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Abstract

Properties of the inverse along an element in rings with an involution, Banach

algebras and C∗-alegbras will be studied unifying known expressions concerning

generalized inverses.
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1 Introduction

There exist many specific generalized inverses in the literature, such as the group
inverse, the Drazin inverse and the Moore-Penrose inverse. Recently X. Mary have
unified these different notions of invertibility in [7] by introducing a new type of outer
inverse. Furthermore, several authors have studied this new outer inverse (see [7, 8, 9,
10, 4, 14, 15]).

Some properties of this latter pseudoinverse were studied in [1] in the setting of
rings. In this article further properties will be studied enlarging the underlying set.
Specifically, rings with an involution, Banach algebras, and C∗-algebras will be con-
sider. The main objective of this article is to study some properties of the Mary
inverse such as limits, representations and continuity and the relationship between the
aforementioned inverse and the weighted Moore-Penrose inverse.

2 Preliminary definitions and facts

From now on, R will denote a unitary ring with unity 1. Let R−1 be the set of invertible
elements of R. Given a ∈ R, we define the image ideals by aR = {ax : x ∈ R} and
Ra = {xa : x ∈ R}, and the kernel ideals by a−1(0) = {x ∈ R : ax = 0} and
a−1(0) = {x ∈ R : xa = 0}.
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An element a ∈ R is said to be regular if there exists x ∈ R such that a = axa. The
element x, which is not uniquely determined by a, will be said to be an inner inverse

of a. The set of regular elements of R will be denoted by R̂. If y ∈ R satisfies yay = y,
then it will be said that y is an outer inverse of a.

Next the definition of the key notion of this article will be recalled.

Definition 2.1. Let R be a ring with unity and consider a, d ∈ R. The element a is

said to be invertible along d if, there exists b ∈ R such that bab = b and bR = dR,

Rb = Rd.

In the conditions of Defintion 2.1, according to [7, Theorem 6], if such b exists, then
it is unique. This element b satisfying the conditions of Defintion 2.1 will be said to be
the inverse of a along d and it will be denoted by a‖d. Moreover, according to [10, p.
3], if a‖d exists, then d is regular.

Note that according to [1, Theorem 3.3], if a is invertible along d, then d−1(0) =
b−1(0) and d−1(0) = b−1(0), where b = a‖d. Hence, from bab = b, it can be easily proved
that

a‖dad = d = daa‖d. (1)

In addition, a straightforward calculation proves that a ∈ R is invertible along 1 if and
only if a ∈ R−1.

Next follow the definitions of several classical pseudoinverses which are particular
cases of the inverse along an element.

The element a ∈ R is said to be group invertible, if there exists b ∈ R such that

aba = a, bab = b, ab = ba.

If a is group invertible, then such element b it is unique and it is customary written
a#. According to [7, Theorem 11], a is group invertible if and only if a in invertible
along a. The set of all group invertible elements of R will be denoted by R#.

The element a ∈ R is said to be Drazin invertible, if there exists b ∈ R such that

amba = a, bab = b, ab = ba,

for some m ∈ N. If a is Drazin invertible, then such element b is unique and it is
customary written ad. According to [7, Theorem 11], a is Drazin invertible if and only
if a in invertible along ak for some k ∈ N. The set of all Drazin invertible elements of
R will be denoted by Rd.

In this paragraph it will be assumed that R has an involution. Recall that an
involution ∗ : R → R is an operation that satisfies

(a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a,

for all a, b ∈ R. The element a ∈ R is said to be Moore-Penrose invertible, if there
exists b ∈ R such that

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.
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If b is Moore-Penrose invertible, then such element b is unique and it is customary
written a†. According to [7, Theorem 11], a is Moore-Penrose invertible if and only if
a in invertible along a∗. The set of all Moore-Penrose invertible elements of R will be
denoted by R†.

Finally, recall that if p ∈ R is an idempotent (i.e., p2 = p), then it is easy to prove
that pRp is a subring of R whose unity is p. If S is a subring of R and x ∈ S−1, then
(x)−1

S
will denote the inverse of x in the subring S.

3 Rings with an involution

Let R be a unitary ring with an involution. An element a ∈ R is said to be Hermitian
if a∗ = a. Evidently, if a ∈ R−1, then a∗ ∈ R−1 and (a∗)−1 = (a−1)∗.

According to Definition 2.1, the next result is obvious.

Remark 3.1. Let R be a unitary ring with an involution and a, d ∈ R. Then a is

invertible along d if and only if a∗ is invertible along d∗. In this case, (a‖d)∗ = (a∗)‖d
∗

.

The former result encloses the following ([7, Theorem 11]). If a ∈ R, then

(i) a ∈ R# if and only if a∗ ∈ R#. In this case, (a#)∗ = (a∗)#.

(ii) a ∈ Rd if and only if a∗ ∈ Rd. In this case, (ad)∗ = (a∗)d.

(iii) a ∈ R† if and only if a∗ ∈ R†. In this case, (a†)∗ = (a∗)†.

