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Abstract: A multihead weighing process is a packaging teabmothat can be
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quality of food packaged in a multihead weighinggass investigated in this
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relative importance of both aforementioned objextiis dynamically managed
and adjusted. The numerical experiments are prdvite illustrate the
performance of the proposed algorithm and find tpéimum operational
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1 Introduction

1.1 Multihead weighers

Multihead weighers or combinational weighers aeglus provide accurate weights at high
packing speed, and are they currently the mostlyigged dosing method for many kinds
of products, including those with heterogeneousadtaristics (Keraita and Kim, 2007).
Combinational weighers have a number of weighingpeos that statically weigh the
product; these weight data are fed into a computhich calculates all of the possible
combinations of product weights in order to disgeti®e best combination (closest match
to target weight) to a packaging machine.

The weighing system consists of three elementseham system to automate the
product feed to the weighing stations (dependinghenlayout of the machine, the feed
system is configured either in a radial or in lic@nstruction); a system to collect the
product and feed it into a weighing hopper (thistesn consists of a set of hoppers,
commonly known as feed hoppers); and a set of vimighoppers. A detailed description
of the arrangement of feeders and hoppers in ahmeatt weigher can be found in Pulido-
Rojano et al. (2015).

1.2 Problem description

A multihead packing process performs an operatiochmosing a subsét’ from setH of
the current hoppers to produce a food package. The basic nobtled automated packing
system consists of weighing hoppers. A quantity of food is place@ath hoppet, (i =
1,2,..,n) (Karuno et al., 2007), and the weight signal rsngmitted to the built-in
computer. The computer calculates the combinatdnegeights that come closest to the
desired weightT, and the combination of the closest weights istepk from the
corresponding hoppers. The resulting empty hopaersupplied with new quantities of
food. The computer continuously repeats this poag#til it obtains the number of
packagegQ) needed, one by one. Based on our experience énfigld, multihead
weighers are able to produce between 50 and 29gas per minute, depending on the
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specific setting. The number of possible diffetempper subsetd’ depends on the number
k of hoppers to be combined each time. In factnaehbri et al. (2011) pointed out, the
optimization problem that focuses on minimizing thiference between the actual and
target package weight is equivalent to the NP-cetepubset-sum combinatorial problem
(Garey and Johnson, 1979) whers neither previously fixed nor constant.

This paper deals with the case where the numbkomberst to be combined in each
packing operation is constant and fixed in advahrcaddition, it assumes that the weights
in the hoppers follow a normal probability distrilmun.

An additional point to take into account in thiadiof packaging process is that a given
quantity of product can remain for a long timetsdorresponding hopper until it is chosen
for packing. This can be a problem when handlipgagluct that will deteriorate quickly,
such as, a frozen product. One possible way tdddlls problem is to monitor and control
the load time spent in each hopper, which can lme dy assigning a priority coefficient
P; to each hopper, as suggested by Karuno et al.7j20®e priorityP; measures the
duration of the load in hoppémbefore it is chosen for packing, and it can bewdated as
follows: Let £ denote the current iteration number of the packipgration, and lef;
denote the iteration number at which weightas thrown into thé-th hopper when the
hopper was empty. Therefoig,= £ — £; + 1 expresses the residence time (in number of
packing operations) of weightn its hopper. Note that< ¢ < Q . The idea is that hoppers
with higher priorities at a given moment shouldnbere likely to be chosen for emptying
in that packing operation.

In real-world engineering, optimization problems asften characterized by the
presence of multiple objective functions. Multi-ebfive optimization involves the
simultaneous optimization of two or more confligtiobjectives. A considerable amount
of research has been conducted in this area inp#se thirty years. The principles,
implementation and applications of multi-objectioptimization models in engineering
optimization problems can be followed in Jaimes @oéllo (2008), Marler (2009), Seng
and Rangaiah (2009), Rangaiah and Bonilla-Petat{@013), Collette and Siarry (2013),
Liu and Papageorgiou (2013), and Zavala et. al4p0This short review describes these
recent studies’ applications in industrial engimggr food engineering, chemical
engineering, and civil engineering.

1.3 Previous related works

The scientific references in the field of multiheagighing are scarce. Basically,
conference papers, patents, and commercial docatmanibf manufacturers of this type
of machine are available. With these restricticasstate-of-the-art for improving the
multihead weighing technology is presented. Sontkaas have studied the possibility of
improving multiweighing procedures in packing preses’ performance. For example,
Salicru et al. (1996) and Barreiro et al. (1998)mrsed the use of the percentage variability
reduction index for the reduction and control adguiction process variability. Keraita and
Kim (2006) investigated the optimum scheme fordbeeermination of the operation time
of line feeders in automatic combination weighéfsraita and Kim (2007) proposed a
weighing algorithm for multihead weighers basedimperation. In Karuno et al. (2007),
a second objective called “priority” is introducélhey formulated the problem as a bi-
criteria optimization problem, and proposed an atgm based on dynamic programming.
The proposed approach aimed to minimize the maximuration in the system of items
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heuristically (maximum priority), while making thietal weight of each package as close
to the target weight as possible. Some authorshmaet al., 2011; Imahori et al., 2012;
Karuno et al., 2013; Karuno and Tateishi, 2014)ehstudied the possibility of improving
the bi-criteria optimization model proposed by Kaoet al. (2007). Other authors, such as
Imahori et al. (2012) and Karuno et al. (2010)eistigated different types of actual packing
operations. In these investigations, several alyms are developed for double-layered
food packing systems and duplex packing systemsyavim an operation two disjointed
subsets are simultaneously selected to producpaekages.

