques en el règim lineal com en
condicions reals de motor, típicament no lineals.

Aquesta tesi té com a objectiu el desenvolupament d’un nou mètode nu-
mèric quasi-3D en una malla escalonada, basat en la simplificació de l’equació
de la quantitat de moviment, per a ser inclòs en un codi unidimensional exis-
tent. Tal mètode, però, no està lliure d’inconvenients. En particular, es veu
afectat per l’aparició d’oscil·lacions no físiques, especialment en gradients de
pressió significatius. De la revisió bibliogràfica es determina que aquest com-
portament és típic en esquemes de segon ordre i es pot veure accentuat per les
simplificacions adoptades. Després d’estudiar les possibles solucions aplicables
a aquest problema, es desenvolupen tres limitadors de flux diferents, basats
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en les metodologies MDT (momentum diffusion term) , FCT (flux corrected
transport) i TVD (total variation diminishing) . En el cas dels dos últims
mètodes, la seua efectivitat està ben establida per als esquemes de diferències
finites, la qual cosa definix una clara via de millora per als models quasi-3D.

Una vegada definit el mètode numèric i assegurada la seua estabilitat, és
necessari desenvolupar les condicions de contorn adequades que permeten la
seua utilització. Amb aquest objectiu, es desenvolupen les condicions de pols
de pressió d’entrada i d’extrem anecoic, els quals permeten simular un banc
d’impuls. No cal oblidar, però, que l’objectiu final és la connexió amb un codi
unidimensional, per la qual cosa cal comprovar que el mètode numèric cuasi-
3D creat és compatible amb els unidimensionals existents, mostrant alguns
resultats preliminars.

Finalment, amb el mètode ja completament operatiu, es procedix a la seua
validació en les aplicacions per a les que ha sigut dissenyat principalment, les
quals són, modelatge de silenciadors i unions de conductes. Per al cas dels
silenciadors, es modelen dispositius de complexitat creixent, passant per geo-
metries de secció constant fins a sistemes amb geometries reals. Els resultats
obtinguts es validen amb altres eines tant lineals com no lineals. En el cas
de les unions de conductes, l’objectiu principal és el d’establir el potencial del
nou mètode numèric front als unidimensionals tradicionals, per la qual cosa els
resultats d’ambdós es comparen amb dades experimentals, obtenint resultats
prometedors.
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1.1 Motivation
As a consequence of the need of reducing the development time and costs
associated with the design of intake and exhaust systems for reciprocating
internal combustion engines, engine modelling has become an essential engi-
neering tool. Trial-and-error-based design methodologies are still in use, but
most of the tests previously performed on prototypes in the early design stages
have currently been replaced by numerical computations, and only the most
promising solutions are tested in order to fix the final product.

It is important to notice one of the main rules when modelling, and it is that
there will always be a trade-off between potential accuracy and computational
cost. This means that more complex models will be able to bring a more
accurate prediction, but the computational time needed for that solution will
also highly increase. This situation emphasises the importance of selecting the
proper model according to the state of the design and the accuracy required.
Using always the more accurate tools will heavily increase the cost of the design
in time and resources when in early stages an approximation would have been
enough, and abusing the fastest tools will usually result in a product lacking
the precision to be competitive.

According to the grade of complexity of the computational methods com-
monly used by manufactures, they are usually classified as:

• Look-up tables-based methods. They use a large database to obtain the
outputs of the problem. They are fast, but they have a low accuracy and
very low time-resolution. They can be used in real time models or as a
first step in the design process and they need the use of the experience
of the engineers.

• Mean value engine models. Slightly slower and used in the second phase
of the design or for hardware in the loop (HIL) applications. They are
able to produce cycle-averaged results.

• Filling and emptying models. They are based on modelling the momen-
tum conservation between elements instead of simulating it. It is still
possible to use them in real time and they have time resolutions of the
order of the crank angle. Their non-linear acoustic performance only
reaches low frequencies.

• One-dimensional methods. They simulate the momentum conservation
equation in a single direction so they are able to predict the wave dy-
namic behaviour of the system. Although their computational cost is
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still low, a lot of simplifications are needed to use them in real time, so
they are usually the core of more sophisticated tools along with other
models and they are used in the optimization process. They have a bet-
ter time resolution and the non linear acoustic performance is usually
limited to 1 kHz.

• Quasi-3D methods. The philosophy of these methods is to adopt some
simplifications to model a particular problem in a way that the accuracy
does not suffer too much while drastically improving the computational
cost when compared to the full three-dimensional model. The simplifi-
cation adopted will depend on the problem that the model is applied to
and the objective is to improve the results that a one-dimensional model
would offer with a similar or only slightly higher computational cost.

• Three-dimensional methods or computational fluid dynamics (CFD) meth-
ods. They simulate as much phenomena as possible, only modelling some
aspects, such as turbulence. As the computation power increases, it is
possible to even simulate the largest turbulent structures for some cases.
However, their computational cost is so high that they cannot even be
considered until the final stages of the design, when the highest accuracy
is needed.

Typically, fast and suitable solutions for modelling both engine perfor-
mance and intake and exhaust noise have been provided by one-dimensional
time domain gas-dynamic codes [5]. The assumption of one-dimensional wave
action is legitimate in most of the ducts used in engine intake and exhaust
systems, at least in passenger car applications, where duct diameters are rel-
atively small. However, certain elements, most notably duct junctions and
intake and exhaust silencers, may exhibit noticeable three-dimensional effects,
so that a one-dimensional flow representation would be insufficiently accu-
rate unless a very rough description of such elements were acceptable in the
problem under study.

In the case of duct junctions [6] it is the occurrence of complex three-
dimensional flow structures what sets the limits for the applicability of simple
zero-dimensional descriptions [3]. In the case of silencers, the one-dimensional
assumption can only be applied to very simple geometries [7] but, even in
simple cases such as expansion chambers and Herschel-Quincke tubes, the
results are not in general acceptable for frequencies above the cut-on frequency
of transversal modes [8]. This represents a serious drawback, especially in the
case of the intake system, where underhood packaging necessities give rise to
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airbox and silencer geometries with low cut-on frequencies, thus impeding a
proper assessment even of the low frequency intake noise.

An obvious way to overcome these limitations is the use of computational
fluid dynamics (CFD) models; however, the computation time required by
their use in a complete intake or exhaust system is excessive. An alterna-
tive is provided by using a three-dimensional model only locally, precisely for
those elements exhibiting significant three-dimensional effects. This can be
achieved by coupling the one-dimensional and three-dimensional models [9],
although the proper convergence of the coupling procedure may still imply a
considerable computational cost [10].

Finally, quasi-3D staggered-mesh finite volume models [11] provide a suit-
able compromise between the quality of the solution and the computational
cost when addressing the prediction of wave dynamics in intake and exhaust
systems of internal combustion engines and, in particular, of the effects pro-
duced by complex elements. These models have lately become standard in
commercial codes, either as the core of the whole computation [12, 13], or
used locally for complex elements exhibiting significant three-dimensional fea-
tures [14]. Thus, the model will have the benefits of a one-dimensional tool
when a one-dimensional mesh is used, either because higher accuracy is not
required at the moment or because no three-dimensional effects are expected,
and then in any moment, a three-dimensional mesh may be used to improve
the acoustic behaviour prediction where needed. When approached in such
a way, quasi-3D methods can be regarded as a natural evolution of purely
one-dimensional models.

1.2 Background

The here presented work is part of a series of tasks considered for the process
of continuous improvements of a complete one-dimensional wave action model
developed in the University Institute of Investigation CMT-Motores Térmicos
in Universitat Politècnica de València.

The program was first conceived by Corberán [15] in 1984 with the method
of characteristics as the technique to solve hyperbolic partial differential equa-
tions systems, based on the formulation suggested by Benson [16].

In a later stage, it was proposed the substitution of the method of charac-
teristics by one of the more conservative and faster finite difference methods
that were being developed at that time. Among the diverse possible schemes
and after a comparative research performed in 1993 by Desantes, Chust and
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Llorens [17], it was concluded that the best options were the second order
two-step Lax-Wendroff and McCormack methods.

Nowadays, the model calculates the evolution of the flow inside the intake
and exhaust ducts with the finite differences Lax-Wendroff method, only using
the method of characteristics in the boundary conditions. However, another
work under development aimed at improving the program has been proposed to
substitute the above mentioned methods by finite volumes MUSCL technique
(monotonic upstream centred scheme for conservation laws), a more modern
and conservative scheme.

Besides the evolution of the one-dimensional fluid-dynamic methods, some
other sub-models have been added for other systems. To name some of them,
cylinder and plenum make use of a zero-dimensional filling and emptying mod-
els [15, 18], the turbine boundary condition [19, 20] or the heat transfer in ducts
by Reyes [21], with improvements by Serrano [22] and Galindo et al. [23]. After
the thesis of Galindo [24], the model started to be able to calculate transient
load simulations with a set of theoretical and experimental works [25, 26, 27,
22]. It was precisely in these transient simulations where some problems with
the conservation of some properties were detected, specially in conical ducts,
encouraging the consideration of using a new numerical method.

Ultimately, the program was not able to compete with other codes based on
a finite volume method, more stable and conservative, which where also able
to bring a better approximation to a thee-dimensional system in non-linear
acoustics. Therefore, a set of improvements were considered with the purpose
of making the program competitive enhancing its accuracy, computational
cost and overall performance. One of the suggested proposals consisted in
developing a tool that will expand the non-linear acoustics prediction capabil-
ities of the program. It had to be able to take into account three-dimensional
effects that may appear in more complex devices, such as mufflers or other
after-treatment systems, effects that are impossible to model with a classical
one-dimensional approach. This new feature will not only increase the maxi-
mum frequency for which the method is reliable, but it can also be exploited
in other parts of the simulation where the exact direction of the flow might
be important, with special interest in duct junctions. On the other hand,
the calculation time should not be severely increased, keeping it within the
one-dimensional methods standards.

After analysing recent work in the field and the favoured solutions adopted
by the main engine simulation programs of the market [28], along with how
these possibilities would interact with the rest of the work lines being devel-
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oped, focusing on the compatibility between them, it was concluded that a
finite volume staggered-grid quasi-3D method should be implemented. Conse-
quently, the work here presented was performed, including from the proposal
of the numerical method and the adaptation of the flux limiters needed, to an
extensive validation process, while showing the potential and possible appli-
cations of the method.

1.3 Main objectives
The main objective of the present work is the development of a fluid-dynamic
quasi-3D numerical method that can be connected to a one-dimensional wave
action model to improve the non-linear acoustical predictions by adding the
capability of simulating three dimensional effects, all that while keeping a low
computational cost, comparable to the original one-dimensional method. This
general objective can be divided in sub-objectives.

• Extensive review of the existing one-dimensional models in engine sim-
ulation and the evolution of the diverse techniques developed to better
comprehend the one-dimensional modelling approach in engine simula-
tion. This knowledge will also be useful to consider adapting some of the
most successful techniques and implement them in a way that facilitates
the connection between codes.

• Development of the quasi-3D numerical method, with special empha-
sis on the flux limiters. The numerical method will be used in three-
dimensional systems, but contrary to a regular CFD method, the calcu-
lation time required has to be low enough, around the order of magni-
tude of one-dimensional methods. To achieve this, some simplifications
in the calculation approach of the governing equations will have to be
performed, as long as new inaccuracies and instabilities of the method
are avoided. It is at this point when choosing the suitable existing flux
limiters and performing a proper adaptation to the three-dimensional
case becomes a critical issue.

• The validation method is also crucial in the development of a new nu-
merical method; therefore, a wide set of systems will be subjected to
tests in order to validate the applicability and accuracy of the method.
For this step, a meshing technique that fulfils the requirements of the nu-
merical methods needs to be created as well, at least for the less complex
systems.
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• Eventually, the quasi-3D numerical method is intended to be added to
the one-dimensional based scheme for fluid-dynamics used in OpenWAM.
In consequence, a connection with the one-dimensional code as a bound-
ary condition should be presented, or at least, some tests with prelimi-
nary results that assure that said connection is attainable without sac-
rificing accuracy in the final results.

1.4 Thesis outline

After this introduction, constituting chapter 1, the remainder of this thesis
is organized in the following manner. Chapter 2 presents a comprehensive
literature review focusing first on the governing equations for fluid-dynamics
and its formulation, followed by a study of the main lines in which the one-
dimensional engine modelling has evolved from its origin. The objective of
this detailed review, covering even the first finite difference methods developed
circa 1930, is on one hand to have a wider point of view when developing the
quasi-3D method and its flux limiters, since most of the issues than may appear
during that process were already faced and solved in the bibliography, or at
least previous approaches might be key for solving a newly found problem.
On the other hand, the literature review has been structured in a way that it
can be also used as an anthology of one-dimensional engine modelling or as
an introduction to this kind of numerical methods.

Chapter 3 is dedicated to the explanation of the numerical method in which
this work is based. First, the type of mesh that the method uses, known as
staggered grid mesh, it is explained. Then, how the discretization of the
governing equations has been performed and where are they solved. In these
sections it is also explained the main simplification that the method assumes in
order to reduce the calculation time needed, establishing the quasi-3D method.
After that, the development of the three flux limiters used in the method is
detailed and they are tested by applying them to the well-known shock-tube
problem, a standard first validation in one-dimensional numerical methods.

Chapter 4 is dedicated to the boundary conditions that the numerical
method will need to be able to solve. This includes stand-alone boundary
conditions based on the Method of Characteristics, like an incident pulse or
an anechoic termination, and more importantly, the conception of the con-
nection with the one-dimensional program in which the method is planned to
be included. In this regard, some preliminary results are shown to check the
capabilities and feasibility of the connection between numerical schemes, using
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a first order Godunov scheme for a collocated mesh as a representative of a
modern one-dimensional method.

Chapter 5 presents the main validation process that has been performed.
A set of different mufflers and other three-dimensional devices have been mod-
elled and simulated using the quasi-3D numerical method and the results ob-
tained have been compared with different tools in order to validate the time-
domain and non-linear acoustics capabilities of the method. The performance
of the different flux limiters was also compared in every device to determine
which one might be more suitable depending on the kind of simulation. Fur-
thermore, a simple meshing technique and a linear acoustics tool, used in this
chapter, are described.

Chapter 6 explores a different application of the quasi-3D method in which
it is used locally to model duct junctions. Duct junction modelling, although
they are not a typical three-dimensional device, also present an important
influence in their performance and prediction capabilities depending on the
direction of the flow. The proposed application is presented as an alternative
to the usual models widely used in one-dimensional codes, offering higher ac-
curacy, versatility and an easier set-up, since it does not need any experimental
parameter. With this purpose, the results obtained with the quasi-3D method
and a zero-dimensional approach are compared with experimental measure-
ments.

Chapter 7 summarises the main findings and contributions of this Ph.D.
dissertation, presenting the main conclusions reached through the analysis of
the results obtained, as well as the limitations of the model and the recom-
mendations for future work that could improve it.
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2.1 Introduction

Nowadays, the research involving internal combustion engines, ICE, is heavily
focused on reducing the pollutant emissions in order to fulfil the increasingly
restrictive regulations such as the European norm Euro VI [29, 30] while main-
taining the engine performance and reducing the fuel consumption. Although
most of the efforts are headed to reduce the most hazardous emissions, such
as NOx or CO, the rest of emissions have to be kept under control as well.
The way to achieve this consists in performing a set of simulations with the
proper tools to model the diverse physical phenomena present in the engine
until the design requirements are met. Besides, experimental tests have to
be performed, first to complement the models that need measured data, and
finally to verify the simulated results. How efficient and reliable the models
are is hence a critical point in the design process.

Among the engine emissions, acoustic emissions will be usually the main
focus of this work. Traditionally, one-dimensional models have been accurate
enough to model the whole engine, including its acoustic behaviour. However,
as increasingly complex devices are needed to reduce pollutant emissions, such
as catalyst bricks or particle filters, and mufflers need to have more complex
geometries, the three-dimensional effects start to be important, making the
one-dimensional models insufficient for acoustics. Surely, three-dimensional
models come to mind as an alternative, but a complete 3D simulation drasti-
cally increases the computational time needed, usually becoming a non-viable
option. Finally, a compromise solution is offered by quasi-3D models, which
are able to simulate three-dimensional geometries, but by using some sim-
plifications, need a much lower computational time, ideally comparable to a
one-dimensional tool.

In this chapter, a literature review of the most relevant work about gas-
dynamic engine simulation is presented, focusing on one-dimensional methods,
as a way to understand the precedents that lead to the creation of a quasi-3D
model. First the governing equations are explained as the base of the method,
then a brief description of the main one-dimensional techniques and their
evolution is given, getting more into detail in the flux limiters, since some of
them will later be adapted to the quasi-3D method. Finally, a brief literature
review of duct junctions is presented, since they are also an interesting problem
where three-dimensional effect are often relevant.
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2.2 Euler equations for gas dynamics

The fundamental conservation equations studied in this chapter are the so-
called Euler Equations. They define the conservation of mass, momentum
and energy for a control volume. A conservation law establish that the rate
of change of a conserved flow property in a fixed volume depends only on the
flux of the property through the boundary of the volume and the change of
that property due to internal sources.

The Euler Equations are actually a simplified case of the general Navier-
Stokes equations. These last equations take also into account the viscous
interactions of the fluid and, therefore, the resulting flux depends not only on
the conservative variables, but also on their gradients. As a consequence, the
partial differential equations system does not behave as an hyperbolic system,
considerably increasing the complexity of its resolution. This simplification
adopted in the Euler Equations does not affect the solution to a large extent
since in the gas flowing through engines the viscous forces are generally negli-
gible, except in the boundary layer, where they can be modelled with a friction
term.

In order to understand the physical meaning of the three conservation
equations that govern the fluid-dynamic behaviour of a gas inside the ducts
of an internal combustion engine, the three equations will be developed first
in its more traditional and simple one-dimensional form [31, 32, 33]. This will
make mathematical development easier to follow and to visualize. Eventually,
the equations will be extended to the three-dimensional form.

2.2.1 Mass conservation equation

The density of the gas in a determined point x of the duct in time t is denote
by ρ(x, t). The total mass per surface unit between two points x1 and x2 can
be defined with the following expression

(Mass in [x1, x2] for time t)
∫ x2

x1
ρ(x, t)dx (2.1)

Assuming impermeable walls and that there is nothing that destroys mass,
then the quantity of mass in the gap represented in equation (2.1) depends
only on the flow along time in sections x1 and x2. If u(x, t) represents the
velocity of the flow in section x and at time t, the mass flow per surface unit
can be represented as
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(Mass flow in (x, t)) : ρ(x, t)u(x, t) (2.2)

With this approach, the mass variation in [x1, x2] along time depends on
the mass that goes in or out in that portion of the duct across their sides.
Therefore, it can be written as

d
dt

∫ x2

x1
ρ(x, t)dx = ρ(x1, t)u(x1, t)− ρ(x2, t)u(x2, t) (2.3)

Equation (2.3) is known as the integral form of the conservation equation,
being in this case the mass conservation equation.

Knowing the mass in the portion [x1, x2] at time t1, it is possible to know
its value at time t2 > t1 by integrating equation (2.3) in time, resulting in the
following expression

∫ x2

x1
ρ(x, t2)dx =

∫ x2

x1
ρ(x, t1)dx+

∫ x2

x1
ρ(x1, t)u(x1, t)dt−

∫ x2

x1
ρ(x2, t)u(x2, t)dt

(2.4)
Knowing that

ρ(x, t2)− ρ(x, t1) =
∫ x2

x1

∂

∂t
ρ(x, t)dx (2.5)

and that

ρ(x2, t)u(x2, t)− ρ(x1, t)u(x1, t) =
∫ x2

x1

∂

∂t
(ρ(x, t)u(x, t))dx (2.6)

after substituting into equation (2.4) the following is obtained∫ t2

t1

∫ x2

x1

(
∂

∂t
ρ(x, t) + ∂

∂x
(ρ(x, t)u(x, t))

)
dxdt = 0 (2.7)

If both ρ(x, t) and u(x, t) are differentiable functions in the interval, it is
possible to assume that the term of the equation inside the integral is also
zero. With this assumption the following is obtained:

∂ρ

∂t
+ ∂(ρu)

∂x
= 0 (2.8)

This equation (2.8) is known as the differential form of the conservation
law, in this case, of the mass conservation equation. This equation can be
written in a more general form when the section is also considered. Since the
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conservation dictates that the rate of change of mass within a control volume
of length dx and cross-section S is equal to the net mass flow rate through the
element, the mass conservation equation can be expressed as

∂(ρSdx)
∂t

+ ∂(ρuS)
∂x

dx = 0 (2.9)

2.2.2 Momentum conservation equation

The momentum equation adds the requirement that the sum of the pressure
forces and the shear forces located in the surface of the control volume equals
the sum of the rate of change of momentum in the control volume and the net
flux of momentum across the surface. The resultant force on the volume can
be expressed with two terms. The first one represents the difference in the
pressure forces across the end sections of the of the control volume and, for a
one-dimensional case, it is given by the product of the gradient of the force by
the length of the element.

− ∂(pS)
∂x

dx (2.10)

The second term represents the pressure on the sides of the control volume,
which once again for a one-dimensional case, produces a force in the x-direction
given by:

p
dS
dxdx (2.11)

The negative sign in the term (2.10) comes from the convention that the
forces in the x-direction are accounted as positive. Also, for engine models,
in the pipes and other fluid-dynamic elements it can be assumed that their
geometry do not change with time (except cylinders, which are usually mod-
elled as zero-dimensional elements), so that the area of the elements is only a
function of x.

The shear forces on the control volume are due to the friction between the
flow and the duct walls and can be modelled as a shear stress, τw, opposing the
fluid motion. For a one-dimensional infinitesimal control volume, the surface
force is given by

− πDτwdx (2.12)
where D is the equivalent or hydraulic diameter of the element. The shear
stress can be expressed in therms of the element wall friction factor, f , as
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τw = 1
2ρu

2f (2.13)

In this way, the surface force on the control volume can be represented as

− 1
2ρu

2fπDdx (2.14)

In one-dimensional fluid-dynamic models this term accounts for all the
effects of viscous forces, giving as a result an essentially inviscid character for
the governing equations.

The rate of change of momentum inside the control volume can be ex-
pressed as

∂(uρSdx)
∂t

(2.15)

and the net flux of momentum across the control volume faces is given by

∂(ρSu2)
∂x

dx (2.16)

Hence the momentum conservation equation is finally expressed as

− ∂(pS)
∂x

dx+ p
dS
dxdx− 1

2ρu
2fπDdx = ∂(uρSdx)

∂t
+ ∂(ρSu2)

∂x
dx (2.17)

2.2.3 Energy conservation equation

The energy equation comes directly from applying the First Law of Thermo-
dynamics to the control volume, which results in

Q̇− Ẇs = ∂E0
∂t

+ ∂H0
∂x

dx (2.18)

Here, E0 is the total stagnation internal energy of the control volume and
H0 is the total stagnation enthalpy. Equation 2.18 can also be written in terms
of the specific stagnation internal energy and specific stagnation enthalpy,
resulting in

Q̇− Ẇs = ∂(e0ρSdx)
∂t

+ ∂(h0ρSu)
∂x

dx (2.19)

where e0 is the specific stagnation internal energy, defined as
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e0 = e+ 1
2u

2 (2.20)

and h0 is the stagnation enthalpy of the fluid, which can also be related to the
stagnation internal energy by

h0 = e0 + p

ρ
(2.21)

Regarding the remaining terms of equation 2.18, the work done by or on
the system, Ẇs, is zero for gas flow in a duct, and generally the only source
that is taken into account is the heat transfer from the gas to the element
walls, or vice versa. In order to incorporate it to the energy equation, the heat
transfer rate per unit of mass is denoted as q. Using the convention that heat
transfer is positive into the control volume, the total heat transfer from or to
the volume is

qρSdx (2.22)

Considering the above terms, the energy equation eventually takes the
following form

qρSdx = ∂(e0ρSdx)
∂t

+ ∂(h0ρSu)
∂x

dx (2.23)

To summarize, the governing equations for the one-dimensional flow of a
compressible fluid in a duct with area variation, wall friction, and heat transfer
result in the following set of non-linear hyperbolic partial differential equation

Mass conservation

∂(ρS)
∂t

+ ∂(ρuS)
∂x

= 0 (2.24)

Momentum conservation

∂(ρuS)
∂t

+ ∂(ρu2 + p)S
∂x

− pdS
dx + 1

2ρu
2fπD = 0 (2.25)

Energy conservation

∂(ρe0S)
∂t

+ ∂(ρuh0S)
∂x

− ρqS = 0 (2.26)
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2.2.4 Closure of the equations

After setting the three governing equations, the number or unknown variables
is, in fact, four, ρ, u, p and e0. This means that a further relationship between
them is needed in order to close the problem. The best candidate for this task
is a state equation, and for gases in engines, the ideal gas state equation is
usually the preferable solution

p = ρRT (2.27)

This simple relationship between the fluid-dynamic variables is usually suf-
ficiently accurate, buy it is possible to use a more complex state equation if
desired. The ideal gas state equation introduces however a new variable, the
gas temperature T , but has the benefit of enabling the internal energy and
enthalpy of the gas to be written as a function of the temperature alone. If
the fluid is considered to be a perfect gas, both the internal energy and the
enthalpy are directly proportional to the gas temperature

e = cvT (2.28)

and

h = cpT (2.29)

where cv represents the specific heat capacity at constant volume and cp, the
specific heat capacity at constant pressure, which can be expressed in terms
of the ratio of specific heats, γ, as

γ = cp
cv

(2.30)

and also in terms of the specific gas constant with

R = cp − cv (2.31)

Considering the above relationships, the specific internal energy can be
expressed as

e = RT

γ − 1 = p

ρ(γ − 1) (2.32)

and the specific enthalpy is given by
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h = cpT = γRT

γ − 1 = γp

ρ(γ − 1) (2.33)

Some other magnitudes worth mentioning are the speed of sound, which
will be denoted as a and calculated as

a =
√
γRT (2.34)

and the Mach number, which represents the relationship between speed of the
flow and the speed of sound as follows

M = u

a
(2.35)

The case of M < 1 is referred to as subsonic flow, while for M > 1 one has
supersonic flow and, when M = 1, sonic flow.

Finally, the entropy, s, can be written as:

s = cv ln
(
p

ργ

)
(2.36)

2.2.5 Conservative law form of the Euler equations

Expanding and rearranging the governing equations (2.24) to (2.26), they can
be expressed as

∂(ρ)
∂t

+ ∂(ρu)
∂x

+ ρu

S

dS
dx = 0 (2.37)

∂(ρu)
∂t

+ ∂(ρu2 + p)
∂x

− ρu2

S

dS
dx + ρG = 0 (2.38)

∂(ρe0)
∂t

+ ∂(ρuh0)
∂x

+ ρuh0
S

dS
dx − ρq = 0 (2.39)

where

G = 1
2u|u|f

4
D

(2.40)

here, the term u|u| is used to ensure that the element wall friction always
opposes the direction of fluid motion.

From equations (2.37) to (2.39), it is easy to identify that the main vari-
ables are differentiated with respect to time, the fluxes of these variables are
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differentiated with respect x, and finally the source terms complete the equa-
tions. This identification of variables leads naturally to the symbolic vector
form of the system of equations as

∂W
∂t

+ ∂F(W)
∂x

+ C1(W) + C2(W) = 0 (2.41)

where the different vectors of the system are written as

W =

 ρ
ρu
ρe0

 , F(W) =

 ρu
ρu2 + p
ρuh0


C1(W) =

 ρu
ρu2

ρuh0

 1
S

dS
dx , C2(W) =

 0
ρG
−ρq


(2.42)

When there is no section variation through the element, wall friction nor
heat transfer, equations (2.41) reduce to

∂W
∂t

+ ∂F(W)
∂x

= 0 (2.43)

and are known as homentropic one-dimensional Euler equations. The repre-
sentation of equations (2.41) is referred to as the conservation law form since
it can be obtained directly from the integral conservation equations of mass,
momentum and energy applied to a fixed control volume. However, these
equations can be expressed in a even more conservative form, as proposed
by Gascón [34], by including the cross-sectional area of the elements in the
differential terms

∂W′

∂t
+ ∂F′(W′)

∂x
+ C′ = 0 (2.44)

where

W′ =

 ρS
ρuS
ρe0S

 ,F′(W′) =

 ρuS
ρ(u2 + p)S
ρuh0S


C′1(W′) =

 0
−pdS

dx
0

 ,C′2(W′) =

 0
ρGS
−ρqS


(2.45)

With this form or the equation system vectors, the cross-section varia-
tion only affects the momentum conservation equation, as indicated by the
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corresponding term in C1 being different from zero, representing the forces
that the walls exert on the fluid at the points where there are cross-section
changes. The mass conservation equation, on the other hand, is now strictly
homogeneous since it does not contain any source term. This form of the
governing equations also gives the advantage of conserving mass in pipes of
varying cross-sectional area when numerical methods which use flux limiter
functions are used in order to achieve second-order accuracy (Corberán and
Gascón [35, 36], Liu et al. [37]). For all these reasons, it is usually recom-
mended that equations (2.44) and (2.45) are used as the starting point for
algorithms used in one-dimensional wave-action simulation models for ducts.

2.2.6 Three-dimensional Euler equations

Following a similar development as in section 2.2, the Euler equations in Carte-
sian coordinates for three-dimensional flow of a compressible fluid, neglecting
source terms, can be written as follows

∂W
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 0 (2.46)

where

W =


ρ
ρu
ρv
ρw
ρe0

 ,F =


ρu

ρu2 + p
ρuv
ρuw
ρuh0



G =


ρv
ρuv

ρv2 + p
ρvw
ρvh0

 ,H =


ρw
ρuw
ρvw

ρw2 + p
ρwh0



(2.47)

The elements of the state vector W, define the mass per unit volume, or
density, ρ, in the first row of the equations, giving the mass conservation equa-
tion. The second, third and fourth row give the momentum equations in the
three spatial coordinates, with the momentum per unit of volume also in the
three coordinates as conservative variables, ρu, ρv, ρw. It is worth mention-
ing that these three momentum equations are coupled, noticeably increasing
the complexity of the resolution of the problem when compared with the one-
dimensional case. Finally, the fifth row gives the energy conservation equation,
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with the stagnation internal energy per unit of volume, ρe0, as conservative
variable. The specific stagnation enthalpy, h0, is given by

h0 = h+ u2

2 + v2

2 + w2

2 = e+ p

ρ
+ u2

2 + v2

2 + w2

2 = e0 + p

ρ
(2.48)

Alternatively, the three-dimensional Euler equations without source terms
can be written as the classic three equations for mass, momentum and energy
conservation, being the momentum equation a vector equation, as follows

∂(ρ)
∂t

+∇ · (ρU) = 0 (2.49)

∂(ρU)
∂t

+∇ · (ρU⊗U) +∇p = 0 (2.50)

∂(ρe0)
∂t

+∇ · (ρh0U) = 0 (2.51)

where

U =

 u
v
w

 (2.52)

2.3 Numerical methods
In order to solve a partial differential equations system by a numerical method,
a discretization of the calculation domain is necessary. This means that such
calculation domain has to be represented by nodes in which the solution will
be calculated. In the case of the Euler equations for fluid-dynamics, the cal-
culation domain corresponds to the space-time plane. Therefore, for a one-
dimensional case, the length of the cells of the mesh will be represented by ∆x
and the numerical time step, by ∆t. On the other hand, xi would represent
the spatial position of the cell i and tn would represent the time in the inte-
gration step n. In a similar fashion, Wn

i will denote the solution calculated by
the numerical method in cell i in time step n.