To the best knowledge of the authors, the weighted Moore-Penrose inverse is a
generalised inverse which has not been linked to the inverse along an element yet.
Next the relationship between the aforementioned inverses will be study. In first place,
the definition of the weighted Moore-Penrose inverse will be recalled.

Let m and n ∈ R be invertible and Hermitian. Then given a ∈ R, the set of
elements x ∈ R such that

axa = a, xax = x, (max)∗ = max, (nxa)∗ = nxa (2)

is empty or a singleton. In order to show that no extra hypotheses on m and n are
necessary, the proof of the uniqueness will be given. If x and y satisfies (2), then

max = mayax = (may)m−1(max),

which, by taking ∗, implies that

max = (max)m−1(may) = maxay = may.

Hence ax = ay. In a similar way it is possible to prove that xa = ya. However,
x = xax = xay = yay = y. When the set under consideration is a singleton, a will
be said to be weighted Moore-Penrose invertible relative to m and n and the unique
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element satisfying (2) will be said to be the weighted Moore-Penrose inverse of a relative

to m and n; in addition, it will be denoted by a†m,n.
In order to link the invertibility along an element and the weighted Moore-Penrose

inverse, some extra assumptions on m and n are needed, namely, the positivity. Next
this notion will be recalled.

The element x ∈ R will be said to be positive, if there exists a Hermitian y ∈ R

such that x = y2. In this case, the element y will be said to be a square root of x.
Observe that in a C∗-algebra, every positive element has a unique square root. For

arbitrary rings, this is not true. Take R = Z6. Since R is commutative, then R has
an involution, namely, the identity, and therefore any element in Z6 is Hermitian. In
addition, [2]2 = [4] and [4]2 = [4], which implies that [4] has two square roots.

If R is a ring with an involution, x ∈ R is positive, and y a square root of x, then
it is easy to see that x is Hermitian and if x is invertible, then y is also invertible. In
fact, since y is Hermitian by definition, x∗ = (y2)∗ = (y∗)2 = y2 = x. In addition,
since x = y2, xy = y3 = yx. Now, since x ∈ R−1, x−1y = yx−1. However, since
1 = xx−1 = y(yx−1) and 1 = x−1x = (x−1y)y, y is invertible.

In the following theorem the relationship between the inverse along an element and
the weighted Moore-Penrose inverse will be presented.

Theorem 3.2. Let R be a unitary ring with an involution and consider a ∈ R and two

invertible and positive element m,n ∈ R. The following statements are equivalent.

(i) a is weighted Moore-Penrose invertible relative to m and n.

(ii) a is invertible along n−1a∗m.

Furthermore, in this case, a‖n
−1a∗m = a†m,n.

Proof. Suppose that statement (i) holds and denote x = a†m,n. Since

x = xax = n−1nxax = n−1(nxa)∗x = n−1a∗mm−1x∗n∗x,

xR ⊂ n−1a∗mR. Observe now that (nxa)∗ = nxa implies n−1a∗x∗ = xan−1 (n is
invertible and Hermitian). Hence

n−1a∗m = n−1(axa)∗m = n−1a∗x∗a∗m = xan−1a∗m,

which leads to n−1a∗mR ⊂ xR. Thus, it has been proved that n−1a∗mR = xR. The
proof of Rn−1a∗m = Rx follows from

x = xax = xm−1max = xm−1(max)∗ = xm−1x∗nn−1a∗m

and
n−1a∗m = n−1(axa)∗m = n−1a∗x∗a∗m = n−1a∗(max)∗ = n−1a∗max.

Now suppose that statement (ii) holds and denote y = a‖n
−1a∗m. According to

Definition 2.1, yay = y. By (1), yan−1a∗m = n−1a∗m = n−1a∗may, or equivalently,

yan−1a∗ = n−1a∗, a∗m = a∗may. (3)
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Let p, q ∈ R be square roots of m and n, respectively. Observe that by definition, p
and q are Hermitian. Furthermore, p and q are invertible since m and n are invertible.
Note that from the second equality of (3), a∗p = a∗mayp−1, and by the involution

pa = p−1(may)∗a = p−1(ppay)∗a = p−1(pay)∗pa = (payp−1)∗pa. (4)

Thus, payp−1 = (payp−1)∗payp−1. In particular, payp−1 is Hermitian. Since may =
p(payp−1)p, may is Hermitian. In addition, since payp−1 is Hermitian and p is invert-
ible, according to (4), it is possible to conclude that aya = a.

It remains to prove that nya is Hermitian. To this end, consider now the first
equality of (3), which is equivalent to qyan−1a∗ = q−1a∗. Hence

aq−1 = a(yan−1)∗q = a(yaq−1q−1)∗q = aq−1(yaq−1)∗q = aq−1(qyaq−1)∗.

Thus, qyaq−1 = qyaq−1(qyaq−1)∗. As a result, qyaq−1 is Hermitian. Since nya =
q(qyaq−1)q, nya is Hermitian.

The second statement of Theorem 3.2 leads to a characterization of the weighted
Moore-Penrose inverse by means of invertible elements. Note first that, if R is a unitary
ring with an involution and a ∈ R, then a is regular if and only if a∗ is regular.

