
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

https://doi.org/10.1016/j.engfracmech.2017.08.026

http://hdl.handle.net/10251/103984

Elsevier

Giner Maravilla, E.; Belda, R.; Arango-Villegas, C.; Vercher Martínez, A.; Tarancón Caro,
JE.; Fuenmayor Fernández, FJ. (2017). Calculation of the critical energy release rate Gc of
the cement line in cortical bone combining experimental tests and finite element models.
Engineering Fracture Mechanics. 184:168-182. doi:10.1016/j.engfracmech.2017.08.026



Calculation of the critical energy release rate Gc of the

cement line in cortical bone combining experimental

tests and finite element models

Eugenio Giner∗, Ricardo Belda, Camila Arango, Ana Vercher-Mart́ınez,
José E. Tarancón, F. Javier Fuenmayor

Centre of Research in Mechanical Engineering - CIIM

Dept. of Mechanical Engineering and Materials
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Abstract

In this work, a procedure is proposed to estimate the critical energy re-

lease rate Gc of the so-called cement line in cortical bone tissue. Due to the

difficulty of direct experimental estimations, relevant elastic and toughness

material properties at bone microscale have been inferred by correlating ex-

perimental tests and finite element simulations. In particular, three-point

bending tests of ovine cortical bone samples have been performed and mod-

eled by finite elements. The initiation and growth of microcracks in the tested

samples are simulated through finite elements using a damage model based

on a maximum principal strain criterion, showing a good correlation with the

experimental results. It is observed that microcracks evolve mainly along the

cement lines and through the interstitial material but without crossing os-

teons. The numerical model allows the calculation of the cement line critical

energy release rate Gc by approximating its definition by finite differences.
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This way, it is possible to estimate this property poorly documented in the

literature.

Keywords: Cortical bone, fracture toughness, microcracks, finite element

method, cement line
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1. INTRODUCTION

Modeling the mechanical performance of bone tissue requires knowledge

about the elastic and toughness properties of its structural constituents. The

highly hierarchical nature of bone [1, 2] makes it necessary to develop mul-

tiscale models in which the different scales must be adequately modeled as

found in the literature, e.g. [3, 4].

Figure 1: Cortical bone tissue. Main morphological constituents that can be distinguished

in a cross section of a long bone.

Fig. 1 shows the basic entities that are modeled in this work and that

characterize the morphology of cortical bone tissue. The sketches at the

centre and right of Fig. 1 represent the microstructure observed for a cross

section of a long bone. The osteon is the basic structural unit of cortical

bone and its structure is quite complex at different hierarchical levels [5, 6].

At the submicrostructural level, the osteon is composed of collagen molecules

which act as matrix and hydroxyapatite crystals that behave as periodically

distributed reinforcements [7]. This periodic structure is grouped into fibrils

with different orientations conforming the lamellae, which are concentric lay-

ers arranged around the Havers canals that contain blood vessels and nerves
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[1, 2, 5, 7], see Fig. 1.

In this work, three-point bending tests of small samples of cortical bone

have been performed taken from a cross section of a long bone (sheep tibia).

Then, finite element simulations of these samples have been carried out con-

sidering the experimental test conditions. The models comprise the existence

of multiple osteons, the interstitial tissue that surrounds osteons, and the ce-

ment lines that act as the border between osteons and interstitial matrix,

formed during bone remodeling processes. In fact, the interstitial matrix

corresponds to old, highly mineralized osteons. These constituents are essen-

tial for the study of bone fracture at a microstructural level as their role in

the bone damage process is not well known yet.

The aim of this work is to estimate some of the elastic and toughness

properties of cortical bone tissue at the microstructural level. More specifi-

cally, the objective is to estimate the cement line toughness from three-point

bending tests and their correlation with numerical simulations of the initi-

ation and growth of microcracks. References to strength properties of the

cement line are scarce in the literature, but there is experimental evidence

that they play a very important role in the fracture behaviour of cortical

bone at microscale, as the cement lines usually act as a weak link diverting

crack propagation [8].

O’Brien et al. [9–11] studied the behavior of microcracks in compact

bone through experimental tests to get insight into the failure process, show-

ing the importance of the microstructure in the initiation and propagation

of microcracks. They distinguished different behavior as a function of the

crack length and pointed out the barrier effect of the cement lines for crack
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propagation. Short and intermediate microcracks led to crack paths that not

penetrate osteons, whereas the crack arrest effect of the cement line is not

so evident for long microcracks [10].

