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Abstract: The holographic principle sets an upper bound on the total (Boltzmann) entropy content of
the Universe at around 10123kB (kB being Boltzmann’s constant). In this work we point out the existence
of a remarkable duality between nonrelativistic quantum mechanics on the one hand, and Newtonian
cosmology on the other. Specifically, nonrelativistic quantum mechanics has a quantum probability fluid
that exactly mimics the behaviour of the cosmological fluid, the latter considered in the Newtonian
approximation. One proves that the equations governing the cosmological fluid (the Euler equation
and the continuity equation) become the very equations that govern the quantum probability fluid
after applying the Madelung transformation to the Schroedinger wavefunction. Under the assumption
that gravitational equipotential surfaces can be identified with isoentropic surfaces, this model
allows for a simple computation of the gravitational entropy of a Newtonian Universe. In a first
approximation, we model the cosmological fluid as the quantum probability fluid of free Schroedinger
waves. We find that this model Universe saturates the holographic bound. As a second approximation,
we include the Hubble expansion of the galaxies. The corresponding Schroedinger waves lead to a
value of the entropy lying three orders of magnitude below the holographic bound. Current work
on a fully relativistic extension of our present model can be expected to yield results in even better
agreement with empirical estimates of the entropy of the Universe.
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1. Introduction

There is a widespread belief that the continuum description of spacetime as provided by
general relativity must necessarily break down at very short length scales and/or very high
curvatures. A number of very different approaches to an eventual theory of quantum gravity have been
presented in the literature; these candidate theories are too varied and too extensive to summarise here.
Suffice it to say that whatever the atoms of spacetime may turn out to be, at the moment there exists
a large body of well-established knowledge concerning the thermodynamics of spacetime. For recent
advances in this direction, as well as a more detailed bibliography, we refer the reader to the original
articles [1–4] as well as the review papers [5,6].

The overall picture that emerges is that of a continuum description after some appropriate
coarse-graining of some underlying degrees of freedom (the atoms of spacetime mentioned above).
Even if the precise nature of the latter is unknown as of yet, one can still make progress following
a thermodynamical approach: one ignores large amounts of detailed knowledge (e.g., the precise
motions followed by the atoms of a gas) while concentrating only on a few coarse-grained averages
(e.g., the overall pressure exerted by the atoms of a gas on the container walls). This way of approaching
the problem has come to be called the emergent approach.

In the emergent approach to spacetime presented in Reference [7], gravity qualifies as an entropic
force. Roughly speaking, this is the statement that we do not know the fundamental degrees of
freedom underlying gravity, but their overall macroscopic effect is that of driving the system under

Entropy 2018, 20, 83; doi:10.3390/e20020083 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-0720-9945
https://orcid.org/0000-0002-0347-7280
http://dx.doi.org/10.3390/e20020083
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 83 2 of 8

consideration in the direction of increasing entropy. If gravitational forces are entropy gradients, then
gravitational equipotential surfaces can be identified with isoentropic surfaces. This insight justifies
identifying the gravitational potential and the entropy function (up to dimensional factors).

Recalling the arguments of Reference [7], a classical point particle approaching a holographic
screen causes the entropy of the latter to increase by one quantum kB. We will replace the classical
particle of Reference [7] with a density of particles representing the (baryonic and dark) matter
contents of a hypothetical Newtonian Universe. This volume density will be identified with the
squared modulus of a nonrelativistic wavefunction ψ satisfying the Schroedinger equation. Let U
denote the gravitational potential. Once dimensions are corrected (using h̄ and kB), the expectation
value 〈ψ|U|ψ〉 becomes the quantum-mechanical analogue of the entropy increase caused by a classical
particle approaching a holographic screen in Reference [7]. Therefore, the expectation value 〈ψ|U|ψ〉
becomes a measure of the gravitational entropy of the Universe when the matter of the Universe is described by
the wavefunction ψ.

The next question is to determine the Newtonian potential U governing the Universe as a whole.
Of course, even within the Newtonian approximation, U necessarily appears as a very rough average.
We can, however, find guidance in the Hubble expansion of the Universe [8–10], which holds reasonably
well over cosmological distances. This receding behaviour of the galaxies can be easily modelled by a
phenomenological potential; namely, an isotropic harmonic potential carrying a negative sign:

UHubble(r) = −
H2

0
2

r2. (1)

As the angular frequency, we take the current value of Hubble’s constant H0 (thus, UHubble has the
dimensions of energy per unit mass, or velocity squared). The potential UHubble encodes the combined
effect of the gravitational attraction, and of the repulsion caused by the dark energy on the matter
content of the Universe (baryonic and dark matter). We can therefore identify the Hubble potential
UHubble of Equation (1) with the gravitational potential U in the previous paragraph.