The techniques for the simulation of gas-dynamic processes in engines are
considered to have their origin in the use of the graphical Method of Charac-
teristics in the 1950s [38, 39, 40, 41], which evolved into the mesh Method of
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Characteristics [16], but was finally displaced by shock-capturing finite differ-
ences schemes [42, 43]. Initially, the two-step Lax-Wendroff and McCormack
schemes without flux limiters were used, but later the use of non-linear terms
for flux limiting became much more common [44, 45]. Finally, some numerical
schemes based on Riemann solvers and other high-resolution shock-capturing
schemes were developed [35, 46].

In this section the main techniques developed for gas-dynamic modelling
will be outlined, starting with the Method of Characteristics. Before describing
the main shock-capturing schemes, some stability criterion will be discussed
that will help to understand the limitations and evolution of those schemes.
Understanding these old one-dimensional techniques is mandatory when de-
veloping a new scheme, even when working in a three dimensional model. In
traditional schemes it is easier to identify terms and their influence on the
solution. Also, knowing the limitations, advantages and disadvantages of the
different schemes enables to make better decisions when developing a new
one and knowing how some difficulties where solved helps when facing new
ones. In later sections it will be explained how some of these one-dimensional
finite difference techniques where adapted to a quasi-three dimensional stag-
gered grid scheme to achieve stability in the solution or how the Method of
Characteristics is still used for the boundary conditions.

2.3.1 Method of Characteristics

The Method of Characteristics was developed by Riemann [47] as a tool for
solving systems of partial differential equations. For simplicity, in this sec-
tion it will be discussed only the case where there is no heat transfer nor wall
friction, so the entropy level of the fluid remains constant, being called ho-
mentropic flow. The starting point is given by the one dimensional governing
equations in non conservative form

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (2.53)

∂u

∂t
+ u

∂u

∂x
+ 1
ρ

∂p

∂x
= 0 (2.54)

∂e

∂t
+ u

∂e

∂x
− p

ρ2

[
∂ρ

∂t
+ u

∂ρ

∂x

]
= 0 (2.55)

For an ideal gas, equation (2.55) becomes
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∂p

∂t
+ u

∂p

∂x
− a2

[
∂ρ

∂t
+ u

∂ρ

∂x

]
= 0 (2.56)

Now equations (2.53), (2.54) and (2.56) form a system that can be written
in vector form

∂V
∂t

+ A∂V
∂x

= 0 (2.57)

where the variables in vector V (ρ,u and p) are known as primitive variables
and A is the Jacobian 3× 3 matrix. For a perfect gas, Hirsch [48] defines the
Jacobian matrix A as

A =

 0 1 0
(γ − 3)u2

2 (3− γ)u (γ − 1)
(γ − 2)u3

2 −
ua2

γ−1
a2

γ−1 −
u2

2 (2γ − 3) γu

 (2.58)

The eigenvalues λk and right eigenvectors ek of A are

λ1 = u+ a, e1 =

 1
u+ a

a2

γ−1 + u2

2 + ua


λ2 = u− a, e2 =

 1
u− a

a2

γ−1 + u2

2 − ua


λ3 = u, e3 =

 1
u
u2

2


(2.59)

Given that the eigenvalues are real and the eigenvectors are linearly inde-
pendent, the system of equations (2.57) is said to be hyperbolic.

In order to make more evident the wave-like nature of the flow, equa-
tions (2.53), (2.54) and (2.56) can be manipulated and simplified until obtain-
ing the following equations

∂p

∂t
+ (u+ a)∂p

∂x
+ ρa

[
∂u

∂t
+ (u+ a)∂u

∂x

]
= 0 (2.60)

∂p

∂t
+ (u− a)∂p

∂x
+ ρa

[
∂u

∂t
+ (u− a)∂u

∂x

]
= 0 (2.61)

This expressions along with the energy equation (2.56) can be transformed
from partial differential equations with respect to time and space, into ordinary
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differential equations with respect to time with the relationship between time
and space defined by the lines

dx
dt = u± a (2.62)

for equations (2.60) and (2.61). These equations represents the speed of prop-
agation of the signals or disturbances through the gas at the local speed of
sound relative to the gas velocity, u ± a. This disturbance is called wave
characteristic and has an effect in pressure, temperature, density and velocity.
Similarly,

dx
dt = u (2.63)

for equation (2.56). In this case, this equation represents disturbances propa-
gating at the local fluid velocity, u, which is usually called pathline characteris-
tic and affects the gas temperature and composition. With these characteristic
lines, the resulting total differentials would be:

dp
dt = ∂p

∂t
± (u± a)∂p

∂x
(2.64)

du
dt = ∂u

∂t
± (u± a)∂u

∂x
(2.65)

dp
dt = ∂p

∂t
+ u

∂p

∂x
(2.66)

dρ
dt = ∂ρ

∂t
+ u

∂ρ

∂x
(2.67)

which can be used again in equations (2.53), (2.54) and (2.56) to obtain the
compatibility relationships

dp
dt ± ρa

du
dt = 0 (2.68)

where pressure and velocity of the gas along the characteristic line of equa-
tion (2.62) are related, and

dp
dt − a

2 dρ
dt = 0 (2.69)

where pressure and density of the gas along the characteristic line of equa-
tion (2.63) are related. Finally, equation (2.69) can be written as follows
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a2 = dp
dρ =

(dp
dρ

)
s

(2.70)

which is actually the isentropic relationship for the speed of sound.
According to the Second Law of Thermodynamics

Tds = dh− dp
ρ

(2.71)

and since the homentropic process is considered, ds = 0, which gives

dp = ρdh (2.72)
The enthalpy of a perfect gas is expressed as

h = cpT = γRT

γ − 1 = a2

γ − 1 (2.73)

and once differentiated with respect to a, gives

dh = 2a
γ − 1da (2.74)

Equations (2.72) and (2.74) can be substituted into the compatibility re-
lationship represented by equation (2.68), resulting in

da± γ − 1
2 du = 0 (2.75)

With these equations it is possible to relate a and u along the path of
the characteristic line given by equation (2.62). Therefore, two relationships
between a and u can be obtained, since there is a rightward and a leftward
propagating wave. For the rightward one, propagating from point 1 to 2 along
the wave, the integration of equation (2.75) gives∫ 2

1
da+ γ − 1

2

∫ 2

1
du = 0 (2.76)

which results in

a2 − a1 + γ − 1
2 (u2 − u1) = 0 (2.77)

This equation can be rearranged as follows

a2 + γ − 1
2 u2 = a1 + γ − 1

2 u1 (2.78)
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At this point, the parameter λ (do not confuse with the eigenvalues) is
defined as

λ = a+ γ − 1
2 u (2.79)

which will be constant along the characteristic line, so that

λ2 = λ1 (2.80)

Following the same process for the leftward propagating wave, it is obtained

a2 −
γ − 1

2 u2 = a1 −
γ − 1

2 u1 (2.81)

where now the parameter β, defined as

β = a− γ − 1
2 u (2.82)

will be constant along the characteristic line, so that

β2 = β1 (2.83)

The parameters λ and β are called Riemann invariants for homentropic
flow, or Riemann variables in non-homentropic flow, since in that case these
quantities are not constant along the characteristic line. Both the velocity u
and the speed of sound a can be obtained from the Riemann invariants by
adding and subtracting equations (2.79) and (2.82), resulting in

a = λ+ β

2 (2.84)

u = λ− β
γ − 1 (2.85)

In order to further understand the physical meaning of the characteristic
lines and the numerical scheme that can be exploited by using the Riemann
invariants or variables, Figure 2.1 shows schematically a one dimensional grid
where the variables of cell i are calculated for the next time step n + 1 from
the value of the Riemann invariants in points L and R at time n. As the figure
shows, the rightward wave travels at a speed a+ u from point L at time step
n, while the leftward wave travels at a speed a− u from point R also at time
step n, and both waves arrives at point i at time step n+ 1.
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i i+1i-1

n

n+1

Δx

Δt
dx

dt
= u-a

dx

dt
= u+a

Figure 2.1: Characteristics lines on a general cell for a time step.

Adopting this notation the point 1 of the integration will become point L
or R at time step n, and the point 2 will become point i at time step n + 1.
Hence the rightward wave is expressed as follows

an+1
i + γ − 1

2 un+1
i = anL + γ − 1

2 unL (2.86)

or

λn+1
i = λnL (2.87)

where the subscript denotes spatial position and the superscript, time step.
Similarly, for the leftward wave it is obtained

an+1
i − γ − 1

2 un+1
i = anR −

γ − 1
2 unR (2.88)

or

βn+1
i = βnR (2.89)

Assuming that all the variables are known at time step n, the value of
point L is the linear interpolation of the values of the velocity u and the speed
of sound a between points i− 1 and i at time step n. The same procedure can
be use to obtain point R from u and a between points i and i + 1, achieving
thus first-order spacial accuracy.

In the case of non-homentropic flow, the same procedure is followed, includ-
ing the linear interpolation, but the inclusion of wall friction, heat transfer and
section variation modifies the Riemann invariants, changing is value as they
propagate, being called then Riemann variables. This makes the formulation
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much more complicated and adds a new variable, which depends on the en-
tropy level and travels at the same velocity of the flow. The formulation of
the non-homentropic flow case can be found in [5] for more details.

2.3.2 The Courant-Friedrichs-Lewy stability criterion

One of the first papers about finite difference methods for partial differential
equations (PDEs) was written in 1928 by Courant, Friedrichs and Lewy [49].
They used finite difference methods as an analytical tool to prove the exis-
tence of a solution to certain PDEs. The main goal was to define a series of
approximated solutions, proving their convergence as the mesh size is reduced
and then show that the limit of the function has to satisfy the PDE, existing
thus a solution.

While performing these convergence tests, they demonstrated a stability
condition that was necessary for every numerical method. That condition was
that the dependency domain of the finite difference method must include the
dependency domain of the PDE, at least in the limit when ∆x and ∆t tend
to 0. This stability condition is known as the CFL condition.

The dependency domain D(x̄, t̄) of a PDE is defined as a group of points
whose initial values w0(x) affect the solution in x̄ and t̄. In the case of a
hyperbolic system of equations, such points are represented by the following
expression

D(x̄, t̄) =
[
(x̄− λ1t̄), (x̄− λ2t̄), · · · , (x̄− λmt̄)

]
(2.90)

where λp are the eigenvalues of the Jacobian matrix of the system and m is
the number of equations of the system.

Consider a three-point numerical scheme so that the value of W∆x(xj , tn)
depends in tn−1 on points xi+q, where q = −1, 0, 1. Similarly, in tn−2 it will
depend on points xi+q, where this time q = −2,−1, 0, 1, 2. Therefore, going
back in time until t = 0, the solution in xj and tn will depend on points xi+q,
where q = −n, · · · , n. Hence the dependency domain of that numerical scheme
satisfies

D∆x(xj , tn) ⊂ {x : |x− xj | 6 n∆x} (2.91)

For a determined fixed point (x̄, t̄) it results in

D∆x(x̄, t̄) ⊂
{
x : |x− x̄| 6 (t̄/∆t)∆x

}
(2.92)
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if the mesh is refined keeping constant the ratio ∆t/∆x = r, this domain can
be expressed in the limit when ∆x→ 0 as:

D0(x̄, t̄) =
{
x : |x− x̄| 6 t̄/r

}
(2.93)

The CFL condition requires that

D(x̄, t̄) ⊂ D0(x̄, t̄) (2.94)

By substituting the points of the dependency domain of the PDE in equa-
tion (2.93) it is obtained that the following inequality needs to be fulfilled

∣∣(x̄− λpt̄)− x̄∣∣ 6 t̄/r (2.95)

Therefore, operating and rearranging∣∣∣∣λp∆t∆x

∣∣∣∣ 6 1 (2.96)

for each eigenvalue λ of the Jacobian matrix.
The CFL condition is a necessary condition for the stability of the calcu-

lation method, but it is not a sufficient condition. It is a necessary condition
because if the requirement (2.94) is not met, then there would be points in
the real domain that do not belong to the numerical domain. A change in the
initial value of some of those points would affect the real solution, but not the
numerical solution, therefore, the latter could not converge for every initial
value.

The quantity ν is known as the Courant number

ν = max
∣∣∣∣λp∆t∆x

∣∣∣∣ (2.97)

For a three-point centred numerical method to be stable it is a necessary
condition that the Courant number is lower than 1, ν < 1.

From a physical point of view, the eigenvalues of the Jacobian matrix rep-
resent the speed in which the information of the different magnitudes travels,
hence, the meaning of the CFL condition of equation (2.96) can be summarized
as the condition that the calculation cannot advance faster than information
in the fluid. In other words, trying to use a ∆t higher than the one indicated
by the CFL condition will result in a calculation of the properties of a point
before the physical information of the adjacent cells could reach it, obtaining
thus an unpredictable result.
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2.3.3 The entropy condition

The Euler equations system admits non-differentiable solutions, i.e. disconti-
nuities. From the mathematics point of view, this discontinuities do not satisfy
the differential equations of the system, but they are a valid solution for the
integral form of the conservation equations.

Nonetheless, the fact that discontinuous solutions exist does not imply
that all of them have a physical meaning. Therefore, a criterion is required
to identify which of the possible solutions is the correct one from the physical
point of view.

According to the Second Law of Thermodynamics it can be deduced that
both entropy and entropy flux can be expressed as a function of the conser-
vative variables. Changes in entropy only occur due to entropy flux, except
in shock waves. This means that, except in shock waves, entropy will not be
created nor destroyed, or expressed as an equation

∂(ρs)
∂t

+ ∂(ρus)
∂x

= 0 (2.98)

Across a shock wave though, entropy increases, which means that the en-
tropy variation will be higher than the variation produced by the entropy flux.
Again, in equation form

∂(ρs)
∂t

+ ∂(ρus)
∂x

> 0 (2.99)

Based on the statement of the Second Law of Thermodynamics, only com-
pression shock waves are possible, since expansion shock waves would imply
negative entropy, which is physically impossible in a real flow. Due to the
fact that in the Euler equations there are no dissipative mechanisms, such as
viscosity, a new condition to the system needs to be added, which will assure
that the correct physical solution is chosen. This condition is called entropy
condition.

A detailed analysis of the entropy condition based on the properties of
the one-dimensional hyperbolic conservation laws was performed by Lax [50],
where, as a summary, a conservative laws system with an entropy function
ζ(W) is considered such as:

• ζ is a concave function of W, for instance, ζWW < 0

• ζ satisfies the expression ζW · FW = ΥW
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where Υ is called entropy flux. Note that the notation used here for partial
derivatives indicates the variable with respect it is differentiated with the
subscript.

The solutions that converge to the differential form of the conservation
equations are called weak solutions, and they satisfy

∂ζ(W)
∂t

+ ∂ζ(W)
∂x

> 0 (2.100)

This inequality is the so called entropy condition. Given the following
conservative scheme

Wn+1
i = Wn

i −
∆t
∆x

(
F̂i+ 1

2
− F̂i− 1

2

)
(2.101)

where F̂ is a continuous function called numerical flux.

F̂i+ 1
2

= F̂
(
Wn

i−k+1, . . . ,Wn
i+k
)

(2.102)

This conservative scheme is consistent with the entropy condition if the
following expression is satisfied:

ζ(Wn+1
i ) > ζ(Wn

i )− ∆t
∆x

(
Υi+ 1

2
−Υi− 1

2

)
(2.103)

It is assumed then that the numerical solution of the system of equa-
tions (2.43) converges to a smooth solution when the following conditions are
accomplished.

• The total variation of the numerical solution with respect to x is bounded
with respect to t, ∆t and ∆x.

• The numerical solution is consistent with the entropy condition (2.100)
for all the entropy functions of (2.43)

The entropy condition implies uniqueness in the solution of the initial value
problem.

2.3.4 Conservative centred schemes

A centred scheme is one in which all the variables are calculated in the centre
of every cell, as opposed to the staggered grid schemes, where usually scalar
and vector variables are separated. Even though the method developed here
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is applied to a staggered grid, it is important to understand the roots of
the method by the history of the evolution of the main numerical methods
developed for fluid-dynamics, which were for the most part applied to centred
schemes.

In the early development of the numerical schemes, discontinuities intro-
duced by shock waves and contact surfaces could not be properly represented
by the differential form of the governing equations, due to the infinite gradi-
ents that would result. This problem was finally solved by using the integral
conservation form of the equations, guaranteeing that the mass, momentum
and energy are explicitly conserved in the volume, even in the presence of
discontinuities.

The integral form of the governing equation can be written as follows∫
x

∫
t

(
∂W
∂t

+ ∂F(W)
∂x

)
dxdt = 0 (2.104)

which, once integrated, gives(
Wn+1

i −Wn
i

)
∆x+

(
Fi+ 1

2
− Fi− 1

2

)
∆t = 0 (2.105)

Here, Wi represents the average of the conservative variables along the
cell i and can be expressed as

Wi = 1
∆x

∫ xi+1/2

xi−1/2

Wdx (2.106)

and Fi±1/2 is the average flux through the boundaries of cell i during the
interval ∆t, as follows

Fi±1/2 = 1
∆t

∫ tn+1

tn
Fdt (2.107)

In figure 2.2 the placement of the variables Wi and the flux Fi±1/2 on a
generic cell i is schematically shown .

Equation (2.105) is known as the discrete integral form of the one-dimensional
system of the Euler Equations without source term. In this equation, the main
unknown quantity is the state vector in the next time step, Wn+1

i , which has
to be obtained so the calculation can continue in time. Rearranging equa-
tion (2.105)

Wn+1
i = Wn

i −
∆t
∆x

(
Fi+ 1

2
− Fi− 1

2

)
(2.108)
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n+1

Δx

Δt
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n
Fi-1/2
n

Wi
n+1

Figure 2.2: Conservative variables and flux in a generic cell.

With equation (2.108), the solution in the time step n+1 can be calculated
from the values of the solution in the previous time step n and the flux between
cells, which would have been calculated in the same way as before or come
directly from the initial values of the problem. The only issue that has to
be faced is that the flux is evaluated in the boundaries of the cells, but the
values of the main variables in that position are unknown, since they are only
calculated in the centre of each cell. Therefore, for the numerical method to
be usable, this flux has to be estimated as accurately as possible using the
values of the variables in the centre of the cell. This estimated flux will be
denoted as F̂ and how it is calculated will be the main difference between the
different one-dimensional centred schemes developed.
Lax-Friedrichs scheme

This scheme starts from the most simple way to estimate the flux, which
is assuming that it will be the average value of the flux evaluated in the two
nearest cells

F̂n
i+ 1

2
= 1

2
[
F(Wn

i+1) + F(Wn
i )
]

(2.109)

which will result in the following equation

Wn+1
i = Wn

i −
∆t

2∆x
(
Fn
i+1 − Fn

i−1
)

(2.110)

However, by using this simple scheme, numerical oscillations appear and
grow with every time step, leading to an unstable solution. This issue can be
solved by adding a new term to the flux.

F̂n
i+ 1

2
= 1

2

[
F(Wn

i+1) + F(Wn
i )− ∆x

∆t
(
Wn

i+1 −Wn
i

)]
(2.111)
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Using this flux expression leads to the Lax-Friedrichs scheme

Wn+1
i = 1

2
(
Wn+1

i + Wn−1
i−1

)
− ∆t

2∆x
(
Fn
i+1 − Fn

i−1
)

(2.112)

The resulting method has only first-order accuracy, which is the reason
why it is hardly ever used, but it is an important scheme since it became the
basis for other more accurate methods.
Mid-point leapfrog method

The leapfrog method uses a similar flux function, but averaging of the cell
conservative variables in time

F̂n
i+ 1

2
= 1

2

[
F(Wn

i+1) + F(Wn
i )− ∆x

∆t
(
Wn+1

i −Wn
i

)]
(2.113)

which results in the following equation

Wn+1
i = Wn−1

i − ∆t
∆x

(
Fn
i+1 − Fn

i−1
)

(2.114)

giving a method that uses three time steps simultaneously, which means that it
will need initial conditions in two time steps to start the calculation. Another
problem associated with this scheme, is that, as shown in figure 2.3, it actually
leads to two independent solutions that alternate each time step. This might
result in inconsistencies in the solution, or even in two diverging solutions,
especially if the initial conditions are not well defined.

Despite these problems, the leapfrog method is the simplest method that
gives second-order accuracy in time and space.
Lax-Wendroff method

One of the most important methods for second-order accuracy centred
schemes is the Lax-Wendroff method [51]. It is based on the Taylor series
expansion of the sate vector W, as follows

Wn+1 = Wn−1 + ∂W
∂t

∆t+ ∂2W
∂t2

(∆t)2

2! + . . . (2.115)

It is possible to substitute the differential terms in order to achieve an
expression in the same terms as (2.108). First, using the conservative law
form of the Euler Equation (2.41) without source terms, it is obtained

∂W
∂t

= −∂F
∂x

(2.116)
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Figure 2.3: Leapfrog scheme representation.

Additionally,

∂2W
∂t2

= − ∂

∂t

(
∂F
∂x

)
= − ∂

∂x

(
∂F
∂t

)
(2.117)

which can also be expanded

∂F
∂t

= ∂F
∂W

∂W
∂t

= ∂F
∂W

(
−∂F
∂x

)
= −A∂F

∂x
(2.118)

where, once again, A is the Jacobian matrix of the system. Substituting
equation (2.118) into equation (2.117) gives

∂2W
∂t2

= − ∂

∂x

(
∂F
∂t

)
= ∂

∂x

(
A∂F
∂x

)
(2.119)

And substituting now equations (2.116) and (2.119) into equation (2.115)
gives the following expression

Wn+1 = Wn−1 − ∂F
∂x

∆t+ ∂

∂x

(
A∂F
∂x

)
∂(∆t)22! +O(∆t)3 (2.120)
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After operating, it is possible to obtain an explicit scheme with second-
order accuracy in time and space with the following flux term:

F̂n
i+ 1

2
= Fn

i+ 1
2

+ ∆x
2

∂F
∂t

∣∣∣∣n
i+ 1

2

= 1
2

[
Fn
i + Fn

i+1 −
∆t
∆xAn

i+ 1
2

(
Fn
i+1 − Fn

i

)]
(2.121)

As described above, the Lax-Wendroff method introduces an issue, as
it requires the evaluation of the Jacobian matrix each time step for every
cell boundary, Ai+1/2. To overcome this issue, Richtmyer and Morton [52]
proposed a modification of the method to avoid the calculation of the Jaco-
bian matrix, by solving the equation with a two-step approach, retaining thus
the second order accuracy. This modification is known as the two-step Lax-
Wendroff method and became the base of a family of methods with the form of
a predictor-corrector algorithm with explicit time integration. The first step is
based on the Lax-Friedrichs method, and the second on a mid-point Leapfrog
calculation, as follows:

First step:

Wn+ 1
2

i+ 1
2

= 1
2

[
Wn

i + Wn
i+1 −

∆t
∆x

(
Fn
i+1 − Fn

i

)]
(2.122)

Fn+ 1
2

i+ 1
2

= F
(

Wn+ 1
2

i+ 1
2

)
(2.123)

Second step:

Wn+1
i = Wn

i −
∆t

2∆x

(
Fn+ 1

2
i+ 1

2
− Fn+ 1

2
i− 1

2

)
(2.124)

In the first step, an estimation of the solution at points i+1/2 and n+1/2 is
performed, obtaining thus the flux through the volume during the integration
step. These inter-cell fluxes are later used in the second step to calculate the
solution at point i and n + 1. A schematic of the method can be seen in
figure 2.4.
MacCormack method

A similar method was developed by McCormack [53], which consisted in
a two-step predictor-corrector method. Therefore, in the first step the value
of the solution in cell i is predicted for the time step n + 1, which will be
called W̄n+1

i , and in the second step that value is corrected to obtain the final
solution. The scheme is defined as:
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Figure 2.4: Two-step Lax-Wendroff representation.

Predictor step:

W̄n+1
i = Wn

i −
∆t

2∆x
(
Fn
i+1 − Fn

i

)
(2.125)

Corrector step:

Wn+1
i = 1

2

[
Wn

i + W̄n+1
i − ∆t

∆x
(
F̄n+1
i − F̄n+1

i−1

)]
(2.126)

resulting as well in an explicit second-order accuracy method.
The Sβα classification

Lerat and Peyret [54] formulated a general form of two-step predictor-
corrector methods in a single scheme with two parameters, α and β. These
schemes have the general form:

Predictor step:

Wn+β
i+α = αWn

i+1 + (1− α)Wn
i − β

∆t
2∆x

(
Fn
i+1 − Fn

i

)
(2.127)

Corrector step:

Wn+1
i = Wn

i −
∆t

2β∆x
[
(β − α)Fn

i+1 + (2α− 1)Fn
i + (1− α− β)Fn

i−1 + Fn+β
i+α − Fn+β

i−1+α

]
(2.128)

The values of α and β define where the predicted variables are evaluated,
creating a family of centred second-order accuracy methods called Sβα family
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of Lerat-Peyret. For instance, with the values α = β = 0.5, the Lax-Wendroff
method is obtained, while with the vales α = 0 and β = 1, the McCormack
scheme is obtained.

2.3.5 Upwind schemes and Riemann solvers

The numerical methods discussed so far have not taken into account the phys-
ical properties of the fluid in the discretization. While centred schemes are
symmetrical, upwind schemes are characterised by considering the direction
of the propagation of the waves, i.e. distinguishing between upstream and
downstream propagation of the information.

One of the first upwind schemes was developed in 1952 by Courant, Isaac-
son and Rees [55]. They introduced for the first time the physical properties
of the flow in the formulation of the discretization of the scheme, which was
based on the scalar linear advection equation

∂w

∂t
+ a

∂w

∂x
= 0 (2.129)

With a > 0 the discretization would be

wn+1
i = wni − a

∆t
2∆x

(
wni − wni−1

)
(2.130)

and with a < 0

wn+1
i = wni − a

∆t
2∆x

(
wni+1 − wni

)
(2.131)

Therefore, the discretization clearly depends on the direction of the prop-
agation of the wave. This scheme is the equivalent to the Method of Charac-
teristics, where the information for the next time step was tracked from the
previous one. This scheme also gives better resolution of discontinuities than
the Lax-Friedrichs scheme since it is less dissipative. One can define

a+ = max[a, 0] = 1
2(a+ |a|)

a− = min[a, 0] = 1
2(a− |a|) (2.132)

so that equations (2.130) and (2.131) can be expressed in a single equation as
follows

wn+1
i = wni − a

∆t
2∆x

(
wni+1 − wni−1

)
+ |a| ∆t

2∆x
(
wni+1 − 2wni + wni−1

)
(2.133)
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This method can be extended to the Euler equations system by expressing
it in matrix form and operating (Jacobian matrix diagonalisation and change
of variable), resulting in

Wn+1
i = Wn

i − a
∆t

2∆x
(
Fn
i+1 − Fn

i−1
)

+ |A| ∆t
2∆x

(
Wn

i+1 − 2Wn
i + Wn

i−1
)

(2.134)
In the non-linear case, these schemes require the evaluation of the Jacobian

matrix Ai+1/2.
This method still remains being first-order accuracy, but modern upwind

schemes were later developed in the form of Riemann solvers and extended
to higher-order accuracy. Regarding how the upwind direction should be de-
termined, two approaches were established: the flux vector splitting approach
and the Godunov method. The former is based on separating positive and
negative flux [56] and usually leads to a more simple algorithm. Godunov’s
method, on the other hand, gives a better resolution of waves and thus it will
be discussed in this section.
Godunov’s scheme

Godunov’s method is the origin of many modern schemes, also known as
reconstruction-evolution schemes. It appeared in 1959 when Godunov [57]
proposed a way of using the information of the characteristic lines within a
conservative scheme. The method consist of three steps. In the first step,
Godunov assumed that the initial state vector of each cell could be replaced
by an approximated reconstruction of that state vector that remains constant
in that cell. This will give as a result a set of piecewise-constant states with
discontinuities at each cell interface, i.e., at xi±1/2, as shown in figure 2.5.
Therefore, the second step would be calculating the inter-cell fluxes by solving
the Riemann problem that appears in each cell boundary. This is equivalent
to solving a set of shock-tube problems, one in each cell interface, which has
an analytical solution. Initially, Godunov used the analytical solution to the
Riemann problem, but later other authors developed accurate approximated
solvers to the Riemann problem with a much lower computational cost. Fi-
nally, the third step consist in calculating the solution for the next time step
as a new set of constant state vectors for each cell, establishing a new set of
Riemann problems for the next time step.

The resulting method gives a first-order scheme with monotonic behaviour,
which was also the basis of Godunov’s scheme family. This scheme family,
as Godunov’s method itself, consist of three calculation steps, which can be
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Figure 2.5: Constant state data in each cell in a Godunov scheme.

formulated as follows:
The first step consist in an approximated reconstruction of W(x, tn) in the

interval [xi−1/2, xi+1/2[

R(x,Wn
i ) = Ŵn

i , x ∈ [xi−1/2, xi+1/2[ (2.135)

Although Godunov used a constant value for the approximated state in
each cell, it is possible to use polynomial approximations of the solution,
which will increase the order of the scheme to p + 1, being p the order of
the polynomial approximation.

In the second step the Riemann problems between cells are solved, either
with the exact solution or an approximation, taking as initial values
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W(x, tn) =

 Ŵn
i x < x1+ 1

2

Ŵn
i+1 x > x1+ 1

2

(2.136)

Finally, in the third step the solution Wn+1
i is obtained by averaging the

solution of the Riemann problem for each cell in tn+1, which is denoted as
WR

n (x, tn+1), as follows

Wn+1
i = 1

∆x

∫ xi+1/2

xi−1/2

WR
n (x, tn+1)dx (2.137)

Considering that the integral includes two different Riemann problems,
after some operations, equation (2.137) can be written in conservative form

Wn+1
i = Wn

i + ∆t
∆x

[
F(WR

n (Ŵn
i ,Ŵn

i+1))− F(WR
n (Ŵn

i−1,Ŵn
i ))
]

(2.138)

It is also worth mentioning that Godunov’s method leads to a finite volume
mesh in a natural way, since state vectors remain constant in each cell, and it
also facilitates the calculation of the following time step, since it is calculated
directly from the solution of the current time step, as opposed to the Method of
Characteristics, where backward tracing of the characteristic lines was needed.
Roe’s Riemann solver

One of the main issues of Godunov’s method is that it needs to calculate
the exact solution of the Riemann problem for every cell interface, which is a
slow process. In order to reduce the computational cost, Roe [58] proposed
an alternative approach by calculating an approximated solution of the Rie-
mann problem. After his success, a great number of authors started designing
upwind schemes based on approximate Riemann solvers. These schemes also
used equation (2.138), but the flux F̂n

i±1/2(Wn
L,Wn

R) is calculated by means
of a Riemann solver. Note that subscripts L and R denote that the value is
evaluated either at the left or the right of the cell interface, and they corre-
spond to points i − 1, i or i + 1, depending on which of the two interfaces is
being evaluated.