Other approaches have been used to model the fracture process in cortical

bone tissue. Li et al. [12] performed an experimental study and numerical

simulations of fracture processes in bovine femoral cortical bone to character-

ize fracture toughness, gaining basic understanding of spatial variability and

anisotropy of its resistance to fracture. The experimental data was obtained

using single-edge-notch-bending specimens of cortical bone tests, while the

numerical approach was developed using the extended finite element method

(XFEM). They also used this method to investigate the effect of microstruc-

tural changes in cortical bone tissue [13].

Guo et al. [14] analyzed the dependence of fracture on the material

properties using a simplified model composed of an osteon and the interstitial

matrix. Their results suggest that newly formed osteons (with lower stiffness)

may toughen cortical bone tissue.

Other authors have simulated material interface behavior at different

scales in bone by means of cohesive zone models [4, 15–20]. Lin et al. [18]

recently defined a cohesive zone model to define the mechanical behavior at

the nano scale of the extrafibrillar matrix in bone. Pereira et al. [19] studied

the influence of hydration on the fracture properties of bovine cortical bone

at macroscopic scale by carrying out DCB tests. Numerically, they obtained

two different cohesive laws under pure mode I loading and, more recently,

under mixed-mode I+II loading conditions [20].

Ural and Mischinski [4, 15, 16] used a multiscale approach to study the
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influence of the compact bone properties at the micro level on the fracture at

the macroscale. They applied a computational fracture mechanics approach

based on a cohesive finite element model. At microscale, Ural and Mischinski

evaluated 2D finite element models created from human cortical bone mi-

croscopy images to determine the influence of cement line properties on the

crack propagation path. They concluded that the strength properties of the

cement line are relevant for crack deflection. Cox and Yang [17] formulated

a cohesive fracture model and analyzed previously published experimental

data from human femoral cortical bone. They studied the viability of assum-

ing linear elastic fracture mechanics in cortical bone fracture, claiming that

it can only be assumed when cracks are longer than a certain length scale.

In this work, we have carried out three-point bending tests on small sam-

ples from a tibia sheep diaphysis, recording the force-displacement responses.

The samples have been modeled by the finite element method reproducing

the actual sample geometry and the test load conditions, and also the mi-

crostructure morphology observed in the micrographs. The finite element

model includes different material properties for three constituents: osteons,

interstitial matrix and cement lines. The experimental results have enabled

the calibration of the response of the whole model and the elastic properties

of the constituents considered.

In order to model the crack initiation, we have used a damage criterion

based on the maximum principal strain (see Section 3.3), as there are studies

that claim that the damage process in bone is strain-controlled [21]. More-

over, the heterogeneity of the bone structure suggests to use a strain-based

criterion due to the different stiffness of each component. The mechanical
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behavior of bone is often considered as quasi-brittle [5, 22], similar to that

observed in other heterogenous materials, such as concrete, mortar, masonry,

dentine, biological shells, etc. Damage in quasi-brittle materials is character-

ized by the development of several microcracks and tortuosity between crack

faces, leading to a local loss of stiffness. Eventually these damage phenom-

ena coalesce into a larger crack that is manifested as an evident geometric

discontinuity.

In our models, a smeared crack approach has been used to model crack

propagation. This approach was proposed in [23] and then used by many

researchers in the context of fracture and damage mechanics. The key issue

of this approach is that the continuum elements of the finite element model

preserve the displacement continuity (it does not allow for the expected dis-

placement discontinuity across crack faces). Instead, the loss of stiffness due

to the crack presence is achieved by degradation of the stress-strain con-

stitutive matrices at the element level. The original stiffness of the affected

elements is reduced substantially, resembling the crack presence provided the

discretization is sufficiently refined. One of the advantages of this procedure

is that the same approach is used both for crack initiation and crack prop-

agation. Moreover, it does not need modifications of the mesh topology nor

the determination of the crack orientation direction or the elements to be

enriched (in the case of the XFEM method). Thus, nonlinear analyses have

been performed in this work, considering the degradation of the elastic prop-

erties of each microstructural constituent. A similar approach was used by

the authors in [24] to model the internal damage in an osteon at the lamellar

level.
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Using an explicit crack representation as in the XFEM method without

consideration of the heterogeneity of the materials may lead to different crack

growth paths that cross osteons without following the cement line boundaries.

