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Abstract: The classical thermostatics of equilibrium processes is shown to possess a quantum
mechanical dual theory with a finite dimensional Hilbert space of quantum states. Specifically,
the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum
mechanics. The relation of thermostatics to topological field theory is also discussed in the context of
the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
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1. Motivation

The approach of the emergence of quantum mechanics has provided interesting clues into
the deeper structure of the theory. The statement that standard quantum mechanics is an emergent
phenomenon [1–4] has found further support in a series of papers, some of which have been reviewed in
Reference [5]. Although this is a huge topic to summarize here, let us briefly mention some key points
of this approach. The underlying notion is that it provides a coarse-grained version of some deeper
theory, out of which quantum mechanics emerges as a kind of effective description. This effective
description—in using variables that arise as averages over large collections of individual entities
carrying the truly fundamental degrees of freedom—ignores the underlying fine structure. These
fundamental degrees of freedom have been identified in References [3,4] as those of cellular automata.

This state of affairs is reminiscent of the relation between thermodynamics (as an emergent
phenomenon) and statistical mechanics (the corresponding underlying theory). Based on this analogy,
we have in previous publications (see [5] and references therein) established a bijective map that one can
define between quantum mechanics, on the one hand, and the classical thermodynamics of irreversible
processes, on the other [6,7]. It must be stressed that the classical thermodynamics of irreversible
processes [6,7] is conceptually quite different from the usual thermostatics of equilibrium as presented in
the standard textbooks [8]. Specifically, in the theory of irreversible processes, the continual production
of entropy provides a rationale for the dissipation—or information loss—that has been argued to lie at
the heart of quantum mechanics [3,4]. The relevance of thermodynamical concepts to quantum theory
and gravity has been emphasized recently in references [9–13].

It might thus appear that the usual quasistatic thermodynamics [8] (i.e., the thermostatics of
equilibrium processes) possesses no quantum mechanical dual theory at all. In this letter, we point
out that such a conclusion is not true: the thermostatics of equilibrium processes does have a quantum
mechanical dual; namely, a quasistatic quantum mechanics. By quasistatic, we mean that the kinetic term
in the mechanical Lagrangian can be neglected compared to the potential term.

Neglecting the kinetic term in the Lagrangian function forces one to look elsewhere for the
dissipative mechanism that is characteristic of quantum theory [3,4]. In particular, such a mechanism
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can no longer be identified with the continual production of entropy associated with Onsager’s
kinetic term Lij q̇i q̇j. The reciprocity theorem [6] ensures Lij = Lji, and dissipation requires that this
matrix be positive definite; the latter two properties ensure that Lij qualifies as a metric. The result of
neglecting the kinetic term in the Lagrangian is a mechanics bearing some resemblance to topological
field theory [14]. Indeed, once the metric represented by the kinetic term is neglected, correlation
functions can no longer be metric dependent. Hence, while correlators can still depend on the
topology of the underlying manifold, they can no longer depend on its metric structure. In our case,
the underlying manifold will be given by the equipotential submanifolds (within configuration space)
of the potential function.

2. A Quasistatic Mechanics

A quasistatic mechanics is obtained by neglecting the kinetic term K in the mechanical Lagrangian
L = K−U, and keeping only the potential term U:

L = −U. (1)

Since our Lagrangian does not depend on the velocities q̇, this phase space is constrained by the
requirement that all momenta vanish, p = 0, and the Hamiltonian equals

H = U. (2)

We can now construct the reduced phase space corresponding to this reduced configuration
space, and eventually quantise it (for our purposes, it will not be necessary to apply Dirac’s theory
of constrained quantisation [15]). When moving along equipotential submanifolds, the particle is
effectively free; whenever motion takes place between neighbouring equipotentials, forces will cause
the particle’s kinetic energy to increase or decrease. However, the allowed motions must be quasistatic,
so even for these motions, K must be negligible compared to U. In classical mechanics, motion along
equipotential submanifolds plus a vanishing kinetic energy imply that a classical particle must forever
stay at rest. Quantum mechanically, due to the uncertainty principle, a (more or less localised) free
particle always carries a nonzero kinetic energy. So, neglecting the kinetic energy of a quantum particle
implies a large uncertainty in the position. This large uncertainty is reflected in a large spread of the
corresponding wavepacket: the latter encompasses a large interval of different classically allowed
positions (or states), all of which coalesce into a single quantum state. It is only in the limit of complete
delocalisation in space that a quantum particle can carry zero kinetic energy.