Following Reference [11], let us briefly recall why UHubble in fact combines a Newtonian gravitational
attraction plus a harmonic repulsion (See Equation (9.14 b) of Reference [11]), the right-hand side
of which is the force that one would obtain by differentiation of our Equation (1). The fact that
Reference [11] defended the steady state theory—the rival that lost against the currently accepted big
bang theory—has no bearing on this discussion, as the Newtonian limit is the same). In the Newtonian
limit considered throughout this paper, the gravitational attraction is computed by applying Gauss’
law to a sphere filled with a homogeneous, isotropic density of matter. Then, the gravitational field
within the sphere turns out to be proportional to the position vector, so the corresponding potential
becomes a quadratic function of the position. Altogether, the total potential at any point within the
cosmological fluid is the sum of two harmonic potentials; Hubble’s constant H0 is the frequency of this
total harmonic potential.

In this way, the Newtonian space R3 is foliated by a continuous succession of concentric spheres
with growing radii. Each one of these spheres qualifies as a gravitational equipotential surface.
By what was said above, these surfaces are also isoentropic surfaces, the gradients thereto pointing
in the direction of the gravitational force. The negative sign in Equation (1) expresses the essential
fact that this net force is repulsive instead of attractive. Already at the classical level, this potential
possesses no state of least energy—a problem that resurfaces at the quantum level, as the nonexistence
of a stable vacuum state [12]. What saves the day is the crucial observation that, in fact, our observable
Universe is finite in size, instead of extending over all of R3. The current value R0 of the radius of the
observable Universe provides us with a natural cutoff. In this way, a stable vacuum state is guaranteed
to exist.
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2. Newtonian Cosmology as a Quantum Mechanics

The Poisson equation satisfied by the nonrelativistic gravitational potential U created by a mass
density ρ,

∇2U = 4πGρ, (2)

arises naturally in the weak-field limit of Einstein’s field equations. In this limit (also called the
Newtonian approximation), the (baryonic and dark) matter contents of the Universe are modelled as an
ideal fluid (see, e.g., [13]) satisfying the Poisson Equation (2) as well as the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 (3)

and the Euler equation
∂v
∂t

+ (v · ∇) v +
1
ρ
∇p− F = 0. (4)

In Equations (3) and (4), ρ is the volume density of fluid mass, p is the pressure, v is the
velocity field within the cosmological fluid, and F the force per unit volume acting on the fluid.
The cosmological principle requires that the velocity v be everywhere proportional to the position
vector r. This latter statement is nothing but Hubble’s law, which one can mimic by means of the
phenomenological potential (1). Indeed, the latter satisfies the Poisson Equation (2),

∇2UHubble = −3H2
0 , (5)

the right-hand side corresponding to a negative mass density ρ = −3mH2
0 /(4πG).

In Reference [14], we have pointed out the existence of a remarkable duality between nonrelativistic
quantum mechanics on the one hand, and Newtonian cosmology on the other (we thank a referee for drawing
our attention to Reference [15]). Specifically, nonrelativistic quantum mechanics has a quantum
probability fluid that exactly mimics the behaviour of the cosmological fluid—the latter considered in
the Newtonian approximation. One proves that Equations (3) and (4)—which govern the cosmological
fluid—become the very equations that govern the quantum probability fluid after applying the
Madelung transformation. The inclusion of the Hubble potential as an external force acting on the
quantum system then yields Equation (2).

The duality just mentioned can be used to compute thermodynamical quantities of the Universe using
standard quantum mechanics. In the introduction, we have argued that the operator R2 = X2 + Y2 +

Z2—which is proportional to the Hubble potential (1)—is a measure of the amount of gravitational
entropy enclosed by the Universe. Correcting dimensions by means of the appropriate physical
constants, the operator

S := N kBmH0

h̄
R2 (6)

qualifies as a Boltzmann entropy. Above m is the total mass (baryonic and dark) of the observable
Universe. A dimensionless factor N is left undetermined by these simple arguments; we generally
expect N to be of order unity. We call S the gravitational entropy operator.