This can be observed in some works in the literature, e.g. [13, 25], and it is

not in line with our experimental observations, by which cracks grow along

cement line boundaries.

Finally, in this work the strength properties of the microstructural com-

ponents, i.e. the critical strains associated with cement lines, osteons and

interstitial matrix, were estimated using an inverse identification procedure

in order to reproduce the damage pattern observed experimentally. This

correlation between experimental evidence and the response of the numerical

model has also allowed the estimation of the cement line critical strain en-

ergy release rate Gc by evaluating the variation of strain energy as the crack

grows as detailed in Section 6. The determination of Gc is of interest, since

it is an essential property to quantify toughness and characterize cohesive

zone models that can simulate the growth of microcracks, like in some of the

works commented above.

2. DESCRIPTION OF EXPERIMENTAL TESTS

Three-point bending tests performed on small samples of ovine bone were

carried out in this work. First, cross sections were taken from the diaphysis

of a sheep tibia in order to obtain sections of cortical tissue of about 1 mm

thick, as shown in Fig. 2 left. Then, after removing the periosteum and the

associated tissues from endosteum, four samples were obtained from the zones

with less curvature. A notch of approximately 0.5 mm wide was generated
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in each sample, see Fig. 3. The small notch can also be observed in Fig. 2

right. The samples were kept cold and in appropriate moisture conditions.

Figure 2: Left: Transversal section of a ovine tibia (before and after staining). Right:

Three point bending of the ovine sample.

The three-point bending tests were performed using an electromechanical

universal machine. Fig. 2 right shows the testing rig used. Load was applied

at a rate of 1 µm/sec, so that tests can be considered quasi-static. The force-

displacement response was registered at the load application point for each

microsample and the results are presented in Fig. 4, showing a reasonable

repeatability. The force-displacement relationship is clearly linear until the

applied load reaches a value of about 4.5-5.5 N. From this load level onwards,

the damage process begins, reaching high enough stresses in the vicinity of
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Figure 3: Notched test sample stained after test No. 2.

the notch to promote the growth of microcracks. This results in an evident

stiffness loss.

Tests were carried out without reaching complete fracture and avoiding

the separation into two halves of the microsamples in order to observe the

damage path a posteriori. The next step after testing was contrast dyeing

(see Fig. 3) and the observation of morphological details (osteons, Havers

canals, etc.) to delimit osteons through their cement lines and the generated

microcracks (Fig. 5).

For contrast staining of cement lines, the Bain, Impeduglia and Rubin’s

procedure [26] was followed. It involves samples dehydrating, so it was ap-
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Figure 4: Load-displacement response registered for four tests.

Figure 5: Microsample of test No. 2. Optical microscope view, showing osteons and a

microcrack starting from the notch (left 25x, rigth 50x).
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plied after testing. The dye is composed of toluidine blue (1 g) in a formic

acid solution of 0.1% (100 ml), with pH 2.6. Staining was performed for 20

sec. Subsequently, samples were dehydrated in tert-butyl alcohol (2-methyl-

2-propanol) for 30 sec. Care was taken to reduce the staining artifacts, such

as dye concentrated remains, by increasing the dehydration time. Finally, a

quick xylene rinse was carried out.

Fig. 5 shows the osteon distribution in sample number 2 using optical

microscopy. It is observed the dye concentration in the interstitial material,

defining in lighter shade the osteons and the Havers canals. The osteon mean

diameter is about 100 µm. Some of them have elliptical shapes whose major

axis is about 150–200 µm. It is observed the existence of a microcrack evolv-

ing primarily along the contours of the osteons, i.e. along the cement lines.

The origin of this microcrack is in the area of maximum stress concentration

at notch tip.

3. NUMERICAL MODEL

3.1. Geometrical and finite element models

The contours of the osteons and the outer boundaries of the microsam-

ples were defined using the software Plot Digitizer. Determining the osteon

boundaries is not a simple task and requires analyst intervention. Only the

osteons near the notch and the microcrack propagation zone were segmented,

see Fig. 6. For each geometric contour, splines were used to define the cement

lines location and the Havers canals. The cement line thickness is consid-

ered to be 1 µm [8]. The splines were generated from an Abaqus script in

Python. It was deemed not relevant to include further details far from this
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area, as regards the mechanical behaviour. These far regions were consid-

ered homogeneous with a set of equivalent elastic properties for modelling

purposes.