Theorem 3.3. Let R be a unitary ring with an involution and consider a ∈ R̂ and

two invertible and positive element m,n ∈ R. If z is any inner inverse of a∗, then the

following statements are equivalent.

(i) a is weighted Moore-Penrose invertible relative to m and n.

(ii) u = a∗man−1 + 1− a∗z is invertible.

(iii) v = man−1a∗ + 1− za∗ is invertible.

In this case,

a†m,n = a‖n
−1a∗m = n−1u−1a∗m = n−1a∗v−1m.

Proof. Apply Theorem 3.2 and [15, Theorem 2.3] (or [14, Corollary 3.8]).

Let R be a ring, a ∈ R and s ∈ R−1. It is very simple to prove that a ∈ R#

if and only if s−1as ∈ R# and in this case (s−1as)# = s−1a#s. This expression is
specially useful in matrix theory to investigate the group inverse of particular matrices
since frecuently a matrix B can be decomposed as S−1AS, where S is non-singular
and A is simpler than B (e.g. when B is diagonalisable). However, if the ring has an
involution and a ∈ R†, it is not in general true that (s−1as)† = s−1a†s (which shows
that the spectral decomposition of a matrix, in general, cannot be used to investigate
the Moore-Penrose inverse of a matrix).

A related discussion is the following. Let R be a ring with an involution, a ∈ R

and u, v ∈ R unitary (i.e., u−1 = u∗ and v−1 = v∗). Then, necessary and sufficient
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for a ∈ R† is that uav∗ ∈ R†; moreover, in this case, (u∗av)† = v∗a†u. Again, this
expression is used in matrix theory, since the singular value decomposition of a square
complex matrix B allows to write B = U∗ΣV , where Σ is diagonal (and real), and U, V

are unitary. However, in general, the expression (u∗av)# = v∗a#u does not hold; which
shows that the singular value decomposition is not useful to find the group inverse of
a matrix.

Next two results generalizing and completing the discussion of the two previous
paragraphs will be presented.

Theorem 3.4. Let R be a unitary ring and consider a, d ∈ R such that a is invertible

along d. If s, r ∈ R−1, then sar−1 is invertible along rds−1 and (sar−1)‖rds
−1

= ra‖ds−1.

Proof. Three facts must be proved: Rra‖ds−1 = Rrds−1, ra‖ds−1R = rds−1R, and
ra‖ds−1 is an outer inverse of sar−1. These facts can be deduced from Ra‖d = Rd,
a‖dR = dR, and a‖d is an outer inverse of a, respectively.

Remark 3.5. Note that according to Theorem 3.4, if R is a unitary ring with an
involution and u, v are unitary, then uav∗ is invertible along vdu∗ and (uav∗)‖vdu

∗

=
va‖du∗, where a and d are as in Theorem 3.4.

Let R be a ring with an involution and consider a ∈ R† and s, r ∈ R−1. Ac-
cording to Theorem 3.4 and [7, Theorem 11], sar−1 is invertible along ra∗s−1 and
(sar−1)‖ra

∗s−1

= ra†s−1. If c = sar−1, then c is invertible along r(s−1cr)∗s−1 and
c‖r(s

−1cr)∗s−1

= r(s−1cr)†s−1. Observe that r(s−1cr)∗s−1 = rr∗c∗(ss∗)−1. Thus, the
following theorem has been partially proved.

Theorem 3.6. Let R be a unitary ring with an involution and consider a ∈ R and

s, r ∈ R−1. Suppose that s−1ar ∈ R†.

(i) The element a is invertible along rr∗a∗(ss∗)−1 and (s−1ar)† = r−1a‖rr
∗a∗(ss∗)−1

s.

(ii) If a ∈ R†, then (s−1ar)† = r−1a†s if and only if ss∗aR = arr∗R and Rss∗a =
Rarr∗.

Proof. Statement (i) was proved in the paragraph preceding this Theorem.
To prove statement (ii), define f = rr∗a∗(ss∗)−1. To deduce statement (ii) from

statement (i), it is necessary to prove that necessary and sufficient for a† = a‖f is that
ss∗aR = arr∗R and Rss∗a = Rarr∗. According to the definition of the inverse along
an element, a† = a‖f if and only if Ra† = Rf and a†R = fR. Recall that Ra† = Ra∗,
hence Ra† = Rf is equivalent to aR = f ∗R. Since f ∗ = (ss∗)−1arr∗, aR = f ∗R if and
only if ss∗aR = arr∗R. The remaining identity can be prove in a similar way.

The following result deals with an expression of (s−1ar)#, where r and s are invert-
ible elements of a unitary ring R.

Theorem 3.7. Let R be a unitary ring and consider a, u, v ∈ R such that r and s are

invertible. If s−1ar ∈ R#, then
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(i) a is invertible along rs−1ars−1 and (s−1ar)# = r−1a‖rs
−1ars−1

s.

(ii) If a ∈ R#, then (s−1ar)# = r−1a#s if and only if Rasr−1 = Rrs−1a and

sr−1aR = ars−1R.