What Roe proposed was replacing the Riemann problem that appears in
the second step of Godunov’s method by the following approximated linear
problem, where in the system of conservation laws F is a linear function of W

∂W(x, t)
∂t

+ A(W)∂W(x, t)
∂x

= 0 (2.139)
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where A is the constant Jacobian matrix and it is imposed that

W(x, tn) =

 Ŵn
L x < x1+ 1

2

Ŵn
R x > x1+ 1

2

(2.140)

The Jacobian matrix has to be evaluated at point i ± 1/2, for what Roe
proposed

ū = uL
√
ρL+uR

√
ρR√

ρL

h̄ = hL
√
ρL+hR

√
ρR√

ρL

ā =
√

(γ − 1)
(
h̄− 1

2 ū
2
)

ρ̄ =
√
ρLρR

(2.141)

for the Jacobian matrix, the eigenvalues and the eigenvectors.
Lastly, the intercell flow set out by Roe is defined as

F̂n
i+ 1

2
= 1

2 (F(Wn
L) + F(Wn

R))− 1
2

∣∣∣∣An
i+ 1

2

∣∣∣∣ (Wn
L + Wn

R) (2.142)

Harten-Lax-van Leer (HLL) Riemann solver
Harten et al. [59] proposed a different approach to solve the Riemann

problem. Their idea was to use a simplified wave structure of the Riemann
problem and solve it to get an approximation of the inter-cell flux. Figure 2.6
shows the usual four regions that appear in a general Riemann problem for
subsonic flow, simplifying the rarefaction wave to a single line. Therefore, four
states can be distinguished, separated by the wave lines. The simplification
adopted by the HLL Riemann solver consists of assuming that there is no
contact surface, so that the central state is W∗ = W∗

L = W∗
R.

With this assumption, the integral form of the Euler equations can be
solved for the left control volume, giving

W∗ = WL + F∗ − FL

cL
(2.143)

and for the right control volume

W∗ = WR + F∗ − FR

cR
(2.144)
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Figure 2.6: Regions of the Riemann problem for subsonic flow.

The state vector W∗ expression can be obtained from equations (2.143)
and (2.144)

W∗ = cRWR − cLWL − (FR − FL)
cR − cL

(2.145)

Similarly, the flux function F∗ can be obtained as

F∗ = cRFL − cLFR + cLcR(WR −WL)
cR − cL

(2.146)

eventually giving the inter-cell flux expression used in a Godunov’s scheme, as
in equation (2.138)

F̂i+ 1
2

=


FL cL > 0
F∗ = FR + cR(W∗ −WR) cL 6 0 6 cR

FR cR > 0
(2.147)

where cL > 0 and cR represent the cases of supersonic flow to the right and to
the left, respectively, since in that case both wave lines would be on the same
side.

Regarding the estimation of the wave lines cL and cR, there are several
possibilities, being the most simple

cL = uL − aL, cR = uR + aR (2.148)

or, using the expression suggested by Roe in equation (2.141),
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cL = ūL − āL, cR = ūR + āR (2.149)

Both of those approximations were proposed by Davis [60].
The resulting method gives a very efficient inter-cell flux calculation in

a very robust numerical method. Its main weakness though appears when
calculating a contact surface region in the solution, where the results will be
too diffusive, which on the other hand can be expected when considering that
the simplification adopted was precisely ignoring the contact surface in the
Riemann problem.
HLLC Riemann solver

With the objective of improving the HLL Riemann solver, Toro et al. [61]
proposed adding a third wave, which can be understood as an approximation
of the contact surface. This wave, therefore, is located between the two waves
considered in the HLL method and propagates at a speed u∗. This scheme
would fully correspond to figure 2.6, where four different states appear. Solving
the integral Euler equations for the left control volume in this case gives

F∗L = FL + cL(W∗
L −WL) (2.150)

and for the right control volume

F∗R = FR + cR(W∗
R −WR) (2.151)

where the only unknown values are W∗
L and W∗

R, besides the flux itself. It
is known from the analytical solution of the Riemann problem that in both
sides of the contact surface the pressure and velocity of the flow are the same,
therefore

u∗ = u∗L = u∗R (2.152)

and
p∗ = p∗L = p∗R (2.153)

which can be imposed in equations (2.150) and (2.151) to obtain

W∗
K = ρK

(
cK − uk
cK − u∗

) 1
u∗

e0K + (c∗ − uK)
(
c∗ + pK

ρK(cK−uK)

)
 (2.154)
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where K can be L or R. Now, the only unknown value is c∗, which can be
obtain by using equations (2.150) and (2.151) to obtain the pressure at both
sides of the contact surface, and then with condition (2.153), combining both
pressure expressions to obtain c∗ as follows

c∗ = pR − pL + ρLuL(cL − uL)− ρRuR(cR − uR)
ρL(cL − uL)− ρR(cR − uR) (2.155)

With this, now W ∗L and W ∗R can be calculated and substituted into equa-
tions (2.150) and (2.151) to evaluate the fluxes F ∗L and F ∗R as follows:

F̂i+ 1
2

=



FL cL > 0
F∗L = FL + cL(W∗

L −WL) cL 6 0 6 c∗

F∗R = FR + cR(W∗
R −WR) c∗ 6 0 6 cR

FR cR > 0

(2.156)

After this modification, the resulting method, known as HLLC Riemann
solver, manages to keep the advantages of the HLL variant in robustness and
efficiency while also bringing a significantly improved resolution around the
contact surface. The results obtained by using this method are very similar
to the ones obtained using the Godunov method, which uses the exact Rie-
mann solution, but the former is a much more efficient method in terms of
computational cost.

2.4 Flux limiters
After the development of the schemes based on Godunov’s method, which
were still first-order accuracy, the following natural step was to extend them
to second-order accuracy. Given the propagation based physics of Godunov’s
scheme, it could be expected that the robustness of the first-order accuracy so-
lution would be carried to higher-order accuracy numerical methods. However,
using this straightforward approach to increase the accuracy of the method
proved to bring spurious oscillations into the solution in the regions with high
gradients, similarly to the oscillations found in higher-order accuracy methods
for finite differences schemes.

The demonstration and formalisation of this problem was rigorously proved
by Godunov [57] in what is known as Godunov’s theorem. In that theorem
he proved that given a first-order accuracy monotonic solution, when trying
to expand the scheme to second-order accuracy, the resulting method does
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not fulfil the Cauchy inequality, concluding that such scheme cannot exist. In
other words, numerical schemes for solving partial differential equations with
the property of not generating new extrema (monotonic scheme), can be at
most first-order accurate.

It was proposed later the use of non-linear schemes that were high-order
accuracy in smooth regions of the solution but that could increase locally
the numerical dissipation of the method in the proximity of steep gradients,
thus avoiding the development of spurious oscillations. This approach allowed
for the appearance of the so called High-resolution schemes. Although many
different schemes have been developed under this approach, this section will
focus on the methods based on flux limiters.

In order to easily visualize the flux limiter concept, the one-step Lax-
Wendroff scheme can be used on the linear advection equation, giving

wn+1
i = wni − ν∆wn

i− 1
2
− ν(1− ν)[(wni+1 − wni )− (wni − wni−1)] (2.157)

where ν = a∆t/∆x. Sweby [62] showed that this second order scheme can be
interpreted as the sum of the first-order scheme

wn+1
i = wni − ν∆wn

i− 1
2

(2.158)

which corresponds to a Godunov scheme, plus the term

− ν(1− ν)[(wni+1 − wni )− (wni − wni−1)] (2.159)

which can be seen as the anti-diffusive flux. Since the first-order accuracy
scheme given by equation (2.158) is known to be free of spurious oscillations,
they have to come from the anti-diffusive term. Therefore, following the high-
resolution schemes philosophy, this scheme can be modified with a non-linear
term able to activate the anti-diffusive term only far away from steep gradients,
as follows

wn+1
i = wni − ν∆wn

i− 1
2
− ν(1− ν)φi[(wni+1 − wni )− (wni − wni−1)] (2.160)

being φ the flux limiter. Here, φi is a function of the solution, as it is non-
linear, and it has to be able to measure how smooth the solution is around
point i. Therefore, if the solution in the proximity is smooth, the value of φi
should be close to one, resulting in the original Lax-Wendroff scheme. Near
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steep gradients however, φi should be close to zero, going back to first-order
accuracy and avoiding numerical oscillations.

Following this criterion, two classes of high-resolution numerical methods
can be established: post-processing and pre-processing schemes.

In a post-processing scheme, first the solution is calculated with the ap-
propriate numerical method and then modified with the corresponding flux
limiter. Some examples are the flux corrected transport (FCT) schemes or
some total variation diminishing (TVD) flux limiters, which will be discussed
later.

On the other hand, in a pre-processing scheme the data representation
is modified before the solution is updated. Some examples are the MUSCL
technique (monotonic upstream centred scheme for conservation laws), the
parabolic piece-wise method (PPM) or the essentially non-oscillatory (ENO)
schemes.

Given the nature of the numerical method developed in this work, where
a three-dimensional staggered grid is used and the momentum equation is
simplified to a one-dimensional equation, it is much more suitable using a post-
processing scheme, where the flux limiter has just to be added to the original
numerical method. Therefore, post-processing schemes will be detailed, while
the pre-processing schemes will only be mentioned with a brief description.

2.4.1 Flux Corrected Transport (FCT)

The Flux Corrected Transport method (FCT) [63] is a post-processing scheme
that consists of three stages: a transport stage based on the scheme considered,
a diffusion stage for reducing the numerical dispersion introduced in the trans-
port stage, and an anti-diffusion stage to restore the accuracy of the scheme at
cells with a smooth solution while preserving the diffusion operator accuracy
in the vicinity of discontinuities. While the transport stage is defined by the
governing equations and their discretization, in the diffusion stage a linear
operator is defined that is introduced in the scheme in conservative form and
allows to reduce or eliminate any non-physical numerical oscillations produced
in the transport stage, thus reducing the accuracy to first order.

The diffusive operator is defined as

Di(W) = θ(Wi+1/2)− θ(Wi−1/2) (2.161)

where
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θ(Wi+1/2) = ϑ

4 (Wi+1 −Wi) (2.162)

Here, Wi is the variable computed at cell i in the transport stage, sub-
scripts i± 1/2 indicate that the variable is evaluated at the midpoint between
cells i and i±1. The factor ϑ is a positive real number that has to be ϑ > 1/2
so that instabilities are avoided. The guessed value W̄i of the variable Wi

may be computed in two ways: applying diffusion via smoothing, so that:

W̄n+1
i = Wn+1

i + Di(Wn+1
i ) (2.163)

or applying diffusion via damping, in which case one has:

W̄n+1
i = Wn+1

i + Di(Wn
i ) (2.164)

Finally, an anti-diffusion stage is applied, where the accuracy of the scheme
used in the transport stage in those cells where the solution is smooth is re-
stored, but preserving the non-oscillatory behaviour of the diffusion operator
in the neighbourhood of discontinuities. With this purpose, a non-linear op-
erator Aj is defined as

Ai(W) = Ψ(Wi+1/2)−Ψ(Wi−1/2) (2.165)

Using the anti-diffusive limited flow defined in [64] one has

Ψ(Wi+ 1
2
) = smax

[
0,min

(5
8s∆Wi− 1

2
,
1
8
∣∣∣∆Wi+ 1

2

∣∣∣ , 5
8s∆Wi+ 3

2

)]
(2.166)

Here, s = sign(∆Wi+1/2), ∆Wi−1/2 = Wi −Wi−1, ∆Wi+1/2 = Wi+1 −
Wi and ∆Wi+3/2 = Wi+2−Wi+1. Then, depending on the information used,
one can devise three different forms for this step:

• The Naive method

¯̄Wn+1
i = W̄n+1

i + Ai(Wn
i ) (2.167)

• The Phoenical method

¯̄Wn+1
i = W̄n+1

i + Ai(Wn+1
i ) (2.168)
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• The Explicit method

¯̄Wn+1
i = W̄n+1

i + Ai(W̄n+1
i ) (2.169)

As defined, flux correction techniques are conservative at the interior mesh
points, since all the corrections are cancelled out along the duct except at
the ends, where the anti-diffusion operator can be defined by evaluating the
differences present in each case, i.e.:

Ψ(Wi+ 1
2
) = smax

[
0,min

(8
5s∆Wi− 1

2
,
1
8
∣∣∣∆Wi+ 1

2

∣∣∣)] (2.170)

for the right end, and

Ψ(Wi− 1
2
) = smax

[
0,min

(1
8
∣∣∣∆Wi− 1

2

∣∣∣ , 5
8s∆Wi+ 1

2

)]
(2.171)

for the left end.

2.4.2 Total Variation Diminishing (TVD)

The total variation diminishing concept appears from the need of a criterion
that allows the design of a numerical scheme that does not suffer from spurious
oscillations. For that, some properties have to be fulfilled.

As starting point, consider the initial value problem for a scalar conserva-
tion law

wt + f(w)x = 0, w(x, 0) = w0(x), −∞ < x <∞ (2.172)

where sub-index t and x represent the partial derivative of w with respect to
that variable and w0 is assumed to have bounded total variation. A weak
solution to this problem (physical solution) has the so-called monotonicity
property, according to which:

• No new local extrema in space is created.

• The value of a local minimum is nondecreasing and the value of a local
maximum is nonincreasing.

The total variation of the solution to (2.172) at time t for a continuous
and discrete equation is defined as
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TV =
∫ ∣∣∣∣∂w∂x

∣∣∣∣ dx, TV (w) =
∑
i

|wi+1 − wi| (2.173)

From the monotonicity property, it follows that the total variation in x of
w(x, t) does not increase with t. That is

TV (wn+1) 6 TV (wn) (2.174)

In order to satisfy the discrete version of the equation (2.173), Harten [65]
proposed to consider an explicit finite difference scheme in conservation form,
denoted in operator form as

wn+1 = L · wn (2.175)

Then, the finite difference scheme is total variation diminishing (TVD) if
for all w of bounded total variation one has:

TV (wn+1) = TV (L · wn) 6 TV (wn) (2.176)

In addition, a scheme is called monotonicity preserving if the finite dif-
ference operator L is monotonicity preserving, i.e., if w is a monotone mesh
function, so is L · w.

Harten [65] also proved that a monotone scheme is total variation dimin-
ishing and that a TVD scheme is monotonicity preserving. Therefore, TVD
schemes are intrinsically free from spurious oscillations.

It is usual to write the scheme (2.175) in the form

un+1
i = uni − C−i−1/2∆uni−1/2 + C+

i+1/2∆uni+1/2 (2.177)

where

∆uni+1/2 = uni−1 − uni (2.178)

and

C−i−1/2 = C−(ui−2, ui−1, ui, ui+1) (2.179)

C+
i+1/2 = C+(ui−1, ui, ui+1, ui+2) (2.180)

The choice of C−i−1/2 and C+
i+1/2 is not unique. Harten [65] also proved

that if the coefficients C−j−1/2 and C+
j+1/2 satisfy the inequalities
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C−i−1/2 > 0, C+
i+1/2 > 0

C−i−1/2 + C+
i+1/2 6 1 (2.181)

then the scheme (2.177) is total variation diminishing.
With this definition, Sweby [62] developed the general theory of flux lim-

iters that ensure a TVD scheme. At the beginning of this section a flux limiter
was applied to the Lax-Wendroff discretization of the advection equation, giv-
ing the scheme represented by equation (2.160), where φ was the flux limiter.
This flux limiter can be a function of successive gradients, r, expressed as

φi = φ(ri) (2.182)

where

ri =
∆wni−1/2
∆wni+1/2

(2.183)

The objective is to find the range of values that the function φ can adopt
which results in a scheme with the TVD property. Sweby [62] was able to find
the region where φ(r) must lie so that the resulting second order scheme is
TVD by choosing the following values for C−i−1/2 and C+

i+1/2

C−i−1/2 = ν

[
1 + 1

2(1− ν)
(
φ(ri)
ri
− φ(ri− 1)

)]
, C+

i+1/2 = 0 (2.184)

and using the known values used for the flux limiter to obtain a Lax-Wendroff
scheme, φ(r) = 1, and a Warming and Beam upwind scheme, φ(r) = r, as
delimiters for that region. Figure 2.7 shows the region where φ(r) must lie to
obtain a second order TVD scheme.

In section 3.6 the Davis TVD scheme will be detailed, along with its adap-
tation to a staggered-grid mesh method.

2.4.3 Other high resolution schemes

In addition to the numerical methods described in this section, a lot of different
work lines have been developed in fluid-dynamic simulation, but since they are
not essential for understanding the numerical method developed in chapter 3,
they will not be detailed here. However, it is worth at least enumerate the
main ones in this section to complete the literature review and to provide a
hint for future work.
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Figure 2.7: Region for TVD flux limiter.

Firstly, an interesting type of scheme are the self-adjusting hybrid schemes.
The basis of these schemes is the combination of two different fluxes depending
on the circumstances, for example combining the flux of the Roe scheme and
the Lax-Wendroff scheme. In order to do this, a parameter is defined that
depends on the gradients in the solution, favouring one flux or the other. Some
important schemes within this family were proposed by Harten and Zwas [66,
67], Harten [68] or Jameson [69, 70].

Another important family of numerical methods are the second order Go-
dunov schemes. From the original Godunov’s method, Van Leer [71] proposed
using linear approximations to achieve second-order accuracy. Besides, by lim-
iting the slopes of those approximations for each component, the scheme can
be TVD. These Godunov’s schemes with linear approximations belong to the
pre-processing schemes family, since they modify the data representation be-
fore updating the solution, and are known as MUSCL (Monotonic Upstream-
centred Scheme for Conservation Laws). Goodman and LeVeque [72] proposed
one of these schemes with a scalar approximation but with a linear inter-
polation for the numerical flux. Other MUSCL methods were proposed by
Davis [73] and Colella [74].

Later, Colella and Woodward [75] replaced the linear functions for piece-
wise parabolic functions, giving this method the name PPM (Piecewise Parabolic
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Method) and improving the accuracy of the MUSCL schemes by increasing its
order. Other high-order methods were developed by Coquel and LeFloch [76].

Lastly, Harten and Osher [77] presented a family of high-order non-oscillatory
schemes, known as ENO (Essentially Non-Oscillatory) schemes, with the ob-
jective of reducing the number of local extrema in the numerical solution. This
fact guarantees that monotonic initial solutions lead to monotonic results, but
as opposed to the TVD schemes, the local extrema values can be accentuated
if needed.

2.5 Duct junctions

Duct junctions are essential elements of numerous piping systems, including
the intake and exhaust systems of reciprocating internal combustion engines.
The use of one-dimensional time domain gas-dynamic codes has become com-
monplace in the numerical study of unsteady flows in such systems, both
in terms of their effect on engine performance and on intake and exhaust
orifice noise, as stated by Winterbone and Pearson [5]. While assuming one-
dimensional wave action may be acceptable when duct diameters are relatively
small, as is the case in the majority of the ducts present in engine intake and
exhaust systems of passenger car engines, Payri et al. [6] proved that in certain
elements, and most notably in duct junctions, complex three-dimensional flow
structures may occur. Consideration of the effects of such structures on the
one-dimensional flow in the adjacent ducts requires the definition of suitable
boundary conditions at the junction, usually involving empirical information.

The effects of a junction on the flow in the neighbouring ducts arise in
different ways. From the point of view of the passive propagation of small
amplitude pressure waves (i.e., in the acoustic range) the effect can be char-
acterized in terms of length corrections, which have been reported to depend
on the type of side-branch and the branch width and length by Tang [78], and
with a rapid increase in the duct length corrections being associated with the
excitation of non-planar higher order modes, which also results in lower sound
transmission. This sort of representation has been quite successfully applied
by Harrison [79] to the prediction of the effect on intake noise of a multi-pipe
junction in the intake manifold. Karlsson and Åbom [80] also reported that for
low Strouhal numbers based on the duct diameter, the acoustic transmission
properties of T-junctions can be acceptably described by using an incompress-
ible quasi-steady model, the upper limit of the Strouhal number being defined
by flow-acoustic interaction effects, which differ significantly between different
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flow configurations: waves incident on the junction at the downstream side
are attenuated, whereas waves incident at the other branches may be either
amplified or attenuated, depending on the Strouhal number, also by Karlsson
and Åbom [81]. Desantes et al. [82] proved that such flow-acoustic interactions
due to the coupling of the flow and the geometry are common to all intake
and exhaust system elements.

When the focus is on the effect of the junction on the propagation of finite
amplitude pressure waves and the resulting influence on engine performance,
different approaches are found in the literature, most of them inspired by the
seminal work of Benson [16]. The simplest approach is given by constant pres-
sure models, in which is it assumed that the pressure at the end of all branches
of the junction is the same at any time, so that the pressure is assumed to
be uniform across the junction. The most comprehensive description of these
models is given by Corberán [83], where it was shown that, besides the as-
sumption of uniform pressure, additional closing equations must be added.
While the choice of those equations is arbitrary, Corberán [83] also showed
that assuming that the total enthalpy for all the outgoing flows is the same
provides suitable results.

More elaborated approaches are based on the consideration of the pressure
differences existing between the different branches, which are incorporated in
a quasi-steady manner, i.e., steady pressure loss coefficients (or more properly,
as discussed in detail by Schmandt and Herwig [84], energy change coefficients
accounting partly for losses and partly to a mutual energy transfer between
the partial flows) are applied at each time step. The solutions proposed differ
mainly in the origin of the pressure loss coefficients, in the hypotheses under-
lying their determination, and in the precise implementation of the solution
method.

Regarding the origin of the coefficients, while there have been some at-
tempts to obtain them from computational fluid dynamics (CFD) simulations
by Shaw [85], Pérez-García [86] and Naeimi [87], it appears that the results
are strongly dependent on the numerical method used, both in the details of
the flow and in the overall values of the coefficients obtained, as Sakowitz et
al. [88] detailed. Therefore, usually the coefficients are either obtained from
simple and robust models, or specific measurements are performed in order
to characterize the junction under consideration. The most successful exam-
ple of the first option was probably presented by Bassett et al. [89], where a
remarkable agreement with experimental results was obtained from a model
that extended the previous work performed by Hager [90] and neglected any
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effects of mixing losses, compressibility and wall friction. Regarding the ex-
perimental characterization, it is usual to consider steady incompressible flow,
as Paul et al. [91] did, but more recently, Pérez-García et al. [92] have reported
specific studies accounting for the flow compressibility that suggest that the
total pressure loss coefficient is mainly dependent on the Mach number, mass
flow rate ratio, and area ratio, and is almost independent of the Reynolds
number.

Numerous implementations of the pressure loss model for multi-pipe junc-
tions have been proposed in the literature, comprising implicit time formu-
lations by Peters and Gosman [93] and different explicit solutions, such as
the supplier–collector strategy, by Bingham and Blair [94], the branch super-
position method by William-Louis[95] and the generalization of the classical
approach of Benson presented by Basset et al. [96]. The limitations of these
approaches lie mainly in the fact that, even if steady flow coefficients contain
information on three-dimensional separation effects around the junction, the
results will be significant only if quasi-steady flow can be assumed, which re-
quires that mass and energy storage at the junction are very small, which may
not be the case in real manifold flows. Additionally, any information regarding
the wave refraction characteristics of the junction is lost in the quasi-steady
approximation.

Overcoming these limitations requires accounting for the unsteady and
multi-dimensional character of the flow at the junction, but without incurring
in an excessive computational cost. A suitable solution is thus to include a lo-
cal multi-dimensional region within an otherwise one-dimensional wave-action
engine simulation, as first Pearson et al. [97] suggested. In this first approach,
an inviscid two-dimensional model was applied to the simulation of shock-wave
propagation through different junctions, and the observed evolution of the
wave fronts through the junctions and the measured high frequency pressure
oscillations induced by the transverse reflections were successfully predicted.
However, even if the increase in the computational cost was reasonable, it did
not appear to be justified when compared with a conventional quasi-steady
pressure loss model, as shown by Basset [98].

It appears, thus, that a full three-dimensional description of the junction
should be used in order to describe its unsteady behaviour. Monenegro [99]
and Onorati [100] successfully presented such description, reproducing the flow
field and the associated non-plane-wave motion. However, even if coarse 3D
grids were used in the first simulation cycles that were switched to more refined
grids during the last simulation cycles, the computational cost and time may
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still be regarded as excessive for the practical design and evaluation of full
intake and exhaust systems.

A possible alternative to 1D–3D coupling, which could provide some ac-
countancy for the three-dimensional effects at the junction and which has not
been explored in some detail, would be used in the context of a staggered
mesh finite volume method, as the one proposed by Montenegro et al. [11].
Such methods have become standard in commercial codes, either as the core
solver by Morel [12] and Sapsford [13], or used locally for elements exhibiting
significant three-dimensional features, such as plenums and mufflers, as per-
formed by Montenegro et al. [14]. Typically, when these methods are applied
to simple duct junctions, a single volume is used for the junction with appro-
priate effective areas and characteristic lengths at each connection with the
adjacent ducts. As these connections contain information on vector quantities
(including the orientation of the branch duct) the momentum equation can be
solved, even in an approximate way, so that all the effects of the junction of the
flow need not be included through the pressure loss coefficients. Additionally,
it would be possible to use a refined mesh locally at the junction, so that a
first-order estimate of any three-dimensional features could be obtained.

In chapter 6 it is explored the potential of these ideas as a way to improve
the description of the effect of simple duct junctions on an otherwise one-
dimensional flow system, specifically as the intake or exhaust of an internal
combustion engine.
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3.1 Introduction

As it was anticipated in section 1.1, engine modelling has become an essential
tool in the design of internal combustion engines, allowing considerable reduc-
tions in development time and cost. Classical design methodologies are based
on prototype manufacturing and trial-and-error tests, but currently, most of
those tests have been replaced by numerical computations, so that only the
most promising design options are actually tested on engine bench.

For years, 1D gas dynamics codes in the time domain [5] have offered
sufficiently good solutions for modelling both engine performance and intake
and exhaust noise. The choice of 1D models is justified because in most ducts
present in engine intake and exhaust systems it can be assumed that there is
only one flow direction. However, for a more demanding level of design, a 1D
representation may not be sufficient to describe accurately the flow in certain
elements. Payri et al. [7] stated that this is especially important in the case of
silencers, where the 1D assumption can only be applied to simple geometries
and, even in that case, Beam [101] proved that suitable results can only be
obtained for frequencies below the cut-off frequency of higher order modes.
In the case of duct junctions, Broatch [8] showed that it is the existence of
complex 3D flow structures what sets the applicability limit for a simple zero-
dimensional description [6]. In view of these limitations, the first option would
typically be the use of a computational fluid dynamics (CFD) model; however,
the application of such a model to a complete intake or exhaust system entails
an excessive computational time.

A possible solution comes from the use of a 3D model only locally at those
parts in which 3D effects are relevant, through the coupling between 1D and
3D models, as performed by Montenegro and Onorati [9]. Such coupling can
be done directly in the time domain [10] or by means of time–frequency hybrid
schemes [102] in which the element information is obtained from 3D or quasi-
3D linear models [103], although the use of hybrid schemes is hampered by
their very slow convergence.

An alternative compromise solution is given by quasi-3D models, in which
the momentum equation is solved in a simplified way on a staggered mesh [104].
A good quasi-3D model should be able to offer almost as good results as
a CFD tool, at least for the particular problem for which it was designed,
while reducing greatly the computation time. Such solutions have become
standard in commercial codes, and have been successfully applied to silencers
with perforated tubes and/or absorbing material, both in the acoustic regime
by Montenegro et al. [28], and in real engine conditions, by Morel et al. [12].
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It is well known, however, that non-physical oscillations in the flow vari-
ables appear when those methods are used in their basic form, most notably
at points where significant pressure gradients are present (as usual in the lit-
erature, such points will be referred to here as "discontinuities", even if the
variations occur over a very small but finite spatial distance). In order to avoid
such overshoots at discontinuities, different approaches have been proposed in
the literature. The first solutions reported were based on the inclusion in the
momentum equation of an additional term, which Morel et al. [104] first im-
plemented as an equivalent friction force in or, in more recent developments
by Montenegro et al. [28], a momentum diffusion term. An alternative to this
solution was suggested by Torregrosa et al. [1], where a Flux Corrected Trans-
port (FCT) methodology, commonly used in flow equations solved with finite
differences schemes, was adapted to a staggered-grid scheme. This approach
will be expanded in this chapter.

However, it was proved by Pearson [105] that, under some circumstances,
FCT methods can distort the finite-differences solution and produce notice-
able errors in mass conservation. Therefore, another option to be used as a
flux limiter for the quasi-3D method could expand the applicability of the
method. Flux limiters based on the total variation diminishing (TVD) crite-
rion proposed by Harten [65] were developed for one-dimensional engine gas
exchange applications [106] precisely with this objective. TVD methods are
still an active research topic (see e.g. Galiano [107] and Kim [108]) and in this
chapter, a TVD flux limiter will also be adapted to the staggered quasi-3D
method here developed, following the work of Torregrosa et al. [2].

The main objective of this chapter is to provide a comprehensive evaluation
of the process of developing a staggered-grid finite volume method that can be
used to simulate complex fluid-dynamic problems with a quasi-3D approach
both in the time and frequency domain, providing a solution that considers
the three-dimensional effects at a low computational cost. First, the concept
of a staggered-grid will be explained and the numerical method will be applied
to that mesh, paying special attention to the simplifications adopted. Then,
the different flux limiters considered and its implementation will be discussed,
including the formulation and adaptations when needed. Subsequently, the
shock-tube problem is used to test the stability and convergence of the method
and the performance of the flux limiters. Finally, in the conclusions of the
chapter are summarized.
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3.2 Staggered-grid scheme

In section 2.2 it was extensively detailed the development of the governing
equations traditionally used in solving fluid-dynamic problems in engines.
However, in general it is not possible to obtain an analytical solution for the
hyperbolic partial differential equation system form by the Euler equations.
Hence, multiple numerical techniques have been developed, specially for the
one-dimensional case. Basically, these numerical methods consist in a dis-
cretization of the governing equations to form a set of more simple algebraic
relationship that will be resolved with a computer. The governing equations
define the propagation of pressure waves, so the numerical method has to be
able to resolve the wave-action phenomena in every element simulated.

The majority of numerical methods more extensively used in engine simu-
lation are based in a one-dimensional approach, due to it simplicity and suffi-
ciency to solve the wave-action phenomena in the engine pipes, where basically
only the longitudinal dimension is representative of the problem. Nevertheless,
when trying to simulate with high accuracy more complex systems, such as
mufflers, after-treatment systems or even duct junctions, where three dimen-
sional effects may be present, a one-dimensional approach is not enough and
a CFD tool results in a excessively expensive solution.

Therefore, when considering the prediction of wave dynamics in intake
and exhaust systems of internal combustion engines and, in particular, the
effects produced by complex elements, a suitable compromise between the
quality of the solution and the computational cost is provided by quasi-3D
staggered-mesh finite volume models [11]. Such models have become standard
in commercial codes, either as the core of the whole computation [12, 13],
or used locally for complex elements exhibiting significant three-dimensional
features [28].

The selected mesh [1] consists in the use of a staggered-grid where two types
of basic elements are considered: volumes and connectors. The former contain
information about scalar magnitudes such as pressure, density or temperature,
and of course of the cell volume itself. The latter contain information on vector
quantities (flow velocity or momentum), on their own orientation in space and
some scalar information (the connector area). It is important to emphasize
that a connector always connects two volumes, whereas a volume may be
attached to as many connectors as required by the problem. In Figure 3.1,
two volumes connected by a connector are shown schematically (volumes do
not actually have any defined shape, in the same way as the connector is
simply the flow area between the two volumes).
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Figure 3.1: Basic mesh elements, definition of velocity projections and notation of
volumes and connectors.