1.4. Objectives and structure

This paper focuses on improving the quality of dtilmeiad packing process in a two-fold
way: the quality of the process and the sensouality of the product. Specifically, we
propose a bi-objective programming approach in otdesimultaneously deal with both
the criterion of minimizing the difference betweée target and actual package weight in
absolute value (improving the quality of the pra&)eand the criterion of maximizing the
total priority of the chosen combination of hoppéigy, P; (improving the sensorial
quality). More precisely, we use compromise programg (Yu, 1973; Zeleny, 1973;
Marler, 2009; Collette and Siarry, 2013) as a toaletermine the combination of hoppers
that comes as close to optimizing both criteridnatsame time as possible in each iteration
or packing operation, that is, each time a new agekhas to be made. An enumerative —
and, therefore, exact— procedure is proposed termé@te the best hopper combination
according to this approach. Our procedure includaes easy-to-implement way to
dynamically adjust the relative importance of eabfective (weight and priority). Further
information about multi-objective programming arttier multicriteria techniques can be
found in Marler and Arora (2004), Ehrgott (2005)aBke, J. et al. (2008) and Rangaiah
and Bonilla-Petriciolet (2013). As mentioned aboaruno et al. (2007) introduced the
use of multicriteria techniques in automated pagldystems. Later in this paper we will
point out the differences between their approachaans.

This paper is organized as follows: In sectiorh2, groblem formulation is presented.
In section 3, the bi-objective algorithm is expkin Section 4 shows the computational
experiments. In section 5, we offer the conclusiofithis work.

2 Problem Formulation

2.1 Notation

Problem parameters and symbols:
e H: Set of the curremt hoppers.
* H': Subset of the curreit hoppers.
e ¢: Current iteration number of the packing operation
e ¢;: Iteration number at which weightvas thrown into thé-th hopper when the
hopper was empty.
«  PMAX: Maximum allowed priority for any hopper.
k: Number of hoppers to be combined in each packjpegation.



Title 5

e X;: Real weight in hoppere {1, ...,n}. We assume that each weight follows a
normal probability distributionN(y;, o), with j € {1,...,5}, depending the
subgroup to which the hopper belongs (see below).

*  p; : Average weight for hopper subgropg {1, ...,5}.

e o: Standard deviation of weights in every hoppes équal for all then hoppers.

e (V. Percentage value used to calculate the stan@aidtibn of weights in every
hopper 6).

+ Delta Real value used to establighfor hopper subgroupe {1, ...,5}.

» n;: Number of hoppers in hopper subgrgup {1, ...,5}.

e d: Qualitative factor. It determines how the totalmber of hoppersn) are
distributed in each hopper subgrgue {1, ...,5}.

© Lo, Critical value of the standard normal probabiliigtributionN(0,1) for a

significance levetbr.

« T: Target weight for a single package, which is agsiito be a positive number.

e W:Total weight. It is calculated as the sum ofwleéghts provided by the selected
combination ofk hoppers.

« z,: Difference (in absolute value) between the taxgeight (") and the actual
weight of the selected combinationry.

e z,: Sum of the prioritie®; into k hoppers.

e (Q: Total number of packages needed.

Algorithm parameters and symbols:

e 6: Relative weight or importance of the priority ebjive. It is dynamically
adjusted in each iteration.

« P;: Positive integer priority in hoppere {1, ...n}.

« zMn: Minimum difference (in absolute value) betweee target weightT) and
the actual weight of the selected combinatif).(

o z"®: Maximum difference (in absolute value) betweenttirget weightX) and
the actual weight of the selected combinatif).(

o zIn: Minimum sum of the priorities; in k hoppers.

oz Maximum sum of the prioritieB; in k hoppers.

e S: The set of all valid combinations in each packageration

2.2 Sources of variability

The total weight of packagé® produced by a multihead weighing process can ée as
a random variable. The variability depends on thlees of several process and operational
parameters.

As mentioned previously, the package weight isrd®ilt of the sum of the weights
contained in the subset ok hoppers selected to form the package, assumirigttiba
weights in each hopper are normally distributedtti®aarly, if all the hoppers are
independently filled according to the same distitou N (¢, 0) and thek hoppers are
randomly selected in each packing operation, themveight of the packages would follow
a normal distributionN(ku, \/Ea), where the average package mean weidipt is

expected to equal the targét The value ofvko (the standard deviation if hoppers are
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selected at random) is considered to be an indequefity in the packaging process.
However, the subset of hoppers to be dischaijed actually not selected at random, but
rather in a driven way, so that the total weidtit= Y., X; is as close tdl' as possible.
Thereforeppzackage = VAR (3;en’ X;). This proposal was also presented by Salicru. et al
(1996) and Barreiro et al. (1998).

Note that the parametek is one of the factors that can clearly affect fimal
variability of the product, as it limits the numbsmpossible hopper combinations (i.@j.),
the number of possible different subsets of ¢4iz&om a set ofn_hoppers) in each packing
operation. For the same reason, the number ofawtdlable hoppers is also a source of
variability in the package weight. Obviously, thesting variability in each hopper (which
can be represented by the standard deviatiprw({ll somehow affect the final package
variability. It can actually be expressed in a disienless way by means of the coefficient
of variationCV (see later in subsection 4.1).

Furthermore, let us consider the general case wdeeh hopper is expected to be
filled with a different average quantity of fogg (instead of a common valyg. In this
case, the degree of variability between these geednapper weightg,, ..., u,, is expected
to somehow be related to the final package vaitgblh this paper we will explore the
case where several hoppers weights are set inssway that they share the same value
for u; (see subsections 3.1 and 4.1 later), as thiséms $hown to be an efficient strategy
to reduce package variability (Barreiro et al., 89Reraita and Kim, 2007; Garcia-Diaz
and Pulido-Rojano, 2015; Pulido-Rojano and Gard@zP2016). More precisely, Garcia-
Diaz and Pulido-Rojano (2015), and Pulido-Rojand @arcia-Diaz (2016) showed that
the strategy of dividing hoppers into 5 groups vdifierent average filling weights and a
certain deviation among these average weights viedtar strategy than an equal supply
of the product to all hoppers. Therefore, in thapgr we will use a filling strategy divided
into "5 subgroups" of hoppers.

These and other parameters, such as the maximomeall priority for any hopper
(which will be denoted a®M”*) should be considered as sources of variability in
multihead packaging process. Later, in Section & perform numerical experiences to
assess the real influence of these factors orirtakfackage quality, in terms of variability
from the targef", when using the hopper selection algorithm wegmem subsection 2.5.

2.3 Problem Constraints

The decision problem we address in this paper v toochoosethe best(or the most
appropriate combination ofk hoppers in each packing operation.