The present paper is a continuation of—and an improvement on—our previous article [14]. Let us
examine this point in more detail. Within the scope of the approximations considered here, the effective
Hamiltonian operator Heff acting on the wavefunction ψ(r) that models the cosmological fluid is

Heff = −
h̄2

2m
∇2 − keff

2
r2, keff = mH2

0 . (7)

Above, we have defined the effective elastic constant keff corresponding to the Hubble potential (1).
The amount of mass mV contained within a volume V equals mV = m

∫
V d3x|ψ|2; the whole observable

Universe is a sphere of radius R0 (we collect our cosmological data m, H0, R0 from Reference [16]).
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Considering the Universe as a sphere with finite radius has the advantage that the instabilities [12]
due to the negative sign of the potential are avoided naturally. Although the Hamiltonian (7) can be
diagonalised and its exact eigenfunctions can be obtained explicitly [14,17], the latter are extremely
cumbersome for explicit computations. As a first step, for the sake of simplicity, in Reference [14] we
obtained the expectation value 〈S〉 using a set of eigenfunctions of the free Hamiltonian −h̄2∇2/(2m).

The analysis performed in this paper uses the exact eigenfunctions of the effective Hamiltonian (7);
this improves on the results of our calculation of Reference [14]. The values thus obtained will be closer
to actual (empirical) estimates for the entropy of the Universe [18], so the upper bound Smax ∼ 10123kB
set by the holographic principle will no longer be saturated. Specifically, we will refine the results of our
previous Reference [14] by three orders of magnitude; see Equations (20) and (26) below. Further work
is required in order to extend our results beyond the Newtonian limit [19]; this extension will hopefully
yield values in even better agreement with existing estimates.

3. Estimate of the Entropy

Let us separate variables in the effective Hamiltonian (7) using spherical coordinates. The standard
factorisation ψ(r) = R(r)Ylm(θ, ϕ) leads to a radial wave equation

1
r2

d
dr

(
r2 dR

dr

)
− l(l + 1)

r2 R +
2m
h̄2

(
E +

keff
2

r2
)

R = 0. (8)

The choice l = 0 imposed by the cosmological principle leads to

r2 d2R
dr2 + 2r

dR
dr

+
2m
h̄2

(
Er2 +

mH2
0

2
r4

)
R = 0. (9)

As shown in References [14,17], two linearly independent solutions of (9) turn out to be

R(1)
α (r) = exp

(
iβ2r2

2

)
1F1

(
3
4
− iα

4
,

3
2

;−iβ2r2
)

(10)

and

R(2)
α (r) =

1
r

exp
(

iβ2r2

2

)
1F1

(
1
4
− iα

4
,

1
2

;−iβ2r2
)

, (11)

where 1F1(a, b; z) is the confluent hypergeometric function [20], and the parameters α, β take on
the values

α :=
2E

h̄H0
, β4 :=

m2H2
0

h̄2 . (12)

To begin with, the complete wavefunction corresponding to the radial wavefunction (10) reads

ψ
(1)
α (r, θ, ϕ) =

N(1)
α√
4π

exp
(

iβ2r2

2

)
1F1

(
3
4
− iα

4
,

3
2

;−iβ2r2
)

; (13)

the radial normalisation factor N(1)
α will be determined presently. The eigenfunction ψ

(1)
α is singularity

free over the entire interval [0, R0]. A numerical estimate yields β ' 1.1× 1035 m−1. Given that
R0 ' 4.4× 1026 m, the dimensionless product (βr)2 in Equation (13) quickly drives the function 1F1

into its asymptotic regime, where it can be approximated as [20]

1F1(a, b; z) ' Γ(b)
Γ(b− a)

e−iπaz−a +
Γ(b)
Γ(a)

ez za−b, |z| → ∞, (14)
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whenever |arg(z)| < π and b 6= 0,−1,−2, . . . We will also need Stirling’s formula

Γ(t) ' exp
[(

t− 1
2

)
ln t− t +

1
2

ln 2π

]
, (15)

valid for |t| → ∞ whenever |arg(t)| < π. When applying Stirling’s approximation, we will select the
main branch of the complex logarithm. Another order-of-magnitude estimate yields α ' 1052E, with
the energy E expressed in Joules; this fact allows the first summand in (14) to be dropped in favour of
the second. Then, a lengthy calculation based on Equations (14) and (15) yields the desired asymptotic
expression of the confluent hypergeometric function in (13):

1F1
( 3

4 −
iα
4 , 3

2 ;−iβ2r2) ' 1
2
√

2
exp

( 3
4 − iπ

)
exp

(
πα
2
)

exp
( iα

4 ln α
4
)

× exp
{
−i
[
β2r2 + α

2 ln(βr)
]}

exp
(
− 3

2 ln βr
)

, r → ∞.
(16)

Finally, substituting Equation (16) into Equation (13), and absorbing an irrelevant constant within
the normalisation factor N(1)

α , we obtain the following asymptotic wavefunction:

ψ
(1)
α (r, θ, ϕ) ' N(1)

α√
4π

exp
(

πα
2
)

exp
( iα

4 ln α
4
)

× exp
{
− i

2
[
α ln(βr) + β2r2]} (βr)−3/2, r → ∞.