We have just described an information loss mechanism whereby different classical states (different
spatial positions on an equipotential submanifold, corresponding to different classically allowed
equilibrium states) are lumped together into just one quantum state. This information loss has been
argued to be a key feature of the quantum world.

3. The Thermostatics Dual to Quasistatic Mechanics

We claim that the quasistatic quantum mechanical model described in Section 2 possesses a dual
theory: the classical thermostatics of equilibrium processes. In what follows, we will exhibit the claimed
duality explicitly.

The classical thermostatics of equilibrium [8] is a theory of quasistatic processes. In particular,
all kinetic energies are neglected; the processes described are either in thermal equilibrium, or at
most differ infinitesimally from thermal equilibrium. This feature is in sharp contrast with
the thermodynamics of irreversibility [6,7] that we described in previous publications [5] as a
thermodynamical dual of quantum mechanics, whenever the kinetic energies involved could not be neglected.

Next we recall that classical thermostatics is—like quantum mechanics—an emergent theory.
By emergent, we mean that classical thermostatics is the result of coarse graining over very many
microscopic degrees of freedom; the resulting theory renounces the knowledge of detailed information
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about its constituent degrees of freedom, retaining just a handful of relevant averages such as pressure,
volume, and temperature. In other words, an information loss mechanism is at work. This situation is
similar to that described in Section 2 for the passage from classical mechanics to quantum mechanics.

In the dual thermostatics considered here, the counterpart of the mechanical action I =
∫

Ldt
is the entropy S. We will identify isoentropic submanifolds (of thermodynamical state space) with
equipotential submanifolds (of mechanical state space). This is justified because in the approach of
emergence, forces are (proportional to) entropy gradients. In the particular case of the gravitational force,
this identification has been put forward in reference [16]; it coincides with the viewpoint applied in the
theory of irreversibility [7], and indeed with the whole programme of the emergent physics paradigm.
In this way, the quantum mechanical exponential

exp
(
− i

h̄
I
)

(3)

becomes, in the dual thermostatics,

exp
(

S
kB

)
. (4)

The correspondence between expressions (3) and (4) has been known for a long time, having
been discussed more recently in reference [9] from the point of view of statistical mechanics. However,
we would like to stress that the theory being considered here as dual to quantum mechanics is not
statistical mechanics, but the thermostatics of equilibrium emerging from the latter.

Finally, the connection between the mechanical time variable t and the temperature T is as follows
(this substitution is widely applied in thermal field theory; e.g., [17]):

i
h̄

t←→ − 1
kBT

, (5)

where h̄ and kB are Planck’s constant and Boltzmann’s constant, respectively. The double arrow
is to be understood as replace every occurrence of it/h̄ in the mechanical theory with −1/kBT in the
thermostatical dual, and vice versa. Quasistatic mechanics therefore corresponds to isothermal processes
in the dual thermostatics.

4. The Quasistatic Mechanics Dual to Thermostatics

Given some specific thermostatical systems, below we illustrate how to define their corresponding
(quasistatic) quantum mechanical duals.

4.1. The Ideal Gas

An expression for the entropy of a system in terms of its thermodynamical variables is called
a fundamental equation for the system [8]. To be specific, let us consider 1 mole of an ideal gas occupying
a volume V at a fixed temperature T. Its fundamental equation reads

S(V) = S0 + kB ln
(

V
V0

)
, (6)

where S0 is the entropy in the fiducial state specified by V0; we take S0 to contain a constant contribution
from the fixed temperature T. The entropy depends only on the volume V; the latter, running over
(0, ∞), can be regarded as the thermodynamical coordinate for the isothermal processes of an ideal gas.

In order to construct a kinetic energy operator K for the quantum theory, the standard rule is

K : = − h̄2

2M
∇2, (7)
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where ∇2 is the Laplacian operator on functions. By definition, the Laplacian requires a metric gij:

∇2 =
1
√

g
∂i

(√
ggik∂k

)
, g = |det(gij)|. (8)

The fundamental Equation (6) provides us with a clue as to which metric can be meaningfully
chosen. We first observe that Equation (6) is valid in three-dimensional space, where the volume V
scales like r3; here r, θ, ϕ are spherical coordinates. This suggests using the Euclidean metric in R3,

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2, (9)

and imposing the following two requirements. First, motion along the radial direction r must cause
an increase or decrease of the entropy, as per the fundamental Equation (6), with V = 4πr3/3; second,
the sphere r = r0 must define an isoentropic surface for each r0.