As mentioned, the number of possible different wafyshoosingc hoppers from a set
of n hoppers |{Z) =n!/(k!(n —k)!). In order to make the problem more realistic, we
state two additional constraints that d&niiopper combinatiord’ should meet in order to
be eligible:

1. | T —Yien X; | < Za/Z\/Fo—, which avoids ang-hopper combination that would
produce a package too far from the tar@etZ, ,, represents the critical value of
the standard normal probability distributidi(0,1) for a significance leved.
This is called theonfidence levetonstraint.

2. P, <PAX vie H', which means that the selectethopper combination must
not involve any hopper containing food that excedus maximum allowed
residence time (in terms of priority, as definedéction 1.2).
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Everyk-hopper combination that simultaneously meets d¢ardi 1 and 2 is said to be
avalid combination. Thesetof all valid combinationsn each package operation will be
denoted bys.

S={H € H | |H'| =k andH' meets conditions 1 and}2 Q)

Thus, the subsdi’ of hoppers selected to form the package has tmgebs. In the
following subsections, we describe our proposalibabow to make this decision.

2.4 Objective functions

In line with what was introduced in section 1.2 #election of hoppef#' to be discharged
in each package operation should address the folgpiwo objectives in order to be
considered goodcombination:
» First objective: To try to make the difference beén the real package weight
W = Y,en X; and the target weigtt as small as possible. This will be expressed
through the following objective function which wile minimized:

zZy=| T—YienX; | 2

e Second objective: To make those hoppers that hateeen discharged for a long
time (i.e., with a long residence time) more likédy be selected. In terms of
priority (see section 1.2), this can be achievedmm@ximizing the following
function:

Zy = Yien' Pi, (3

which represents the aggregated priority of a gk«dnopper combination. In the next
subsection we develop our proposal about how talsimeously take into account these
two objectives in each packing operation.

2.5 Bi-objective approach

We propose using a single weighted performance titityufunction that combines
information about the two objectives or criteriarfgeconsidered in this work (weight and
priority), where the relative weight or importarafeeach objective is dynamically adjusted
in each iteration or packing operation. More prelgisin each iteration, our approach
consists of looking for thi-hopper combination that minimizes a sort of “dist&’ to the
so-calledutopia or ideal point (z{"", z'®) in the criterion space, wherg"™ is the
minimum possible difference (in absolute valuewsetn the target and the actual weight
of ak-hopper combination for the current hopper loadd, ' is the maximum possible
aggregated or total priority, that is:

2" = min| T — Siepr Xi |, 4
H'es
and  z0'® = max Yy’ P;. (5)
H'es

Therefore,z"" and z"® are the respective optimal values for the two ctiyjes being
considered for the current hopper setting, if eafcthem was optimized separately. Prior
to calculating the Euclidean distand®) from a given solution to the ideal point, each of
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these two values (difference from target weight @midrity) is normalized and then
assigned a relative weight dfl — ) and#@, respectively, so that the final aspect of the
function whose value is intended to be minimizethesfollowing:

D= J(l—@) () vo (=) ©®)

Wherez"® andz]"" are respectively defined as the maximum differefnom the
target weight and the minimum total priority in tlwrrent set of validk-hopper
combinations.

The parametef is updated in each iteration. The idea is thabthjective of selecting
a k-hopper combination with a high aggregated priobiggomes more important as the
maximum current hopper priority gets close to tximum allowed priorityPMAX | With
this in mind, 8 can be defined as:

1
0= m ) (7)
iEH

Therefore, during the first iterations, in whichthke hoppers are expected to have low
priority values, the value of will remain relatively small, and so, the objeetiof
minimizing the difference from the target packetigi¢ will be assigned a higher
importance. As packages production progresses;ltiser the maximum hopper priority
gets toPMAX | the large will become and the greater the importance gioethé priority
objective.

The combination of hoppers that minimizes the disteto the ideal point is known to
be an efficient or nondominated solution (Marled &mora, 2004), which means that there
is no other valid combination &f hoppers that is at least as good with regardttteést)
one of the objectives (weight or priority) and i better in the case of the other objective
(Ehrgott, 2005). This is generally regarded assich@desirable property for the solution(s)
returned by multi-objective techniques.

This bi-objective approach makes it possible toilgaselect a valid k-hopper
combination that is reasonably close to optimiZiregh objectives being considered. In
order to show this, a simple practical example fantther complete numerical experiences
are presented in sections 3 and 4, respectively.

Our approach goes one step further than the ori¢abyno et al. (2007), who only
show how to generate different nondominated satstisvithout specifying which of them
should be selected in each packaging operationreskewe are suggesting a way to
automatically determine a compromise solution withie nondominated ones. Moreover,
although Karuno et al. (2007) are not following wedy lexicographic approach (i.e., a
subordinated objective importance structure), tlaeg still considering the weight
objective to be more important than the priorityestive (namely, they look for solutions
that reduce residence time without moving too faayfrom the target weight, rather than
the other way around). Conversely, we consider bbjbctives to potentially be equally
important, as explained above. In addition, th@eetve contexts for the two studies are
quite different. To be precise, Karuno et al. (20@0k for combinations of any number
of hoppers in each iteration; that is, the paranietis not fixed in advance and can change
in each iteration; also, they consider the valwgstlie weights X; to be integers and
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uniformly distributed, whereas this paper dealshwigal-values following a normal
distribution.

3 Bi-objective Algorithm

In this section, our bi-objective algorithm is am#d, along with a numerical example
showing a sample iteration. This algorithm canrbplémented in the software systems
installed in the control unit of a multihead weighe

As suggested by previous studies (see subsect®rained at a better performance,
the set of hoppers will be divided into five subgwe, with the hoppers in each of them
being filled with a different average amount ofguwot. More precisely, each hopper in the
third subgroup will be assigned an average weifht;o= T /k, whereas the rest of the
hopper subgroups will be assigned the same avevaight plus or minus a certain shift,
according to a given pattern. The mean shift iugsol, 2, 4 and 5 is determined by means
of two parametersDelta and min_Delta, to be provided to the algorithm (see Step 1).
The rest of the details about the algorithm hawenbetroduced in sections 1 and 2.

3.1 Step-by-step algorithm
e Input:
0 n: Total number of hoppers: > 0.

0 k: Number of hoppers to be combined in each pac&peyation2 <
k <n.