The starting point of the method are the widespread 3D Euler conservation
equations without source terms:

∂(ρ)
∂t

+∇ · (ρU) = 0 (3.1)

∂(ρU)
∂t

+∇ · (ρU×U) = −∇p (3.2)

∂(ρe0)
∂t

+∇ · [(ρe0 + p)U] = 0 (3.3)

This system of equations is closed with the perfect gas equation of state.

p = ρRT (3.4)

However, in the current context, the key issue is where and how those
equations are solved. The mass equation is solved in the volumes, so that its
discretized expression is:

ρn+1 = ρn + ∆t
V

Nc∑
c=1

ρnc u
n
cAc (3.5)

where ρ is the density and u is the flow velocity, the superscript n indicates
the time step, ∆t represents the time interval, V the volume of the cell, Nc

the number of connectors and subscript c indicates that the variable is taken
at the connectors (otherwise the variable is taken at the volumes).
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A similar procedure is used then for the equation of energy, whose resulting
discretized expression is

(ρe0)n+1 = (ρe0)n + ∆t
V

Nc∑
c=1

ρnc e
n
0cu

n
cAc + ∆t

V

Nc∑
c=1

pnc u
n
cAc (3.6)

where, as stated before, p is the pressure of the gas and e0 is the stagnation
specific internal energy, which for a perfect gas is

e0 = cvT + u2

2 (3.7)

The momentum equation is calculated at the connectors, and only in the
direction orthogonal to the connector surface, by projecting the flow velocity in
the connected volumes onto that direction, as depicted in Figure 3.1, where the
velocity uc in the connector, and the projections of the volume flow velocity,
uLn and uRn, are shown. Based on this assumption, it follows that one can
calculate the momentum in the connector from a one-dimensional momentum
equation, whose discretization along the same lines as in the previous cases
gives

(ρcucAc)n+1 = (ρcucAc)n + ∆t
∆L

[
(ρu2

n + p)L + (ρu2
n + p)R

]
Ac (3.8)

Here, un denotes the velocity projection onto the direction orthogonal to
the connector surface and subscripts R and L refer to the volumes at the
right and left of the connector, respectively. It is worth noticing that, with
this simplification, a one-dimensional equation for each connector must be
solved, instead of three coupled equations for each volume, which significantly
reduces the computation time. This quantity is then used in the mass and
energy conservation equations for the next time step. In the case of the energy
equation, some additional scalar terms from the connectors, such as density
or pressure, are needed. These values are calculated by an upwind approach,
so that they are taken from the right or left volumes, depending on the flow
direction.

Finally, the momentum associated with the volumes is calculated by dis-
tributing the connector momentum between the two adjacent volumes accord-
ing to their relative sizes. In uniform meshes, half the momentum of the
connector is thus assigned to each volume. As the orientation of the connec-
tors is also known, the momentum vector of each volume is obtained from the
vector sum
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(ρuV )n+1
V = 1

2

Nc∑
c=1

(ρcucAc∆L)n+1 (3.9)

With the previous prescription, the method turns out to be a second-order
accuracy method based on an explicit scheme with a staggered-grid, as shown
in Figure 3.2

Figure 3.2: Scheme of the staggered mesh and the associated time marching.

Once the discretization has been stablish, the next step is to assure the
stability of the method. In that regard, as in every fluid-dynamic scheme, the
so-called CFL criterion needs to be accomplished. But in addition to that
condition, the fact that the resulting scheme offers second-order accuracy, to-
gether with the simplifications adopted in the momentum equation, results
in non-physical oscillations, especially in the vicinity of significant pressure
gradients. This is a very common situation when simulating flows associated
with engine gas exchange due to its pulsating behaviour. Since simulations
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with unsteady mean flow or high amplitude pressure perturbations are one
of the main goals of the method, a stabilization technique must be developed
and applied to avoid spurious oscillations. However, most of the stabilization
methods available are based on correcting the flux terms of the equations and
have been developed for finite differences schemes, such as the Lax-Wendroff
method [109]. In the following sections, the formulation of the three different
flow limiters will be described, starting with the momentum diffusion term,
MDT, as proposed by Montenegro [28]. In the case of the flux-corrected trans-
port (FCT) and the total variation diminishing (TVD) techniques, a scheme
developed for finite difference schemes will be chosen for each one, following
the methodologies proposed by Torregrosa [1, 2], so that the methods will
be adapted to be used in conjunction with the staggered-grid finite-volume
method described above.

3.3 The Courant-Friedrichs-Lewy stability criterion
adaptation

As previously explained in section 2.3.2, in a one-dimensional scheme, the
value of the mesh size, ∆x, used in a simulation, is previously determined by
establishing a criterion which defines the compromise between accuracy and
computational speed. The value of the time step, ∆t, however, is subject
to constraints imposed through stability considerations which arise from the
criterion of Courant, Friedrichs and Lewy [49] (CFL). This criterion requires
that information, in the form of disturbances, or waves, cannot travel more
than one mesh length in one calculation time increment. This is expressed
through the equation

ν = ∆t
∆xc

n
max (3.10)

where

0 < ν 6 1 (3.11)

and cnmax represents the largest wave speed present in the entire solution do-
main at time level n. For non-linear problems, cnmax can be estimated using
the relationship

cnmax = max(ani + |uni |) (3.12)
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The parameter ν is known as the Courant, or CFL, number and clearly
the time-marching procedure will be most efficient when the value of this
parameter is close to 1. Although equation 3.12 will overestimate the the
maximum wave speed in a particular cell if it is a shock wave, resulting in
a stable solution, it can also lead to an underestimate of cnmax in instances
such as shock-tube calculations, where the flow is stationary at t = 0, so cnmax
would be only the local speed of sound. Therefore, it is an extended practice
to use a conservative value for the Courant number, like ν = 0.9, unless there
are other constrains in the numerical value that impose a lower value.

When applying this criterion to a finite volume staggered-grid mesh, a
slight modification has to be done to equation 3.10 to account for the fact
that the mesh now consist of volumes, instead of finite lengths, resulting in

ν = ∆t ·Ac
∆V cnmax (3.13)

3.4 Momentum diffusion term

As previously pointed out, the quasi-3D method previously described does not
satisfy the stability requirement, since non-physical oscillations may appear in
cases where pressure gradients are significant. Also, in this numerical method,
the solution of the momentum equation in the connectors is used to compute
the fluxes required for the mass and energy equations in the volumes, whence
the stabilization method should only be applied to the momentum equation.
This fact will be taken into account when adapting stabilization methods orig-
inally developed for finite difference schemes into a staggered-grid method.

The basic concept of the MDT flux limiter is to add a diffusion term to
the momentum equation so that the mass flux computed at the corresponding
connector is conveniently limited. With this purpose, the momentum flux
density tensor used in the momentum equation (3.2) can be modified, in a
way similar to that used for incorporating viscosity effects, as follows

∂(ρU)
∂t

+∇ · (ρU×U + D) = −∇p (3.14)

where the tensor D is assumed to depend linearly on the local momentum
gradients, i.e.:

D = ε∇(ρU) (3.15)
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where the scalar quantity ε has the dimensions of a kinematic viscosity and
can thus be interpreted as a momentum diffusion coefficient. With this pre-
scription, the contribution of the diffusion term ∇ · D will only be relevant
if significant gradients exist, and any resulting spurious oscillations will be
damped.

Projection of equation (3.15) onto the direction of a connector and subse-
quent discretization in the same way as for equation (3.8) gives

(ρcucAc)n+1 = (ρcucAc)n+ ∆t
∆L

[
(ρu2

n + p)L + (ρu2
n + p)R

]
Ac+

∆t
∆L

[(
D̃Ln − D̃Rn

)]
(3.16)

where D̃Ln and D̃Rn are the projections onto the connector direction of tensor

D̃ = ε∇(ρUAc) (3.17)

which is computed in the two adjacent volumes. Following [28], the momentum
diffusion coefficient is evaluated considering the mesh size and the time step
in relation with the local flow velocity at the volume, as

ε = |U|2 (∆L− |U|∆t) (3.18)

and the gradient of mass flow rate ∇(ρUAc) is computed from the projections
of the mass flow rates of the adjacent connectors onto each direction.

3.5 Flux corrected transport
In this section, first a brief outline of the formulation of the method for finite
differences schemes, which was detailed in section 2.4.1, will be described,
following then with its adaptation to the quasi-3D method proposed.

When applied to a finite difference scheme, FCT consists of three stages [63]:
a transport stage based on the scheme considered, a diffusion stage for reduc-
ing the numerical dispersion introduced in the transport stage, and an anti-
diffusion stage to restore the accuracy of the scheme at cells with a smooth
solution while preserving the diffusion operator accuracy in the vicinity of dis-
continuities. The transport stage is defined by the governing equations and
its discretization, in this case the momentum equation (3.2). In the diffusion
stage a linear operator is used, giving

W̄n+1
i = Wn+1

i + Di(Wn
i ) (3.19)
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Then, the anti-diffusion stage is applied, where the accuracy of the scheme
used in the transport stage in those cells where the solution is smooth is
restored. Using the non-linear operator Aj , the scheme ends as follows

¯̄Wn+1
i = W̄n+1

i + Ai(Wn
i ) (3.20)

The diffusion term can be calculated by using Wn
i or Wn+1

i , and for the
anti-diffusion stage, the two mentioned values or W̄n+1

i can also be used,
giving different variants for the method.

The application of the FCT technique to a staggered-grid quasi-3D method
poses some problems in the case of the mass and energy equations, as they both
are calculated in the volumes, and it is not evident from which of the possible
six connectors should the required data be taken. However, it is known that
overshooting problems are related to the flux term of the discretization, which,
for the mass and energy equations in this method, comes directly from the
momentum equation, which is computed at the connectors. Since a connector
always connects two volumes, the method can be adapted so that the FCT
cells correspond to the connectors, and for the intermediate steps i ± 1/2
the projection of the variables corresponding to the volumes connected by
connector i are used. With this approach, for the staggered-grid W would only
represent the momentum and it is a scalar instead of a vector, i.e.,W = ρucAc.
For instance, the equation for conservation of momentum with diffusion via
damping would be as follows

(ρucAc)n+1
i = (ρucAc)n+1

i +Di ((ρucAc)ni ) (3.21)
and thus the diffusive term becomes

Di(ρucAc) = θ
(
(ρucAc)i+1/2

)
− θ

(
(ρucAc)i−1/2

)
(3.22)

where

θ
(
(ρucAc)i+1/2

)
= ϑ

4 [(ρucAc)i+1 − (ρucAc)i] (3.23)

For the anti-diffusion stage, a similar procedure can be followed, so that the
FCT technique can be readily adapted to the staggered-grid quasi-3D model.

3.6 Total variation diminishing
The total variation diminishing property of a scheme was discussed in sec-
tion 2.4.2, along with its formulation. In this section, different TVD schemes
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will be considered, choosing the more suitable one for a staggered-grid scheme.
Finally, the adaptation of the chosen TVD scheme to the staggered-grid mesh
method described in section 3.2 will be detailed.

3.6.1 Davis total variation diminishing scheme

Several TVD schemes have been developed for finite difference schemes, most
notably by Harten [65], Sweby [62] and Davis [73]. A comparison of these
methods was performed by Arnau [33] in a finite difference scheme, showing
that all of them brought in a great improvement when compared to the Lax-
Wendroff scheme. Specifically, both Davis and Harten TVD schemes gave the
best results among the TVD schemes studied. However, regarding the increase
in computational time with respect to the original Lax-Wendroff scheme, while
the Davis TVD flux limiter needed only about twice the time, the Harten TVD
flux correction method was increasing the computational time in around fifteen
times the original, due to the calculation of the Jacobian matrix. In view of
this, the Davis TVD flux limiter method was selected for its adaptation to the
staggered-grid.

The method proposed by Davis [73] consists in using the following flux
expression, based on the Lax-Wendroff scheme

F̂n
1/2 = F̂LW

1/2 + 1
2ν
(

1− ∆t
∆xν

)(
ψ(r+

i ) + ψ(r−i )− 2
) (

Wn
i+1 −Wn

i

)
(3.24)

where ν is the Courant number, as described in section 3.3 and the function ψ
and variables r±i depends on the value of W in the nearby cells. This limited
flux provides artificial viscosity to the second order scheme, therefore avoiding
numerical oscillations near the solution discontinuities.

In order to simplify the calculation, Davis replaces the one-step Lax-
Wendroff scheme of the previous expression for the equivalent two-steps ver-
sion. In this way, the scheme will be TVD just by adding the next expression
to the second step:

[
Ḡ+(r+

i ) + [Ḡ−(r−i+1)
]

∆Wn
i+1/2 −

[
Ḡ+(r+

i−1) + [Ḡ−(r−i )
]

∆Wn
i−1/2 (3.25)

where the function Ḡ± is defined as

Ḡ+(r+
i ) = 1

2C(ν)
[
1− ψ(r±i )

]
(3.26)
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being C(ν) a function of the Courant number given by

C(ν) =
{
ν(1− ν) ν 6 0.5
0.25 ν > 0.5 (3.27)

and finally

r+
i =

[∆Wn
i−1/2,∆Wn

i+1/2]
[∆Wn

i+1/2,∆Wn
i+1/2] , r

−
i =

[∆Wn
i−1/2,∆Wn

i+1/2]
[∆Wn

i−1/2,∆Wn
i−1/2] (3.28)

Here, [ . , . ] denotes the inner product of two vectors and ∆Wn
i+1/2 =

Wn
i+1/2 −Wn

i .
Regarding the limiter used in equation (3.24), Davis proposed the following

expression

ψ(r) = min(2|r|, 1) (3.29)

which admits a Courant number of up to 0.95.

3.6.2 Adaptation of TVD to a staggered-grid

Considering the specific structure of the equations discretized on the staggered-
grid, where the solution of the momentum equation in the connector is used to
compute the fluxes for the mass and energy equations in the volumes, avoiding
the numerical oscillations in the momentum equation is enough to stabilize the
method. Therefore, the flux limiter should only be added to me momentum
equation, using the required variables from the neighbour connectors. The
momentum in the connectors will then be modified by adding the term:

W̄n+1 = Wn+1+
[
Ḡ+(r+

i ) + [Ḡ−(r−i+1)
]

∆Wn
i+ 1

2
−
[
Ḡ+(r+

i−1) + [Ḡ−(r−i )
]

∆Wn
i− 1

2
(3.30)

where W = ρcucAc a scalar value representing the momentum calculated with
equation (3.8). The rest of the terms are calculated as described by Davis in
equations (3.26) to (3.29), with the difference that here ∆Wi±1/2 is a scalar
magnitude, since the term is only applied to the momentum equation. Most
notably the r± expressions (3.28) is the only part where vector variables are
used, since there is an inner product of two vectors formed by the conservative
variables
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∆Wn
i+ 1

2
=

 ∆ρnc
∆(ρcucAc)n
∆(ρce0c)n

 (3.31)

Despite the mass and energy equations being evaluated at the volumes,
for the sake of consistency, their values for the ∆Wn

i+1/2 vector must be taken
from the connectors, for which again an upwind approach will be adopted,
although other more complex methods could be explored.

The only issue when trying to adapt the Davis flux limiter method to
a staggered-grid is dealing with end-volumes. As seen in equation (3.28),
conservative variables of neighbour connectors from both sides are needed to
compute the flux limiter of each connector. Furthermore, equation (3.25) uses
the terms r−i+1 and r+

i−1, which are computed from the conservative variables
of two neighbour connectors on each side. This is not a serious problem in a
1D model, since only two cells of each side of the modelled duct will be affected
by this issue and it can be solved by taking the values of the variables of the
non-existent neighbour cells as the same as the end-cell. This approximation
has been used in 1D models with good results. However, when modelling a
more complex geometry with a 3D mesh, many end-volumes may appear and
the effect of the simplifications adopted can be much more significant.

In the method developed, the solution adopted consists of using the value
of the conservative variables of the end connector, inverting the sign of the
momentum so that the resultant momentum in the wall is zero. This ap-
proximation has given good results when applied to meshes with a sufficiently
large number of cells in each direction, although the solution tends to be more
diffusive.

3.7 Shock-tube problem

As a first validation of a numerical method capabilities, it is commonplace
to consider the shock-tube problem [110]. In this problem, two gases with
different thermo- and fluid-dynamic states separated in a tube are put into
contact at t = 0. In Figure 3.3(a) an outline of the initial state of the problem
is shown. As time progresses, a contact discontinuity travels with the flow
velocity, whereas a shock wave propagates in the same direction at a velocity
corresponding to the addition of the speed of sound and the flow velocity,
and a rarefaction wave whose propagation velocity is the speed of sound mi-
nus the flow velocity travels in the opposite direction. These perturbations
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define four zones with different thermo- and fluid-dynamic states, as shown
in Figure 3.3(b). Since all kinds of possible propagating perturbations (con-
tact discontinuity, and shock and rarefaction waves) are present and easy to
identify in the solution, this problem is often used in the literature.

Figure 3.3: Initial state of the shock-tube problem (a) and scheme of the solution
structure after a certain time (b).

After securing the CFL condition as shown in section 3.3, the staggered-
mesh finite-volume method was applied to the shock-tube problem. The initial
conditions chosen were: p1 = 3.5 bar, p4 = 0.5 bar, T1 = 2800 K, T4 = 300
K, and u1 = u4 = 0 m/s. A 1D mesh was used, with 250 volumes 4 mm long,
and the simulation was stopped at t = 31̇0−4s.

In Fig. 3.4 comparison is given between the analytical solution provided
in [110] and the results obtained with the raw method without any flux limiter
and with those obtained by including the momentum diffusion term. A no-
ticeable overshooting associated with the propagation of the shock wave can
be clearly seen in the basic solution, whereas it can be observed that those
overshoots have been successfully removed by the inclusion of the momentum
diffusion term. This appears to be the only point in which, as expected, this
procedure produces significant changes in the solution, as the other features
worth noticing are present in the two solutions shown: the smoothing effect
on the trailing side of the leftwards-moving rarefaction wave, which is spe-
cially clear in the pressure and velocity plots, and a certain deviation from
the analytical solution around x = 0.65 m in the pressure and velocity plots.
Such deviation, that appears as an overestimation of the pressure value and
an underestimation of the velocity magnitude, occurs precisely at the position
of the contact discontinuity in the analytical solution for density and tem-
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perature (the deviations observed in the density and the temperature will be
commented later).

Figure 3.4: Comparison of solutions of the shock-tube problem: analytical, obtained
with the original (raw) method and with the momentum diffusion term (MDT).

In Fig. 3.5, the same representation is given for the results obtained with
the FCT method and the TVD scheme presented in this section. Again it
can be observed that any overshoots have been suitably removed by the FCT
method and, to a lesser extent, by the inclusion of the additional TVD terms,
and that in both cases the smoothing effect on the trailing side of the leftwards-
moving rarefaction wave is apparent.

Regarding the deviation noticed above at the theoretical position of the
contact discontinuity, it can be observed that, regardless of the correction
method used, the contact discontinuity spreads in space, and thus the methods
are introducing some diffusion at this point due to the procedure used for the
solution of the mass and energy equations. When this information is fed back
to the momentum equation the deviations observed in pressure and velocity
are produced, as the flat profiles observed in the analytical solution are only
compatible with a real discontinuity. Additionally, it can be observed that
a small perturbation appears in the TVD solution for pressure and velocity
that might indicate that, even if the density and the temperature seem to
be correctly computed, the effect of the spread contact discontinuity on the
momentum equation has not been properly handled.
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Figure 3.5: Comparison of solutions of the shock-tube problem: analytical, obtained
with the TVD method and the FCT method.

While the spreading of the contact discontinuity could be considered as
a serious shortcoming for the description of actual shock waves, this will not
in general be the case in practical engine applications, as actual discontinu-
ities occurring in those flow situations are much less abrupt. Additionally, one
should expect that this issue should be strongly dependent on the discretiza-
tion used, and this is confirmed by Figure 3.6, where density and pressure
results obtained by using 250, 500 and 1000 volumes with the three correction
methods considered are shown. As expected, the results for both magnitudes
are closer to the analytical solution as the number of volumes increases. It is
also worth mentioning that the perturbation observed in the pressure obtained
with the TVD method is reduced, even if it has not totally disappeared, while
the rest of the methods exhibit a smooth behaviour that even improves when
increasing the number of volumes.

In order to quantify the previous considerations, the L2 and L∞ norms
of the deviation of all the variables corresponding to the cases represented in
Figure 3.6 were computed. These norms are defined as

L2 =

√√√√Nv∑
i=1

x2
i (3.32)
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Figure 3.6: Effect of the discretization used on the description of the contact
discontinuity for the three flux limiters considered: (a) MDT, (b) FCT, (c) TVD.

L∞ = max(|xi|) (3.33)

where xi is the deviation between the analytical solution and the model pre-
diction in each volume or connector, depending on the variable to which it is
applied. These two norms were chosen because the L2 norm provides a mean
global assessment of the deviation obtained, which is complemented by the
local view provided by the L∞ norm.

The results are shown in Table 3.1, 3.2 and 3.3 for different mesh size
where, in order to make the results comparable, the L2 norm was divided by
the number of volumes Nv used in each case. Consistently with the results
shown in Fig. 3.6, the results for L2 improve when increasing Nv for the three
methods. This is not the case, however, for L∞, with a rather erratic behaviour
and tendencies that change with the magnitude and the method considered.
Therefore, increasing Nv produces an overall improvement in the solution, but
significant local differences may still occur.

Considering now the comparison between the three methods, it can be
observed that, for a sufficiently high number of volumes (Nv = 1000), the
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performance of the three methods is comparable, except in the case of the
velocity, in which the momentum diffusion term provides significantly lower
values for both norms. In the intermediate case of Nv = 500 the results are
again comparable both in terms of L2 and L∞, as none of the methods provides
the lowest value for all the magnitudes: the best result for pressure is given
by the FCT technique whereas the best result for velocity is that obtained
with the MDT method, but all of them within the same order of magnitude.
This situation is somehow reversed in the case Nv = 250, for which the best
result for pressure is given by the MDT technique whereas the best result for
velocity is that obtained with the FCT method.

Table 3.1: Comparison of the L2 and L∞ norms of the deviation between the
analytical shock-tube solution and the different correction methods used with 250

cells.

Nv = 250
FCT TVD MDT

L2/Nv

u 0.9949 1.6172 1.502
ρ 0.0043 0.0042 0.00415
p 0.0038 0.0026 0.0023
T 21.499 21.698 21.823

L∞
u 220.49 363.01 342.85
ρ 0.4218 0.4092 0.4158
p 0.8965 0.5422 0.4322
T 1566.1 1573.2 1581.1
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Table 3.2: Comparison of the L2 and L∞ norms of the deviation between the
analytical shock-tube solution and the different correction methods used with 500

cells.

Nv = 500
FCT TVD MDT

L2/Nv

u 0.4839 0.50147 0.4399
ρ 0.0022 0.00227 0.0023
p 0.0007 0.0008 0.00093
T 14.621 14.651 14.719

L∞
u 223.56 231.27 196.51
ρ 0.4056 0.4146 0.416
p 0.1408 0.1922 0.3097
T 1588.4 1578.9 1590.3

Table 3.3: Comparison of the L2 and L∞ norms of the deviation between the
analytical shock-tube solution and the different correction methods used with 1000

cells.

Nv = 1000
FCT TVD MDT

L2/Nv

u 0.3151 0.3038 0.267
ρ 0.0014 0.0014 0.0014
p 0.0007 0.0006 0.0005
T 9.8141 9.845 9.88

L∞
u 236.59 213.26 181.22
ρ 0.4131 0.4217 0.424
p 0.6596 0.4812 0.364
T 1601.1 1600.9 1606.7

3.8 Summary and conclusions

In this chapter a quasi-3D model which makes use of a non-linear second-order
time and space discretization based on finite volumes staggered-grid has been
developed. The goal of the method is to be able to provide a solution that takes
into account the three-dimensional effects present in more complex geometries
while maintaining a low computational cost, much lower than a CFD model.
The computational cost should be comparable to a one-dimensional model and
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the connexion between codes should be simple.
The model is based on a staggered-grid mesh approach, what means that

there are two differentiated elements in the mesh, the calculation of some
variables take place in one of them and the rest in the other one. In the
model proposed, these elements are the volumes, where the scalar magnitudes
are calculated, like pressure or density; and the connectors, which can be
visualized as the surface linking two volumes, and store the vector values, like
flow velocity or its own orientation in space. It is important to remark that a
connector will always link two volumes, while a volume can have attached as
many connectors as required.

The equations used in the method are the Euler conservation equations in
its three-dimensional form. The mass and energy conservation equations are
solved in the volumes, with a standard discretization, whereas the momen-
tum equation is calculated in the connectors. In a regular three-dimensional
scheme, the momentum is usually the most expensive equation to solve, since
its a vector equation and that involves solving a system of three coupled
equations for every cell. This quasi-3D method, however, makes use of the
staggered-grid distribution and the fact that the connectors are represented
as flat surfaces linking two volumes. Therefore, the momentum can be seen
as a one-dimensional magnitude going through the connector with its direc-
tion orthogonal to that surface. This way, the momentum equation can be
simplified to a one-dimensional equation to be solved in each connector and,
although in general there would be more connectors than volumes, since all
the momentum equations are decoupled, the computational time is greatly
decreased compared to the standard approach. Finally, the momentum calcu-
lated in the connectors is distributed between the two volumes that it links,
proportionally to their size, taking into account the orientation of the momen-
tum in the mesh. By doing the vector sum of the momentum in the volumes,
all the variables are calculated for the current time step and the method can
proceed to the next one.

As any second-order scheme, this staggered-mesh finite-volume model is
affected by the occurrence of non-physical overshoots in the vicinity of discon-
tinuities in the flow variables. In order to remove those overshoots, two flux
limiters commonly used in finite differences schemes have been considered: a
Flux Corrected Transport (FCT) technique and a Total Variation Diminishing
(TVD) method, along with a momentum diffusion term (MDT). It was found
that the FCT method with dissipation via damping together with the phoeni-
cal form of the anti-diffusion term produces the best results when adapted
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to the staggered-mesh finite-volume model. In the case of the TVD meth-
ods, different formulations have been analysed, and finally the Davis method
was chosen for its adaptation in view of its relatively modest computational
cost and its acceptable performance. Finally, a momentum diffusion term as
described by Montenegro et al. [28] has been successfully applied.

The resulting method was checked in the case of the well-known shock-tube
problem with the different flux limiters adapted. It was found that all the
cases were comparably successful in removing the overshoots associated with
the propagation of the shock wave. Additionally, they all exhibited a certain
smoothing of the trailing side of the leftwards-moving rarefaction wave, and a
considerable spreading of the contact discontinuity that in turn produces an
overestimation of the pressure and an underestimation of the velocity at that
point. In the case if the TVD method, these deviations were accompanied
by spurious fluctuations, that did not get to disappear completely even when
the mesh was improved in order to provide a better description of the contact
discontinuity. The performance of the method with the different flux limiters
will be tested and validated in the next chapters in order to find out the
strengths and weakness of each one in the time and frequency domain.

Chapter 3 Bibliography
[1] A. Torregrosa, A. Broatch, F. Arnau, and M. Hernández. “A non-

linear quasi-3D model with Flux-Corrected-Transport for engine gas-
exchange modelling.” Journal of Computational and Applied Mathemat-
ics 291 (2016), pp. 103–111 (cit. on pp. xi, 71, 72, 76, 179).

[2] A. Torregrosa, A. Broatch, F. Arnau, and M. Hernández. “On the ef-
fect of different flux limiters on the performance of an engine gas ex-
change gas-dynamic model.” International Journal of Mechanical Sci-
ences (2017) (cit. on pp. xi, 71, 76, 179).

[5] D. E. Winterbone and R. J. Pearson. Design techniques for engine
manifolds: wave action methods for IC engines. Professional Engineer-
ing Publishing, 1999 (cit. on pp. 3, 31, 56, 70).

[6] F. Payri, E. Reyes, and J. Galindo. “Analysis and modeling of the
fluid-dynamic effects in branched exhaust junctions of ICE.” Journal
of engineering for gas turbines and power 123(1) (2001), pp. 197–203
(cit. on pp. 3, 56, 70).

90



Chapter 3 Bibliography

[7] F. Payri, A. Torregrosa, and M. Chust. “Application of MacCormack
schemes to IC engine exhaust noise prediction.” Journal of Sound and
Vibration 195(5) (1996), pp. 757–773 (cit. on pp. 3, 70).

[8] A. Broatch, J. Serrano, F. Arnau, and D. Moya. “Time-domain compu-
tation of muffler frequency response: comparison of different numerical
schemes.” Journal of sound and vibration 305(1) (2007), pp. 333–347
(cit. on pp. 3, 70).

[9] G. Montenegro and A. Onorati. “A coupled 1D-multiD nonlinear sim-
ulation of IC engine silencers with perforates and sound-absorbing ma-
terial.” SAE International Journal of Passenger Cars-Mechanical Sys-
tems 2(2009-01-0305) (2009), pp. 482–494 (cit. on pp. 4, 70).

[10] J. Galindo, A. Tiseira, P. Fajardo, and R. Navarro. “Coupling method-
ology of 1D finite difference and 3D finite volume CFD codes based on
the Method of Characteristics.” Mathematical and Computer Modelling
54(7) (2011), pp. 1738–1746 (cit. on pp. 4, 70, 101).

[11] G. Montenegro, A. Onorati, and A. Della Torre. “The prediction of
silencer acoustical performances by 1D, 1D–3D and quasi-3D non-linear
approaches.” Computers & Fluids 71 (2013), pp. 208–223 (cit. on pp. 4,
59, 72, 151).

[12] T. Morel, J. Silvestri, K.-A. Goerg, and R. Jebasinski. Modeling of
engine exhaust acoustics. SAE Technical Paper 1999-01-1665. 1999 (cit.
on pp. 4, 59, 70, 72).

[13] S. M. Sapsford, V. C. Richards, D. R. Amlee, T. Morel, and M. T.
Chappell. Exhaust system evaluation and design by non-linear model-
ing. SAE Technical Paper 920686. 1992 (cit. on pp. 4, 59, 72, 122).

[28] G. Montenegro, A. Della Torre, A. Onorati, and R. Fairbrother. “A
nonlinear Quasi-3D approach for the modeling of mufflers with perfo-
rated elements and sound-absorbing material.” Advances in Acoustics
and Vibration 2013 (2013) (cit. on pp. 5, 70–72, 76, 78, 90, 179).

[33] F. J. Arnau. Métodos numéricos para el modelado unidimensional del
proceso de renovación de la carga. Reverté, 2009 (cit. on pp. 15, 80).

[49] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen Differen-
zengleichungen der mathematischen Physik.” Mathematische annalen
100(1) (1928), pp. 32–74 (cit. on pp. 31, 76).

91



Bibliography Chapter 3

[62] P. K. Sweby. “High resolution schemes using flux limiters for hyperbolic
conservation laws.” SIAM journal on numerical analysis 21(5) (1984),
pp. 995–1011 (cit. on pp. 49, 54, 80).

[63] J. P. Boris and D. L. Book. “Flux-corrected transport. I. SHASTA, a
fluid transport algorithm that works.” Journal of computational physics
11(1) (1973), pp. 38–69 (cit. on pp. 50, 78).

[65] A. Harten. “High resolution schemes for hyperbolic conservation laws.”
Journal of computational physics 49(3) (1983), pp. 357–393 (cit. on
pp. 53, 71, 80).

[73] S. F. Davis. “A simplified TVD finite difference scheme via artificial
viscosity.” SIAM journal on scientific and statistical computing 8(1)
(1987), pp. 1–18 (cit. on pp. 55, 80).

[101] R. M. Beam and R. F. Warming. “An implicit finite-difference algo-
rithm for hyperbolic systems in conservation-law form.” Journal of com-
putational physics 22(1) (1976), pp. 87–110 (cit. on p. 70).

[102] F. Payri, J. Desantes, and A. Torregrosa. “Acoustic boundary condition
for unsteady one-dimensional flow calculations.” Journal of Sound and
Vibration 188(1) (1995), pp. 85–110 (cit. on pp. 70, 98, 100).