X

Y

Z

Figure 6: One of the geometrical models with osteons, cement lines and Haversian canals

segmented in the vicinity of the notch tip and the region of potential microcrack propa-

gation.

The numerical model was generated in Abaqus. Fig. 7 shows the mesh of

the microsample No. 2, composed of 148732 nodes and 148326 triangular and

quadrilateral elements (CPS3 and CPS4 in Abaqus). It has been assumed a

plane stress condition, due to the small thickness of the microsamples (about

1 mm thick). It can be noticed a high degree of discretization in the region

of interest, with element sizes of about 1 µm. In the detail of Fig. 7, the

elements of the cement lines are shown in red. The boundary conditions and

the applied load are also sketched.
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Figure 7: Model mesh showing the boundary conditions and the applied load. The detailed

view shows the discretization near the osteon contours. Cement line elements are shown

in red.
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3.2. Elastic properties

Three different entities are considered in the model: osteons, interstitial

matrix and cement lines. It is known that bone tissue presents a significant

degree of anisotropy. However, there are not major differences in the trans-

verse plane under study, so the three materials are assumed to be transversely

isotropic. A review of the elastic and strength properties can be found in

[27]. Initially, we assumed the elastic properties for these three entities in

accordance to the literature and previous works, as described below.

Osteon. The value of the stiffness associated to the osteon tissue can

vary largely [2, 28] depending on the donor, site, humidity conditions, radial,

axial or circumferential direction and even specimen size [28]. One approach

is to follow one of our previous works [29], by which a representative element

volume of lamellar tissue is homogenized to obtain equivalent elastic proper-

ties. According to the five-layer lamellar structure proposed by Weiner et al.

[30], which is widely accepted, in [29] the lamellar tissue constitutive matrix

is calculated, grouping the five sublayers into the so-called thin lamella and

thick lamella (0.8 µm and 2.4 µm thick, respectively).

Following some authors [31, 32], we consider a collagen elastic modulus

of Ecollagen = 1.2 GPa and the homogenization procedure given by Vercher

et al. [29] yielding a homogenised value of 3.2 GPa for the osteon stiffness in

the transverse direction and 0.3 for the Poisson’s ratio. When the collagen

elastic modulus is taken as Ecollagen = 5 GPa, as proposed in [33], the same

procedure leads to a homogenised value of 11.2 GPa for the osteon stiffness

in the transverse direction, which is clearly greater than the previous value.

Although the theoretical value of 11.2 GPa in the transverse direction is
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in line with the widely accepted values for large specimens of cortical bone

of 15-18 GPa [28], significantly lower values are obtained when testing mi-

crosamples of cortical bone in this latter reference. Thus, for iliac crest corti-

cal tissue of human donors, Kuhn et al. [28] obtained a range for the elastic

modulus between 1.19 and 11.25 GPa, with a mean modulus of 4.9 GPa.

Note the wide range of variation that can be observed even for the same

type of bone, also confirmed by other references cited therein. Ascenzi and

Bonucci [34] tested portions of human osteons, obtaining values ranging from

4.81 to 12.9 GPa. We remark that these values are in the longitudinal direc-

tion of the osteon and in our work we are interested in the transverse value

which is expected to be significantly lower. Kuhn et al. [28] also emphasize

the importance of the size effect, stating that there is a decreasing modulus

with decreasing specimen size (see this reference for further discussion on

this effect).

Regarding the properties of ovine cortical bone, a experimental study

is presented in [35] to measure the elastic modulus of different samples of

cortical tissue of ovine tibia (the same type of bone used in the present work).

The study also includes the measurement in different directions. Thus, values

in the longitudinal direction range from 14 to 21 GPa and from 2.5 to 8 GPa in

the radial direction (the direction of interest in this work). No information is

reported about the sample size, which as commented above may have further

influence.

In view of the uncertainty associated with this value, we initially consider

a value of Eost = 4 GPa for the osteon stiffness in the transverse direction and

νost = 0.3 as the Poisson’s ratio. This value will be calibrated after correlating
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the numerical test with the experimental results of our own samples.