0 T: Target weight.T > 0.
0 mny,..,ns: Number of hoppers in each subgroup of hoppersz 0,
Vi=1,..5 Y. n =n

0 o: Standard deviation of the weight to be provittedach hoppero >
0.

0 Delta: Relative mean shift for hoppers in subgroupad @awith regard
to subgroup 3.Delta > 0.

0 min_Delta: A value such thatDelta — min_Delta is the relative
mean shift for hoppers in subgroups 2 and 4 witfare to subgroup 3.
0 < min_Delta < Delta.

o PMAX: Maximum allowed priority (number of iterationstiout being
chosen) for any hoppePMAX > 1.

0 Q: Total number of packages to be produc@d= 1.
e  Step 1l.Initialization.

0 Assign each hopper to a subgroup, so that the nuafbkoppers in
subgroupj is n;, for all ;.

0 Calculate the average hopper weight to be provittectach hopper
subgroup. uw, =T/k—Delta-o ; U, =T/k — (Delta —
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min_Delta) -0 ; u3 =T/k ; uy = T/k + (Delta — min_Delta) - 7 ;
us =T/k + Delta - 0.

0 Set initial values for weights and priorities foaah hopper. X; = 0,
P,=0,Vvi=1,..,n

0 Set an initial value for the number of producedkzayes so farg = 0.

Step 2. New packaging operationlnitialize z™» = 4o, z'"® = —o0, zM =
+oo, Zénax = —, Dmin =+, Hr,nin =0.

Step 3.Refill all empty hoppers and update prioritieszor all hopperi in
subgroup j such that X; = 0: Let X = Random value from &/(u;,0)
distribution. For all hoppei: Let P, = P; + 1.

Step 4.Discard and discharge (out of the package) any leopipat does not meet
the priority constraint.For all hopperi such thatP;, > PM2X: Let X; = 0, P, =
0.

Step 5.First evaluation ofall valid combinations, in order to calculatg™™,
znax | zmin - zmax - Eor allk-hopper combinatiorH’ such that it does not contain

any hopperi with P, = 0 and such thdtT — Yicpr X; | < Zy/Vko
Calculatez, = | T — Yy X; |. (difference from target weight)
Calculatez, = Y;cy’ P;. (sum of priorities)

z, <zt then zMt = z,.

If z; >z, then z"™* = z,.

o o o o o
=

If z, <z, thenzt = z,.
o If z, >z, then z]™ = z,.

Step 6.Check that the set of valid combinations is nottgnip z"" = +oo then:
(there is no valid combination; all hoppers mustdigcharged and refilled)For
all hopperi: Let X; =0, P, = 0; go to Step 2. Otherwise: go to Step 7.

1
Step 7.Calculate 6 = W
(relative importance of the priority objective; i recalculated before each
packing operation)

, where H is the set of all hoppers.

Step 8.Second evaluation afl valid combinations, in order to select the onettha
minimises the performance functibn For allk-hopper combinationH’ such
that it does not contain any hoppe with P, =0 and such that

| T —Yien X; | < Za/z\/za :

o0 Retrievez; andz, for H'. (they were already calculated in Step 5)

74 —zMmin 2., —zMax
o CalculateD = J 1-06) (2’1“1""*—;2“”) +6 (—ngax_zzgﬂn) .

o |If D<Dy,then letD,;,, =D, H,;, =H'
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» Step 9.Thek-hopper combination minimising is the one that has to be selected
to produce the packageReturn H,;, (as the set of hoppers to be combined to
create the(q + 1)-th package) For all hopperi belonging to H;;,: (it is
discharged into the packagd)et X; =0, P, = 0.

e Step 10.Update the number of packages produced and cheethetthe process
is finished or not.Let g = g + 1. If g < Q then go to Step 2; otherwise, END.

Steps 5 and 8 of this algorithm reveal the enurneratature of our proposal. Each of
the two steps can easily be implemented by usisteddoops (as many loops &s the
number of hoppers to be combined in each iteratiMgre precisely, because every
feasible solution (i.e., vali@-hopper combination) is evaluated in each iteratbmhe
algorithm, our approach can be said to follow ampliek enumerative strategy (or
exhaustive search), as announced in the introdusgation. In particular, the number of
combinations to be evaluated in a single iteraéquals(’;) =n!/(k! (n — k)!) at most
(because some hoppers can be discarded in Stepté the priority constraint). Although
it is a simple strategy, this allows our bi-objeetalgorithm to be considered an exact (not
heuristic) search (Michalewicz and Fogel, 2004)isTéstablishes another difference
between our bi-objective approach and the one hyiaet al. (2007), who propose a
heuristic strategy (in the sense that they do moessarily generate all the nondominated
solutions to the problem, but only those that dosecenough to the target weight). The
computational cost of generating and evaluatinghallvalid hopper combinations can be
accepted by our algorithm because it only considensbinations ofk hoppers, with the
parameterk being fixed in advance.

Notice that step 6 of the algorithm describeswasivn in which all hoppers should be
discharged in order to avoid producing packages thauld not meet the quality
requirements for the final product in terms of wWeigin practical terms, all of this
discharged product could be taken and reused iprtheess again, for instance. In any
case, thigull discharge happens very infrequently (as can belagarin Section 4.4) and,
therefore, would not significantly affect the fir@ist of the packaging process.

3.2 Numerical example

For clarity, we show an example of how the itemiof the proposed algorithm work.
AssumeT = 500 grams and = 12.50 grams, and suppose that we are chodsing} out

of n = 16 hoppers in each iteration, which are distaluas stated in step 1 of the
algorithm, withn, = 3, n, = 3, n; = 4, n, = 3 andns = 3. Let us also suppose that the
value of exchange Belta = 1.5,min_Delta = 0.5 and the maximum allowed priority for
any hopper iPYAX = 10. In these conditions the filling setting wibule: p, = 106.25
grams,u, = 112.50 gramg); = 125 gramsy, = 137.50 grams angd; = 143.75 grams.
Fig. 1 shows the situation at iteration 1000 of #pecific example.