[103] A. Torregrosa, A. Broatch, A. Gil, and D. Moreno. “Analysis of acoustic
networks including cavities by means of a linear finite volume method.”
Journal of Sound and Vibration 331(20) (2012), pp. 4575–4586 (cit. on
pp. 70, 120, 122, 129).

[104] T. Morel, R. Keribar, and P. N. Blumberg. A new approach to in-
tegrating engine performance and component design analysis through
simulation. SAE Technical Paper 880131. 1988 (cit. on pp. 70, 71).

[105] R. Pearson and D. Winterbone. “The simulation of gas dynamics in
engine manifolds using non-linear symmetric difference schemes.” Pro-
ceedings of the type of Mechanical Engineers, Part C: Journal of Me-
chanical Engineering Science 211(8) (1997), pp. 601–616 (cit. on p. 71).

[106] M. Vandevoorde, J. Vierendeels, E. Dick, and R. Sierens. “A new total
variation diminishing scheme for the calculation of one-dimensional flow
in inlet and exhaust pipes of internal combustion engines.” Proceedings
of the type of Mechanical Engineers, Part D: Journal of Automobile
Engineering 212(5) (1998), pp. 437–448 (cit. on p. 71).

92



Chapter 3 Bibliography

[107] S. J. Galiano and M. U. Zapata. “A new TVD flux-limiter method for
solving nonlinear hyperbolic equations.” Journal of Computational and
Applied Mathematics 234(5) (2010), pp. 1395–1403 (cit. on p. 71).

[108] H.-D. Kim, Y.-H. Kweon, and T. Setoguchi. “A study of the weak shock
wave propagating through an engine exhaust silencer system.” Journal
of sound and vibration 275(3) (2004), pp. 893–915 (cit. on p. 71).

[109] P. D. Lax and B. Wendroff. “Difference schemes for hyperbolic equa-
tions with high order of accuracy.” Communications on pure and applied
mathematics 17(3) (1964), pp. 381–398 (cit. on p. 76).

[110] G. A. Sod. “A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws.” Journal of computational
physics 27(1) (1978), pp. 1–31 (cit. on pp. 82, 83, 101).

93





Chapter 4

Boundary conditions

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Independent boundary conditions . . . . . . . . . . . . . . 97
4.3 One-dimensional collocated scheme connection . . . . . . . 100
4.4 Preliminary results and discussion . . . . . . . . . . . . . . 104
4.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . 108
Chapter 4 bibliography . . . . . . . . . . . . . . . . . . . . . . . 111

95



4.1 Introduction

During the development of a new numerical method, it is common to think
about the conception and implementation of the numerical scheme as the only
work that has to be performed. Nevertheless, there are some other fields that
are usually overlooked because they are not as visible but they prove to be
just equally important to the final performance of the method. One of these
tasks is the development of boundary conditions, without which the numerical
scheme cannot even be properly validated. This chapter is dedicated to the
boundary conditions that have been conceived in order to, on the one hand,
be able to validate the numerical method and, on the other hand, perform the
eventual connection with a one-dimensional collocated scheme.

With this purpose, an extensive description of the boundary conditions
formulation and implementation process is presented, paying special attention
to the role of each of the elements of the staggered grid mesh. This kind
of mesh is much less frequent in the literature, so much more work has to
be developed or adapted from collocated mesh solutions. As it will be seen,
the most promising techniques for the stand-alone boundary conditions reside
in the use of the Method of Characteristics, while for the connection with a
collocated scheme, the implementation of virtual cells offer more advantages.

Finally, some preliminary results obtained when testing all the mentioned
boundary conditions will be shown and discussed. It is worth noticing that
the cases that have been selected to test the boundary conditions implemen-
tation are usually simple geometries in a one-dimensional environment. This
simplified first approach is intentional, since these simulations assure that any
misbehaviour that may be detected would be only due to issues in the imple-
mentation of the boundary conditions and not introduced by other elements.
More complex examples will have to be simulated and validated in future work
to ensure the completely correct functioning of the model in any situation, but
for this stage of the development process, these results can be used as a prelim-
inary step, mainly for the more extensive validation performed in the following
chapters, where the pulse inlet boundary condition is used, and to test that
the connection with a one-dimensional model in a collocated grid is possible
and feasible.
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4.2 Independent boundary conditions

First, there was the need of developing some boundary conditions that would
allow some simple simulations with the code that was developed without the
need of using it connected to the more developed code of OpenWAM. Although
the ultimate objective is to perform such connection in order to be able to use
the quasi-3D method as an additional tool included in the one-dimensional
model, before performing the connection a lot of tests are needed and the
quasi-3D model code is constantly changing in the development phase until
the best solution is found. Therefore, some boundary conditions that allow
those tests and the eventual validation process of the numerical scheme have
to be developed first.

The boundary condition which will become the main focus is the inlet pulse
since it offers the versatility of obtaining results which are meaningful in both
the time domain and, with little extra calculations, in the frequency domain.
Besides, if experimental measurements are needed and can be performed for
validation, they are easily obtained with an impulsive test rig. Therefore, a
pulse development simulation in the time domain is useful to observe the be-
haviour of the numerical oscillations and how the flux limiters act on them.
After that, with the Fourier transform the sound pressure levels of the inci-
dent and transmitted wave can be calculated to study the acoustic behaviour
of the system, with the possibility to also calculate the transmission loss of the
device. In this regard, a white noise boundary condition is the usual bound-
ary condition used in acoustic simulations, and it might give more suitable
results for acoustic characterisation, but it would be also much harder to ob-
tain conclusions in the time domain and a longer simulation would be needed,
potentially reducing the number of tests that could be performed. For the
reasons stated above, the inlet pulse boundary condition was the first one to
be considered and it will be consistently used in the following chapters for the
validation process.

The starting point for these boundary conditions come from the assump-
tion that, according to Mucklow and Wilson [111], it is possible to know the
total velocity of a fluid in the particular place and space at which two sim-
ple waves meet, one travelling rightwards and associated with the velocity u+

and another one travelling backwards characterized by a velocity u−, with the
simple relationship

u = u+ + u− (4.1)
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On the other hand, the velocity and the pressure of a simple wave can be
related as:

u±

aref
=
( 2
γ − 1

)( p±

pref

) γ−1
2γ

− 1

 (4.2)

where p is the pressure, a the speed of sound and the ref subscript indicates
reference conditions. From here, it is also possible to decompose the flow
variables in order to identify the information propagating in the forward, p+,
and backward, p−, directions, as follows:

(
p

pref

) γ−1
2γ

=
(
p+

pref

) γ−1
2γ

+
(
p−

pref

) γ−1
2γ

− 1 (4.3)

Under the assumption of isentropic flow, the pressure and the local speed
of sound can be related with:

p

pref
=
(

a

aref

) 2γ
γ−1

(4.4)

Therefore, by substituting the isentropic relationship into equation (4.3),
it can be written

a− aref = (a+ − aref ) + (a− − aref ) (4.5)

where a+ and a− represent the local speed of sound associated to the forward
and backward simple waves. Such decomposition was performed by Payi et
al. [102] in order to use the acoustic characteristics of a given singularity as a
boundary condition. An important conclusion to draw from these equations is
that the total pressure of the volume is composed by the two travelling waves
and hence, in the inlet boundary condition it will not necessary be the same as
the generated pulse. Simply imposing the pressure of the pulse in the volume
brings erroneous results, so a more elaborated method should be used.

The approach chosen to create the boundary condition is based in the
Method of Characteristics following the same approach as García-Cuevas [112]
to implement a similar incident pressure boundary condition. Therefore, as-
suming that the section where the pulse is generated is on the left side of
the system, first the non-dimensional left-travelling characteristic for non-
homentropic flow, β, is calculated in that volume
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β =
(

a

aref
− (γ − 1)

2 · uend
aref

)
aA
aref

(4.6)

where uend is the local velocity of the flow from the duct into the boundary vol-
ume and the entropy level aA has been used to account the entropy variations
in the flow, which is defined as:

p

pref
=
(
a

aA

) 2γ
γ−1

(4.7)

Note that for the case of homentropic flow, the entropy level would corre-
spond to the reference speed of sound. Now, according to García-Cuevas [112],
the non-dimensional right-travelling characteristic, λ, can be calculated as fol-
lows:

λ =

2
(
ppulse
pref

) γ−1
2γ

− 1

 aA
aref

(4.8)

where the pressure of the pulse has been imposed by ppulse. This last equation
can be used to calculate the entropy level, so that the only unknown variable
left is the pressure p in equation 4.7, which corresponds to the actual pressure
that the section at which the pulse is generated needs to have to impose the
desired pulse travelling to the right.

Finally, the velocity of the flow and the speed of sound in the volume are
given by the equations

u

aref
= λ− β
γ − 1 (4.9)

a

aref
= λ+ β

2 (4.10)

From here, the rest of the variables needed for the quasi-3D method can
be calculated.

Another boundary condition that was needed to work along with the pulse
inlet was an anechoic termination. This boundary condition has the property
of not allowing any reflection, acting like an endless duct and therefore avoiding
the need of simulating a very long duct to elude the reflection, resulting in a
faster simulation. This boundary condition is used in almost every acoustic
simulation because otherwise the reflection of the transmitted wave at the end
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of the system would contaminate the measurement of the transmitted wave
itself, since the pressure obtained would be the addition of the two waves
travelling in different directions. Another option is to use a long enough duct
at the end of the system so that the reflected wave would not reach the point
where the transmitted wave is measured, since it has a much longer distance
to cover. The problem with this technique is that simulating the long duct
will increase the computational time required for the simulation.

Taking a similar approach as with the inlet pulse, the method of character-
istics can be used to implement an anechoic termination boundary condition,
as shown by Torregrosa et al. [113]. In this case, it has to be imposed that
there is no wave travelling backwards, assuming the same disposition as before,
where the anechoic termination is in the right side end of the duct. Following
the same approach as Payri et al. [102], the rightwards wave associated flow
velocity can be expressed as:

u+ = 2
γ − 1(a+ − aref ) (4.11)

Under the assumption of non-reflection conditions, there is no backward
wave and u− = 0, thus, according to equation (4.1), the flow velocity in the
boundary condition is equal to u+. Equation (4.11) can be rearranged and
substituted into equation (4.6), obtaining that the non-reflecting condition is
translated into the equality β = aA/aref . Finally, the rightwards characteristic
and the rest of variables of the anechoic termination can be calculated as
indicated by equations (4.7), (4.9) and (4.10).

For the purpose of this work and its objective, no more independent bound-
ary conditions have been developed, being the two described above sufficient
for the validation process originally proposed in this work, as it will be explored
in the following chapters.

4.3 One-dimensional collocated scheme connection

Besides the previously mentioned boundary conditions, a connection with the
one-dimensional code OpenWAM will eventually be needed, and although it
will be the final step of the project and this work focuses on the development
and validation process of the numerical method, the final objective is to in-
clude it in the core of the one-dimensional method, so the work would not
be completed unless the connection between codes was at least outlined and
some preliminary tests were performed. Therefore, in this section the strategy
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for the connection between the quasi-3D staggered method and a collocated
finite volume method one-dimensional scheme is proposed, focusing in how to
resolve the differences between meshes and where are the variables calculated.

Another issue to address is the fact that the quasi-3D numerical method
has been originally written in a different programming language than Open-
WAM and translating the new code would not feasible at this stage of the
project. Therefore, the approach that has been selected to test the via-
bility of the connection between methods consist on creating first a simple
one-dimensional code in the same programming environment as the quasi-3D
method an then proceeding with the connection.

The one-dimensional method selected for this purpose is based on the first
order Godunov scheme, as it was described in section 2.3.5, which is similar
enough to the modern one-dimensional methods to obtain meaningful results,
but does not require a heavy investment in development time, needing a rather
simple code, specially in its first order form. These reasons make the first order
Godunov method the best candidate to test the connection between methods.

In order to test the numerical method the shock-tube problem [110] has
been simulated once again. As it was explained in section 3.7, this problem
consist in simulating the evolution in time of the properties of a tube in which
two gases with different thermo- and fluid-dynamic states separated in a tube
are put into contact. In Figure 4.1 the results for the shock-tube obtained
using the first order Godunov scheme are compared to the analytical results.
In this case, the initial conditions for the left side are p1 = 5 bar and T1 = 1200
K, and for the right side, p2 = 1 bar and T2 = 300 K. The initial velocity of
the flow in both sides is zero. Finally, the geometry used consist in a one
metre duct of 5 cm of diameter meshed with 200 volumes and the simulation
was stopped at t = 0.0005 seconds.

The results obtained with the first order Godunov method correspond with
the ones expected, showing the characteristic dissipative behaviour of a first
order scheme, specially noticeable in the contact zone discontinuity in the
density and temperature plots. In any case, these results validate the one-
dimensional method, since the values of the variables tend to the analytical
solution. Therefore, the connection of numerical methods will be attempted
between the quasi-3D method previously described and the first order Go-
dunov method here appointed.

Despite the fact that there are several connection methods, like the ap-
proach followed by Galindo [10], based on the Method of Characteristics; the
most suitable method for this case, taking into account the elements of the two
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Figure 4.1: Shock-tube results with a one-dimensional first order Godunov scheme.

meshes and where the variables are calculated, lies in the use of virtual cells,
based on its implementation by García-Cuevas [112]. On one hand, the cell of
the quasi-3D method that will be connected to the one-dimensional scheme,
which from now on will be called boundary cell, will need the values of the
density and internal energy from the connected cell of the one-dimensional
method, as well as the flow between the two cells in their contact surface. The
way that the virtual cell works consists in connecting the boundary cell of the
quasi-3D method to a virtual volume by means of a new connector which, by
these standards, will be called virtual connector. Throughout the calculation
of the variables in one time step, everything is performed as usual with the
difference that in the next time step, the initial values of the variables of the
virtual volume and the virtual connector that will be used to calculate the
next time step are not the ones previously calculated by the quasi-3D method,
but by the one-dimensional scheme in its boundary cell. Special attention has
to be paid to the virtual connector, since it does not have a direct equivalent in
the collocated mesh, so there are no variables calculated in its position. There-
fore, an upwind approach is adopted, where the value of the flow may come
either from the boundary cell of the collocated mesh or from the boundary cell
of the staggered grid, depending on the direction of the flow in the previous
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time step. The upwind approach has been chosen because it has already been
used in the quasi-3D numerical method with good results.

One-Dimensional collocated mesh side
1D boundary cell 1D virtual cell

Q3D virtual
volume

Q3D boundary
volume

Q3D virtual
connector

Quasi-3D staggered grid side

Initial conditions values
exchange every time step

Figure 4.2: Schematic representation of virtual cells information exchange between
one-dimensional and quasi-3D methods meshes.

On the other hand, a similar procedure will be followed in the one-dimensional
side of the model. The boundary cell will be also connected to a virtual cell,
whose initial values in each time step will come from the boundary cell for
mass and energy equations, and from the virtual connector for the momentum
equation. Figure 4.2 shows a schematic representation of the above explained
procedure, connecting two one-dimensional ducts with different meshes by
virtual cells.

It is worth remarking that these virtual cells are only there to translate
the information between meshes and, even though every variable seems to fit
in the other mesh after the translation, the way the flux is calculated and
treated in each method is different, as it has been previously explained, with
the staggered grid mesh calculating it in the connectors and the collocated
mesh in the volume, so some unexpected behaviour could be found after the
connection between codes.
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4.4 Preliminary results and discussion
In this section some preliminary results obtained after the implementation of
the previously described boundary conditions will be shown and discussed,
along with the difficulties found when implementing them and the solutions
adopted.
Inlet pressure and anechoic termination boundary conditions

First, to test the inlet pressure boundary condition, a simple geometry
consisting of a one-dimensional duct 8.6 metres long has been meshed with
400 volumes, imposing a pressure pulse in one end of the pipe and studying
how it propagates along the duct. Besides, at the end of the duct an anechoic
termination will be placed so the two boundary conditions can be tested in the
same simulation. In Figure 4.3 the measurements of a pulse generated in an
impulsive test rig with a duct as the one modelled are represented, along with
the results of the pressure obtained with the quasi-3D method in the volume
connected directly with the boundary condition after imposing the measured
pulse.
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Figure 4.3: Plots of the pressure pulse generated and the pressure in the volume
following the boundary condition in the mesh.

It can be seen that the boundary condition is able to reproduce almost
exactly the pressure pulse, with a slightly lower amplitude. At around 60
ms, a small anomaly can be seen, which will be discussed later. The rest of
differences, mainly the pressure level when there is no pulse, are due to the fact
that there is a restriction that was added to the boundary condition that does
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not allow the pressure to go below 1 bar. That is introduced to avoid possible
measurement errors and to obtain somewhat cleaner results. Therefore, for
the data points where the pressure is lower than 1 bar, the boundary condition
automatically imposes 1 bar as outlet pressure.
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Figure 4.4: Plots of the pressure pulse measured and the pressure calculated at the
middle of the duct.

The next step is to compare the results provided by the model, after the
pulse has developed, with the measurements. Hence, Figure 4.4 shows the
pulse predicted by the model and measured at the centre of the duct. The
results show how the amplitude of the pulse is well represented, even though
it is a litter higher than the measurements, while the generated was slightly
lower. This means that the model has lower pressure losses, which is something
to be expected since there is no friction model yet in the method. However, the
ending part of the pulse does not drop as fast as the model predicts, but this
could also be improved with a friction model, since the dissipation would be
higher, affecting more the shape of the wave as it travels. More importantly,
at around 47 ms there is a small anomaly in the pressure, which can only be
a small reflection that the anechoic boundary condition has not been able to
completely remove. It was already visible in Figure 4.3 in the generated pulse
at 60 ms, since that point was further away from the anechoic end and the
reflection took longer to reach it. The small pulse that can be seen at around
72 ms in Figure 4.4 is the result of the first reflection reaching the start of the
duct and reflecting again.

Even though the anechoic termination is not completely anechoic, the re-
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sults obtained show a very small amplitude reflection that for most of the
acoustic applications should not introduce a big source of error, specially if
using white noise as a source. However, when using an inlet pulse to char-
acterize the acoustic behaviour of a system, the useful information is located
in a much narrower space and a small deviation can be catastrophic for the
final results. It is true that the reflection is really small and it would be easyly
removable from the results as long as it is not in the pulse, but the same can be
said of the reflection produced by a closed termination and since it has a much
higher amplitude, it is easier to detect. Therefore, until this issue is resolved,
it is not recommended to use the anechoic termination, at least with an inlet
pulse, and in the validation process in the next chapters a longer ending duct
to avoid reflections will be used instead.

The inlet pulse boundary conditions on the other hand fulfils the require-
ments and will be subsequently used in the validation process and different
applications in the following chapters.
One-dimensional and quasi-3D connection

Finally, some tests will be performed on a model where two different meshes
have been connected, a collocated one-dimensional first order Godunov scheme
and a quasi-3D staggered grid, following the steps described in the previous
section. With this objective, the same shock-tube problem considered in sec-
tion 4.3 will be solved, with the exception that this time, the left half of the
duct has been meshed with the quasi-3D staggered grid, and the right side
with the 1D collocated scheme. The connection is therefore in the middle of
the duct and initially each mesh will have different thermodynamics proper-
ties. Right at the beginning of the simulation, the contact surface, shock wave
and the rarefaction wave will appear in the connection, thus assuring that all
the relevant information goes through the connection and any issue can be
detected.

As a reminder, the initial conditions for the left side are p1 = 5 bar and
T1 = 1200 K, and for the right side, p2 = 1 bar and T2 = 300 K. The initial
velocity of the flow in both sides is zero. Finally, the geometry used consist
in a one metre duct of 5 cm of diameter meshed with 200 volumes and the
simulation was stopped at t = 0.0005 seconds.

In Figure 4.5 the results of the shock-tube simulation can be seen, along
with the analytical results as a reference. It can be observed that the simula-
tion brings successful results with a good prediction of the variables in the four
zones of the shock-tube and respecting the discontinuities, within the limits
of each numerical scheme. The only alteration in the results that seems to
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Figure 4.5: Shock-tube results with a staggered grid for the left side and a
collocated scheme for the right side.

be produced by the connection can be located in the zones around the con-
tact surface, with a not completely flat solution and some small oscillations
in the transition to the rarefaction wave. In Figure 4.6, this region has been
represented in more detail for the four variables, but the conclusions drawn
from the shock-tube results are that the connection between meshes is possible
and even if a slight distortion of the solution in the interface proximity can
be expected, it would be of a very small magnitude, taking into account that
the shock-tube test puts the numerical method into the most drastic situation
with a large discontinuity between initial conditions. In engine simulations
usually performed this severe steps are not expected, and so the behaviour of
the connection between schemes is presumed to be even better.

As a final note for this section, it is worth clarifying that no flux limiter
has been used in the quasi-3D numerical method for the boundary cell, while
in the rest the MDT method has been used. The reason of this absence is
the fact that their implementation increases the complexity of the connection,
since for any of the flux limiters, information of at least the two neighbour
cells for each connector is needed. These condition is even more problematic
for the TVD method, since it needs information of two cells at each side of the
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Figure 4.6: Detailed contact zone of the shock-tube results with a staggered grid for
the left side and a collocated scheme for the right side.

connectors to properly work. The Momentum Diffusion Term flux limiter was
tested with the current implementation of the connection, since is the most
flexible method, but some spurious oscillations appeared near the connection,
both in the quasi-3D and one-dimensional side. It is hard to detect where the
oscillations are generated first, but another reason of this misbehaviour might
come from the manipulation of the momentum in the connector that goes to
the one-dimensional side, originating the numerical oscillations. In any case,
some more test should be performed in the future, including the possibility of
using two or more virtual cells in order to have extra-information for the flux
limiters in the interface, but unfortunately these options could not be explored
in this work due to time restrictions and because the original objective of this
section was only to prove that the connection was possible and feasible, and
show some preliminary results, as it has been achieved.

4.5 Summary and conclusions
This chapter has been dedicated to the important task of assuring that a con-
nection between the staggered-grid quasi-3D numerical method here developed
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and a collocated one-dimensional method is possible without having to sac-
rifice accuracy in the overall solution. This part is critical because the final
objective of the model is to be added to a one-dimensional program to be used
when required. Besides, some other boundary condition based on the Method
of Characteristics have been developed, which will be particularly useful in
the next chapters dedicated to the validation process.

Starting with the independent boundary conditions, the main efforts were
focused on creating an inlet pressure pulse boundary condition, since the re-
sults obtained by simulating an impulsive test rig provide meaningful results
in the time and frequency domains, after some calculations with the Fourier
transform in the latter case. Another reason for the selection is that an impul-
sive test rig experiment is a simple test, opening the path to more experimental
measurements to validate the results of the model.

A Method of Characteristics based approach was used to create the inlet
pulse boundary condition and, following a similar strategy, the anechoic ter-
mination boundary condition, where the requirement was of course that there
could not be any reflections. Having this boundary condition is particularly
convenient because it can work along with the inlet pulse in the impulsive test
rig simulation while avoiding the reflection of the pressure wave, thus allowing
the use of a much shorter outlet duct and reducing the computational cost of
the simulation.

To validate the boundary conditions, an impulsive test rig consisting on
a pressure pulse travelling through a duct was modelled. For this problem,
lots of experimental data are available, so a measured generated wave was
imposed in the starting point of the duct so that the results of the model
could be compared to the experimental test measurements at a certain point
of the duct. First, the generated wave was compared with the pressure in the
second volume of the model to ensure that the pulse is correctly transmitted by
the boundary condition, as it was the case. Then, the pressure was measured
at a certain distance from the inlet, coinciding with the experimental data
available. This time, although the evolution of the wave was correctly captured
by the model, with only some small differences in the ending part of the wave
that can be due to some extra dissipation introduced by friction, the simulation
results show a small reflection of the pulse that would introduce an error that
could be significant in this kind of tests. Therefore, it is not recommended its
use when simulating an impulsive test rig. However, it should be considered
for other tests where the small reflection does not affect the final results.

Moving to the connection between different numerical methods, first a one-
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dimensional method was proposed, based on a first order Godunov scheme in
a collocated grid. The method was tested in the classical shock-tube prob-
lem, obtaining the expected results, which are a good approximation of the
variables in the four zones created, but with a rather dissipative behaviour in
the transition between zones, as it is characteristic of a first order numerical
scheme. Godunov method was chosen due to its simplicity regarding the for-
mulation and implementation, while offering accurate results. Besides, most
modern one-dimensional schemes are based on the Godunov’s method, so the
strategy adopted to perform the connection between schemes in this chapter
is much more likely to coincide with the one to finally be applied to any other
modern numerical method.

For the connection method itself, a virtual cell approach was adopted,
where a new cell is added to each of the meshes, right where the connection is
planned. These couple of cells that will be connected to the virtual cell have
been called boundary cells. The strategy to follow consists in the virtual cell
inheriting the variables calculated in the boundary cell of the other mesh and
using those variables as initial conditions for the following time step, process
that will be repeated in every time step. The fact that the mesh elements
used by each numerical method are different, with a collocated grid and a
staggered grid with volumes and connectors, makes the traffic of information
between meshes less obvious. The quasi-3D staggered grid uses a virtual vol-
ume and a virtual connector, obtaining the flow by an upwind approach. In
the case of the collocated virtual cell, the information required comes from the
boundary volume, for mass and energy, and from the virtual connector for the
momentum.

In order to show some preliminary results, a one-dimensional duct was
meshed with the objective to simulate a shock-tube once again, but this time
using a staggered grid for the left side and a collocated mesh for the right
side. In this way, all the relevant information goes through the connection.
The results obtained are satisfactory, with the expected accuracy both in the
final values of the variables in the zones as in the reproduction of the transition
between them, according to the order of each numerical method. Only some
small amplitude oscillations where detected near the rarefaction wave in the
quasi-3D side, which may be caused by the connection or by the fact that no
flux limiter was used, or even a combination of both. The reason of not using
any flux limiter comes from the increase in complexity of implementation, and
satisfactory preliminary results had been already achieved. In any case the
quality of the results obtained is promising, specially considering the extreme
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conditions imposed in the shock-tube problem. Therefore, it is concluded
that the connection between the quasi-3D staggered grid scheme and a one-
dimensional collocated method is possible and feasible, even if still some work
has to be performed in adapting the flux limiters.
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5.1 Introduction

Traditionally, even the acoustic behaviour of the devices where more three-
dimensional effects occur has been successfully modelled with a one-dimensional
approach up to not too high frequencies by using different techniques. How-
ever, as more complex geometries are needed to fulfil the increasingly re-
strictive regulation, one-dimensional models start being an insufficient tool
either because the traditional techniques cannot be used or because higher
frequencies need to be accurately modelled. It is possible in this case to use a
three-dimensional CFD (computational fluid-dynamics) model, but that would
imply investing a significantly higher amount of time in modelling and calcu-
lating, which is something that manufacturers cannot afford in early stages of
the design. These are the reasons why quasi-3D methods are an increasingly
interesting tool in the design of internal combustion engines in general, and
specifically in the case of after-treatment systems and mufflers.

The non-linear quasi-3D numerical method that was developed in chap-
ter 3 has as the most remarkable asset the ability of taking into account
three-dimensional effects while maintaining a low computational cost. This
is achieved by assuming some simplifications in the momentum conservation
equation, as seen in chapter 3. Nevertheless, it is important to validate the
numerical method by comparing the results obtained with either experimen-
tal measurements or with the results offered by other already validated and
established codes modelling the same problem. While this is true for any
new model under development, it is specially critical for models where strong
assumptions are made, as is this case, with a one-dimensional momentum
equation approach in a three-dimensional model.

Therefore, the most appropriate way of validation of the model appears to
be the simulation of the three-dimensional devices to which the code is likely
to be applied more often when modelling an engine, which are the mufflers.
Mufflers, also known as silencers, are systems used to reduce the noise produce
by the engine. Depending on its shape, distribution of inlet and outlet ducts
and other properties, like the presence of absorbent materials, the muffler can
be designed to act in a certain range of frequencies. A good design will reduce
the noise only for the desired frequencies to avoid an unnecessary increase of
the back pressure and hence, a decrease of the engine efficiency.

In this chapter, the above mentioned validation of the quasi-3D method is
performed in different geometries and configurations. Before, a meshing tech-
nique has been implemented in order to facilitate the simulations and it has
been detailed to further understand the implementation of the method into
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the code. As the main comparison instrument, an existing linear acoustics tool
is described. The main purpose of this tool is to serve as a reference solution
by comparing the transmission loss obtained with the two different methods.
As a general rule, a correct prediction of the non-linear quasi-3D method will
follow the same curve as that given by the linear acoustics tool, only seeing
certain differences at higher frequencies, where the three-dimensional effects
may influence the transmission loss. Ideally, experimental results should be
also available for the validation, but given the numerous devices and configura-
tions that should be manufactured, most of them without any real application
(they would only be used for that particular test), this has been discarded
in this section. Therefore, the validation will consist in studying the im-
provements that the non-linear quasi-3D method brings when compared to a
standard linear acoustics tool.

Furthermore, not only the acoustics prediction capabilities of the quasi-
3D method and the effect of the simplifications adopted are validated, but
the performance of the different flux limiters has been tested in every case
to understand the advantages and disadvantages that each of them brings.
The strategy that has been followed consists in the modelling and simula-
tion of increasingly complex geometry devices with different inlet and outlet
configurations. A pulse is generated upstream of the device and the incident
and transmitted waves, one at each end of the main geometry, are taken to
compute the transmission loss.

5.2 Meshing techniques

One of the steps that cannot be overlooked when simulating is the meshing
of the problem which, although not as complex as the physical phenomenon,
can be critical to obtain proper results. This is specially important when
simulating three-dimensional elements, where the complexity of the mesh and
the time needed to create it can represent an important part of the total work.
Even the most accurate and efficient numerical methods would be useless if
there are no means to apply them to the problem under study. Similarly, an
efficient and automated way of meshing will eventually need to be developed,
otherwise, it will not be possible to test regular geometries and the usefulness of
the method will be greatly reduced. As a result, an efficient three-dimensional
meshing technique needs to be developed to validate the numerical method.

As it was pointed out in section 3.2, the mesh consist of a staggered grid
with two types of basic elements: volumes and connectors. Besides, each of
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those connectors will be the link between two volumes and those volumes can
have as many connectors attached as needed. With this approach, a matrix
representation of the connexions between the two kind of elements of the
mesh comes naturally to mind. Therefore, a matrix with the total number of
volumes as rows and the number of connectors as columns will be created and
it will be called from now on G matrix. This matrix will only have values in
the positions where a volume and a connector are linked in the mesh and the
value will be 1 if the connexion goes from the volume to the connector or -1
if it goes in the opposite direction, according with the Cartesian coordinate
system. Therefore, for a very basic example of three volumes connected along
the X axis by two connectors as a duct, the G matrix will be the following

G =

 1 0
−1 1
0 −1

 (5.1)

In this example, there are three volumes, so the G matrix has three rows,
and there are two connectors, hence the two columns of the matrix. It can also
be seen how the volume 1 is attached with the connector 1 and, since the value
of the G matrix is positive, that means that the connector is positioned at a
higher value of the X axis than the volume. With the usual representation of
the axis, connector 1 would be at the right side of volume 1. Looking now at
volume 2, it can be seen that it corresponds to the opposite situation, since
the value in the G matrix is -1, connector 1 is at the left side of volume 2
with respect the X axis. Finally, another way of obtaining visual information
of the G matrix is looking at the columns. The first column corresponds to
connector 1 and it links volumes 1 and 2, since those are the only rows of the
matrix with non-zero values. Connector 2 does the same with volumes 2 and
3. Since every connector can only link two volumes, there has to be only one
set of 1 and -1 for each row. If there is more than one, that connector is linking
too many volumes, if there is none, that connector is not needed, and if both
values are positive or negative, that means that the volumes are not properly
connected, since both volumes cannot be at the same side of the connector.
This simple verification is the first one that should be done when meshing.