Interstitial matrix. It is associated with old osteon segments which

have been replaced in the continuous process of bone remodelling [5]. Its

elastic properties correspond to a more mineralized tissue than the secondary

osteons addressed in the previous paragraph. There is consensus in the lit-

erature that the interstitial tissue has a stiffness approximately 10 to 15%

greater than the osteons [7, 13]. In this work, we have assumed that the

stiffness of the interstitial matrix is 10% higher than the osteons, so Einters

= 4.4 GPa and νinters = 0.3.

Cement line. It can be considered as the interface between the osteon

and the interstitial matrix. Compared to lamellar areas, it is very thin (about

1 µm) and its composition is still a topic discussed in the literature. In Burr

et al. [8] an analysis of the constituents of the cement line is made and

the authors suggest that it is a region with reduced mineralization. This

composition is consistent with the hypothesis that the cement line behaves

as a relatively weak interface between osteons and interstitial matrix. The

low strength of cement lines promotes the crack initiation and propagation,

limiting their growth within the interstitial matrix. Similarly, Nobakhti et

al. [36] analyse the behavior of the cement line in cortical tissue using a three

dimensional model and claim that strains increase at the interfaces for the

case of bending. These authors consider that Ecl = 0.089 GPa and νcl = 0.3.

However, in this work we assume that Ecl = 3.3 GPa and νcl = 0.3, following

Ascenzi et al. [37]. Other authors assume even greater stiffness values. For

example, Prendergast and Huiskes [38] report Ecl = 6.0 GPa, νcl = 0.25 and

Li et al. [13] Ecl = 9.6 GPa, νcl = 0.3.
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The elastic material properties initially considered for each of the three

constituents are summarized in Table 1.

Table 1: Elastic material properties considered initially in the numerical model.

Component Young’s modulus [GPa] Poisson’s ratio

Osteon 4.0 0.3

Interstitial matrix 4.4 0.3

Cement line 3.3 0.3

3.3. Damage modeling

In this work, cortical bone damage is modeled as the degradation of its

mechanical properties when critical values are reached. This is accomplished

using an Abaqus user’s subroutine, whereby a material degradation is in-

troduced to describe the progressive loss of stiffness due to the propagation

and coalescence of microcracks, microvoids and similar defects, typical of

a continuum damage approach. These changes in the microstructure lead

to a material stiffness degradation observed in the macroscale [39]. It has

been reported that bone failure process is controlled by strains [21] and since

bone structure is highly hierarchical [5, 6] different critical damage strains

are proposed for each component.

In a quasi-static regime, the constitutive equation of elasticity modified

by a damage mechanics degradation is expressed as follows [40]:

σij = (1−D)Cijklεkl (1)

where D is the damage variable, σij , εkl are the stress and strain tensors and

Cijkl is the constitutive elastic tensor.

18



The implemented Abaqus user’s subroutine is a function of a state vari-

able f , which corresponds to the damage criterion. It has been chosen to

depend on the principal maximum strain, see Eq. 2:

f =
εpmax,i

εci
(2)

where εpmax,i is the current maximum principal strain and εci is the critical

damage strain for each constituent i (osteon, interstitial matrix and cement

line).

When the critical strain values are reached (f ≥ 1), the damage variable

changes from undamaged to damaged and degradation of the material stiff-

ness is set to 1% of the initial stiffness. This way, the loss of stiffness due

to distributed, smeared microcracks is modelled [39]. Since this procedure

is implemented in a FE analysis, it is mesh and step dependent, so a sen-

sitivity analysis has been carried out with respect to these two parameters.

The mesh dependency of this procedure in certain problems is well known,

as discussed e.g. in [41]. A sufficiently refined mesh has been generated in

the zones where damage is expected to initiate and the substeps have been

chosen small enough to get a convergent solution.

We note in passing that other authors in the literature have opted for

an explicit crack approach to model the existence of microcracks in cortical

bone at the microscale. This is the case found in [13, 25]. In such an explicit

approach, the displacement discontinuity between crack faces is explicitly

modelled, either using a classical FE analysis (by which the element sides

match the crack faces) or using the extended finite element method XFEM

(by which the crack location does not need to conform to the element sides).

Despite the advantages of the XFEM approach, a typical implementation
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of the XFEM method, as the one available in the commercial code Abaqus,

poses difficulties when applied to heterogeneous materials. In fact, results

reported in [13, 25] lead to crack paths that cross osteons, differing from our

experimental evidence. Therefore, in this work we have followed a smeared

crack approach described above to model microcracks in cortical bone tissue.