Combining different sets of 4 hoppers results itotal of 1790 valid combinations,
after discarding those that do not meet the caydistated in steps 4 and 6. In the figure,
each of these solutions is represented accordinigs tooordinates in the decision or
criterion space, with the horizontal and verticedscorresponding to the difference from
the target weight and the total priority, respesiiv

The lowest difference with regard to the targetghiei z™" = 0.05481 grams, is
achieved by combining hoppers 1, 2, 10 and 14, edwethe highest aggregated priority
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zy'"® =17 corresponds to hoppers 6, 10, 11 and 13.dk®at consequence, the ideal point
is (z"" = 0.05481,z'®™ = 17). As shown in the chart, there are five nonihated or
efficient solutions, which form the so-called Parset or Pareto frontier, and the two
aforementioned solutions are part of it. The maximeurrent hopper priority in this
iteration is 5, and therefoe= 1/(10 — 5 + 1) = 0.1667, according to (7). This means
that, in this very specific iteration, the ratioiofportance of the two objectives (weight
and priority) is(1 — 6): 8 = 5:1 (namely, the objective of getting a package closthe
target weight is five times more important than tigective of selecting a 4-hopper
combination with a high total priority).

Each of the 1790 solutions is compared to the pmidace function D (weighted
normalized distance to the ideal point), as defime@6). Notice that it would only be
necessary to check the value fin the five nondominated solutions, as the pdiait t
minimizes the value ab always belongs to the Pareto set in compromisgraroming.
However, numerically finding out whether each o th790 valid combinations is
dominated or not would be equivalent to calculatihngn each of them, in terms of
computational effort.

In this example, the minimum value bfis given by choosing hoppers 1, 5, 6 and 11,
which corresponds to a difference from the targagiu of only 0.06173 grams (the second
best combination, with regards to this objective)l @ total priority of 14 (to be more
precise, one of the priorities of these four hoppkat are going to be discharged is equal
to 5, which was the maximum priority in this iteécaf). This example illustrates how
compromise programming succeeds in balancing thectibes being considered in an
automatic and reasonable way.

min

| 2™

D (z4

2z, = Priority [to be maximized]

5 « Dominated solutions O Ideal point
o Nondominated solutions @ Compromise solution

0 10 20 30 40 50 60 70 80
z4 = Difference with target weight (grams) [to be minimized]

Fig. 1. Feasible solutions set and Pareto froftiendominated solutions) for the numerical example
in Section 3.2, showing a snapshot of a spec#iatton of the proposed bi-objective algorithm.lEac
point represents a valid hopper combination. Tredioates for each point represent the difference
of that combination with regards to the target \wei@,) and the total priority of that combination
(z,). The five ‘big’ black dots represent the nondoatéd solutions (candidates to be returned as the
selected hopper combination) and the ‘empty’ dprasents the ideal solution (a theoretical one
combining the best of; and z,). The hopper combination that is finally selectge., the
compromise solution) is the one that is closer® itleal point, using the distanBedefined in
Section 2.5.
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4 Computational Experiments

In this section, an extensive set of numerical ftmn experiments is presented to study
the performance of the proposed bi-objective atgori The algorithm was implemented
in Pascal and run on a personal computer with Wirsdé Home Premium (64bit), Intel
Core i5-3317U CPU (1.7 GHz) and 4 GB memory.

4.1 Tested process and operational parameters

In order to find the optimum operative conditionsninimize the variability in the total
weight (), a design of experiments (DOE) was carried ol flesponse variable used is

the "coefficient of variation of the packag€Vj,cxage = % * 100). This DOE takes
package

into consideration a large number of possible petide configurations of the multihead
weigher. The factors and their levels to studyhimm DOE are shown in Table 1 and 2. In
this case, the design of experiments is a balafassdrial design of fixed effects factors.

Table 1. Levels of the factors studied

Factor Levels
Number total of hoppers) 8,10,12,14,16
Number of hoppers to be combindd ( 2,3,45,6,7
Target weightT) 125, 250,500, 1000, 2000 g.
Coefficients of variation@V) 1%, 2.5%, 5%
Distribution of weighing hoppersl}* Equal, Center, Extreme
Value of exchangeDelta) 0.0,0.5,1.0,1.5,2.0,2.5,3.0
Maximum allowed priority for any hoppeP¥*X) 10, 30, 50, 100
* See Table 2
Table 2. Distribution of weighing hoppers for eacibgroup
Equal Center Extreme

Ny Ny M3z Ny MNs Ny Ny N3 Ny 7Ns Ny Ny M3 Ny Ng
°© |8 1 2 2 2 1 1 1 4 1 1 3 1 0 1 3
8510 2 2 2 2 2 1 1 6 1 1 4 1 0 1 4
5212322231181142024
3%143323311101152025
el 3 3 4 3 3 1 1 121 1 6 2 0 2 6

As has been seen, tfector “Value of exchangeDelta) helps to adjust the filling
setting during the packaging operation. This mehatDelta makes it possible to observe
the influence of fixing the average weights for thégroups of hoppersy in many
different cases. In this walelta (As has been seen in step 1 of the algorithm) resl
voluntary changes in the supply of products toedéht subgroups of hoppers, except for
ns.

On the other hand, the factdr represents the distribution of the hoppers in each
subgroup and its levels define the number of hapgeat will be in each. Therefore, an
Equal level means that the number of hoppers in the reuipg is as homogeneous as
possible. In th€entrallevel, the largest number of hoppers is conceadrat the subgroup
of hoppers whose filling objective has not been ifiedl (n;). In the Extremelevel, the
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largest number of hoppers is concentrated in thgreups of hoppers where the filling
objective has been modified,( n,, n, y ns).
The coefficient of variation@V) is used to calculate the standard deviation ef th

weights in every hoppes] as an input in the packaging process, e.gV i& @ * 100 =

5%, T = 500 andk = 4. Theoretically, we hav¢ko = 25 and, therefores = 12.50. The
above allows the simulation of different scenanbshe standard deviation of weights in
every hopper. However, it does not mean that will be the actual variability obtained
in the package produced through our proposed approa

Thus, calculating all the combinations of factoi iesult in 37800 treatments, which
were simulated 10000 times each, i.e., 10000 urfitpackaged products for each
treatment. The conclusions of the analysis aregpted in subsection 4.3.