Although it has been stated that the selection of the sign of the values of the
G matrix is decided considering if the link goes along or against the direction
of the axis, it is actually an arbitrary criterion that might be useful for the
one-dimensional case but not sufficient for higher dimensional problems. In a
one-dimensional case the information of the signs can be used to determine
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the position of the volumes at each side of the connector, since there is only
one axis. However, when there are more axes, there is no information of the
orientation in space of the connector. Therefore, a new matrix is needed that
will specify the orientation of each connector. This new matrix will be denoted
Cn matrix and will have as many rows as connectors are in the mesh and as
many columns as dimensions are considered in the problem. Each row will
be formed by the unit vector of the direction orthogonal to the surface of the
corresponding connector. For the previous example of a three volumes duct
with two connectors along the X axis, the Cn matrix is the following

Cn =
[
1 0 0
1 0 0

]
(5.2)

where both connectors have the same orientation, which is along the X axis,
hence the unit vector is [1, 0, 0] for both of them. Making use of these two ma-
trices facilitates the implementation of the operations of the numerical method.

Hereunder several techniques that have been developed to solve the prob-
lem of meshing three-dimensional geometries will be outlined, starting for the
most simple cases and finishing with a tool to import externally generated
meshes.
Constant section geometries

As a first approach, three-dimensional geometries with constant section will
be considered. These geometries, although simple, are very common silencers,
intercoolers, filters or catalysts, at least in an important part of the element.
The strategy here would be starting with an easy-to-make mesh of the section
of the element. Then, the direction for the extension and the number of
volumes for its length have to be specified to the tool. With that information,
the tool will start to scan the section, going through every volume and checking
its connectors that are not in the longitudinal direction. The volume and the
connectors will be then copied and moved in the longitudinal direction and
added to the G matrix, expanding it. The same process will be followed for
every volume, ignoring the connectors that have already been moved alongside
with previous volumes. After going through the original section and creating
the next one, the whole process is repeated for the newly created section and
so on, until the desired length is achieved. In Figure 5.1 an extension of a
generic section can be seen. Even if the real element is not as simple and only
a part of it has constant section, the mesh created with this method would
simplify the meshing process, since only the rest of the less regular geometry
would have to be meshed by other means.
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It is worth mentioning that this tool can also be easily applied to mesh
ducts just by using a single volume as starting section.

Figure 5.1: Constant section geometry mesh representation.

Geometries with parallel ducts
The next meshing technique developed consist in a variation of the con-

stant section geometry meshing and it was thought specifically for meshing
catalyst bricks and particulate filters. The main idea is to modify a constant
section mesh created with the previously explained technique in such a way
that the mesh is formed only by longitudinal parallel ducts. In order to obtain
this mesh, an initial and ending section will be specified to the tool by select-
ing one volume of the initial section and one volume of the ending section.
After that, the tool will check all the connections of the volumes between the
specified sections and will remove all the connectors, except the longitudinal
ones. Finally, the G matrix and the Cn matrix will be rewritten, excluding
the removed connectors. The resulting mesh will be formed by parallel ducts
in the longitudinal direction along the specified part of the element.

As mentioned above, these meshes are specially useful when simulating
catalysts and particulate filters. Catalyst are formed by a great amount of
channels to maximize the contact surface with the fluid and facilitate the
chemical reactions and are traditionally simulated as a number of identical
ducts, according to the cell density of the catalyst brick. In this way, only
one duct has to be simulated, since every other one would offer the same
results. This solution brings a low computational cost with good results, but
it cannot take into account the different inlet conditions that the channels
may have. With a complete 3D mesh, these effects can be simulated, but
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Figure 5.2: Parallel ducts geometry mesh transformation representation.

in order not to increase excessively the computational cost, all the channels
should not be meshed. In Figure 5.2 the resulting mesh of applying the parallel
ducts geometry transformation to the mesh of Figure 5.1 is shown. Here, the
same effective one-dimensional approach to model catalyst can be used for the
different ducts. This means that every duct should be treated as a certain
number of identical ducts, so only one of them has to be simulated, but each
set of identical ducts will have different inlet and outlet conditions, increasing
thus the accuracy of the results by taking 3D effects into account, but without
drastically increasing the computational time.
Complex geometries

Finally, more complex geometries will have to be meshed. This situation
will be faced not only in the final steps of the validation process, but also when
intending to use the quasi-3D method in real applications. Unfortunately,
the development and implementation of a complete meshing tool is a task
that would require too much time and it is not the main focus of this work.
Nevertheless, the simulation of general shape geometries is eventually needed
in the validation process, and therefore a temporary solution was elaborated
until the final meshing tool is available.

The approach that was taken consist in building the mesh with a differ-
ent source to export the data of the connections between cells. The only
requirement for the source meshing tool is that it has to create an output file
readable by a text editor with the information of the connections between cells
and some kind of orientation in the three-dimensional plane. Knowing that
every connector of the quasi-3D method will link two volumes and its orienta-
tion, it is possible to create the G matrix and the Cn matrix required for the
calculations. In Figure 5.3 an example of the result of the above mentioned
procedure is shown.
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Figure 5.3: Complex geometry mesh importation process representation.

Although depending on an external tool for meshing complex geometries is
not desired, it is a temporary solution that will make possible a more extensive
validation of the non-linear quasi-3D numerical method. In future works, a
reliable meshing tool will be developed.

5.3 Linear acoustics

The validation method selected for this section is based on the use of a linear
acoustics tool. The tool used was described in [103] and has already been
extensively validated with experimental measurements. The election of this
linear acoustics tool makes sense because it allows the direct comparison be-
tween two tools with the same objectives but different approaches. On one
hand one uses a non-linear approach and can obtain the acoustic response by
the Fourier transform, while the other one can obtain the acoustic behaviour
after linearizing the equations, as it will be detailed in this section. Both tools
complement each other since both can be used to calculate the Transmission
Loss of a system using the same mesh and compare the results, the linear tool
with the advantage of being faster and the non-linear case with the advantages
of also providing a time domain solution and, generally, a higher resolution in
the frequency domain.

The numerical method used for the linear acoustics model is based on a
linear version of finite volume method. The linearization procedure will be
now described, showing how the linearized mass and momentum equations
can be interpreted in terms of volume-related junctions connected by means
of length- and area-related equivalent 2-ports.

In a similar fashion as the non-linear quasi-3D method, a staggered-mesh
grid will be used, which also allows the use of the same G matrix for both
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methods. Therefore, equations of mass and energy conservation are solved for
each volume, and the momentum equation is solved for each interface between
two volumes [114]. The energy equation will not be considered in this case, as
the flow evolution in the volumes will be considered as isentropic, thus only
the mass continuity equation and the momentum equation need to be solved.
According to Morel [114], mass conservation in a given fluid volume can be
expressed as:

dmn

dt =
∑
i

ṁ(i)
n (5.3)

where mn is the mass contained in the n-th volume, and ṁ(i)
n represents the

mass flow corresponding to the i-th opening connecting the n-th volume to any
other volumes. Assuming that the evolution inside the volume is isentropic,
one may introduce the pressure pn inside the volume, thus getting

dmn

dt = Vn
c2

0

dpn
dt =

∑
i

ṁ(i)
n (5.4)

Here, c0 is the speed of sound and Vn is the volume. Now, writing all the
variables as the addition of a mean value and a fluctuating part (p→ p0 + p,
etc.), and assuming harmonic time-dependence for the fluctuating parts, it is
obtained that

jωVn
c2

0
pn =

∑
i

v(i)
n ≡ vn (5.5)

where j =
√
−1, ω is the angular frequency and vn represents the mass velocity

fluctuation, i.e. the fluctuating part of the mass flow rate. Therefore, in the
pressure-mass velocity representation, the behaviour of the volume regarding
mass conservation may be represented by considering a multi-port with a
passive impedance given by:

Z(n) = j c2
0

ωVn
(5.6)

which is the impedance corresponding to the compliance V/c2
0 of a cavity

of volume V [115]. Secondly, according to reference [114], the momentum
equation at the interface between volumes can be written as

d(mu)
dt +

∑
ṁu = −A∆p (5.7)
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where u is the flow velocity and A is the cross-section area at the interface,
whereas ∆p represents the pressure difference between the two volumes. Now,
if equation (5.7) is referred to the unit volume one gets

d(ρu)
dt +

∑ ρu2

l
= −∆p

l
(5.8)

where l is a characteristic length. Following a linearization procedure similar
to that used to obtain equation (5.5), for the case without a mean flow one
obtains

ρ0
du
dt = −∆p

l
(5.9)

Then, assuming harmonic time dependence for all the fluctuating variables
and introducing the mass velocity v = ρAu , gives:

jω l

A
v = −∆p (5.10)

As equation (5.10) is a linear relation, it admits a simple representation in
terms of a 2-port as a system relating the state variables of two different points.
With that, the momentum exchange at the interface between two volumes can
be actually represented by a 2-port defined by equation (5.10), which corre-
sponds to the impedance associated with the lumped inertance l/A of a short
duct [115]. In the cases with mean flow, equation (5.5) remains unaffected,
but according to Amphlett [116], equation (5.10) must be substituted by[

jω l

A
+ 2U0

A

]
v = −∆p (5.11)

where U0 is the mean flow velocity across the interface, which can be obtained
from a time domain steady flow computation performed with the same spatial
discretization, as described by Sapsford [13].

As a summary, mass and momentum exchange between volumes may be
represented by considering each volume as a multi-port, as defined by equa-
tion (5.5), and then connecting those multi-ports by means of 2-ports as de-
fined by equation (5.10), or equation (5.11) in the presence of flow. In this
way, any cavity may be represented by a network of zero-dimensional nodes
connected by 2-ports, for which suitable solutions already exist.

In the one-dimensional case, both 2-ports and multi-ports can be repre-
sented by transfer matrices [103], but in the three-dimensional case the order
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of the multi-ports can be higher than 2, making the transfer matrix representa-
tion no longer valid. In Figure 5.4 the different wave components propagating
in the adjacent 2-ports of a multi-port are represented. Under the assumption
of plane wave, these wave components are related to the pressure and mass
velocity fluctuations by

v(i)
n = 1

Zin
(pi+n − pi−n ) ; p(i)

n = pi+n + pi−n ; i = 1, · · · mn (5.12)
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Figure 5.4: Schematic representation of a multi-port.

Here, Zin = c0/Ai is the characteristic impedance of the 2-port i, Ai its
cross-sectional area and mn is the order of the multi-port. The total mass
velocity fluctuation vn across the multi-port can be written as

mn∑
i=1

1
Zin

(pi+n − pi−n ) = vn (5.13)

Continuity of pressure across the multi-port gives

pi+n + pi−n = pn ; i = 1, · · · mn (5.14)

Therefore, from equations (5.5), (5.6), (5.13) and (5.14) it can be written
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[ 1
Z1
n

+ 1
Zn(s)

]
p1+
n +

mn∑
k=2

1
Zkn

pk+
n =

[ 1
Z1
n

− 1
Zn(s)

]
p1−
n +

mn∑
k=2

1
Zkn

pk−n (5.15)

That can be written in matrix form as

S+
np+

n = S−np−n (5.16)

Here, S+
n and S−n are the positive and negativemn×mn scattering matrices

for the multi-port n and p+
n and p−n are mn-vectors of travelling pressure

amplitudes moving outwards from and towards the multi-port n. With this
representation, the behaviour of the mass exchange between volumes can be
expressed in a compact form.

According to equation (5.16), the best representation for these 2-ports is
provided by the scattering matrix, as represented in Figure 5.5. Here, p1+,
p1−, p2+ and p2− are the travelling pressure amplitudes, whose values at each
side of the 2-port are considered as state variables and are related by means
of the scattering matrix Sm of the 2-port, as follows[

p1−

p2−

]
= Sm

[
p1+

p2+

]
(5.17)

node

Inlet port Outlet port

node
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+1
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Figure 5.5: Scattering matrix formulation for 2-port.

The elements of the scattering matrix for the momentum-related 2-ports
may be obtained from equation (5.10), resulting in the following form[

1 jωl/(2A)
0 1

]
(5.18)

At this point, the conditions of mass and momentum conservation has been
translated into the simultaneous solution of equation (5.16) for each multi-port
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(volume) and of equation (5.17) for each 2-port (interface between volumes).
Considering an acoustic network with M 2-ports, equations (5.16) and (5.17)
give a total of 4M equations with 4M unknowns, so that it is possible to
combine the multi-port equations (5.16) and the 2-port equations (5.17) to
derive a single equation for the whole acoustic network. This complete network
equation was written by Glav [117] as

Ap+
c = Bp−c (5.19)

Here, p+
c and p−c are 2M -vectors containing the forward and backward

pressure amplitudes at the endpoints of all the 2-ports in the network, and A
and B denote the left and right network matrices, respectively, which are
generated by using the characteristics of the 2-ports and the multi-ports.
The complete procedure, which is basically creating a global incidence ma-
trix equivalent to the G matrix of the quasi-3D method, was described by
Glav [117]. Then, if p+

c is known, p−c can be obtained. Hence, all the trav-
elling pressure amplitudes are known and the complete acoustic state of the
network is determined. From this overall representation, it is possible to com-
pute the transfer matrix and the Transmission Loss between any two arbitrary
multi-ports.

5.4 Parallelepiped shape muffler
Now that the meshing techniques and the validation tool have been explained,
the method developed in chapter 3 will be applied to a parallelepiped shape
muffler and then the results will be compared with the ones obtained by using
the previously described linear acoustics tool. The three different flux limiters
that were also described in chapter 3 will be compared, along with the raw
method when possible. But before proceeding with the simulation of the
three-dimensional case, a one-dimensional problem has to be considered, as a
way to easily obtain results that will support and complement the 3D case.
This consisted in the consideration of the propagation in a straight duct, with
the same dimensions as the inlet and outlet ducts of the muffler, of a finite
amplitude pressure pulse whose characteristics (amplitude and duration) were
chosen so as to guarantee a sufficient frequency resolution in the frequency
range of interest as well as a sufficient excitation level at all the relevant
frequencies, i.e. a substantially flat spectrum [118]. The very same pulse will
be later used in the simulation of the 3D muffler. Also, such a simple case
as this one allows to a rather simple validation with an experimental test.
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The experimental set-up is shown in Figure 5.6 together with an approximate
representation of the pulse propagation in the (x,t) plane.

Figure 5.6: Experimental set-up and representation of pressure pulse propagation.

The pulse was generated through the controlled discharge from a high-
pressure tank into the duct, making use of a fast-operation electrovalve [119].
Then, the resulting pulse was recorded 15 m downstream of the valve (trans-
ducer 1 in Figure 5.6), at a second station 10 m downstream of the first one
(transducer 2) and at a third station 10 m downstream of the second one and
separated 15 m from the downstream open end (transducer 3). In this way,
proper development of the pulse into a weakly non-linear perturbation is al-
lowed, and it is possible to avoid any overlap with the pulse reflected by the
open end, as indicated in Figure 5.6. The pulse recorded by transducer 1 and
its frequency spectrum are shown in Figure 5.7, where it can be observed that
actually the pulse at this position is not yet fully developed, as indicated by
the features present in the spectrum.

The results obtained at the two other measurement stations are shown
in Figure 5.8 for the different flux limiters considered (the results of the raw
method exhibited very large oscillations and have been omitted for clarity).
It is apparent in the time domain representation of Figure 5.8(a) that any
overshoots associated with the original method appear to be substantially
removed by the three methods, except in the vicinity of the rising ramp of
the pulse. In this case, only the TVD method is able to damp the pressure
oscillations and produce a result closer to the measurement. Apart from this,

126



Chapter 5 Section 5.4

Figure 5.7: Pressure pulse recorded at first measurement station, and later used as
boundary condition for the computations: (a) time domain, (b) frequency domain.

all the methods reproduce the overall shape of the pulse, except in the decay
zone, where differences between the different methods are negligible, but none
of them accounts for the gradual decay observed in the measurement.

Figure 5.8: Pressure pulse as recorded at the second (a) and third (b) measurement
stations, and results produced by the different methods.

In the frequency domain representation given in Figure 5.8(a), one may
first notice that the experimental pulse is now properly developed, as a rela-
tively smooth and almost flat spectrum is observed for frequencies above 200
Hz. Secondly, it is apparent that all the methods reproduce quite faithfully
the experimental behaviour for frequencies below 500 Hz.

For frequencies above 500 Hz the results are more erratic, but in general
the FCT and MDT methods predict a sound pressure level higher than that
predicted by the TVD method. It is likely that this behaviour is related with
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the non-physical oscillations retained by those methods. This would also be
confirmed by the fact that this tendency is especially clear at the highest
frequencies represented. In any case, it appears that none of the methods
produces any severe suppression of the medium-to-high frequency content of
the signal, contrary to the results shown by Fauconnier and Dick [120], which
seem to point out that all non-linear schemes should suffer from large dissi-
pation in combination with the generation of spurious oscillations throughout
the entire wavenumber spectrum.

When considering the results obtained at the position of transducer 3,
shown in Figure 5.8(b), all these effects are even more noticeable. As a result
of the additional propagation, the residual oscillations previously shown by
the MDT and FCT methods in the vicinity of the pulse ramp have grown
dramatically, especially in the case of the FCT method, whereas the TVD
results still follow quite closely the measured pressure trace. In the frequency
domain a certain degradation of the quality of the results can be observed
below 500 Hz for the three methods, and the agreement is somehow better
than for transducer 2 between 500 and 750 Hz. However, the main differences
are found for frequencies above 800 Hz: it is here where the effect of the
spurious oscillations in the MDT and FCT methods becomes apparent, with an
almost linear increase of the sound pressure level with frequency that produces
a significant deviation with respect to the measured spectrum. At the same
time, the TVD method produces a very good approach to the measurements
in these high frequencies. Even if such long propagation distances do not occur
in engine exhaust systems, these results point to a certain superiority of the
TVD method from a frequency-domain point of view.

Once the performance of the different methods was assessed in detail
in the one-dimensional case with the pulse propagation problem, the three-
dimensional version of the method was applied to a simple but representative
geometry, whose acoustic response cannot be properly accounted for by means
of any one-dimensional model.

The geometry considered is shown in Figure 5.9: it is a rectangular expan-
sion chamber, with dimensions 129×258×344 mm3, meshed into cubes with 43
mm of side (for clarity, these are represented as spheres). The location of the
inlet and outlet ducts was chosen so that a significant number of higher order
modes should be excited. The transmission loss was obtained by simulating
the improved impulse method proposed by Payri et al. [119], in which the
chamber is excited by a pressure pulse similar to those shown in Figure 5.8(a).
In this way, there is significant content at all the relevant frequencies, and the
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transmission properties are directly obtained from the pulse transmitted by
the chamber.

Figure 5.9: Geometry considered and mesh used.

It is worth noticing that with this simulation it is difficult to acquire the
incident wave, since the simulation will offer the composed wave, where the
incident and the reflected wave are mixed. Therefore, a rather simple solution
consist in simulating the same generated wave in a long duct with the exact
same geometry and mesh as the one used in the muffler simulation, hence
obtaining the unadulterated incident wave.

The results are shown in Figure 5.10, both for the transmitted pulses in
the time domain and the resulting transmission loss in the frequency domain.
In this last case, the transmission loss computed with the linear frequency-
domain counterpart of the present method, which was described and validated
by Torregrosa et al. [103], is also included as a reference.

In the time domain representation, it can be observed that the results of the
original method are severely affected by spurious oscillations that extend along
the whole decay of the pulse. In all the other cases, such oscillations have been
substantially removed. However, there are significant differences between the
behaviour observed for the MDT and FCT methods, on one side, and for the
TVD method on the other side. In the first case, some remaining oscillations
persist, which are likely to be related with the actual wave dynamics inside
the chamber, as multiple internal reflections occur, whereas in the case of
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Figure 5.10: Pressure pulse transmitted by the chamber, and corresponding
transmission loss, produced by the different flux limiters.

the TVD method it appears that all the oscillations, both non-physical and
possibly physical, have been suppressed, and thus some essential dynamics of
the system may have been lost.

This is confirmed by the transmission loss plots shown in Figure 5.10,
where it can be observed that the results obtained with the TVD method
depart significantly from the behaviour predicted by the linear model, which
is fully consistent with the geometry of the chamber and the position of the
inlet and outlet ducts, whereas all the essential features present in the linear
transmission loss have been reproduced by all the other methods, included the
raw method without any flux limiter. In particular, the pass-bands observed
are precisely related with the period of the oscillations retained by the FCT
and the MDT methods, and obviously also present in the results of the original
method, even if masked by the high-frequency non-physical oscillations, whose
associated frequency is above the frequency range represented.

However, it is obvious from Figure 5.10 that those non-physical oscillations
have contaminated to some extent also the mid frequencies. This is partic-
ularly clear in the vicinity of the first three pass-bands, where instead of a
zero value the original method predicts a negative transmission loss, i.e. some
numerical noise is produced inside the chamber. At frequencies far from the
pass-bands this may not be apparent, except for the fact that the original
method gives everywhere, except at the resonant spikes, attenuation values
lower than those corresponding to the linear solution, and thus this effect be-
comes visible only at the pass-bands themselves. This issue is also present in
the results obtained with the MDT method, which might indicate that the
expression of the momentum diffusion coefficient given by equation (3.18) in
section 3.4 is not the most convenient one for these particular flow conditions.

The results of the FCT method give a fair reproduction of the linear so-
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lution, without any negative values but with some clearly dissipative effects
in some of the pass-bands and in the narrow-band resonant spikes, which are
partially suppressed. Such dissipation is partly due to the use of the FCT
technique, but it is also the expected behaviour when a pulse of relatively
high amplitude (approximately 50 mbar in this case) is used as the excita-
tion [119]. It can also be observed that the solution obtained starts to deviate
quantitatively from the linear solution for frequencies above 1000 Hz, which
is consistent with the size of the mesh used.

The rather strange behaviour exhibited by the TVD results will now be
examined in some detail, as the results obtained in the one-dimensional case
suggested that the frequency-domain performance of this method compared
favourably to the other ones in a one-dimensional case. The bad results ob-
tained in the three dimensional case indicate that, as pointed out in sec-
tion 3.6.2, the problem may lie in the treatment of end-volumes. While the
solution adopted may give fair results when a mesh with a sufficiently large
number of cells in each direction is used, this may not be the case for the
relatively modest mesh used here. However, instead of increasing the number
of volumes, what would penalize significantly the computational cost, a mod-
ification of the method aiming to reduce the effect observed was attempted.

The modification introduced consisted in introducing a parameter ξ in
equation 3.26 in the Davis TVD scheme, as follows

Ḡ+(r+
i ) = ξC(ν)

[
1− ψ(r±i )

]
(5.20)

whose suggested value for a one-dimensional case is 1/2. As this choice has a
direct impact on the results of the method the flux limiter in the momentum
equation, the effect of considering smaller ξ values was studied. Such a change
should reduce the influence of the additional TVD terms and consequently the
effects of the ad hoc assumption at the end-volumes.

The results obtained are shown in Figure 5.11, again for both the trans-
mitted pulses and the resulting transmission loss. It is apparent in the time
domain representation that when reducing the value of ξ the physically mean-
ingful oscillations associated with the internal wave dynamics of the chamber
are recovered. This indicates that the original value might have been optimal
for a one-dimensional case, but too diffusive for this application. This is con-
firmed by the transmission loss results, in which it can be observed that the
TVD predictions are closer to the linear solution the lower is the value of ξ
used. In fact, for ξ = 0.05 the agreement with the linear solution is very good
for frequencies below 1 kHz, the results being even better than those produced
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by the FCT method and shown in Figure 5.10. For frequencies above 1 kHz,
the results are almost indistinguishable from those obtained with the FCT
or the MDT methods. It is likely that lower ξ values would lead to negative
transmission losses as those produced by the original and the MDT methods.

Figure 5.11: Effect of parameter ξ in equation (5.20) on the pressure pulse
transmitted by the chamber and the corresponding transmission loss obtained with

the TVD method.

In any case, this analysis would not be complete if the influence of such a
change in ξ were not evaluated in the one-dimensional cases previously consid-
ered. The influence on the results of the shock tube problem can be observed
in Figure 5.12, where an expanded view of the most relevant part of the pres-
sure and velocity results is shown. For clarity, only the two extreme values of
ξ have been considered.

Figure 5.12: Effect of parameter ξ in equation (5.20) on the pressure and velocity
results of the shock-tube problem: detail at the contact discontinuity and the shock

front.

It is clear that lowering the value of ξ eliminates the spurious fluctuations
previously noticed in the vicinity of the contact discontinuity, so that the
results are now comparable to those obtained from the MDT and the FCT
methods. However, this is achieved at the cost of a clearly insufficient removal
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of the spurious oscillations occurring at the shock wave front. Therefore, the
use of such a small value for ξ is not advisable in this particular problem.

The influence of ξ on the TVD results for the pulse propagation problem
can be checked in Figure 5.13, where the pulses recorded after propagation
along 20 m and their corresponding spectra are shown. It is apparent that the
advantages previously exhibited by the TVD method regarding the absence of
spurious oscillations and the good reproduction of the signal frequency content
have been lost, the results being very similar to those provided by the MDT
or the FCT methods.

Figure 5.13: Effect of parameter ξ in equation (5.20) on the pressure pulse as
recorded at the third measurement station.

It appears thus that this new formulation of the TVD method is especially
well suited for the analysis of the acoustics of cavities, but in any other of the
conditions considered here its performance is clearly worse than that of the
MDT and FCT methods.

The next device that will be modelled is based on the same mesh, but the
inlet and outlet ducts are in a different position, as shown in Figure 5.14. This
allows the study of the influence of the position of the inlet and outlet ducts
in the solution obtained as well as the three-dimensional effects present even
in a distribution that might seem more one-dimensional. Furthermore, both
the inlet and outlet ducts have been extended the distance equivalent to two
volumes, as can be visible in Figure 5.14 if paying attention to the lack of
transversal connectors in the first two volumes following the inlet and outlet
ducts. Taking this new effect into consideration will increase the validation of
the method.

The same impulsive test rig as before has been simulated, imposing an
incident pulse at the inlet and comparing it to the transmitted pulse to ob-
serve the acoustic behaviour. The transmitted wave obtained using the three
different flux limiters developed for the quasi-3D model are compared in Fig-
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Figure 5.14: Geometry with extended ducts considered and mesh used.

ure 5.15, along with the transmission loss obtained with the three variations
of the method and the linear acoustics solutions obtained with the previously
explained tool. The parameter ξ of the TVD method was set to 0.15, since it
seemed to provide the best results for the transmission loss without bringing
too many oscillation in the time domain solution.

The results obtained follow similar tendencies as the previous case. In the
time domain, the transmitted wave predicted by the three methods has the
same shape, with small differences in the amplitude of the higher frequency
oscillations, being lower for the FCT curve and slightly higher for the TVD
case, although these oscillations are highly influenced by the parameters of the
flux limiters. In the frequency domain, the transmission losses obtained with
the different methods are also comparable, finding only significant differences
in the pass band levels, with the MDT method being more accurate. When
comparing the three non-linear curves with the linear acoustics solution, the
same shape of the curves can be found, with slight differences in the local
maximum between pass bands.
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Figure 5.15: Pressure pulse transmitted by the chamber, and corresponding
transmission loss, produced by the different flux limiters.

5.5 Reversal chamber

The next system used for the validation consists in a symmetric reversal cham-
ber. The geometry selected is similar to the one showed in Figure 5.16 and
although at first glance it might seem just a constant section geometry which
would give similar results to a parallelepiped muffler, this geometry offers other
issues worth studying in order to validate the numerical method.

Figure 5.16: Symmetric reversal chamber representation.

In order to properly represent the geometry as accurate as possible, either a
really fine mesh with a great number of identical volumes has to be used, or the
equal cells concept has to be abandoned. The former implies a more difficult
meshing process and a much higher calculation time, without guaranteeing
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significantly better results. Therefore, the second option was adopted, creating
a mesh of 3×6×3 volumes of 33 mm length, where the most external volumes
have half those dimensions, as schematically show in Figure 5.17. This simple
representation should be enough to properly reproduce the results obtained
with the linear acoustics tool, even when it uses a more detailed mesh.

The results obtained are shown in Figure 5.18, where the same experiment
was simulated and the momentum diffusion term was used as a flux limiter as
the first option for the analysis. The results obtained with the model developed
have been compared with the ones obtained with the linear tool described be-
fore in this chapter, but some differences were detected. In order to determine
if these differences correspond to a more accurate description of the problem
and the three-dimensional effects or, on the contrary, a worse behaviour of
the new model, another validation tool was needed. Therefore, a commercial
program with extensive validation in acoustic and engine simulation was used,
which also could provide a non-linear solution and takes into account 3D ef-
fect until some extent. The very same mesh was created, imposing the same
incident pulse after a long duct to avoid reflections.

Figure 5.17: Symmetric reversal chamber schematic representation of the mesh used
in the quasi-3D method.

The results shown in the time domain show some differences between codes,
with the commercial code showing a higher dissipation after the long duct and
the reversal chamber. This dissipation was purposely avoided in the developed
model because of the long duct used, where too much dissipation could adul-
terate the results or at least make more difficult the comparison between them
with the different flux limiters and the oscillations produced. The commercial
code does not allow for such option. Even considering that difference, the
shapes of the pulses are similar, although the commercial code produces less
oscillations, which could probably be because of the higher dissipation. On the

136



Chapter 5 Section 5.5

other hand, in the frequency domain, both non-linear simulations give almost
identical results up to almost 2000 Hz, which serves as a good validation of the
new model. The linear transmission loss also validates the non-linear results,
with only differences in its level above 1200 Hz, due to the complete absence
of dissipation in the linear model.
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Figure 5.18: Incident and transmitted pressure pulses in the symmetric reversal
chamber and corresponding transmission loss with MDT and a commercial code.

In Figure 5.19 the results obtained with the different flux limiters are
shown, where the value of the parameters for the TVD used was ξ = 0.15, since
it seemed to provide the best balance between time and frequency domain
results. It can be seen that although the time domain results are almost
identical to the point where the curves can almost not be distinguished, the
quality of the results in the frequency domain is indeed different. As it can be
seen, the MDT curve is the cleanest, followed by the FCT curve, which has
lower values above 1200 Hz, and finally the TVD curve has higher amplitude
oscillations and a general behaviour closer to the linear values. The conclusion
that can be obtained from here is that the MDT flux limiter would give a better
prediction of the 3D effects than the FCT flux limiter, and finally the TVD
method is not recommended to be used in this case, with a more simple mesh
with a lot of end-volumes, which, as seen in section 3.6, is usually a problem
for the TVD formulation used.

The same reversal chamber geometry but with different positioning of
the inlet and outlet duct might be interesting to make visible other three-
dimensional effects and how they are influenced by this inlet and outlet ducts
positioning. Furthermore, the more cases are correctly simulated the better
the validation of the quasi-3D method would be. With this goal, the geometry
shown in Figure 5.20 is considered, where the inlet duct has been moved to an
upper position, whereas the outlet duct has been displaced down, resulting in
a skew-symmetric distribution.
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Figure 5.19: Incident and transmitted pressure pulses in the symmetric reversal
chamber and corresponding transmission loss with the different flux limiters.

Figure 5.20: Skew-symmetric reversal chamber schematic representation of the mesh
used in the quasi-3D method.