Further support for our argument follows from a classic result by H. Weyl: (we quote this result
from reference [18]): let R ⊂ R3 be a bounded region with piecewise smooth boundary, and let
V(R) =

∫
R
√

g d3x denote its volume with respect to some Riemannian metric on R3. Then,
the eigenvalue equation for the Laplacian on R, ∇2 f = λ f , supplemented with some mild boundary
conditions, has a countable infinity of real eigenvalues λn satisfying 0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ . . .. These
eigenvalues can be arranged into a partition function Z(t),

Z(t) : = Tr exp
(

t∇2
)
=

∞

∑
n=1

exp (tλn) , (10)

and it turns out that the small t asymptotics of Z(t) is given by

Z(t) ' V(R)
(4πt)3/2 , t→ 0. (11)

An analogous result holds within Rd (it is not necessary to assume that d = 3; it is not necessary
that the metric be the Euclidean one; it is also not necessary to assume that R is a sphere). However,
the Euclidean assumption is suggested by the fundamental Equation (6), while the assumption of
spherical symmetry (in no way imposed by the ideal gas) provides a welcome simplification. The volume
V occupied by the ideal gas within Euclidean space is naturally related to the spectrum of the Laplacian operator
within (and on the boundary surface of) V.

We will initially define the Hilbert spaceH of quasistatic quantum mechanics as the space of those
states that minimise the expectation value of the kinetic energy, subject to the constraint that they be
normalised (plus some boundary conditions to be specified below). Thus, introducing a Lagrange
multiplier −λ ∈ R, we need to solve

δ

δ|ψ〉 (〈ψ|K|ψ〉 − λ〈ψ|ψ〉) = 0, 〈ψ|ψ〉 = 1. (12)

Since K is selfadjoint, Equation (12) leads to

K|ψ〉 = λ|ψ〉, (13)

so the Hilbert spaceH is initially defined as

H : = Ker (K− λmin) , (14)

where λmin is the minimal kinetic energy; we have seen that λ ≥ 0. We will presently see how the
inclusion of a potential function U affects the definition (14) of the Hilbert space.
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4.2. Motion along Isoentropic Surfaces

We first analyse motion along a given isoentropic surface, which we take to be the unit sphere S2.
The angular part ∇2

S2 of the Laplacian operator on R3 leads to the kinetic energy operator KS2 :

KS2 ψ := − h̄2

2M
∇2

S2 ψ = − h̄2

2M
1

sin θ

[
∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
sin θ

∂2ψ

∂ϕ2

]
. (15)

Within the space L2(S2), the eigenvalues λ of Equation (13) are h̄2l(l + 1)/(2M), with l ∈ N ;
the least kinetic energy for motion on S2 corresponds to the zeroth spherical harmonic Y00 = (4π)−1/2:

KS2Y00 = 0. (16)

The corresponding particle is completely delocalised on S2, as befits the fact that its momentum
vanishes exactly. The Hilbert spaceHS2 is defined as the linear span of the spherical harmonic Y00; i.e.,

HS2 = Ker
(
∇2

S2

)
. (17)

On a compact connected manifold, the only harmonic functions are the constants; the specific
value (4π)−1/2 is determined by normalisation. Although we have computed dimHS2 explicitly,

the finite dimensionality of Ker
(
∇2

S2

)
⊂ L2(S2) was already guaranteed on the basis of general results

concerning the theory of elliptic operators on compact Riemannian manifolds [19] (in this particular
case, one can more simply apply the Hodge theorem [20]: since the 2–sphere S2 is a compact orientable
Riemannian manifold, we have

dim Ker
(
∇2

S2

)
= b0(S2) = 1,

where b0 is the zeroth Betti number of the manifold in question). A finite dimensional Hilbert space
is a feature of many topological theories [14]: although a metric was initially required to define
a Laplacian operator, the metric dependence is softened in the end, through the requirement of
quasistatisticity (12).

Finally, we can add a potential function U = U(r) depending only on the radial variable r, and the
previous arguments remain entirely valid. We then get back to the situation described in Section 2:
a particle moving quasistatically along the equipotential submanifolds of a certain potential.