Proof. (i). Since s−1ar ∈ R#, s−1ar is invertible along s−1ar ([7, Theorem 11]). Ac-
cording to Theorem 3.4, a = s(s−1ar)r−1 is invertible along rs−1ars−1 and a‖rs

−1ars−1

=
r(s−1ar)#s−1.
(ii). Let g = rs−1ars−1. According to statement (i), (s−1ar)# = r−1a#s if and only if
a‖g = a#. Recall that a# is an outer inverse of a, Ra# = Ra, and a#R = aR. As a
result,

a‖g = a# ⇐⇒

{
Ra# = Rg

a#R = gR
⇐⇒

{
Ra = Rrs−1ars−1

aR = rs−1ars−1R
⇐⇒

{
Rasr−1 = Rrs−1a

sr−1aR = ars−1R.

In the particular case of rings with an involutiom, the following result can be de-
duced.

Corollary 3.8. Let R be a unitary ring with an involution and consider a, u, v ∈ R

such that u and v are unitary. If u∗av ∈ R#, then

(i) a is invertible along vu∗avu∗ and (u∗av)# = v∗a‖vu
∗avu∗

u.

(ii) If a ∈ R#, then (u∗av)# = v∗a#u if and only if Rauv∗ = Rvu∗a and uv∗aR =
avu∗R.

Proof. Apply Theorem 3.7.

There is a matrix representation for elements in unitary rings which has been useful
to prove many results in the previous literature. Next follows this representation. Let
p ∈ R be an idempotent. Any element x in a unitary ring R can be represented as
follows:

x =

[
pxp px(1− p)

(1− p)xp (1− p)x(1 − p)

]
. (5)

Observe that

x = pxp + px(1− p) + (1− p)xp + (1− p)x(1− p).

Recall that since p is an idempotent, pRp and (1− p)R(1− p) are subrings with units
p and 1 − p, respectively. If in addition, R has an involution and the idempotent p is
Hermitian, then the above matrix representation preserves the involution, i.e.,

[
x1 x2

x3 x4

]∗
=

[
x∗
1 x∗

3

x∗
2 x∗

4

]
.
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If a and d are elements in a unitary ring with an involution and a is invertible
along d, then a‖d is an outer inverse of a. Hence aa‖d and a‖d are idempotents. It
will be characterized when these idempotents are Hermitian. Before doing this, an
useful representation will be given. To this end, however, first recall that according to
[1, Theorem 3.1], a is invertible along d if and only if dap is invertible in pRp, where
p = dd− and d− is such that d = dd−d. Furthermore, in this case, a‖d = wd, where
w = (dap)−1

pRp.

Lemma 3.9. Let R be a unitary ring and consider a ∈ R and d ∈ R̂. If d− is an inner

inverse of d and if the representation of a respect the idempotent p = dd− is

a =

[
x y

z t

]
,

then

d =

[
dp d(1− p)
0 0

]
, da =

[
dap da(1− p)
0 0

]
, ap = x+ z.

Furthermore, if a is invertible along d, then

a‖d = (dap)−1
pRpd =

[
(dap)−1

pRpdp (dap)−1
pRpd(1− p)

0 0

]
. (6)

Proof. The representation of d can be deduced from the fact that pd = d. The repre-
sentation of da is evident. Since

ap =

[
x 0
z 0

]
,

ap = x+ z. Recall that according to [1, Theorem 3.1], a‖d = (dap)−1
pRpd. In particular,

the representation of a‖d is evident.

Theorem 3.10. Let R be a unitary ring with an involution. Let a ∈ R and d ∈ R̂ such

that a is invertible along d.

(i) If there exists d−, an inner inverse of d, such that dd− Hermitian, then a‖da is

Hermitian if and only if (da)∗ ∈ dR.

(ii) If there exists d−, an inner inverse of d, such that d−d Hermitian, then aa‖d is

Hermitian if and only if ad ∈ d∗R.

Proof. (i). Let p be the Hermitian idempotent p = dd−. The matrix representation
given in Lemma 3.9 will be used. Denote also w = (dap)−1

pRp.

a‖da =

[
wdp wd(1− p)
0 0

] [
x y

z t

]
=

[
wdx+ wdz wdy + wdt

0 0

]

=

[
wdap wda(1− p)
0 0

]
=

[
p wda(1− p)
0 0

]
.
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Since p is Hermitian, the above matrix representation preserves the involution. There-
fore, a‖da is Hermitian if and only if wda(1−p) = 0, which is equivalent to wda = wdap,
which in turn is equivalent to pda = pdap (recall that w is the inverse of dap in pRp).
However, da = pda = pdap = dadd−.

Now, if da = dadd−, then (da)∗ = (da(dd−))∗ = dd−(da)∗ ∈ dR. If (da)∗ ∈ dR, then
(da)∗ = du for some u ∈ R, and then dadd− = u∗d∗dd− = u∗d∗(dd−)∗ = u∗(dd−d)∗ =
u∗d∗ = da.

(ii). Apply statement (i) and Remark 3.1.