(17)

We observe that the asymptotic expression (17) is singular at r = 0 while the original
wavefunction (13) was not. This is just a consequence of having replaced the exact wavefunction
with its asymptotic approximation for large r. Therefore, Equation (17) applies at most over the interval
[ε, R0], where ε > 0 is small but nonvanishing. We need to determine a suitable ε and the wavefunction
ψ
(1)
α over [0, ε].

A natural choice to make is ε = β−1. This is sufficiently small, while at the same time, values
of r > β−1 fall well within the asymptotic regime (14) of the confluent hypergeometric function.
Over the interval [0, β−1], we will approximate 1F1 by its Taylor expansion 1F1(a, b; z) ' 1 + az/b [20].
Altogether, the normalised approximate wavefunction for the matter contents of the Universe

ψ
(1)
α (r, θ, ϕ) =

√
β3

4π ln(βR0)
exp

( iα
4 ln α

4
)

×
{

exp (−i/2) , r ∈ [0, β−1]

exp
{
− i

2
[
α ln(βr) + β2r2]} (βr)−3/2 , r ∈ [β−1, R0]

(18)

is regular over the entire interval [0, R0]. With the wavefunction (18), we obtain

〈ψ(1)
α |R2|ψ(1)

α 〉 =
R2

0
2 ln (βR0)

, (19)

after dropping subleading terms in β. Substituted back into Equation (6), this produces a value of
the entropy

〈ψ(1)
α |S|ψ

(1)
α 〉 = 6N × 10120kB (20)

which, taking N = 1/6, is three orders of magnitude below the upper bound Smax ∼ 10123kB set
by the holographic principle. This is a considerable improvement upon the results of Reference [14],
where the holographic bound was saturated.

In the case of the second, linearly-independent radial wavefunction (11), we have the
complete eigenfunction

ψ
(2)
α (r, θ, ϕ) =

N(2)
α√
4π

1
r

exp
(

iβ2r2

2

)
1F1

(
1
4
− iα

4
,

1
2

;−iβ2r2
)

. (21)
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As opposed to ψ
(1)
α , the wavefunction ψ

(2)
α is singular at r = 0. Again applying Equations (14)

and (15), one finds the asymptotics

1F1

(
1
4 −

iα
4 , 1

2 ;−iβ2r2
)
' 1√

2
exp

(
1
4 −

iπ
2

)
exp

(
πα
2 + iα

4 ln α
4
)

× exp
[
−i
(

α
2 ln βr + β2r2)] exp

(
− 1

2 ln βr
)

, r → ∞.
(22)

Next, substituting (22) into (21) produces, after absorbing an irrelevant constant within the
normalisation factor,

ψ
(2)
α (r, θ, ϕ) ' N(2)

α√
4π

1
r exp

(
πα
2 + iα

4 ln α
4
)

× exp
[
− i

2
(
α ln βr + β2r2)] (βr)−1/2, r → ∞.

(23)

Finally, arguments similar to those leading up to Equation (18) produce the following normalised
approximate wavefunction over the complete interval [0, R0]:

ψ
(2)
α (r, θ, ϕ) =

√
β

4π ln(βR0)
exp

( iα
4 ln α

4
)

×
{

1
r exp (−i/2) , r ∈ [0, β−1]
1
r exp

{
− i

2
[
α ln(βr) + β2r2]} (βr)−1/2 , r ∈ [β−1, R0].

(24)

We observe that the approximate wavefunction (24) remains singular at r = 0, as imposed by the
exact wavefunction (21). With the above, one computes

〈ψ(2)
α |R2|ψ(2)

α 〉 =
R2

0
2 ln(βR0)

, (25)

coincident with the corresponding result (19) for the regular wavefunction. Therefore

〈ψ(2)
α |S|ψ

(2)
α 〉 = 6N × 10120kB, (26)

in complete agreement with the entropy already found in (20) for the regular wavefunction.