Once again, the mesh has been evaluated using the developed quasi-3D
method, the linear tool and the non-linear commercial code that will allow to
compare non-linear and linear acoustics results to further validate the model.
The results obtained simulating the incident wave going through the system
are shown in Figure 5.21. It can be seen that in the time domain similar am-
plitude discrepancies appear, due to the different treatment of the dissipation,
but in the frequency domain, the three transmission losses predicted are con-
sistent with each other, with only small differences in the level of the linear
acoustics curve. It is worth noticing that at higher frequencies, from 1000 Hz,
the transmission loss is much higher than in the symmetrical case shown in
Figure 5.18.

The results obtained using the three different flux limiters considered are
now compared in Figure 5.22, where the same conclusions as in the symmetric
reversal chamber can be stated: virtually the same results in the time domain,
but in the frequency domain the TVD solution is much worse from about 1200
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Figure 5.21: Incident and transmitted pressure pulses in the skew-symmetric
reversal chamber and corresponding transmission loss with MDT and a commercial

code.
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Figure 5.22: Incident and transmitted pressure pulses in the skew-symmetric
reversal chamber and corresponding transmission loss with the different flux limiters.

Hz, with small differences between the MDT and FCT solutions.
Finally, an asymmetric distribution of the inlet and outlet duct has been

evaluated. For this case, both the inlet and outlet duct have been displaced
one volume to the left, as shown in Figure 5.23.

The same simulation has been performed with the non-linear quasi-3D
method and the also non-linear commercial code previously used to obtain the
transmission loss and this results have been compared with the ones obtained
using a linear acoustics tool, as shown in Figure 5.24. It can be observed
that this case keeps the same tendencies as the previous ones, with a lower
amplitude in the waves of the time domain solution offered by the commercial
code due to its higher dissipation, and similar results in the transmission loss
with the three approaches, while it is true that the solution offered by the
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Figure 5.23: Asymmetric reversal chamber schematic representation of the mesh
used in the quasi-3D method.

commercial code in the range between 1200 Hz and 1700 Hz approximately
has some spurious oscillations and it is in general a lower quality prediction
of the transmission loss curve. It can be also seen that in this case an even
higher transmission loss is obtained for higher frequencies, what remarks the
importance of using a model able to accurately predict high frequencies, since
up to 1000 Hz, the transmission loss of the three devices are similar. However,
when going to higher frequencies, huge differences can be observed, making
one distribution more suitable for a given problem. In this case, with a very
simple device, the transmission loss obtained with the linear tool matches the
one predicted with the other non-linear approaches, but in general that could
not be the case and another complementary tool would be needed to validate
the acoustics results, specially if tests cannot be performed.
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Figure 5.24: Incident and transmitted pressure pulses in the asymmetric reversal
chamber and corresponding transmission loss with MDT and a commercial code.
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Figure 5.25: Incident and transmitted pressure pulses in the asymmetric reversal
chamber and corresponding transmission loss with the different flux limiters.

Finally, the results obtained using the three different flux limiters are shown
in Figure 5.25, where the same conclusions as for the rest of the cases are ob-
tained, remarking the bad prediction of the transmission loss in the frequency
domain for the TVD case from 1200 Hz.

5.6 General shape muffler

In the previous sections, the quasi-3D method developed in this work has
been tested and validated using simple geometries as starting point, mixing
different distributions of inlet and outlet ducts or extended ducts to increase
the range of the validation. However, the validation would not be complete
without considering a more general case, closer to the shape of a real muffler.
In order to perform this test, the geometry represented in Figure 5.26 has been
considered. This geometry offers a more general shape that will also put to
a test the meshing techniques developed, and an internal baffle close to the
middle of the muffler with an orifice in its centre of 40×40 mm.

As in the previous geometries, a long duct was connected to the inlet and
another one to the outlet of the muffler to avoid reflections. Both ducts have a
section of 20×20 mm and in the extreme of the inlet duct a pulse is generated.
The pulse, as for the other cases, will travel through the ducts and through
the muffler so that the waves in the inlet and outlet duct will be measured,
close to the device.

In Figure 5.27 the results obtained using the momentum diffusion term
for the quasi-3D model developed are compared with the results offered by a
commercial non-linear program, as it was performed for the reversal chamber
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Figure 5.26: General shape muffler geometry and mesh considered in this section.
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Figure 5.27: Incident and transmitted pressure pulses in the general shape muffler
and corresponding transmission loss with MDT and a commercial code.

cases. This external tool is needed in order to evaluate the capabilities of the
quasi-3D model, since by only using the linear acoustics tool as a comparison, it
will not be possible to determine the better solution if differences are detected.

As opposed to the reversal chamber simulations, the time domain results
obtained by the two non-linear codes for the muffler are unmistakably different.
At first glance, the commercial code results seems to be incorrect ones, since
the shape of the transmitted wave is too smooth and the initial pressure is
not recovered after the wave has passed. This suspicions are proved true once
the transmission loss is calculated. The curve obtained for the transmission
loss using the commercial code waves were only able to correctly predict the
first dome, until about 500 Hz. After this frequency, at around 600 Hz the
curve became a flat line at 30 dBs, which is clearly a erroneous prediction
of the transmission loss. Given these results, another tool offered by the
commercial code was used to obtained a non-linear transmission loss curve.
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Since apparently the commercial code is not able to properly simulate the
travelling pulse for this geometry, a different approach was used, where white
noise is generated by a speaker at the inlet and the pressure at the inlet and
outlet of the device is compared to obtain the transmission loss. These are the
results that have been finally shown for the commercial tool in the frequency
domain.

Being able now to compare the three transmission loss curves it is possible
to see that the quasi-3D model with the MDT flux limiter offers similar results
as the linear acoustics tool, except the peak at 1300 Hz and small frequency
shift at around 1900 Hz. The commercial code show a good agreement too,
with some issues at 1100 Hz and a lower dome at 1700 Hz.
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Figure 5.28: Incident and transmitted pressure pulses in the general shape muffler
and corresponding transmission loss with the different flux limiters.

Finally, in Figure 5.28 the results obtained with all the flux limiters avail-
able for the quasi-3D model are shown. The tendencies identified for the
previous cases are also present in this device. In the time domain, the correct
solution is predicted with all the flux limiters with small differences, namely a
slightly higher amplitude in the oscillations for the FCT method, and slightly
lower for the TVD method, when compared with the MDT solution. In the
frequency domain, all the predicted transmission loss are similar in shape until
about 1300 Hz, after this point the MDT method seems to better reproduce
the acoustic behaviour of the device according to the linear acoustics tool.
Both the FCT and the TVD flux limiters present a more dissipative solution,
specially in the case of the TVD method.

5.7 Summary and conclusions
In this chapter the main validation process of the non-linear quasi-3D method
developed in this work was performed. With that purpose, it was decided that
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a set of different mufflers would be modelled and an impulsive test rig would
be simulated.

The first step was to develop a meshing technique where a given geometry
could be meshed with the volumes and connectors needed. The so called G
matrix, with the information of which couple of volumes are attached by each
connector, and the Cn matrix, indicating the orientation of the connectors,
are created from the mesh so they can be used for the calculations. Different
techniques have been developed, from extending a section of the geometry to
exporting the data of the mesh from other source for more complex geometries.
After that, the linear acoustics tool that would be used as a reference solution
during the validation process was extensively detailed.

The first device modelled was a simple parallelepiped shape muffler. An
impulsive test rig was simulated, where a pulse was generated upstream of the
device and the incident and transmitted wave, one in each side of the device,
were computed. Although the time domain results are comparable between
flux limiters, after calculating the transmission loss it was detected that the
results provided by the TVD method where significantly worse than the ones
using the MDT and FCT flux limiters. The reason for this departure seems to
be the complete suppression of the oscillations in the time domain solution, i.e.
the TVD method is too dissipative. This rather strange behaviour of the TVD
method was further examined in more detail, concluding that a modification of
the parameter ξ was needed. The value recommended for that parameter in the
one-dimensional case is 1/2, but it was to be lowered for the quasi-3D method
in order to obtain a satisfactory solution. The following device modelled was
a similar parallelepiped muffler, but with a different distribution of inlet and
outlet ducts, which where also extended inside the device. After adjusting the
parameters, the results obtained with the different flux limiters were similar
in the time and frequency domains, with a more dissipative transmission loss
for the FCT method, and even slightly more for the TVD method. When
compared to the linear acoustics solution, only small differences appear when
incrementing the frequency, presumably due to the absence of any dissipation
in the linear model.

The next set of systems consist in a reversal chamber with different dis-
tribution of inlet and outlet ducts. It is worth mentioning that some of the
volumes of the mesh have a different size, testing hence this feature with
this geometry. Symmetric, skew-symmetric and asymmetric distribution were
tested, significantly varying the shape of the transmission loss for each case,
but obtaining a good match between linear and non-linear models each time.
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For these cases, a commercial program also able to model three-dimensional
geometries with a non-linear approach was used in order to further validate
the new quasi-3D method. The conclusion is that in the time domain there are
some differences in the amplitude of the pulses since the dissipation cannot be
tuned down that much in the commercial program, but in the frequency do-
main the agreement is satisfactory. When comparing the solution provided by
the different flux limiters, a similar conclusion as with the previous device can
be reached: the MDT offers the best solution, the TVD is the most dissipative
and the FCT is in between.

Finally, a general shape muffler was modelled which also included a baffle
with an orifice in the middle. After simulating the impulsive test rig with
the quasi-3D method and the commercial code, it could be seen that the lat-
ter was not able to properly predict the transmitted wave, and therefore, the
transmission loss. If another tool of the commercial code that calculated the
transmission loss from a white nose signal was used, better results were ob-
tained. Regardless, the quasi-3D method offered a more reliable solution with
only a shift in the curve at really high frequencies when compared to the lin-
ear solution. Following the tendencies detected in the previous cases and as a
conclusion, although the three tested flux limiters prove to be proficient in re-
moving the non-physical oscillations present in the quasi-3D numerical scheme,
the momentum diffusion term approach has consistently arose as the better
choice when analysing the acoustic behaviour. The flux corrected transport
and the total variation diminishing ended offering a more dissipative solution,
specially for the latter method, as could be observed in the frequency domain
at higher frequencies. But in any case, the objective of validating the acoustics
capabilities of the quasi-3D method with three-dimensional systems has been
fully accomplished.
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Application to duct junctions
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6.1 Introduction

The importance of a correct modelling of junctions was already remarked in
chapter 2.5, where the different approaches followed in the literature are re-
viewed and discussed. The application of the quasi-3D method to junctions
comes naturally due to the 3D behaviour of the problem and the apparently
simple mesh needed. When considering using a one dimensional scheme, some
additional model needs to be used trying to account for the three dimensional
effects that may appear. The simplest approach consists of the use of a con-
stant pressure model, as described in [83], where the pressure at the end of
all branches of the junction is assumed to be the same at any time. A more
complex approach is described in [84], where the pressure differences existing
between the different branches are incorporated in a quasi-steady manner with
steady pressure loss coefficients and energy change coefficients.

A more direct approach would be the use of a three dimensional tool,
which would be able to take into account all the 3D effects present in the
junctions. However, that would imply a much more detailed meshing for every
component, or at least every junction, and given the nature of the problems
where simulation is useful, having to redo the mesh for every iteration of the
design might be unattainable. Even if only the junctions are modelled with a
3D tool and the rest of the engine uses a 1D approach, the meshing process
and the computational time needed may be just too high.

It is in these type of problems, where a 1D approach is too simple and a
3D approach is too expensive, where the compromise solution provided by a
quasi-3D approach can become optimal. Making changes in the mesh becomes
a trivial process where only a couple of parameters need to be adjusted, like
the angle between the pipes or where they connect. On the other hand, the
calculation time needed does not dramatically increase when compared to 1D
codes and a connection to one of such codes is usually easier than a 3D to 1D
connection since they often share a more similar numerical method. When a
quasi-3D method on a staggered grid is applied to a junction, typically only
one volume is used to represent the junction, taking also into account the ef-
fective areas and characteristic lengths for each connection with the adjacent
ducts. This connections contain the vector information, including the orienta-
tion of the duct with respect to the junction, what makes it possible taking into
account the effects of the junction on the flow when solving the momentum
equation, without the need of adding pressure loss coefficients. This repre-
sents an advantage when modelling junctions, since some three dimensional
effects can be taken into account without the need of specific measurements.
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Additionally, a better acoustic representation of the problem can be expected.
This chapter has precisely as objective to establish the potential of these

ideas as a way to improve the description of the effect of simple duct junc-
tions on an otherwise one-dimensional flow system, as the intake or exhaust
of an internal combustion engine. Specific experiments have been performed
in order to obtain precise and reliable results on the propagation of pressure
pulses across junctions. The results obtained have been compared to simu-
lations performed with different versions of a staggered mesh finite volume
method and different meshes and, as a reference, also with the results of a
more conventional pressure loss-based model.

6.2 Statement of the validation method

Two junctions, shown schematically in Figure 6.1, were manufactured. A T-
junction and a Y-junction were considered, in order to allow the analysis of
the effect of the angle of the side branch. An internal diameter of 51 mm was
used in all the branches of the junctions.

Figure 6.1: Junctions considered in the study.

While several formalisms may be used for the representation of the tran-
sient response of a system, the most intuitive one for the present case of a
junction is that based on the consideration of wave components, so that the
junction is actually regarded as a multi-port. In this framework, for a junc-
tion such as that represented in Figure 6.1, one has three excitations and three
responses, and writing the relations between them directly in matrix form in
the frequency domain, one has:

B1
B2
B3

 =

R1 T21 T31
T12 R2 T32
T13 T23 R3


A1
A2
A3

 (6.1)
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where, as indicated in Figure 6.2, Ai represents the wave component moving
towards the junction in port i and Bj represents the wave component moving
away from the junction in port j. Regarding the matrix elements, Ri denotes
the reflection coefficient as seen from port i whereas Tij denotes the transmis-
sion coefficient between ports i and j. All these magnitudes are functions of
the frequency f .

Figure 6.2: Wave components acting on a multi-port.

In this way, one has a reflection coefficient for each of the pipes arriving
at the junction, and transmission coefficients for all the possible transmission
paths, indicated by the corresponding subscripts. The experimental setup and
the corresponding measurement procedure are described in detail in [119, 121],
and here a brief overview is given in section 6.3.

Two different modelling approaches were evaluated: a staggered mesh finite
volume method and, as a reference, a more conventional pressure loss-based
model. The staggered mesh finite volume method used is described in detail
in chapter 3, along with the different flux limiters developed to suppress the
spurious oscillations of the numerical method.

The pressure loss-based model uses a conventional one-dimensional finite
volume model with a collocated mesh, derived from the code available in [122].
The junction is modelled as a small volume with three connections to which
different pressure loss coefficients are assigned, and in which the mass and
energy conservation equations are solved. For the connection to the duct
where the incident pressure pulse propagates it has been assumed that the total
pressure loss is zero, whereas for the other two connections their corresponding
pressure loss coefficients are computed following the expressions given in [89,
90].
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6.3 Experimental procedure

Making reference to the notation in Figure 6.2, the determination of the trans-
mission and reflection coefficients defined in Equation (6.1) requires the three
following measurements:

• Excitation in duct 1, with anechoic terminations in ducts 2 and 3, so
that A1 6= 0 and A2 = A3 = 0, and thus,

R1 = B1/A1 ; T12 = B2/A1 ; T13 = B3/A1 (6.2)

• Excitation in duct 2, with anechoic terminations in ducts 1 and 3, so
that A2 6= 0 and A1 = A3 = 0; then,

R2 = B2/A21 ; T21 = B1/A2 ; T23 = B3/A2 (6.3)

• Excitation in duct 3, with anechoic terminations in ducts 1 and 2, so
that A3 6= 0 and A1 = A2 = 0, so that,

R3 = B3/A1 ; T31 = B1/A3 ; T32 = B2/A3 (6.4)

In order to perform the above-indicated tests, the modified version of the
impulse method described in [11] was used, since pressure components, which
all the previous developments are based upon, are directly obtained in the time
domain with a simple procedure, and the consideration of three-port elements
is straightforward. In Figure 6.3 both the experimental setup used and the
relevant pressure waves recorded are illustrated.

The test performed was similar to the one explained in section 5.4, with an
incident pulse generated by a high speed electrovalve and several transducers to
measure the pulses in the desired position. However, in this case the junction
introduces some differences in the layout, as it can be seen in figure 6.3. Since
there are now two transmitted waves, one for each branch, one more transducer
is needed. Besides, at the position indicated for transducer 1 in Figure 6.3,
it is clear that this transducer records the addition of the incident and the
reflected pulses, as illustrated in the figure. In order to surpass this difficulty,
the solution adopted is the same as in chapter 5: the incident pulse on the
junction at section 1 (whose Fourier transform will give the complex amplitude
of the A1 component) will be estimated from an additional test performed
without any element, using the pressure recorded by transducer 0 only to
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Figure 6.3: Experimental setup used.

check the comparability of the excitations used in both types of tests (with
and without junction).

The incident pulse is generated by means of a high speed electrovalve
that controls the discharge from a high-pressure tank. A proper choice of the
opening time ensures that the spectrum associated with the incident pulse is
essentially flat. The length of the ducts placed between the valve and trans-
ducer 0, transducer 0 and the junction, and the junction and the open ends is
chosen so that no windowing is necessary in order to isolate the incident, the
reflected, and the transmitted pulses, as indicated in Figure 6.3. Transducer 0
was located 15 m away from both the valve and the junction, and transducers
2 and 3 were placed 0.15 m downstream of the junction, and 15 m away from
their corresponding open end.

At the position indicated for transducer 1 in Figure 6.3, it is clear that
this transducer records the addition of the incident and the reflected pulses,
as illustrated in the figure. In order to surpass this difficulty, the solution
adopted is to estimate the pulse incident on the junction at section 1 (whose
Fourier transform will give the complex amplitude of the A1 component) from
an additional test performed without any element, using the pressure recorded
by transducer 0 only to check the comparability of the excitations used in both
types of tests (with and without junction).
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6.4 1D method with pressure loss-based junction
model

In this case, a collocated one-dimensional finite volume method is used for
all the calculations inside the pipes. The Euler equations of fluid dynamics
simplified for one-dimensional flow in a straight uniform duct can be expressed
as:

dWi
dt

= d

dt

 ρ
ρu
ρe0


i

= A(Fi−1,i − Fi,i+1)
Vi

(6.5)

Here, Wi is the cell-averaged state vector of cell i, Fi−1,i and Fi,i+1 are the
inter-cell fluxes between cells i− 1 and i and between i and i+ 1, respectively,
and the other symbols refer to the same magnitudes as in chapter 3, with u
being now the axial velocity of the flow. The inter-cell fluxes are computed
by an approximate solution of the Riemann problem as described by Toro et
al. [61]. The state vector is extrapolated to the cell boundaries to compute
the fluxes by means of a Monotonic Upstream-Centered Scheme for Conser-
vation Laws (MUSCL) approach as described in [123], while the solution is
propagated in time using Heun’s method, leading to a second order in time
and space, total variation diminishing scheme.

While the main one-dimensional flow inside the ducts is simulated, the
effects of the geometry of the junction are modelled. The connections of the
ducts to the junction are solved using an auxiliary small zero-dimensional
element. Each of the one-dimensional branches is connected to that zero-
dimensional element making use of the Riemann variables to compute the
fluxes at their corresponding boundary. At each connection, it is assumed
that a certain amount of stagnation pressure is lost, depending on the angle
of the junction and of the ratio between the outflow mass flow ṁout passing
through the branch of interest and the inflow mass flow ṁin. The pressure loss
coefficients are computed following the expressions given in [89] and [90], and
are defined as the ratio of the difference in stagnation pressure between the
outflow branch and the inflow branch to the dynamic pressure (ρu2/2) of the
inflow branch. Finally, the total pressure loss coefficient K for a three-branch
junction with the same section in all the branches can be estimated as:

K =
(
ṁout

ṁin

)2
− 3

2
ṁout

ṁin
+ 1

2 (6.6)

when the branch is collinear with the inflow branch, and,
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K =
(
ṁout

ṁin

)2
− 2ṁout

ṁin
cos

(3
4θ
)

+ 1 (6.7)

for the lateral branch, when the flow is split between a collinear and a lateral
branch. In this case, θ is the angle between the lateral branch and the axial
outflow branch, so that 0 degrees means that both outflow branches are par-
allel. The same expression applies when the inflow branch is not parallel to
any of the outflow branches: in that case, the angle θ is measured between the
inflow branch and the other outflow branch.

In the auxiliary zero-dimensional element, the gas is again considered as a
perfect gas, and the mass and energy equations are solved:

dm

dt
=
∑

ṁ (6.8)

d(mcvT )
dt

=
∑

ṁh0 (6.9)

where m is the mass trapped in the zero-dimensional element, ṁ is the mass
flow, positive when it enters the element, and h0 is the specific stagnation
enthalpy associated with the mass moving inside or outside of the element.
These two equations set an additional limitation to the maximum possible
time step.

6.5 Results and discussion
In this section, first the experimental results obtained will be analysed, both
in the time and the frequency domains. Then, the performance of the different
modelling approaches will be discussed, first in the case in which the junction
itself is represented by a zero-dimensional element, and secondly in the case
in which the staggered mesh method is used to provide a quasi-3D description
of the junction.

6.5.1 Experimental results

The results for the T-junction in the time domain are shown in Figure 6.4.
Ports are denoted as in Figure 6.1, and it is apparent that when the junction
is excited at port 1 the pulse transmitted through port 2 (i.e., in the main
propagation direction) has a higher amplitude than that transmitted through
port 3 (the branched duct), as could be intuitively expected. It is also appar-
ent, and equally expectable, that when the junction is excited at port 3, the

154



Chapter 6 Section 6.5

Figure 6.4: Experimental results for the T-junction in the time domain. (a)
Excitation at port 1; (b) excitation at port 3. Ports are denoted as in Figure 6.1.

pulses transmitted through ports 1 and 2 are very similar, the small differences
observed being attributable to manufacturing issues.

Differences in the reflected pulses recorded at ports 1 and 3 are also appar-
ent, even if the incident pulses do not have the same amplitude. The reflected
pulse recorded at port 3 is noisier, and its amplitude is comparable to that of
the reflected pulse recorded at port 1, while the corresponding incident pulse
has a lower amplitude. This indicates that reflection is more intense when the
junction is excited at the branch duct, as it is also intuitively reasonable in
terms of the interaction of the incident pulse with the wall of the main duct.
Of course, none of these effects, regarding both transmission and reflection,
can be accounted for by a constant pressure model, and this is the reason why
such a model will not be considered in the subsequent discussion.

The results for the Y-junction are shown in Figure 6.5. Here the trends
observed confirm those found for the T-junction regarding the difference be-
tween the main duct and the branch duct, but with additional issues related
with the branch angle. Comparison of Figures 6.5a and 6.5b indicates that the
difference in amplitude between the two pulses transmitted is more important
when the branch direction is against that of the incident pulse (i.e., when the
junction is excited at port 2), in which case the results are rather similar to
those shown in Figure 6.4a for the T-junction. Regarding the reflected pulses
recorded at ports 1 and 2, some differences may be observed mostly in the last
part of the pulse, which suggests some difference in the dynamic behaviour of
the junction.

These statements are supported by the results obtained with the excitation
at port 3, shown in Figure 6.5c. Here, it appears that again the amplitude of
the transmitted pulse is higher when there is no significant change in direction
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Figure 6.5: Experimental results for the Y-junction in the time domain. (a)
Excitation at port 1; (b) excitation at port 2; (c) excitation at port 3. Ports are

denoted as in Figure 6.1.

along the transmission path (in this case, from port 3 to port 1). However,
the differences are not as apparent as those seen in Figure 6.54b, which is
reasonable considering that here there is some change in direction in the two
transmission paths. It is also worth noticing the clear differences observed
between the reflected pulse recorded at port 3 and those recorded at the other
two ports. A much more complex time evolution can be observed in the case
of port 3, which again suggests that wave dynamics inside the junction depend
significantly on the port at which the junction is excited.

In the frequency domain, the results obtained for the transmission and
reflection coefficients defined in Equation (6.1) are analysed. For brevity, only
the modulus of these coefficients will be considered, as this contains significant
information about the overall energetic behaviour of the junction. The results
for the T-junction are shown in Figure 6.6, where it can be observed that
the values obtained in the very low frequency range (below 200 Hz) are fully
consistent with the time domain results shown above in Figure 6.4: when
exciting the junction at port 1, it is seen that |T12| is systematically larger
than |T13| in this frequency range, whereas when the excitation is at port 3
the differences between |T31| and |T32| are significantly smaller.
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Figure 6.6: Experimental results for the T-junction in the frequency domain. (a)
Excitation at port 1; (b) excitation at port 3. Ports are denoted as in Figure 6.1.

At higher frequencies, above 200 Hz, it can be seen that the behaviour
of |T12| and |T13| is essentially flat around mean values of 0.65 and 0.64, re-
spectively, with a maximum deviation from the mean of 0.065 in |T12| and of
0.05 in |T13|. On the contrary, in the case of |T31| and |T32| their mean values
are very similar to those of |T12| and |T13| (0.64 and 0.63, respectively) but
some relevant acoustic features can be detected in both coefficients between
1000 and 1250 Hz, mostly in the case of |T31| where the deviation from the
mean value reaches a maximum of 0.125, while |T32| follows the same trend
but with a maximum deviation from the mean of 0.08 . This confirms, on one
hand, that when the junction is excited at port 3 the two propagation paths
are substantially equivalent and, on the other hand, that their behaviour is
different from that obtained when exciting the junction at port 1.

This second statement is fully supported by the spectra of the reflection
coefficients |R1| and |R3|: it is apparent that |R3| is overall larger than |R1|
for frequencies below 200 Hz, as suggested by the results shown in Figure 6.5,
but now without any uncertainty due to the difference in amplitude between
the incident pulses used in each test. Additionally, the trend observed is
rather different for frequencies above 200 Hz, and most notably above 1000
Hz, where |R1| shows a certain decreasing tendency whereas |R2| increases
with frequency.

The corresponding results for the Y-junction are shown in Figure 6.7.
Again, results below 200 Hz confirm the time domain tendencies observed in
Figure 6.5. In this frequency range, it is seen that while |T12| is only slightly
higher than |T13|, when exciting at ports 2 or 3 one finds that the transmission
coefficient corresponding to a smaller change in direction (that is, |T21| when
exciting at port 1 and |T31| when exciting at port 3) is significantly larger than
the other one, and that this effect is more noticeable the larger is the change
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Figure 6.7: Experimental results for the Y-junction in the frequency domain. (a)
Excitation at port 1; (b) excitation at port 2; (c) excitation at port 3.

in direction.
When considering frequencies above 200 Hz, noticeable differences are also

observed between the case with excitation at port 1, for which results very
similar to those shown in Figure 6.6a are obtained, with small differences
between |T12| and |T13| and an almost flat behaviour with little dependency
on frequency, and the other two cases, in which the transmission coefficients
corresponding to the propagation path with the smallest change in direction
(|T21| and |T31|) are significantly and systematically higher than those imply-
ing an important change (|T23| and |T32|, respectively) except at the highest
frequencies represented.

However, it is in the reflection coefficients where the effect of the change in
the excitation port is more apparent. In fact, the results for R1 do not differ
substantially from those obtained for the T-junction and shown in Figure 6.6a,
neither in the low frequency values nor in the high frequency trend. On the
contrary, the high frequency behaviour seen in R2 and R3 is a clear indication
of the change produced in the dynamic characteristics of the junction when
the excitation port is changed, an effect that could be guessed from the time
domain results of Figure 6.5 but now is fully confirmed. Actually, a well-
defined trend of picks and troughs can be observed in both cases, with similar
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shape but a clear frequency shift, which provides a sort of acoustic signature
of the dynamic behaviour of the junction. The fact that such a behaviour is
not apparent in the spectrum of R3 for the T-junction shown in Figure 6.6b
indicates that such dynamic issues are suppressed by the symmetric nature of
the excitation through a perpendicular branch.

6.5.2 Assessment of modelling approaches considering a 0D
description of the junction

In this section, modelling approaches in which the junction itself is regarded
as a 0-dimensional element, while the flow in the adjacent ducts is assumed to
be one-dimensional, will be evaluated. In the context of the staggered mesh
finite volume method, this corresponds to the case in which the junction is
regarded as a single volume and the adjacent ducts are meshed only in the
axial direction. The pressure loss-based model used here falls also within this
category since the junction branches are connected through an auxiliary 0D
element.

Once again, separate analyses for the time and the frequency domains are
presented.

Starting with the time domain, in Figure 6.8, direct comparison between
the experiments and the method with the momentum diffusion term (MDT)
as flux limiter is given for the case of the T-junction. The figures at the top
provide a direct representation of the results obtained, whereas in the figures
at the bottom the differences between the experimental and numerical results
are represented (these are labelled as ∆R and ∆T for reflected and transmit-
ted pulses, respectively). In general, the model reproduces the experimental
results within reasonable limits, but with a superimposed oscillation due to
the development of the pulse from station 0 to station 1 (refer to Figure 6.3)
and which is a consequence of the way in which the inlet boundary condition
has been set. The scale of the vertical axis in the differences plots has thus
been chosen so as to allow proper comparison for the times not affected by
those oscillations.

From the differences plots, it is apparent that the numerical results tend to
underestimate the actual measured values in the trailing part of the pulses, for
t > 0.85 s, the differences being larger in general for the case of the reflected
pulse. The situation is rather more complex for the previous instants, with
different trends observed for the transmitted and reflected pulses, and with a
noticeable influence of the port at which the junction is excited.

The results obtained for the rest of the modelling approaches considered
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Figure 6.8: Experimental vs. modeled results for the T-junction: raw data (top)
and differences (bottom) in the time domain, momentum diffusion term (MDT)

method. (a) excitation at port 1; (b) excitation at port 3.

are compared in Figure 6.9, where for clarity the experimental results are not
shown in the top figures, but the bottom figures have been expanded to allow
proper analysis of the behaviour observed in each of the propagation paths.
It is apparent that the conventional pressure loss method (labelled 1D in the
figure) is much less dispersive than any of the staggered-grid methods, and thus
better suited for this particular calculation setting. This is particularly true
in the case of the reflected pulses, where the conventional method approaches
the measured values considerably earlier. It is also apparent that while no
significant differences can be found between the MDT and the FCT methods
in the reflection seen from port 1, this is not the case when the junction is
excited at port 3: the FCT method exhibits larger differences, except in the
last part of the reflected pulse.

Regarding the different transmission paths, it can be observed that, while
relatively small differences between all the methods are seen in the case of
transmission from port 1 to port 2 (the performance of the conventional
method being slightly better), significant differences appear at intermediate
times in all the cases in which port 3 is involved. There is a clear trend in
the results obtained in these cases, in the sense that the conventional method
produces the lowest values, the FCT method the highest values, and those
produced by the MDT method lie in between. However, the maximum differ-
ences are observed at time instants in which the amplitude of the transmitted
pulses is relatively high.
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Figure 6.9: Comparison between the different models for the T-junction: raw data
(top) and differences (bottom plots) in the time domain. (a) excitation at port 1;

(b) excitation at port 3.
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As an additional criterion for the comparison of the performance of the
different modelling approaches, the mean quadratic error corresponding to the
differences shown in Figure 6.9 was computed. A time window with 0.82 <
t < 0.95 was chosen to avoid the large oscillations and to focus on those times
for which the differences between the methods are more apparent.

The values obtained for the mean quadratic errors are summarized in Ta-
ble 6.1, where it is confirmed that the best values for the reflection coefficients
are those provided by the conventional method, while the FCT method gives
the best approach to the transmission coefficients.

Table 6.1: Values of the mean quadratic error: T-junction.