4 A representation of the inverse along an element

In this section a representation of the inverse along an element will be presented. First,
however, two facts need to be recalled. Given a group invertible element x in a unitary
ring R, the spectral idempotent of x is defined as xπ = 1−xx#. In addition, recall that
if a ∈ R and d ∈ R̂ are such that a is invertible along d, then ad and da are group
invertible ([7, Theorem 7]).

Lemma 4.1. Let R be a unitary ring and consider a ∈ R and d ∈ R̂. If a is invertible

along d, d− is an inner inverse of d and p = dd−, then, using the representation in

Lemma 3.9,

(da)# =

[
w w2da(1− p)
0 0

]
, (da)π =

[
0 −wda(1− p)
0 1− p

]
,

where w is the inverse of dap in pRp.

Proof. Using the matrix representation of da given in Lemma 3.9 it easy to see that

u =

[
w w2da(1− p)
0 0

]

is the group inverse of da. In addition,

(da)π = 1− (da)(da)#

=

[
p 0
0 1− p

]
−

[
dap da(1− p)
0 0

] [
w w2da(1− p)
0 0

]
=

[
0 −wda(1− p)
0 1− p

]
.

In the following theorem, a representation of the inverse along an element will be
proved.

Theorem 4.2. Let R be a unitary ring. Let a ∈ R and d ∈ R̂ be such that a is invertible

along d and consider d−, an inner inverse of d, and p = dd−. For t ∈ R, necessary and

sufficient for da+ t(da)π to be invertible is that −(1− p)twda(1− p) + (1− p)t(1− p)
is invertible in the subring (1− p)R(1− p), where w = (dap)−1

pRp. Moreover, under this

situation,

a‖d = (da+ t(da)π)−1d,
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Proof. Consider t ∈ R and represent it using the idempotent p, i.e.,

t =

[
t1 t2
t3 t4

]
.

According to the matrix representations given in Lemma 3.9 and Lemma 4.1,

da+ t(da)π =

[
dap da(1− p)
0 0

]
+

[
t1 t2
t3 t4

] [
0 −wda(1− p)
0 1− p

]

=

[
dap da(1− p)− t1wda(1− p) + t2
0 −t3wda(1− p) + t4

]
.

Since dap is invertible in pRp ([1, Theorem 3.1]), da+ t(da)π is invertible if and only if
−t3wda(1− p) + t4 is invertible in the subring (1− p)R(1− p). In addition, under this
situation,

(da+ t(da)π)−1 =

[
w ξ

0 µ

]
,

for some ξ and µ ∈ R. Now, using the representations of d and a‖d presented in Lemma
3.9,

(da+ t(da)π)−1d =

[
w ξ

0 µ

] [
dp d(1− p)
0 0

]
=

[
wdp wd(1− p)
0 0

]
= a‖d.

In the case of an algebra, Theorem 4.2 particularizes as follows. Note that if K is
a field and A is a K-algebra, then given t ∈ K, tz = (t.1)z, where z ∈ A and 1 stands
for the unit of A.

Theorem 4.3. Let K be a field and consider a K-algebra A. Let a ∈ A and d ∈ Â be

such that a is invertible along d and consider t ∈ K, t 6= 0. Then,

a‖d = (da+ t(da)π)−1d.

Proof. Let d− be an inner inverse of d and let p = dd−. As in Theorem 4.2, consider
w = (dap)−1

pRp. Since (1− p)w = 0,

−(1− p)twda(1− p) + (1− p)t(1− p) = −t(1 − p)wda(1− p) + t(1− p) = t(1− p).

Therefore, to conclude the proof, apply Theorem 4.2.

Remark 4.4. Let R be a unitary ring and consider a ∈ R and d ∈ R̂ be such that
a is invertible along d. Recall that according to [7, Theorem 7], da and ad are group
invertible. Note that the results presented in Theorem 4.2 and Theorem 4.3 concerns
the element da. However, considering the ring (R,+, ⋄), where a⋄b = ba, it is possible to
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prove similar results to the ones presented in the aforementioned Theorems considering
the element ad. In fact, it is evident that a is invertible along d (respectively group
invertible) in R if and only if a is invertible along d (respectively group invertible) in
(R,+, ⋄). For example, under the same hypotheses in Theorem 4.3, it is possible to
conclude that

a‖d = d(ad+ t(ad)π)−1.

The details are left to the reader.

5 Inverses along an element and limits

In this section, several results concerning inverses along an element and limits will be
proved.

Throughout this section B will denote a Banach algebra or a C∗-algebra. If x ∈ B,
then σ(x) will stand for the spectrum of x. Note that the matrix representation (5) with
respect to the idempotent p ∈ B also preserves limits. In other words, if (xn)n∈N ⊂ B

and x ∈ B are represented as

xn =

[
an bn
cn dn

]
, x =

[
a b

c d

]
,

respectively, then it is not difficult to prove that (xn)n∈N converges to x if and only if
(an)n∈N (respectively (bn)n∈N, (cn)n∈N, (dn)n∈N) converges to a (respectively b, c, d).

Next the inverse along an element will be presented as a limit.