4.3. Motion across Isoentropic Surfaces

Next, we analyse motion across isoentropic surfaces. The radial part ∇2
r of the Laplacian operator

on R3 gives rise to the kinetic energy operator Kr:

Krψ : = − h̄2

2M
∇2

r ψ = − h̄2

2M

(
d2ψ

dr2 +
2
r

dψ

dr

)
. (18)

By Equations (13) and (18), we need to solve

d2ψ

dr2 +
2
r

dψ

dr
+ c2ψ = 0, c2 :=

2Mλ

h̄2 ≥ 0; (19)

a fundamental set of solutions is
{

ψ±(r) = r−1 exp(±icr)
}

. A vanishing kinetic energy is attained
when c = 0. However, the corresponding wavefunction, ψ(r) = 1/r, is neither regular at r = 0,
nor square integrable over the interval (0, ∞). Imposing regularity of ψ(r) at r = 0, one is left with
the wavefunctions

ψ(r) =
1
r

sin (cr) , (20)
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while the wavenumber c ∈ R remains undetermined. We can determine c if we recall the relation
between the squared wavefunction |ψ|2 and the entropy [5]:

|ψ|2 = exp
(

S
kB

)
. (21)

Collecting different microstates into a single pure quantum state is reminiscent of Von Neumann’s
density matrix formulation of the entropy of a mixed quantum state. However, even a pure state
embodies a probability distribution; the latter has an associated Shannon entropy. The entropy of
a pure state is not monotonic in time under Schrödinger evolution; this problem remains unsolved.

Let r0 be the radius of the fiducial sphere in Equation (6). When evaluated at r = r0, Equation (21)
becomes (by Equation 20),

1
r0

sin(cr0) = exp
(

S0

2kB

)
. (22)

Now the sine function is bounded between −1 and +1. This requires fine tuning the value of
the fiducial entropy S0 as a function of the fiducial radius r0, or vice versa, if Equation (22) is to have
a real solution for c. The simplest choice is to formally set S0 = −∞. This choice has the added
bonus that Equation (22) admits real solutions for c, without the need to fine-tune r0 as a function
of S0; it corresponds to imposing the additional boundary condition ψ(r0) = 0. Then, the admissible
eigenfunctions, with their corresponding wavenumbers cn ∈ R, are given by

ψn(r) =

√
2
r0

1
r

sin (cnr) , cn =
nπ

r0
n = 1, 2, . . . (23)

We have normalised ψn within L2 ([0, r0]).
The least kinetic energy is attained when n = 1. Therefore, we define the Hilbert space Hr

as the kernel
Hr = Ker

(
∇2

r + c2
1

)
. (24)

This one-dimensional space is generated by the wavefunction ψ1(r). More generally, the finite
dimensionality of Ker

(
∇2

r + c2
n
)
⊂ L2([0, r0]) for all n = 1, 2, . . . is guaranteed by the theory of elliptic

operators on compact Riemannian manifolds [19].
So far, the total Hilbert spaceH is the tensor product of the spaces (17) and (24):

H = HS2 ⊗Hr. (25)

We have up to now considered a free particle. If a potential function U(r) is included, then the
Hilbert space (24) must be redefined to be

Hr = Ker

(
− h̄2

2M
∇2

r −
h̄2

2M
c2

1 + U(r)

)
, (26)

and the latter substituted back into Equation (25). The above kernel remains finite dimensional. This is
because the addition of U(r) does not alter the ellipticity of the Hamiltonian; hence, general theorems
concerning the spectrum of elliptic operators on compact Riemannian manifolds continue to apply [19].
Of course, the presence of a potential on the quantum mechanical side modifies the fundamental
Equation (6) of the corresponding thermostatics.

We close this section with some remarks.

(i) The compact configuration space [0, r0]× S2 has the advantage that, due to energy quantisation,
one can univocally identify a nonvanishing state of least kinetic energy. On the noncompact
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configuration space [0, ∞) × S2, the allowed energy eigenvalues run over [0, ∞), and no
nonvanishing state of least energy exists.

(ii) Results analogous to those presented above would continue to hold if the free quantum particle
were placed in a cubic box of volume L3, with vanishing boundary conditions for the wavefunction
on the sides of the cube. The use of Cartesian coordinates renders isoentropic surfaces (now
cubes) somewhat clumsier to work with than spheres, but the expectation value of the entropy
(see Equation 28 below) remains metric independent, and also the Hilbert space continues to
be one-dimensional.