4.2 Performance measures

The most important calculated parameters, as aureasperformance to evaluate our bi-
objective approach, are: Average weight of theltotamber of packages produced
(Upackage), the standard deviation of the total number ofkpges produce@,,ckage).
percentage of discharge due to the confidence I€9€IL), the number of hoppers
discarded by priority for each iteration (HDP), teerage maximum priority for each
hopper (AMP), and th&érade-offvalues.

4.3 Statistical analysis

Analysis of variance (ANOVA) was used to determihe statistical significance of the
factors and their interaction. The ANOVA procedassumes that the observations are
normally and independently distributed, with thmsavariance for each treatment or factor
level. In order to verify the statistical validitf the results and ascertain what the best
configuration is, we performed a multifactor ANOWAhere the response variable is
109(CVpacrage)- The transformation of the response variable masessary in order to
ensure compliance with the ANOVA's three importahypotheses; normality,
homogeneity of variance and independence of thduals (Montgomery, 2009).

Table 3 shows the results of the ANOVA for the coational experiment carried out
corresponding to the study of the influence offtt@ors on th€'V, ;.44 for the proposed
bi-objective approach. As can be observed, thelpegaare less than 0.05, which confirms
that all the main effects and interactions of thetdrs are statistically significant when
CVypackage 1S Measured, except fér. The effect of CV, k, n, Delta, PM** andd on the
variability of the package is evident. Note that € factor is the most significant and it
does not interact with any of the other factorsrddwer, significant interactions between
Deltaandk, Deltaandd, k andn, andd andk are highlighted

The mean plots and least significant differencea§).intervals for the type of factor
are shown in Fig. 2. As Fig. 2 shows, some dednstican be made. TH&,,cxage
increases when the coefficient of variation of fihal weight (CV) also increases. When
the number of weighing hoppers combined reachegesalfk = 4 ork =5, loWCVy4cxage
values are obtained. TH&,,cx.4. decreases in multihead machines with a high number
of weighing hoppersn). Specifically, the lowest value of ti#), .4 during the analysis
is achieved whem is at its highest leveln(= 16). A value of exchangd®¢lta) of 2.0
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reduces th€V, .44 Value. Anincrease in the maximum allowed priofttyany hopper
(PMAX) results in a [OVWEVp4ckage Value. A homogeneous distribution of hoppézgual
in subgroups causes a decrease ICWGxqge-

Table 3. ANOVA results of significant factors fog(CV,qquete) in the proposed bi-objective
approach.

ANOVA results for bi-objective approach

Source Sum of DF F-ratio p-value
squares
Main Effects
cv 16459.5 2 176100.55  0.0000
Delta 5256.6 6 28120.34 0.0000
d 58.6 2 940.30 0.0000
k 17116.2 5 109876.30  0.0000
n 4853.1 4 38942.44 0.0000
PpMAX 1726.9 3 18476.03 0.0000
Interactions
Delta-d 927.5 12 2480.84 0.0000
Delta-k 4830.6 30 5168.30 0.0000
Delta-n 240.7 24 321.87 0.0000
Delta PMAX 193.8 18 345.62 0.0000
d-k 569.8 10 1828.85 0.0000
d-n 22.6 8 90.65 0.0000
d-pMAX 25 6 13.63 0.0000
k-n 2141.4 20 3436.65 0.0000
k-pMAX 189.3 15 405.14 0.0000
n-pMAX 253.0 12 676.74 0.0000
Residual 1172.1 37622
Total 56014.2 37799

Fig. 3 shows the interaction plots for significdattors. The analysis of interaction
plots shows some interesting results. The valuexahange Delta), which results in a
reduction in theCVy,,crqqe. depends on the way the weighing hoppers areldigéd and
the number of weighing hoppers combin&jl The values of exchangB€lta) of 1.5, 2.0
and 2.5 provide the best results when the totalbaunof weighing hoppershj is the
highest.The values of exchandpe(ta) of 1.5 or 2.0 are statistically equivalent andvide
a decrease i€V,4ckqg. When the maximum allowed priority for any hopp@{*)
reaches its highest valugéxtremeor Equal levels are statistically equivalent in reducing
theCVpgckage When 4,5 or 6 weighing hoppers are combinede Mwit fork = 2, aCentral
distribution of weighing hoppers is preferred. Antageneous distribution of hoppers
(Equa) is able to reduce theV,,cxqge When multinead machines with a high number of
weighing hoppersn) are employed and the maximum allowed priority dory hopper
(PMAX) takes the value of 100. A number of weighing fegpcombinedk) of 6 or 7 is
statistically equivalent and provides the bestltesn reducing the€V, k.. When the
total number of weighing hoppera)(is used. Otherwise, for a minimum number of
weighing hoppers combined, i.2.= 2, the total number of weighing hoppersg (s
negligible at any level for reducing t&/,,..qq.. NOte that the best value &f also
depends on the valug which is confirmed by the strong interaction begw these factors.
A number of weighing hoppers combinéd (©f 4 or 5 is able to reduce &, ,cxqge
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when the maximum allowed priority for any hoppethe biggest. A maximum allowed
priority of 100 for any hoppeP{***) provides the best results in multihead machinigs w
the largest number of hoppers .(
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Fig. 3. Interactions plots and LSD intervals fayrsficant factors as a function bfg(CVyqqyete)-

Based on this analysis, we can now obtain optimperating conditions that minimize
the response variable. The final levels for thediecare shown in Table 4.

Table 4. The best operational conditions for thétimead weighing process

Factor Best Level
Number total of hoppersi) 16
Number of hoppers to be combindg ( 4
Coefficients of variation@V) 1%
Distribution of weighing hoppersi} Equal
Value of exchangelelta) 2.0
Maximum allowed priority for any hoppeP¥*X) 100

17
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4.4 Numerical results and discussion

As a supplement to the statistical analysis desdrim 4.3, a summary of results is

presented that makes it possible to analyse thevimlr of performance parameters during
the packaging process when the proposed bi-obgeatgorithm is run. These results were
compared to the outputs in a mono-objective approbaking into account that the levels

of certain factors, due to the high interactionNmetn them, depend on the levels of other
factors, we decided to summarize the results bygusie following inputs.