Theorem 5.1. Let B be a Banach algebra and consider a ∈ B and d ∈ B̂ such that a

is invertible along d. Then,

(i) limt→0(da+ t1)−1d exists and it equals to a‖d,

(ii) limt→0 d(ad+ t1)−1 exists and it equals to a‖d.

Proof. (i). Let d− be an inner inverse of d and consider p = dd−. If a and d are
represented as in Lemma 3.9, then, given t ∈ R,

da+ t1 =

[
dap+ tp da(1− p)

0 t(1− p)

]
. (7)

Since a is invertible along d, according to [7, Theorem 7], da is group invertible. In
particular, 0 is an isolated point of σ(da) ([5, Theorem 4]). Then, there exists U ⊂ C,
a punctured neighbourhood of 0, such that da + t1 ∈ B−1 for each t ∈ U . Hence,
according to the representation of da+ t1 presented above, dap+ tp ∈ (pBp)−1 for each
t ∈ U . Denote by wt the inverse of dap + tp in pBp (t ∈ U). Then, for each t ∈ U ,
there exists ξt ∈ B such that

(da+ t1)−1d =

[
wt ξt
0 t−1(1− p)

] [
dp d(1− p)
0 0

]
=

[
wtdp wtd(1− p)
0 0

]
= wtd.

11



Thus, according to (6), to prove the Theorem, it is enough to prove that limt→0 wt

exists and limt→0wt = (dap)−1
pBp.

But these affirmations follow from: a) wt is the inverse of dap + tp in pBp and b)
pBp is a Banach algebra and the standard inverse is a continuous map from G(pBp) to
G(pBp), where G(pBp) is the set of invertibles in pBp.

(ii). Apply Remark 4.4 to the Banach algebra (B,+, ⋄) and statement (i).

Next some special cases will be considered.

Corollary 5.2. Let B be a Banach algebra and consider a ∈ B.

(i) If a is group invertible, then limt→0(a
2+ t1)−1a and limt→0 a(a

2+ t1)−1 exist and

both limits equal to a#.

(ii) If a is Drazin invertible with ind(a) = k, then limt→0(a
k+1+t1)−1ak and limt→0 a

k(ak+1+
t1)−1 exist and both limits equal to ad.

(iii) If B is a C∗-algebra and a is Moore-Penrose invertible, then limt→0(a
∗a+ t1)−1a∗

and limt→0 a
∗(aa∗ + t1)−1 exist and both limits equal to a†.

Proof. Apply [7, Theoem 11] and Theorem 5.1

To prove the next result, it will be useful to previously establish a simple bound.
Let B be a Banach algebra and let a, b ∈ B be invertible elements. Then,

a−1 − b−1 = b−1(b− a)a−1 = (b−1 − a−1)(b− a)a−1 + a−1(b− a)a−1,

which implies

‖a−1 − b−1‖ ≤ ‖b−1 − a−1‖‖b− a‖‖a−1‖+ ‖a−1‖2‖b− a‖,

or equivalenty (if ‖b− a‖‖a−1‖ < 1)

‖a−1 − b−1‖ ≤
‖a−1‖2‖b− a‖

1− ‖b− a‖‖a−1‖
. (8)

Since to prove the following result an involution is needed, C∗-algebras will be
considered. Recall that according to [3, Theorem 6], given d ∈ A, A a C∗-algebra,
necessary and sufficient for d to be regular is that d is Moore-Penrose inversible. Thus,
in this case, d has an inner inverse d− such that dd− is Hermitian.

Theorem 5.3. Let A be a C∗-algebra and consider a ∈ A and d ∈ Â such that a is

invertible along d. Let d− ∈ A be such that d− is an inner inverse of d and dd− is

Hermitian. Then, for enough small t,

‖(da+ t1)−1d− a‖d‖ ≤
t‖a‖d‖2‖d−‖2

1− t‖a‖d‖‖d−‖
‖d‖.
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Proof. Let t > 0, p = dd−, and denote by w the inverse of dap in pBp ([1, Theorem 3.1]).
According to the proof of Theorem 5.1, there exists U ⊂ C, a punctured neighbourhood
of 0, such that da + t1 ∈ B−1 for each t ∈ U . Moreover, if wt denotes the inverse of
dap + tp in pBp (t ∈ U) (see Theorem 5.1), then, according to Lemma 3.9 and the
proof of Theorem 5.1,

(da+ t1)−1d− a‖d =

[
(wt − w)dp (wt − w)d(1− p)

0 0

]
= (wt − w)dp.

Since p = dd− is a Hermitian idempotent, ‖p‖ = 1, and thus,

‖(da+ t1)−1d− a‖d‖ ≤ ‖wt − w‖‖d‖.

Note that from (6), a‖d = wd. Hence a‖dd− = wdd− = wp = w. Thus, ‖w‖ ≤
‖a‖d‖‖d−‖. Now, since w and wt are invertible in pRp (t ∈ U), if t ∈ U and
t‖a‖d‖‖d−‖ < 1, then from (8) can be deduced that

‖w − wt‖ ≤
t‖w‖2

1− t‖w‖
≤

t‖a‖d‖2‖d−‖2

1− t‖a‖d‖‖d−‖
.