Path MDT FCT 1D
R1 1.514× 10−4 1.842× 10−4 1.448× 10−4

R3 1.102× 10−4 2.046× 10−4 1.019× 10−4

T12 1.005× 10−4 9.932× 10−5 6.926× 10−5

T13 1.609× 10−4 1.298× 10−4 1.774× 10−4

T31 1.121× 10−4 1.094× 10−4 1.114× 10−4

T32 1.554× 10−4 1.245× 10−4 1.833× 10−4

Similar comments can be made about the comparison shown in Figure 6.10
for the case of the Y-junction. Again, the conventional method reproduces
better the behaviour of the reflected pulses, regardless of the excitation port,
and the MDT and the FCT methods exhibit significant differences only when
the junction is excited at port 3, following the same trend as for the T-junction.

The trend is also very similar for the different transmission paths. Trans-
mission between ports 1 and 2 is acceptably reproduced by all the modelling
approaches, regardless of the exciting port, again with a slightly better perfor-
mance of the conventional model. In those cases in which port 3 is included
in the transmission path, the tendency observed is again the same when the
junction is excited at ports 1 or 2, with a small difference with respect to the
T-junction when the excitation comes from port 3: in this case, the lowest val-
ues are those provided by the MDT method, most notably in the transmission
from port 3 to port 2.

Again, the mean quadratic errors were calculated, and the corresponding
results shown in Table 6.2 confirm the previous comments.

From these results, it is apparent that the conventional pressure loss model,
while is not able to account for all the differences observed between the two
transmission paths studied in each test, could still provide a sufficient approx-
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Table 6.2: Values of the mean quadratic error: Y-junction.

Path MDT FCT 1D
R1 1.575× 10−4 1.915× 10−4 1.273× 10−4

R2 1.992× 10−4 2.172× 10−4 1.681× 10−4

R3 1.648× 10−4 1.369× 10−4 9.186× 10−5

T13 1.514× 10−4 1.322× 10−4 1.742× 10−4

T21 1.992× 10−4 2.172× 10−4 1.681× 10−4

T23 1.336× 10−4 1.296× 10−4 1.141× 10−4

T31 1.669× 10−4 1.949× 10−4 1.355× 10−4

T32 2.117× 10−4 1.516× 10−4 1.751× 10−4

imation to the real situation if the focus of the problem is on the reflection
properties of the junction and only time domain issues are relevant for the
problem under study (for instance, the eventual influence of a reflection at
an intake junction on the volumetric efficiency on the engine). The staggered
mesh finite volume method appears to be more sensitive to the relative di-
rections of the different branches, mostly when the excitation comes from the
side branch (port 3), as should be expected since the momentum equation is
actually solved, albeit in an approximate way, at the junction, whereas in the
conventional model such effects are included only through their influence on
the pressure loss coefficients.

As already detected when describing the experimental results, it is in
the frequency domain where the benefits of the staggered mesh finite vol-
ume method are more apparent. Consider first the results corresponding to
the T-junction, shown in Figure 6.11 in the case of the reflection coefficients.
Here, using either MDT or FCT as flux limiter, the staggered mesh finite
volume method produces results for the reflection coefficients which overesti-
mate dynamic effects when the excitation is at port 1, but produces a suitable
approximation up to 1000 Hz when the excitation is at port 3 and the FCT
flux limiter is used. In comparison with this, it is apparent that the conven-
tional pressure loss model (again labelled as 1D in the figure) is unable to fully
capture the dynamic features of the results, while still providing a sort of suit-
able average value, even if all the dynamic issues are lost, as an unavoidable
consequence of the quasi-steady assumption underlying the calculation.
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Figure 6.10: Comparison between the different models considered for the Y-junction
(time domain): (a) excitation at port 1; (b) excitation at port 2; (c) excitation at

port 3.
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Figure 6.11: Comparison between the experimental results and the different models
for the reflection coefficients of the T-junction (frequency domain): (a) excitation at

port 1; (b) excitation at port 3.

Figure 6.12: Comparison between the experimental results and the different models
for the transmission coefficients of the T-junction (frequency domain): (a) excitation

at port 1, transmission through port 2; (b) excitation at port 1, transmission
through port 3; (c) excitation at port 3, transmission through port 1; (d) excitation

at port 3, transmission through port 2.

The corresponding transmission coefficients are shown in Figure 6.12, where
it can be observed that the staggered mesh finite volume method produces
results that follow the overall trend of the experimental results, with two ex-
ceptions: when the excitation is at port 1 the method underestimates the
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transmission to port 3, and when the excitation is at port 3 the method is
unable to capture the behaviour observed between 1000 and 1250 Hz. In the
case of the conventional model, it is apparent that in this case it is fully unable
to reproduce neither the level nor the dynamic features of the measured data,
the only acceptable results being produced when the excitation is at port 1
and that only for very low frequencies.

This essential difference between the two modelling approaches considered
is even more apparent in the case of the Y-junction, whose results are shown in
Figures 6.13 and 6.14 for the reflection and transmission coefficients, respec-
tively. In this case, the results provided by the conventional model are rather
similar regardless of the port at which the junction is excited. In all the cases,
an acceptable value of the transmission coefficient in the very low frequencies
is produced in those propagation paths with smaller change in direction, and
also a suitable average value for the reflection coefficient as seen from any
of the exciting ports. However, differences in transmission between the two
propagation paths are not reproduced in any case and, moreover, the results
start to decrease monotonically at about 200 Hz and reach totally unrealistic
values for frequencies above 750 Hz in all the cases.

Figure 6.13: Comparison between the experimental results and the different models
for the reflection coefficients of the Y-junction (frequency domain): (a) excitation at

port 1; (b) excitation at port 2; (c) excitation at port 3.
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On the contrary, the staggered mesh finite volume method reproduces quite
fairly the overall dependency with frequency, but tends to overestimate the in-
fluence of the change in direction of the propagation path on the transmission
coefficients (and thus to underestimate the value of the corresponding coef-
ficient). With this geometry, this effect is especially evident in the results
obtained with the FCT flux limiter for |T13|, |T23|, |T31| and |T32|, i.e. all the
cases in which the side branch (port 3) is involved. On the contrary, the results
of the FCT method are affected by a certain overestimation when transmission
through the main branch is considered (|T12| and |T21|). Accordingly, with the
description given in chapter 3, this difference in behaviour between the FCT
and the MDT methods can only be due to the effect of the application to
the junction itself of the different ways used to handle the information of the
neighbouring volumes when limiting the flow.

In the case of the reflection coefficients, the overestimation of the junction
dynamics already observed in the T-junction is also present here when the
junction is excited at port 1, but the measured dynamics are quite successfully
reproduced when the junction is excited at ports 2 and 3. The characteristic
frequencies governing the reflection coefficient are not exactly captured, but
the overall amplitude and the influence of the exciting port are reproduced by
the numerical results.
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Figure 6.14: Comparison between the experimental results and the different models
for the transmission coefficients of the Y-junction (frequency domain): (a) excitation

at port 1, transmission through port 2; (b) excitation at port 1 , transmission
through port 3; (c) excitation at port 2, transmission through port 1; (d) excitation
at port 2, transmission through port 3 (c) excitation at port 3, transmission through

port 1; (d) excitation at port 3, transmission through port 2.

6.5.3 Assessment of a modelling approach with a quasi-3D de-
scription of the junction

In order to explore the additional potential offered by the staggered mesh
method regarding the approximate solution of the three-dimensional flow field
inside the junction, such an approach was finally considered. In Figure 6.15
the mesh used is shown together, for reference, with that used in the previous
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subsections. The four volumes at the endpoints of the part shown are then
connected to a single volume, thus providing the connection with the one-
dimensional computation at the ducts. The mesh chosen is relatively modest,
in order to keep the computation time at reasonable values, but sufficient to
show any potential advantages of this description.

Additionally, in view of the previous results, only the MDT method will
be used as a flow limiter, since overall it has appeared to be more robust
and consistent, and only the case of the T-junction will be analysed in the
following, as no new qualitative issues have been identified in the Y-junction
that were not present also in the T-junction.

Figure 6.15: Meshes used in the staggered-grid method: (a) a 0D description of the
junction; (b) a quasi-3D description.

In Figure 6.16 the results obtained in the time domain with the quasi-
3D description of the junction (labelled MDT Q3D) are compared with those
previously shown in Figure 6.8 corresponding to the MDT with 0D description
of the junction. Again the plots on top represent the raw results, whereas the
bottom plots show the differences with respect to the experimental values. It
can be seen that, in all the cases, a certain improvement is achieved when
using the quasi-3D junction, improvement which is more apparent when the
junction is excited at port 3, this is, at the side branch, which is intuitively
reasonable.

Again, the mean quadratic errors were computed, as shown in Table 6.3.
These results indicate that, while the reflection coefficients exhibit a similar

mean error, there is a substantial improvement in the transmission coefficients,
thus confirming the previous analysis.

However, the improvement achieved is not sufficient to produce results
comparable to those shown in Figure 6.9 for the conventional model in the case
of the reflection coefficient, and the differences in the transmission coefficients
are clearly significant only when the junction is excited at the side branch.
Therefore, while it appears that further refinement of the mesh at the junction
should improve further the quality of the results, this might produce in turn
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Figure 6.16: Influence of the description of the junction in the time domain, MDT
method: raw data (top) and differences with measurement (bottom). (a) Excitation

at port 1; (b) excitation at port 3.

Table 6.3: Values of the mean quadratic error: T-junction.

Path MDT MDT Q3D
R1 1.514× 10−4 1.513× 10−4

R3 1.102× 10−4 1.809× 10−4

T12 1.005× 10−4 1.018× 10−5

T13 1.609× 10−4 1.469× 10−4

T31 1.121× 10−4 1.044× 10−4

T32 1.554× 10−4 1.249× 10−4

a noticeable increase in the computation time.
Quite unexpectedly, when first looking at the results in the frequency do-

main, the improvements just commented did not have a translation. Both
the reflection and transmitted coefficients were even showing a certain degree
of degradation in the quality of the results, with the abnormally high values
achieved at higher frequencies, specially when the junction was excited at port
1. After further research, it was detected that some spurious high-frequency
oscillations was being generated at the interface between the quasi-3D junction
and the 1D elements of the adjacent ducts, due to the virtual merging of four
volumes into a single one. The pressure data was precisely being taken from
the volume next to the interface and it was also found out that the spurious
oscillation had a really low amplitude and it rapidly dissipated when moving
away from the interface.
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Figure 6.17: Influence of the description of the junction on the reflection coefficients
(frequency domain), MDT method. (a) Excitation at port 1; (b) excitation at port 3.

Therefore, the solution adopted was to take the data from a volume several
cells away from the interface, thus avoiding any degradation in the quality of
the frequency domain results. The reflection coefficients are shown in Fig-
ure 6.17, where it can be seen that the new results offer a similar behaviour to
simpler mesh ones, with a noticeable shift in frequency. This effect was, on the
other hand, expected, since this shift in frequency in the reflection coefficient
depends directly on the distance at where the measurements have been taken,
shifting to lower frequencies the further from the device. In any case, at low
frequency, the two predicted curves almost overlap for both configurations.

The same approach was followed for the transmission coefficients shown in
Figure 6.18, with the data taken several cells away from the interface. The
results offered by the more detailed mesh follow a similar trend when compared
to the simple mesh, specially in the lower frequency. Some differences in
level can be seen at some regions, with a less flat behaviour of the quasi-3D
mesh. It is hard to tell which of the two methods offer better results, since
neither of them can completely follow the transmission coefficient experimental
results, but it can be concluded that in this case, the quasi-3D description
of the junction does not provide significant improvements for the acoustic
characterization.

Besides, it is possible that, even after taking the results at a safe distance
from the interface between the quasi-3D junction and the one-dimensional
ducts, some residual degradation of the results is still present in the coeffi-
cients shown, resulting in the small level differences discussed. In order to
clarify this point, the whole system was meshed as shown in Figure 6.15b
for the junction, and the results are shown in Figure 6.19, only for the case
in which the junction is excited at port 1. It is apparent that a significant
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improvement in the quality of the transmission coefficients is achieved, now
showing a more realistic influence of the change in direction. In the case of
the reflection coefficients the improvement is not so apparent, but the shape of
the curve is smoother, what indicates that further refining of the mesh could
lead to substantially improved results. However, that would be impractical,
since the computation time increases substantially when the whole system is
meshed in this way. Another possibility to be address in future work comes
from developing a more complex technique for the connection between meshes
able to avoid the unexpected spurious oscillations found, for example, using a
virtual volume in a similar fashion as it was presented in section 4.3.

Figure 6.18: Influence of the description of the junction on the transmission
coefficients (frequency domain), MDT method. (a) Excitation at port 1,

transmission through port 2; (b) excitation at port 1, transmission through port 3;
(c) excitation at port 3, transmission through port 1; (d) excitation at port 3,

transmission through port 2.
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Figure 6.19: Influence of using a quasi-3D approach for the whole system on the
reflection and transmission coefficients (frequency domain). MDT method,

excitation at port 1. (a) Reflection at port 1; (b) transmission through port 2; (c)
transmission through port 3.
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6.6 Summary and conclusions

The objective of this chapter was to establish the potential of staggered mesh
finite volume models as a way to improve the description of the effect of simple
duct junctions on an otherwise one-dimensional flow system, as the intake
or exhaust of an internal combustion engine. With that purpose, specific
experiments were performed making use of a modified impulse method, in
which two different junctions were characterized as a multi-port, and that
provided precise and reliable results on the propagation of pressure pulses
across junctions.

The experimental procedure was detailed, explaining how three measure-
ments are needed for each case. Those three measurements consist on imposing
an excitation in one of the ducts with anechoic terminations in the other two
ducts, repeating the process for every duct. The incident pulse is generated
by means of a high speed electrovalve that controls the discharge from a high-
pressure tank.

The results obtained were then compared to numerical results obtained
from different methods, both in the time and the frequency domains. First,
methods assuming a zero-dimensional description of the junction were as-
sessed, including the staggered mesh finite volume method with different flux
limiters and, as a reference for comparison, a more conventional pressure loss-
based model. Then, the potential of using the staggered mesh finite volume
method in order to produce a quasi-3D description of the junction, to be cou-
pled with the one-dimensional description of the adjacent ducts, was explored.

As an overall conclusion of the results found, one may state that none
of the modelling approaches considered is able to reproduce totally the ob-
served behaviour. However, the performance of the different models is such
that a suitable choice seems to be possible depending on which is the actual
focus of the problem under study: situations in which a suitable time domain
description may be sufficient may be addressed either with the conventional
quasi-steady pressure loss model (most notably when the focus is on the re-
flection properties of the junction) or with the staggered mesh model with
quasi-3D junction description (in this last case, when the main interest is on
transmission, and given that the lengths involved in the problem will not be
as long as to give rise to spurious oscillations due to the dispersive character
of the method).

When the focus is on the frequency domain and on the dynamic behaviour
of the junction, it is the staggered mesh method the one that provides the most
suitable results, at least from a qualitative point of view, as a consequence
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of the fact that momentum conservation across the junction is accounted for.
However, due to spurious oscillation arising in the interface proximity from the
method used to couple a quasi-3D junction to the 1D ducts, no substantial
improvements were found in using a quasi-3D description of the junction,
since very similar results with a lower computation time have been obtained
with the zero-dimensional description of the junction, and with a full quasi-
3D description of the whole system, even though the quality of the results
was noticeably improved, the increase in computational cost usually makes
this last option unacceptable in practice. It is thus clear that further work is
needed in this case in order to find the optimal settings for the calculation,
most notably in the connection between the quasi-3D and the 1D regions.

Finally, it should be recalled that no empirical information has been in-
cluded in the staggered mesh method used; the incorporation of such informa-
tion in terms of effective sections and characteristic lengths and the evaluation
of their potential could be additional topics for further research.
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7.1 Introduction

In this chapter, a critical review of the present work is performed. Main find-
ings and contributions of the thesis are included in section 7.2, differentiating
between the numerical method development phase and the validation process.

Section 7.3 is devoted to the enumeration of limitations of the model and
the approach followed in this thesis, which includes the limitations intrinsic to
the numerical method approach that was chosen and some other issues that
were found and appointed in this work.

Finally, Section 7.4 covers potential improvements that may be explored
to improve the applicability and general performance of the quasi-3D model.

7.2 Main contributions

The main contribution of this thesis is the development of a non-linear quasi-
3D numerical method for fluid-dynamics to be used along with an existing
one-dimensional code for engine simulations. This model is able to account
for phenomena that escape a one-dimensional approach capabilities, due to
their three-dimensional nature, whilst the computational cost is not greatly
increased. These properties makes the method specially interesting for non-
linear acoustics predictions in the core of a one-dimensional model.
Numerical method

The quasi-3D model here developed makes use of a non-linear second order
time and space discretization based on a finite volumes staggered-grid. This
so-called staggered grid mesh approach creates two different types of elements
in the mesh, performing the calculation of some properties of the fluid in one
of the element types and the rest in the other one. In this case, the mesh
differentiates between volumes, where scalar magnitudes are calculated, and
connectors, which can be seen as flat surfaces linking two volumes and store
the vector variables, such as momentum or space orientation. The calculation
of the conservative variables is made by using a discretization form of the Eu-
ler conservation equations in its three-dimensional form. Therefore, the mass
and energy equations are solved in the volumes and the momentum equa-
tion, in the connectors. It is precisely in the discretization of the momentum
equation when the simplification that designates the numerical method as a
quasi-3D model appears, for this equation is treated as a one-dimensional mo-
mentum equation in the direction orthogonal to the surface of the connector,
where it is solved. In this way, a single equation needs to be solved for each
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connector, instead of the three coupled equations of a regular centred finite
volume scheme for the momentum term in each volume. The fact that each
connector has associated an orientation in space makes it possible to keep
the three-dimensional modelling capabilities of the method with a still low
computational cost.

As any second-order scheme, this quasi-3D model is affected by the occur-
rence of non-physical overshoots in the vicinity of discontinuities in the flow
variables [57]. In order to remove those overshoots, two flux limiters commonly
used in finite differences schemes have been adapted: a Flux Corrected Trans-
port (FCT) technique [1] and a Total Variation Diminishing (TVD) method [2],
along with the momentum diffusion term (MDT) described by Montenegro et
al. [28], already applied to similar methods. The outcome method with the
corresponding flux limiters was tested in the well-known shock-tube problem,
succeeding in removing the over-oscillations associated with the propagation
of the shock wave. Only in the TVD method some low amplitude oscillations
were still present in the solution; however, a more extensive performance test
and validation of the method and the flux limiters is performed in subsequent
cases in order to obtain better conclusions.
Boundary conditions

Eventually, in order to secure that the final objective of connecting the
quasi-3D staggered grid method to the one-dimensional collocated mesh method
used in OpenWAM [122] is achieved, some tests have been performed, obtain-
ing some promising preliminary results. Due to time restrictions, the full
connection between methods was not feasible, but to assure that it could
be performed in the close future, a one-dimensional collocated scheme based
on Godunov’s method [57] was implemented as a representative modern one-
dimensional scheme to be connected to the quasi-3D method. The boundary
condition developed is based on the virtual cell approach, where the cells that
shall be connected, here called boundary cells, are actually connected to an-
other cell that will inherit the values of the variables of the boundary cells from
the other mesh and use them as initial conditions every time step. Although
there are some issues that had to be solved due to the different elements and
their positioning in the mesh, the results obtained after simulating the shock-
tube problem, with each half of the duct using one method, are completely
satisfactory, with the correct prediction in the values of the variables of the
four zones and the transition between them, within the limitations of each
method. Only some small oscillations were detected in the quasi-3D method
solution, but mainly due to the use of no flux limiters for these preliminary
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tests. Even though there is still some work to do for this task, the results are
promising and assure that the connection is possible and feasible.
Applications and validation process

After the description of the quasi-3D numerical method and the set up
of the boundary conditions, the model is almost ready to be used in its full
potential. However, the development process would not be complete without
an extensive validation of the model, whether to show its correct performance
or to provide examples where it can be applied. With this goal, the quasi-3D
method has been used to simulate a set of three-dimensional devices, modelling
increasingly complex geometry systems with different distributions of inlet
and outlet ducts to explore as many options as possible while searching for
three-dimensional effects that a one-dimensional approach cannot predict. The
experiment selected to be modelled is an impulsive test rig, where a pulse is
generated at the beginning of the inlet duct and the incident and transmitted
waves are measured, right before arriving the device and after traversing it,
respectively. From these two waves it is possible to calculate the transmission
loss of the device, providing a validation of the accuracy of the results in time
domain and the non-linear acoustics prediction capabilities. As validation
tool, a linear acoustics code was used and, in some cases where it was not
enough to determine if the difference in the results between non-linear and
linear approach were due to the influence of the three-dimensional effect or to
inaccuracies, a commercial non-linear program performing exactly the same
simulation was used.

The general trend followed by the results shows that, although the three
flux limiters prove to be proficient in removing the non-physical spurious oscil-
lations in the time domain results, the Momentum Diffusion Term consistently
arises as the best option when analysing the acoustic behaviour of the system.
The Flux Corrected Transport technique is a close second, with a somewhat
more dissipative solution, and finally the Total Variation Diminishing flux
limiter increases the dissipative behaviour, specially at higher frequencies.
However, it could be concluded that performance of the quasi-3D method
is satisfactory and the objective of validating its acoustics capabilities with
three-dimensional systems has been fully accomplished.

A different but equally interesting application of the quasi-3D method
is the modelling of duct junctions. The method developed offers a simple
approach to the problem with the objective to provide an accurate and easy
to use tool to model junctions, since it is able to account for the pressure loss
associated to the change of flow direction of junctions only with the relative
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orientation of the ducts and its section as input data [3]. With this purpose,
two geometries were considered, a T-junction and Y-junction, which where
also simulated in an impulsive test rig. In this case, the results obtained
with the quasi-3D method, employing each one of the three flux limiters, were
compared with the results of a one-dimensional approach with a pressure-loss
junction model, used as a reference solution, and also specific experiments
have been performed after manufacturing both junctions.

The results in the time domain show the better performance of the quasi-
3D method regarding the prediction of the amplitude of the transmitted
waves, giving a better agreement with the experimental results than the one-
dimensional approach. The conventional pressure-loss model is not able to re-
liably capture the difference in amplitude between the two transmitted waves.
It is however in the frequency domain when the superior modelling capabili-
ties of the quasi-3D method are more evident. The one-dimensional method
in frequency is only capable of giving a flat value for the reflection coeffi-
cient, although the average value could be a decent approximation, but for
the transmission coefficient, the conventional model is completely unable to
reproduce neither the level nor the dynamic features of the solution. The
quasi-3D method, on the other hand, even though for some cases these dy-
namic effects can be overestimated, it is able to produce a much more suitable
approximation in the frequency domain and follow the overall trends of the
experimental results. It was also stated that using a more detailed grid for
the junction can bring some improvements in the accuracy of the solution, but
with a higher computational cost and it should be studied if that slight im-
provement in accuracy justifies the rather noticeable increase in computational
cost. It is also worth mentioning that the results in the cells in close proximity
to the transition zone between the detailed mesh and a one-dimensional duct
can present a strange behaviour in the frequency domain for higher frequen-
cies, as it was detected in some cases. As a conclusion, it can be stated that
the overall results provided by the quasi-3D method offer a better description
of the wave dynamics and the general frequency domain solution compared
to the conventional models used in one-dimensional codes for duct junctions,
while requiring only the knowledge of the geometry of the junction.

7.3 Limitations

Even though the main objectives presented in chapter 1 were accomplished,
the model developed still presents some limitations that should be addressed.
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• As it was explored in chapter 5, the behaviour of the acoustic solution
obtained when using the TVD flux limiter was heavily influenced by the
value of the parameter ξ. In the TVD schemes studied in the literature
review, this parameter was stablish at the value of ξ = 0.5, as it was said
to provide good results for a majority of cases without needing to tune it.
However, when the TVD method was used for the parallelepiped muffler,
the results obtained where unacceptably dissipative, to the point that
the transmission loss calculated could only predict really low frequencies.
It was proved that by reducing the value of the parameter, the results
quality could be increased until appropriate levels. Even though it is
true that the value set for the parallelepiped muffler proved to be also
the most suitable for the rest of simulations performed in this work, that
does not mean that it will always be the case. Therefore, it is possible
that a suitable value of ξ will have to be found for different simulations,
which might be at least inconvenient when deciding to use the method.
The FCT technique is in a similar spot with the parameter ϑ, although
it was not needed to fit it in any of the simulations performed in this
work.

• Nevertheless, even after fitting the respective parameters, the TVD and
FCT methods provided more dissipative results than when using the
MDT flux limiter. As it was said above, reducing the value of those pa-
rameters bring a less dissipative solution, but reducing it too much might
also result in the appearance of some instabilities. In chapter 5 it was
also explored how the lowest value of ξ tested entailed more oscillations
in the time domain solution and some negative values in the transmis-
sion loss calculated, which is not physically possible. After these issues,
it might appear that there is no point in using a flux limiter different
than the MDT method, however, the fact that it has usually provided
a somewhat better solution does not mean that it will always be the
case. There may be some simulations in which the MDT method fails
to properly reproduce the behaviour of the system, whereas the FCT or
TVD schemes give a good approximation. The conclusion that should be
deduced here is that the MDT method should be the first option when
simulating, and if the results are not satisfactory, the FCT and TVD
methods should be used.

• In chapter 6 it was first implemented the connection between a more re-
fined mesh with a merely one-dimensional mesh. That means that there
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was a transition between a volume with four smaller volumes by means
of four small connectors in the same direction. This did not represent
any problem in the time domain solution, but in the frequency domain
solution, a strange behaviour in the volumes in close proximity to the
transition zone was detected in the form of high values of the transmis-
sion and reflection coefficients at medium frequencies. This anomalies
disappeared when moving away from the transition zone a certain num-
ber of volumes, but it is something to take into account when modelling
this kind of connections and will need more work to develop a proper
connection.

• When testing the connection between the quasi-3D method and a col-
located one-dimensional scheme by simulating the shock-tube problem,
some small oscillations where detected in the quasi-3D side, close to the
rarefaction wave. This low amplitude oscillations may come from the
connection itself, due to the non-existent direct match between some
elements and the variables in their position in the other mesh, as it is
the case of the momentum in the connectors being translated into the
collocated scheme. Additional tests are needed in this regard, since these
perturbations are apparently too weak to disturb the final solution and
are expected to further decrease once flux limiters are implemented, but
still, it will have to be checked. Also, the anechoic termination bound-
ary condition in not able to completely remove reflections, making it not
usable for some applications.

• Finally, one limitation that has to be accounted for is the computational
cost of the numerical method. From the beginning it was presented as an
improvement of a one-dimensional scheme with three-dimensional mod-
elling capabilities, but a computational cost comparable a one-dimensional
model. With the simplifications adopted, it will always be much faster
than a complete CFD three-dimensional code, but the truth is that when
trying to model a reasonably detailed mesh, the computational time will
be noticeably increased. Using a simplified version of the mesh would
solve this, but in that case the accuracy might also suffer, so a compro-
mise solution should be found. Although the increase in computational
time is an evident consequence of modelling three-dimensional cases,
since the number of cells and connections needs to be higher, it is some-
thing that needs to be taken into account when planning the simulations.

183



Section 7.4 Chapter 7

7.4 Future work
In this work, the basis of the numerical method with different options to guar-
antee its stability by means of flux limiters has been developed, as well as an
extensive validation process. However, there are still some activities that need
to be accomplished, or at least considered, before the final implementation in
the main one-dimensional code.

• The first task that should be pursued is the complete translation of
the code to the programming language in which OpenWAM is written,
which is C++. The quasi-3D method, on the other hand, has been
originally written in an interpreted programming language due to its
easier implementation as an standalone tool. Nevertheless, a compiled
programming language is always preferred for the final product, since it
offers a much faster execution time. Therefore, the translation should
be performed directly into OpenWAM project, which will also simplify
their connection. It is worth noting that the fact that the code was first
implemented in a interpreted programming language is the reason for
which no specific computational times of the method have been provided
through this work. The times needed for the simulation would have
been misleading, since once the translation to a compiled language is
performed, these values will be severely reduced.

• Additionally, further research is needed regarding the recommended val-
ues of the parameters ξ and ϑ for the TVD and FCT methods, respec-
tively. As it was stated in chapter 5, these parameters directly influence
the amount of dissipation of the method in such a way that reducing their
values also reduces the dissipation in the solution, but if their values are
too low, some other issues appear, like the inability of removing spurious
oscillations or some negative values in the transmission loss calculated,
which is physically not possible.

• In chapter 3, when describing the adaptation of the TVD method to a
three-dimensional mesh, there was some issues that had to be faced, be-
ing the most important the treatment of the so-called end-volumes. The
TVD method used needs information of two cells in each side for each
direction, so when reaching an end-volume, which is not connected to
enough volumes in some direction, some assumptions have to be made.
In a one-dimensional scheme, this is not a big issue since only two vol-
umes will need this special treatment, one on each end of the duct, but
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in a three-dimensional case, the number of end-volumes is much higher,
since all of the volumes in the surface will be in that situation. There-
fore, the decision that was taken consist in assuming that the needed
values for the TVD method in an end-volume from the side where there
are no volumes will come from the opposite side, but inverting the sign
of the flow. This means that if, for example, a volume is not attached to
any other volume to its right side, the values for the TVD flux limiter
for that volume will be taken from the left side volume, changing only
the sign of the flow speed. This solution proved to work, but might be
the responsible of the sometimes excessively dissipative behaviour of the
quasi-3D method with the TVD flux limiter, hence some other options
should be explored with the objective of reducing the dissipation of the
method.

• In order to perform the validation process of the numerical method,
there was no need of implementing source terms in the code, since they
would not affect the solution. However, before adding the code to the
one-dimensional program, the option of considering source terms should
be implemented, like heat transfer between the fluid and the walls, as it
is in the rest of the model. Another model present in OpenWAM that
should eventually be part ot the quasi-3D method is an improved species
model, capable of tracking the evolution of the composition of the fluid.
This includes better models for the gas properties, like the heat capacity
ratio as a function of the composition and the temperature.

• Moreover, in order to have a more competitive tool, some other features
should be eventually included in the model. Some examples that have
been considered include the option of modelling absorptive materials in-
side mufflers. This is a common practice among muffler manufacturers,
so it might be an interesting addition. It was also considered to add the
possibility of model a catalyst brick with the quasi-3D method. Some
initial work was done in section 5.2 when describing the meshing tech-
niques that have been developed in this work, particularly with the case
of geometries with parallel ducts, just by adding a feature that allows
to divide each parallel duct in a certain number of identical channels to
simulate the inside geometry of a catalyst brick. The main idea is to cal-
culate only one of the small channels for each one of the original parallel
ducts and assume that the rest of small channels inside the duct have the
same properties. This way, the computational cost would be the same,
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since only one channel per duct is calculated. This strategy is usually
used in one-dimensional models of catalysts, but in that case all the
channels have the same properties. With the quasi-3D method instead,
every set of channels in a duct will have the same properties, but the set
will be different between them, giving three-dimensional resolution to
the problem. The same approach can be followed for particulate filters,
although the parallel ducts should be treated differently to model the
behaviour of a particulate filter. This option for the modelling of after-
treatment devices in engines is particularly interesting, since it would
offer three dimensional resolution by adapting validated one-dimensional
techniques and without heavily increasing the computational cost. Un-
fortunately, their implementation was not possible in this work because
better meshing techniques were required.

• Finally, only the initial steps of the development of the boundary con-
ditions has been fulfilled and there is still more work to perform in this
regard. Besides, a more extensive validation of the connection between
numerical schemes should be made once that connection is fully devel-
oped and established. The preliminary results are promising, but further
testing will be needed to secure the proper functioning of the tool with
all the flux limiters.
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