Consider a packaging process under control wherainvgo obtain a target weight of
500 grams. The computational experiment was peddrosing the following case: =
16,Delta= 2.0,min_Delta = 0.5,PMX {10, 30, 50, 100} and:{2, 3, 4, 5, 6, 7} hoppers.
An Equal distribution of the weighing hoppers in each solgrwas used, sot; = 3,

n, = 3, n; =4, n, =3 andngs = 3. To calculate the standard deviation of weights in
every hopperd) as an input in the packaging proceds;{1%, 2.5%, 5%} were used.

A way of measuring the loss in the increases imbdity in the package in exchange
for a decrease in the duration of the product & libpper is to calculate thgade-off
value, as follows:

Trade-off= | A package Jr (8)

A Average maximum priority /Hopp

where "A opackage 1S @ measure of the shift in the package varigbiland
"A Average maximum priority /Hopper" is a measure bé tchange in the average
maximum priority for each hopper for a mono-ohjeetapproach and our bi-objective
approach.

Tables 5 and 6 show the performance parameterghtorbi-objective approach
proposed and the mono-objective appro®X values allow the monitoring of the
evolution of the performance parameters of the ggs®MA* represents the maximum
residence time of the product in a hopper. Foramst, for a multihead weigher with a
capacity of fifty packages per minute aPf** = 100, the residence time is calculated as
follows: 50 packages/60 seconds is equivalent Boskéconds/package. Therefore, 1.2
seconds/package- 100 packages = 120 seconds.

In table 5, the results show that when the pridtitys considered, the variability of the
package increases and the duration of the produbeihopper decreases (as expected). It
can be observed that in the bi-objective approttere were no full discharges for the
confidence level of any of tieMAX values considered. The above confirms that, régssd
of the increased variability in the weight of theckaged product due to low values of
maximum allowed priority FMAX), at least one of the weights obtained from ad th
combinations in each iteration was within the cdefice level of 99.73%. Note that
discharges of hoppers due to exceeding the maxiailowed priority only occurs when
PMAX =10 andk = 2. The largest decrease in the duration of tbeyct in hopper and the
largest increase in variability are produced whenusek = 2 for any of the?MAX values.

In fact, in these cases the variability of the @aygd product is higher than the variability
when the packaging process is performed randondie Mhat in each case analysed, when
k =7, the lowest values for th€V,, 4. are obtained in both approaches (bi-objective
and mono-objective). This shows the strong intévachetween the number of weights
combined k) and the total number of hoppers.(
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Table 5. Simulation results from the bi-objectivgoaithm for different values of the maximum allagvpriority (PMAX) compared to results from the mono-
objective approach. See section 4.2 for a furtkplamation of the performance parameters listed.

Bi-objective approach

Mono-objective approach

PYAX =10 PMAX =30 PMAX =50 PVAX' =100
Vko Wpackage  CVpackage DCL  HDP  APM  Wodage CVpackage DCL HDP APM  Modage CVpackage DCL HDP APM  Mpaage CVoackage DCL HDP APM  Mpaage  CVoackage APM
499.92 1.1362 0.000.0026 9.00 499.67 0.8125 0.000.00 13.75 499.70 0.8065 0.000.00 17.52 499.77 0.7864 0.000.00 24.49 499.99 0.1558 888.84
499.98 0.1680 0.00 0.00 6.64 499.99 0.0740 0.000.00 7.16 500.00 0.0600 0.000.00 7.37 499.99 0.0460 0.000.00 7.72 500.00 0.0105 23.95
499.99 0.0940 0.00 0.00 5.11 500.00 0.0500 0.000.00 527  500.00 0.0400 0.000.00 534  500.00 0.0300 0.000.00 545 500.00 0.0022 14.08
5 500.00 0.0680 0.00 0.00 4.15 500.00 0.0400 0.000.00 4.22  500.00 0.0320 0.000.00 4.27  499.99 0.0240 0.000.00 4.34  499.99 0.0008 10.46
499.9¢ 0.054( 0.0C 0.0C 3.45  499.9¢ 0.032( 0.0C 0.0C 3.5¢ 499.9¢ 0.026( 0.0C 0.0 3.6 499.9¢ 0.020( 0.0C 0.0C 3.6  499.9¢ 0.000: 8.2z
500.00 0.0500 0.00 0.00 3.06 500.00 0.0260 0.000.00 3.09  499.99 0.0220 0.000.00 3.11  499.99 0.0160 0.000.00 3.13  500.00 0.0003 6.70
499.82 2.8370 0.000.0032 9.00 499.08 2.0257 0.000.00 13.66 499.36 1.9585 0.000.00 17.48 499.46 1.9141 0.000.00 24.14 500.02 0.4122 892.98
499.96 0.3840 0.00 0.00 6.64 499.98 0.1860 0.000.00 7.17 500.00 0.1500 0.000.00 7.34 500.00 0.1160 0.000.00 7.66 500.00 0.0269 23.65
499.99 0.2400 0.00 0.00 5.11 500.00 0.1280 0.000.00 5.27 499.99 0.1020 0.000.00 5.35 500.00 0.0780 0.000.00 5.45 499.99 0.0056 14.23
12.E 499.9¢  0.174( 0.0C 0.0C 4.1¢  499.9¢ 0.100( 0.0C 0.0C 4.2¢ 500.0C 0.080( 0.0C 0.0 4.23 500.0( 0.060C 0.0C 0.0C 4.3z  500.0( 0.001¢ 10.3¢
499.99 0.1360 0.00 0.00 3.45 499.99 0.0800 0.000.00 3.58 499.99 0.0660 0.000.00 3.63 499.99 0.0500 0.000.00 3.69 500.00 0.0010 8.12
500.00 0.1260 0.00 0.00 3.06 499.99 0.0680 0.000.00 3.10 499.99 0.0540 0.000.00 3.11 500.00 0.0420 0.000.00 3.13 500.00 0.0007 6.54
499.65 5.6760 0.000.0032 9.00 498.17 4.0589 0.000.00 13.66 498.72 3.9220 0.000.00 17.48 498.92 3.8323 0.000.00 24.14 500.06 0.8259 892.98
499.88 0.8002 0.00 0.00 6.64 499.96 0.3720 0.000.00 7.15  500.01 0.3020 0.000.00 7.33  500.00 0.2320 0.000.00 7.68  500.00 0.0543 23.27
499.9¢ 0.476( 0.0 0.0 5.11 500.0: 0.258( 0.0C 0.0C 5.27 500.0: 0.206( 0.0C 0.0C 5.3¢ 500.0( 0.156( 0.0C 0.0C 5.4t 500.0C 0.011: 14.0¢
25 499.98 0.3540 0.00 0.00 4.14 499.99 0.2020 0.000.00 4.22  499.99 0.1600 0.000.00 4.26  500.00 0.1220 0.000.00 4.33  500.00 0.0040 10.30
500.01 0.2760 0.00 0.00 3.45 500.00 0.1580 0.000.00 3.58 499.99 0.1320 0.000.00 3.63 499.99 0.1020 0.000.00 3.69 499.99 0.0020 8.14
499.99 0.2580 0.00 0.00 3.06 499.99 0.1400 0.000.00 3.09 500.01 0.1120 0.000.00 3.11 499.99 0.0860 0.000.00 3.13 499.99 0.0014 6.67
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It can also be observed that the average weigtiteofinal packagep,ckage) i not
affected in any of cases studied. Additionally,enthtat the average maximum priority for
each hopper (AMP) decreases asithealues increases, and at the same time, it is kept
constant at different levels 6V (represented byko).