Considering the Banach algebra (B,+, ⋄), the following Corollary can be deduced.

Note that according to [3, Theorem 6], given d ∈ Â, A a C∗-algebra, d has an inner
inverse d− such that d−d is Hermitian.

Corollary 5.4. Let A be a C∗-algebra and consider a ∈ A and d ∈ Â such that a is

invertible along d. Let d− ∈ A be such that d− is an inner inverse of d and d−d is

Hermitian. Then, for enough small t,

‖d(ad+ t1)−1 − a‖d‖ ≤
t‖a‖d‖2‖d−‖2

1− t‖a‖d‖‖d−‖
‖d‖.

Proof. Apply Remark 4.4 to the Banach algebra (B,+, ⋄) and Theorem 5.1.

Next it will be characterized when limt→0(da+ t1)−1f exists, where f ∈ B.

Theorem 5.5. Let B be a Banach algebra and consider a, d and f ∈ B. Assume that

d is regular.

(i) If 0 is not a limit point of σ(da) and limt→0(da+ t1)−1f exists, then f ∈ dB.

(ii) If f ∈ dB and a is invertible along d, then there exists limt→0(da+ t1)−1f and it

equals to a‖dd−f , where d− is an arbitrary inner inverse of d.
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Proof. Recall that if a is invertible along d, then according to [7, Theorem 7], da is
group invertible. Thus, according to [5, Theorem 4], 0 is not a limit point of σ(da).
Therefore, according to the hypotheses of statements (i) and (ii), there exists U , a
punctured neighbourhood of 0 such that dap + t1 ∈ B−1 (t ∈ U). Let d− be an inner
inverse of d and let p = dd−. In addition, represent a and d as in Lemma 3.9. Hence,
as in the proof of Theorem 5.1, dap+ tp ∈ (pBp)−1 for t ∈ U . Let wt be the inverse of
dap+ tp in pBp. According to (7), there exist ξt ∈ pB(1−p) such that, for each t ∈ U ,

(da+ t1)−1 =

[
wt ξt
0 t−1(1− p)

]
.

In particular,
(da+ t1)−1f = wtf + ξtf + t−1(1− p)f. (9)

(i). Since limt→0(da + t1)−1f exists, limt→0(1 − p)(da + t1)−1f exists. But (9)
implies that (1 − p)(da + t1)−1f = t−1(1 − p)f . Therefore, (1 − p)f = 0, equivalently
f = pf = dd−f ∈ dB.

(ii). Since f ∈ dB, pf = f and (1−p)f = 0. Hence, (9) implies that (da+ t1)−1f =
wtf . Since a is invertible along d, dap is invertible in pBp ([1, Theorem 3.1]). As in
the proof of Theorem 5.1, the continuity of the standard inverse in pBp implies that
limt→0wt = (dap)−1

pBp. However, according to (6),

a‖dd− = (dap)−1
pBpdd

− = (dap)−1
pBpp = (dap)−1

pBp.

Remark 5.6. If a, d, f are elements in a Banach algebra such that 0 is not a limit
point of σ(da) and limt→0(da + t1)−1f exists, then it is not possible to conclude that
that a is invertible along d. For example, take f = 0.

The following Theorem will state the symmetric version of Theorem 5.5.

Theorem 5.7. Let B be a Banach algebra and consider a, d and f ∈ B. Assume that

d is regular.

(i) If 0 is not a limit point of σ(ad) and limt→0 f(ad+ t1)−1 exists, then f ∈ Bd.

(ii) If f ∈ Bd and a is invertible along d, then limt→0 f(ad+ t1)−1 exists and it equals

to fd−a‖d, where d− is an arbitrary inner inverse of d.

Proof. Apply Remark 4.4 to the Banach algebra (B,+, ⋄) and Theorem 5.5.

The following representation extends the one given in [13]. The case of the Moore-
Penrose inverse in C∗-algebras was studied in [6, Example 3.6].
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Theorem 5.8. Let B be a Banach algebra and consider a ∈ B and d ∈ B̂. Let

d− be any inner inverse of d and p = dd−. Then, If exists β ∈ R \ {0} such that

‖p− βdap‖ < 1, then a is invertible along d and

a‖d = β

∞∑

n=0

(1− βda)nd = β

∞∑

n=0

d(1− βad)n.

Proof. Since the second equality can be derived form the first one by symmetry, only
the first equality will be proved.

Since dap ∈ pBp and ‖p − βdap‖ < 1, the element βdap is invertible in pBp and
the serie

∑∞
n=0(p − βdap)n converges to the inverse of βdap in pBp. In particular,

according to [1, Theorem 3.1], a is invertible along d and (βdap)−1
pBp = β−1(dap)−1

pBp.
Next represent a and d as in Lemma 3.9. Since,

1− βda =

[
p− βdap −βda(1− p)

0 1− p

]
,

there exists a sequence (ξn)n∈N ⊂ pB(1− p) such that

(1− βda)n =

[
(p− βdap)n ξn

0 1− p

]
.