4. CALIBRATION OF THE NUMERICAL MODEL WITH EX-

PERIMENTAL RESULTS

4.1. Force-displacement response

The numerical analysis of the microsample models should reproduce the

linear range of the force-displacement response obtained experimentally, see

Fig. 4. Preliminar analysis using the stiffness properties proposed in Sub-

section 3.2 show that the response of the numerical model is stiffer than the

experimental measures (about 4.5 times stiffer). Since the shape and dimen-

sions of the microsamples have been modeled accurately and the boundary

conditions are simple, the excessively rigid behaviour of the numerical model

must be ascribed to the stiffness material properties input in the model.

These should be modified in consequence to calibrate the model and repro-

duce the actual behaviour.

After dividing by the calibrating scale factor (approximately 4.7), the

calibrated stiffnesses for each region that lead to the observed experimen-

tal behaviour are: Eost,cal = 0.86 GPa, Einters,cal = 0.95 GPa and Ecl,cal =

0.57 GPa. This way, the simulation response matches the experimental be-

haviour in the linear elastic range, see Fig. 8.
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Figure 8: Force-displacement response obtained using the calibrated FE model and the

experimental record for test No. 1.

The calibrated values are relatively close (except for the interstitial ma-

trix) to the values provided by Nobakhti et al. [36] in his recent work in

which small microsamples of cortical bone are tested. In [36], they refer an

osteon stiffness of Eost,transversal = 0.15 GPa, Eost,longitudinal = 5 GPa, Einters =

13.7 GPa and Ecl = 0.088 GPa, which for Eost,transversal and Ecl are even less

than those estimated here after calibration. Once more, this shows the great

dispersion of mechanical properties found in the literature, as discussed in

Section 3.2.
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4.2. Critical strain for each component at the microscale

Fig. 9 shows the in-plane maximum principal strain contour reached af-

ter applying a growing force up to 5 N for microsample 4. As expected, the

maximum principal strain value is reached at the cement line closest to the

notch, i.e. the zone most prone to failure, as it has been observed experi-

mentally. At the failure load, the maximum principal strains in the cement

lines (in red) are slightly greater than 0.07, so the critical damage strain for

the cement line is assumed to be about this value.

In order to determine the critical damage strain values, an iterative proce-

dure has been carried out, analyzing the damage pattern obtained according

to the critical parameters until the experimental crack path is reproduced

approximately. Thus, by inverse analysis, it is possible to determine the crit-

ical damage parameters for each of the three constituents considered in the

numerical model. The estimation of the critical strain for each component is

shown in Table 2 for the two tests analyzed. For both cases, the estimated

critical values are similar even though they come from different models with

a different morphology at the microscale.

Table 2: Critical strain for each constituent.

εci Osteon Cement line Interstitial matrix

Test 2 0.12 0.07 0.07

Test 4 0.12 0.08 0.06

4.3. Crack growth simulation

Following the above procedure, the damaged elements form a smeared

crack pattern in good agreement with the experimental crack paths, see

22



(Avg: 75%)
E, Max. In−Plane Principal

−0.007
−0.001
 0.006
 0.012
 0.019
 0.025
 0.031
 0.038
 0.044
 0.051
 0.057
 0.064
 0.070
0.073

X

Y

Z

Figure 9: Maximum principal strain in the region near the notch of microsample No. 4.

Figs. 10 and 11. For both samples, microcracks initiate at the closest cement

line to the notch, i.e. where cement line strains are the greatest. Further-

more, it is clearly observed how microcracks evolve along the cement lines,

through the interstitial matrix and without crossing the osteons, which is in

agreement with experimental observations. This is in line with one of the

claimed functionalities of bone microstructure, by which cement lines act as
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Figure 10: Crack path comparison between simulation and experimental results for sample

2.

a protective component of the haversian system.
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Figure 11: Crack path comparison between simulation and experimental results for sample

4.
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5. DISCUSSION

The evolution of microcracks along cement lines has been observed by

many investigators. The thorough study by Burr et al. [8] evidences that

cement lines play an important role in the fracture behaviour at microscale,

as they are observed to divert crack propagation. Some investigators have

suggested that cement lines are not crossed by collagen fibers and represent

the weakest link within the cortical bone tissue [42, 43]. This approach is

consistent with the situation observed experimentally, by which microcracks

tend to follow cement lines rather than crossing osteons [44]. As shown in

the previous section, this is also the case of the experiments carried out in

this work. In Kennedy et al. [45], microcracks are analized in the remodeling

process as a function of its length, showing different behaviors. Short and

intermediate or long cracks propagate through the interstitial matrix until

reaching cement lines, but longer cracks tend to get arrested at cement lines

of new osteons rather than at old ones [45].