4. Discussion

The holographic principle sets an upper bound of approximately 10123kB on the entropy content
of the Universe. Some phenomenological estimates [18] place the actual value at around 10104kB,
gravitational entropy (and in particular, black holes) representing the largest single contributors to
the entropy budget of the Universe. Although Newtonian cosmology does allow for black holes [21],
the many simplifications made by our elementary model necessarily leave out some essential physics
of the Universe. Nevertheless, our toy model succeeds in capturing some key elements of reality.
For example, the upper bound set by the holographic principle is always respected, even by such a
crude approximation as the free waves [14]. The Hubble waves (18) and (24) represent a considerable
improvement on the free waves, as they reduce the expectation value of the entropy by three orders
of magnitude. We hope that a fully general-relativistic treatment [19] will yield results in even better
agreement with existing empirical estimates.

Admittedly, solutions (10) and (11) violate the cosmological principle. In fact, any solution to the
(interacting) Schroedinger equation will violate the cosmological principle. Only free wave solutions to
the free wave equation (i.e., with zero potential) satisfy the cosmological principle. However, the free
wavefunctions of our previous Reference [14] saturate the holographic principle, while our improved
Hubble wavefunctions (10) and (11) no longer saturate it. This is essential for the very existence
of life in the Universe. Given that the cosmological principle itself is an idealisation, we believe
the improved entropy results obtained using Hubble wavefunctions outweigh the violation of the
cosmological principle.
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Since α in Equation (12) is the (dimensionless) energy eigenvalue in Heffψ = Eψ, the parameter
α plays the same role that the quantum number n ∈ N plays in the standard harmonic oscillator,
where the potential energy is positive definite. Our negative definite harmonic potential does not
have quantised energy levels, but continuous energy levels α instead. However, the range of values
covered by α, while unbounded above, is bounded below by the existence of the radius of the Universe:
a classical particle at rest at r = R0 would carry an energy

E0 = −1
2

mH2
0 R2

0. (27)

This configuration can be regarded as the classical vacuum state. In terms of the dimensionless
eigenvalue α, this energy equals

α0 = −
mH0R2

0
h̄

= −2.6× 10123. (28)

The vacuum energy (28) has been determined by a classical argument; although the uncertainty
principle will shift the minimum energy (28) by a positive amount, this correction can be discarded for
our purposes, as it will be negligible compared to (28) itself. The negative sign in (28) is due to the
Hubble potential (1), while the dimensionless factor 2.6 is of order unity. Thus, the vacuum energy (28)
yields the approximate equality

|α0| '
Smax

kB
' 10123. (29)

The above numerical coincidence is in fact a consistency check on all our previous arguments.
It confirms once again that the holographic bound is never exceeded, since both the energy and the
entropy grow quadratically with the distance.

We have seen in Section 3 that the linearly-independent wavefunctions ψ
(1)
α and ψ

(2)
α coalesce

asymptotically in r. This occurs despite the fact that ψ
(1)
α is regular at r = 0 while ψ

(2)
α is singular.

In turn, this implies that issues of regularity of the wavefunction at r = 0 are irrelevant for our
purposes. Our estimate of the entropy remains valid regardless of the precise wavefunction used in a
neighbourhood of r = 0; this neighbourhood is [0, β−1].

The constant β arises naturally when diagonalising the effective Hubble Hamiltonian (7); see
Equation (12). It turns out that β−1 ' 10−35 m, which is close to the value of the Planck length LP,

β−1 =

√
h̄

mH0
' LP =

√
h̄G
c3 . (30)

Our toy model of the Universe thus possesses an intrinsic length scale, β−1, which numerically
equals the Planck length. This approximate equality is no coincidence (we thank a referee for pointing
this out to us): the value of m is that of the mass enclosed by the Hubble horizon for a critical Universe,
m ' 1/(H0G), hence β ' 1/

√
G = 1/LP.

Our analysis is rooted in previous studies [22,23] on the emergent property of quantum mechanics.
According to the hypothesis of emergence, quantum mechanics as we know it should be the effective
theory of some underlying mechanics, the coarse graining of which would yield our current quantum
models. Important recent work in general relativity [1–4] also points in the same direction: gravity
appears to be the thermodynamics of some underlying degrees of freedom—a continuous spacetime
emerging only as their low-energy limit. That seemingly unrelated fields such as quantum theory and
general relativity might share fundamental common features [24] is an intriguing possibility worthy of
future study.
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