Table 6. Trade-off values for maximum allowed pitiotPMAX) of 10, 30, 50 and 100
Trade-off

vk k PMAX =10 pMAX =30 pMAX =50 pMAX =100
2 0.00557 0.00375 0.00373 0.00365
3 0.04548 0.01890 0.01492 0.01092
4 0.05117 0.02713 0.02162 0.01611
5 5 0.05325 0.03141 0.02520 0.01895
6 0.05617 0.03404 0.02788 0.02162
7 0.06830 0.03562 0.03025 0.02202
2 0.01371 0.00915 0.00882 0.00863
3 0.10497 0.04828 0.03774 0.02787
4 0.12848 0.06828 0.05425 0.04120
125 5 0.13786 0.07972 0.06387 0.04798
6 0.14452 0.08698 0.07236 0.05528
7 0.18003 0.09782 0.07769 0.06055
2 0.02741 0.01830 0.01762 0.01725
3 0.22420 0.09854 0.07769 0.05699
4 0.25915 0.14013 0.11151 0.08396
25 5 0.28413 0.16287 0.12918 0.09887
6 0.29207 0.17101 0.14408 0.11231
7 0.35543 0.19361 0.15537 0.11953

In table 6, theTrade-offvalues show that the largest increase in vartgbitir each
reduced unit of the priority occurs wheM”X = 10, and they are the largest when we want
to combine the greatest number of weights, i.eenkh= 7 (In the latter case, regardless
of the value ofPMAX). In addition, the values for tHErade-offprogressively decrease as
the PMAX value increases and they also progressively iserea thet value increases.
Additionally, it is clear that the increases in tbeefficient of variation V) cause
increments in th&rade-offvalues.

5 Conclusions and future research

A multihead weighing process is a packaging teatmothat can be of strategic importance
to a company, as it can be a key to competitivaathge in the modern food industry. The
improvement of the process quality and sensoryityual food packaged in a multihead
weighers process investigated in this paper isvaglieto industrial engineering. A bi-
objective algorithm for the packaging processemintihead weighers with an unequal
supply is developed, and numerical experimentpareided to illustrate the performance
of the proposed algorithm.
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Our algorithm simultaneously deals with the objetof minimizing the difference
between the target and the real package weighthendbjective of maximizing the total
priority of the chosen combination of hoppers. Weppse using a single weighted
performance or utility function that combines infa@ation about the two objectives or
criteria being considered in this study (weight amigrity), where the relative weight or
importance of each objective is dynamically adjdsteeach iteration or packing operation.
Pareto-optimal solutions were obtained for bothopems for the conflicting relationships
between the objectives. To the best of our knowdedg prior research has considered both
objectives (weight and priority) to be potentiadigually important.

We also conduct numerical experiments to examieeqtality of the solution and
measure the most important parameters in the paakageration. The statistical analysis
carried out allowed us to find the operational dbads that minimize the variability in the
total weight i) of the package when our approach is used. Tlafysis identified the
main factors affecting the variability of the tota¢ight (/) during the packing process.

The numerical experiments show that our algorithumceeds in managing both
objectives in a reasonable and efficient way. Mmexisely, the average highest observed
priority (AMP) is significantly reduced compared toe mono-objective approach (in
which weight is the only selection criterion), esipdly when the numbek of hoppers to
be combined is small, with average distance toetangeight still remaining acceptable in
general. Only in the cases where the valué & minimum was the observed standard
deviation of package weights slightly greater thdrat would be expected if the hoppers
were filled with equal weights and selected at cand@y/ko). This reveals that settings with
small values fork make it more difficult to simultaneously deal witiloth objectives,
perhaps due to the relatively low number of possiliimbinations to test in each iteration.

Nevertheless, it should be mentioned that the tagioveen the increase in package
dispersion and the improvement in terms of prior@gluction (trade-off) remains within
reasonable levels in all the tested cases. Inivelétrade-off) terms, the largest effort in
reducing priority occurs for higher valueskiofwhich means more possible combinations)
and smaller values ®*X (that is, as the priority objective becomes marpartant). Our
proposal goes in a similar direction to the oneKlayuno et al. (2007), but it offers a
different insight into the packaging problem, as baen highlighted previously in the text.
In conclusion, the effectiveness and efficiencypoif approach has been shown.

Finally, the proposed method provides Pareto opté®es of solutions to the problem
of bi-objective optimization that can be analysedobtain optimal configurations. The
model will be useful to engineers concerned withdbtimal configuration of a multihead
weigher.

For future research, at least two issues are wiostbstigating. First, it would be
interesting to generalize the current model toudel other objectives of an economic
nature, such as product packaging costs, cost je€tien and reworking of a “non-
conforming” package. Secondly, we intend to teit thethodology using real-data sets
from the food industry.
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