Now,

(1− βda)nd =

[
(p− βdap)n ξn

0 1− p

] [
dp d(1− p)
0 0

]

=

[
(p− βdap)ndp (p− βdap)nd(1− p)

0 0

]
= (p− βdap)nd.

However, according to [1, Theorem 3.1],

∞∑

n=0

(1− βda)nd =

∞∑

n=0

(p− βdap)nd = (βdap)−1
pBp d = β−1a‖d.

It is well known that the Moore-Penrose inverse of a complex m × n matrix A is
given by A† =

∫∞

0
exp(−A∗At)A∗dt (for a very simple proof, see [11, Problem 73.2]).

This integral representation was extended to C∗-alegbras in [6, Example 3.5]. There
is a similar representation for the Drazin inverse (see [2]). The next Theorem will
generalize these results.

Theorem 5.9. Let B be a Banach algebra and consider a ∈ B and d ∈ B̂ such that a

is invertible along d and σ(da) \ {0} ⊂ {z ∈ C : Re(z) > 0}. Then
∫ ∞

0

exp(−tda) d dt = a‖d.
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Proof. It is known that if the non-zero spectrum of x ∈ B lies in the open right half of
the complex plane, then

x−1 =

∫ ∞

0

exp(−tx)dt. (10)

Let d− be any inner inverse of d and p = dd−. Then,

exp(−tda)d =
∞∑

k=0

(−tda)k

k!
d =

∞∑

k=0

(−t)k(da)kd

k!
.

Now, according to Lemma 3.9, there exists a sequence (ξk)k∈N ⊂ pB(1− p), such that

(da)kd =

[
(dap)k ξk

0 0

] [
dp d(1− p)
0 0

]
=

[
(dap)kdp (dap)kd(1− p)

0 0

]
= (dap)kd.

Thus, exp(−tda)d = exp(−tdap)d
The representation of da given in Lemma 3.9 implies that σ(da) = σpAp(dap)∪{0},

where σpAp(dap) stands for the spectrum of dap in the Banach algebra pBp. The
hypothesis on σ(da) and the invertibility of dap in pBp ([1, Theorem 3.1]), implies that
σpAp(dap) ⊂ {z ∈ C : Re(z) > 0}. In particular, according to (10) and using x = dap

in the subalgebra pBp, ∫ ∞

0

exp(−tdap)dt = (dap)−1
pAp.

However, according to [1, Theorem 3.1],
∫ ∞

0

exp(−tda)ddt =

(∫ ∞

0

exp(−tdap)dt

)
d = (dap)−1

pApd = a‖d.

Remark 5.10. As it has been done before, applying Remark 4.4 to (B,+, ⋄) and
Theorem 5.9, the following statement can be derived using a symmetric argument: Let
B be a Banach algebra and consider a ∈ B and d ∈ B̂ such that a is invertible along d

and σ(ad) \ {0} ⊂ {z ∈ C : Re(z) > 0}. Then
∫ ∞

0

d exp(−tad) dt = a‖d.

6 The continuity of the inverse along an element

To prove the continuity of the inverse along an element, first the following Lemma need
to be proved.

Lemma 6.1. Let B be a unitary Banach algebra and consider a, b, d, e ∈ B such that

a is invertible along d and b is invertible along e. Let d− be an inner inverse of d and

e− be a inner inverse of e. Then

b‖e − a‖d = b‖ee−(e− d)(1− aa‖d) + (1− b‖eb)(e− d)d−a‖d + b‖e(a− b)a‖d.
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Proof. From (1) and [1, Theorem 3.1], b‖ebe = e and dd−a‖d = a‖d. Therefore,

(1− b‖eb)(e− d)d−a‖d =
[
(1− b‖eb)e− (1− b‖eb)d

]
d−a‖d

= −(1− b‖eb)dd−a‖d

= b‖eba‖d − a‖d.

In a similar way it is possible to prove that

b‖ee−(e− d)(1− aa‖d) = b‖e − b‖eaa‖d.

Therefore,

b‖e − a‖d = b‖ee−(e− d)(1− aa‖d) + b‖eaa‖d + (1− b‖eb)(e− d)d−a‖d − b‖eba‖d

= b‖ee−(e− d)(1− aa‖d) + (1− b‖eb)(e− d)d−a‖d + b‖e(a− b)a‖d.

The next result deals with the continuity of the invertibility along an element.
For the special cases of the group inverse, the Drazin inverse and the Moore-Penrose
inverse, see [6, 12].

Theorem 6.2. Let B be a Banach algebra and consider two sequences (an)n∈N ⊂ B

and (dn)n∈N ⊂ B converging to a and d, respectively. Suppose that a is invertible along

d and an is invertible along dn, for each n ∈ N. Let d−n be an inner inverse of dn,

n ∈ N. Then, the following statements hold.

(i) If a
‖dm
m converges to a‖d, then a

‖dm
m is a bounded sequence.

(ii) If a
‖dm
m is a bounded sequence and supn ‖d

−
n ‖ < ∞, then a

‖dm
m → a‖d .

Proof. Statement (i) is obvious. To prove statement (ii), apply Lemma 6.1.
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