Other results in the literature show crack paths crossing osteons when

studying fracture in cortical bone tissue [9–11, 46]. Chan et al. [46] stud-

ied crack propagation in two cortical bone human femur specimens and the

influence of the donor’s age. Within young specimens, microcracks mainly

propagate through the cement lines and the interstitial matrix, but rarely

crossing osteons. Cracks frequently get arrested or deflect when they en-

counter an osteon and follow its cement line. However, some osteons are not

capable to deflect cracks and they penetrate through the lamellar tissue, as in

the case of old donor specimens [46]. These authors suggest that the different

behavior observed depends on factors such as different mineralization states,
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the degree of collagen crosslink density and differences in the remodelling

process [46]. These factors can lead to different crack behavior.

In general, there is agreement that short and intermediate microcracks

lead to crack paths that not penetrate osteons, as observed in the experiments

performed in this work, and that the crack arrest effect is less evident for long

microcracks, as commented in [10]. There is consensus that the mechanical

role of cement line needs still of further investigations. The wide dispersion of

mechanical properties at microscale for stiffness and strength of the different

bone constituents, as discussed in Section 3.2, makes this type of studies

even more complicated. In next section, we propose a procedure to estimate

the critical energy release rate of cement line using the force-displacement

experimental results and the above numerical simulations.

6. ESTIMATIONOF THE CRITICAL ENERGYRELEASE RATE

Gc FOR THE CEMENT LINE

The objective of this section is to estimate the critical energy release

rate Gc associated with the cement lines using FE results. This property is

considered of special relevance and it is useful, for example, to characterize

cohesive zone models (CZM) that need a knowledge of the critical energy of

fracture. In fact, this property is poorly documented in the literature with

high scattered values and, in this work, we propose a procedure to estimate

this material property.

First, the numerical models are calibrated for the experimental damage

load, leading to an acceptable path prediction along cement lines. Then, we

recall the definition of the strain energy release rate G:
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G = −
dΠ

dA
(3)

where Π is the total potential energy of the system and A is the crack area.

It is easy to prove that, when quasi-static crack propagation occurs (either

at constant load, constant displacement or variation of both) and assuming

a material with a linear elastic response, Eq. 3 can be rewritten in terms of

the variation of the elastic strain energy of the system U as:

G =

∣

∣

∣

∣

dU

dA

∣

∣

∣

∣

(4)

Assuming a two-dimensional problem with crack length a and thickness

t, Eq. 4 can be approximated by a finite difference approach as follows:

G =
1

t
lim
∆a→0

∣

∣

∣

∣

∆U

∆a

∣

∣

∣

∣

=
1

t
lim

∆a→0

∣

∣

∣

∣

Ui+1 − Ui

∆a

∣

∣

∣

∣

(5)

It is possible to estimate the critical valueGc when a crack grows along the

cement line about the failure load value detected experimentally, performing

a FE simulation with small enough time increments. During the critical time

increments, a certain number of elements change from a non-damaged state

to a damaged state. The length of this set of elements can be identified

with ∆a, i.e. the crack growth that occurs between two consecutive time

increments when the critical load is reached. The numerical value of the

elastic strain energy Ui for each step is provided by the FE solution at each

load increment. By substitution into Eq. 5 for the critical load increments

(for which propagation of damaged elements is observed), an estimation of

Gc can be obtained.
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Fig. 12 represents the first substeps at which failure of the cement line

near the notch is produced. This occurs when the experimental critical load is

reached and the force-displacement response becomes nonlinear due to dam-

age and microcracks initiation. The loading process was divided into small

time increments (1000 substeps), so the load variation between successive

substeps is very small.

a

∆a

a

∆a
a

∆a

a

∆a

Substep 913 - Load P = 4.565 N Substep 914 - Load P = 4.570 N

Substep 915 - Load P = 4.575 N Substep 916 - Load P = 4.580 N

a

∆a

a

∆a
a

∆a

a

∆a

Substep 913 - Load P = 4.565 N Substep 914 - Load P = 4.570 N

Substep 915 - Load P = 4.575 N Substep 916 - Load P = 4.580 N

Figure 12: Gc calculation for the cement line.