(iii) Analogous results would also hold if we worked in d–dimensional Euclidean space Rd, viz: finite
dimensionality of the Hilbert space, and metric independence of the expectation of the entropy.

4.4. A Metric Free Entropy

It is instructive to compute the expectation value of the entropy in the state (23). We set
V = 4πr3/3, V0 = 4πr3

0/3, and write the quantum mechanical operator corresponding to the classical
entropy of Equation (6) as

Ŝ(r) = S0 + 3kB ln
(

r̂
r0

)
. (27)

The carets are meant to indicate quantum operators. Subtracting the infinite constant S0 one finds
an expectation value of the entropy

〈ψn|Ŝ|ψn〉 = 3kB

∫ r0

0
r2|ψn(r)|2 ln

(
r
r0

)
dr = 3kB

(
Si(2πn)

2πn
− 1
)

, (28)

where Si(x) :=
∫ x

0 t−1 sin t dt is the sine integral function. In particular, all terms depending on r0 drop
out of Equation (28). This is in perfect agreement with the topological character [14] of our model:
the entropy cannot depend on the radius r0 of the fiducial sphere, because the latter requires a metric
for its definition.

4.5. The Quantum Mechanical Partition Function

The quantum mechanical partition function Zqm(t) is defined by

Zqm(t) = ∑
n

dimHn exp
(
− i

h̄
Ent
)

, (29)

where Hn is the Hilbert eigenspace corresponding to the energy eigenvalue En. The above sum is
usually divergent, but it can be made to converge by Wick rotating the time variable as per

Zqm(τ) = ∑
n

dimHn exp
(
−1

h̄
Enτ

)
. (30)

In the quasistatic limit, the above sum is dominated by the least energy eigenvalue, Emin,
and Zqm(τ) becomes Zqqm(τ), the subindex “qqm” standing for quasistatic quantum mechanics:

Zqqm(τ) = dimHmin exp
(
−1

h̄
Eminτ

)
. (31)

Therefore,
Zqqm(0) = dimHmin, (32)

and the partition function of quasistatic quantum mechanics computes the dimension of the Hilbert space of
quantum states; also a conclusion that is reminiscent of topological models [14].
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5. Conclusions and Outlook

The application of differential and Riemannian geometry to the theory of thermodynamical
fluctuations has turned out to be extremely useful [21–23]. Thus, for example, the classical
thermodynamics of irreversible processes [6,7] requires a metric on phase space for its formulation.
This metric is provided by Onsager’s matrix of kinetic coefficients Lij. The metric enters the quantum
mechanical dual theory [5] through the kinetic term in the mechanical Lagrangian.

On the contrary, the thermostatics of equilibrium processes [8] is genuinely metric free. Therefore,
if thermostatics is to possess any quantum mechanical dual at all, this dual theory should be
a topological theory [14], in the sense that it should be metric independent.

That the classical thermostatics of equilibrium processes should possess a quantum mechanical
dual is suggested by two observations. First, by the claim that quantum mechanics is an emergent
phenomenon [1–5,24]. Second, by the widespread opinion that thermodynamics (be it of equilibrium [8]
or nonequilibrium [6,7]) is the paradigm of all emergent sciences. These conclusions remain unaltered
even if—as argued in reference [25]—the emergent aspects of quantum mechanics can only become
visible at very high energies.

Two guiding principles are at work here: the notion that forces are entropy gradients, and the
requirement that all processes be quasistatic. Entropy gradients, while defining a direction for
evolution, ignore microscopic structures, retaining only coarse-grained averages: this is a feature of
emergent phenomena. Ignoring the metric structure of the underlying manifold amounts to ignoring
the kinetic term in the Lagrangian. Quantum mechanically, due to the uncertainty principle, the effects
of the kinetic term cannot be cancelled completely, unless one accepts a complete delocalisation of
the particle in space. The result of following these two guiding principles is a quasistatic quantum
mechanics, which is dual to the classical thermostatics of equilibrium processes, and shares a number
of key properties in common with topological (i.e., metric free) models.

After completion of this work, there appeared reference [26], where the WKB expansion of
quantum mechanics is developed from the point of view of topological string theory [27]. Reference [26]
provides further evidence of the existing links between topological theories and quantum mechanics.
Some of these links have been analysed in the present paper, from the alternative standpoint of the
approach of emergence of quantum theory; further connections are being studied in an upcoming
publication [28].
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