Crack growth is observed in Fig. 12, where similar crack increment lengths

∆a are found between substeps for this load level. The energy supplied to
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the system as an external force work causes a crack growth of ∆a equivalent

to 5-6 elements, requiring an energy consumption to generate new crack faces

that is similar in each substep and that can be related to the critical energy

release rate Gc of the failed material. Table 3 shows the strain energy of the

system extracted from the FE analysis for each of the six substeps analyzed

in this section.

Table 3: Elastic strain energy for each load substep.

Substep i Load [N] Ui [10
−6Nm]

913 4.565 553.86

914 4.570 555.37

915 4.575 556.91

916 4.580 558.48

917 4.585 560.07

918 4.590 561.88

Table 4 shows the estimated values of Gc for the above six successive load

increments using Eq. (5), having considered a sample thickness of t = 1 mm.

Since the value of the applied load corresponds to the critical load as-

sociated with the beginning of non-linear behavior, the values of G can be

identified as the critical strain energy release rate of the cement line Gc,cl.

The average value of Gc,cl is 162.9 N/m. This value is of the order of the

value provided by Li et al. [13], who refer that Gc for the cement line is

146 N/m, although the bone type is not indicated and their result is based

on other works.

Regarding the method for estimating Gc, we would like to point out its
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Table 4: Estimation of the cement line critical energy release rate Gc for each substep

using Eq. (5). Sample thickness is 1 mm.

Substep i ∆a [10−6m] G = Gc [N/m]

913-914 9.853 152.8

914-915 9.853 157.0

915-916 9.853 159.5

916-917 9.852 160.9

917-918 9.851 184.2

simplicity of application and its global character, so that the crack does not

need to be explicitly defined. It can be applied to interfaces between het-

erogeneous materials, as presented here, which otherwise would complicate

the application of other advanced techniques, such as the J-integral. More-

over, it does not involve the calculation of local displacements or stresses

in the vicinity of the crack tip, where these fields are affected by a large

discretization error.

One of the limitations of the method proposed for estimating Gc is that it

does not allow the separation between mode I and mode II contributions. In

principle, with the appropriate choice of the testing configuration, one can

obtain the desired crack opening mode. In our work, the computed value

of Gc corresponds in practice to GIc since the crack evolves almost normal

to the maximum principal stresses due to bending in the neighborhood of

a notch tip. Of course, when the cement line follows a contour not normal

to the maximum principal stress, then a mode II contribution exists. Due

to the geometrical configuration of the cement line and specimen used in
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this section, we provide an approximation to GIc through the crack growth

increments used in the computation of G.

7. CONCLUSIONS

Three-point bending tests have been performed on cortical bone tissue

samples and their behaviour correlated by finite element models. The ge-

ometry of the samples and the morphology of the osteons in the region of

interest have been taken into account in the numerical model, distinguishing

between three constituents at the micro level: osteons, interstitial matrix and

cement lines. The experimentally recorded force-displacement response en-

abled the calibration of the elastic and strength properties of the constituents

considered. The calibrated elastic properties are in the range of other values

reported in the literature, where a wide range of values have been found.

The critical damage strain was also calibrated for each constituent (osteon,

cement line and interstitial matrix), enabling the simulation of the damage

initiation and crack growth pattern using a smeared crack approach. Both

experimental tests and numerical simulations are in good agreement. Results

show that microcracks in cortical bone tissue tend to evolve mainly along the

cement lines, crossing the interstitial matrix, and hence cement lines act as

a protective element of the haversian system.

Furthermore, the critical energy release rate of the cement line Gc,cl has

been estimated using a finite difference approximation of the variation of

the strain energy of the system (measured from the calibrated FE models)

as the crack advances through the cement line. This property is relevant

and can be very useful to formulate other models, e.g. cohesive zone models
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(CZM) of the interface. This work sets a procedure that can be applied in

further experimental tests in order to estimate strength properties of bone

constituents at the micro scale.
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