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Abstract 22 

Accounting for spatial correlation of LiDAR model residuals can improve the precision of 23 

model based estimators. To model such spatial correlation, sample designs providing close enough 24 

observation are needed but they are difficult to implement. Aiming to provide references about the 25 

gains that can be obtained by accounting for the spatial correlation of model residuals, we analyzed: 26 

1) The spatial correlation patterns of residuals from LiDAR linear models developed to predict 27 

volume, total and stem biomass per hectare, quadratic mean diameter (QMD), basal area, mean 28 

and dominant height, and stand density; 2) How the plot size changes the spatial correlation 29 

patterns. 30 

For all variables the correlation range of model residuals consistently increased with the plot 31 

radius and was always below 60 m except for stand density, where it reached 85 m. Excluding QMD, 32 

depending on the radius and variable of interest, correlation ranges of model residuals were from 33 

1.06 to 8.16 times shorter than those observed for the raw variables. Based on the sort correlation 34 

ranges observed, the assumption of independent residuals accepted in numerous studies without 35 

enough empirical evidence, seems to be reasonable appropriate which raises questions about the 36 

practical need of accounting for spatial correlation in LiDAR inventories. 37 

Keywords: Spatial correlation, LiDAR, forest inventory, linear models, spatial models. 38 

 39 
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1 Introduction 44 

Remotely sensed auxiliary information from airborne laser scanners (ALS), in combination 45 

with the area based approach (ABA), have been extensively used to assist forest inventories during 46 

the last two decades (Næsset 1997a, Magnussen et al. 1999, Næsset and Bjerknes 2001, Andersen 47 

et al. 2005, González-Ferreiro et al. 2012). Under the ABA, a study area is covered by a grid (i.e. a 48 

compact tessellation with non-overlapping units) containing auxiliary information for each pixel. 49 

Pixels are considered population elements or units, so that the grid implicitly defines a pseudo 50 

sampling frame. Then, the variables of interest are measured in a sample of field plots of size similar 51 

to that of the pixels. These field plots are regarded as elements of population for which both 52 

auxiliary information and the variables of interest are known. 53 

The ABA in combination with model-based estimation methods have had a prominent role in 54 

forest inventories assisted with LiDAR and we will focus our study on it. The impact of the potential 55 

spatial correlation of the model residuals, and how this spatial correlation can be accounted for, 56 

have received significant attention and different authors have provided estimators to account for it 57 

in forests inventories assisted with spatially explicit auxiliary information (McRoberts, 2006; 58 

McRoberts et al., 2007; Breidenbach. et al., 2008; Magnussen et al., 2009; Ver Hoef and Temesgen, 59 

2013; Temesgen and Ver Hoef, 2014; Finley et al., 2014; Magnussen et al., 2016a, Magnussen et al., 60 

2016b). A related issue that has not been studied in the literature is how field plot size affects the 61 

potential spatial correlation. This issue has important practical consequences as plot size has a large 62 

impact on both fieldwork costs and the ABA work-flow. 63 

1.1 Spatial correlation in forest management inventories 64 

Spatial correlation of model residuals has been frequently ignored in operational forest 65 

inventories assisted with remotely sensed auxiliary information, thus assuming that model residuals 66 

are independent with little empirical evidence. Sampling designs typically use grids of plots where 67 
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the field observations are too far to detect the spatial correlation. In those cases (Woods et al. 68 

2011, Mauro et al. 2016), the assumed independence for the residuals is more a consequence of 69 

the inability to observe spatial correlation patterns than an empirically tested result of the model. 70 

Assuming independence because of a lack of field measurements may result in loss of predictive 71 

power as knowledge about the residual spatial correlation can be used to improve predictions. In 72 

addition, omitting accounting for the spatial correlation can result in unrealistic measures of 73 

uncertainty (Breidenbach et al. 2016). For these reasons, there has been an increasing interest on 74 

analyzing the spatial correlation of model residuals in LiDAR based forest inventories. 75 

For a linear spatial model, best linear unbiased prediction (BLUP, or kriging in the 76 

geostatistical literature) incorporates the spatial correlation to improve predictions. This technique 77 

rely on a model obtained for the residual spatial correlation that is used in a further stage where the 78 

variable of interest in unsampled locations is estimated, both to create maps of its distribution and 79 

to estimate block averages The improvement of the prediction, however, is greatest for the pixels 80 

closest to the observed plots and is negligible for pixels located beyond the range of the 81 

semivariogram, when the spatial correlation is close to 0. Thus, the shape of the semivariogram 82 

closest to the origin is of the greatest importance for spatial prediction (Cressie 1993). In addition, 83 

in some cases, and especially so in LiDAR based forest inventories, spatially explicit auxiliary 84 

information variables with high explanatory power may account for an important part of the spatial 85 

correlation of the variable of interest so the correlation that is left among model residuals can show 86 

short spatial ranges (Breidenbach. et al. 2008, Finley et al. 2014, Breidenbach et al. 2016). The need 87 

of observations of the spatial correlation close to the origin and the potentially short range of such 88 

correlation raise important questions about the survey designs needed to account for this factor. 89 

To detect and model spatial correlation of model residuals, fieldwork design needs to ensure 90 

the existence of pairs of observations at distances where spatial correlation is still present. For 91 

certain variables of interest and auxiliary information sources, the observed spatial correlation 92 
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range of the residuals was larger than the minimum distance between plots, reaching distances of 93 

about 1 km to 3 km (Magnussen et al. 2009, Ver Hoef and Temesgen 2013, Finley et al. 2014). 94 

However, in forest inventory applications, especially when using LiDAR or photogrammetric point 95 

clouds, it seems to be more common to observe residual spatial correlation that vanishes at 96 

distances from 10 m to 200 m (Breidenbach. et al. 2008, Finley et al. 2014, Breidenbach et al. 2016). 97 

These distances are significantly shorter than, or at most close to, the minimum separation between 98 

field observations. This problem could be even more significant in large scale forest inventories 99 

where, for example, (McRoberts et al. 2007) reported spatial correlation ranges of 100 

presence/absence of forestland that did not even reach 200 m. These issues raise important 101 

questions regarding fieldwork protocols. Zimmerman, (2006) studied this problem and concluded 102 

that designs with uniformly spread plot locations are optimal for prediction in unsampled locations 103 

when the spatial correlation parameters are known, but clustered sample plots are optimal for 104 

estimation of the spatial correlation parameters. In actuality, spatial correlation parameters are not 105 

known and prediction at unsampled locations is also needed, so best designs are those in which 106 

clusters of nearby sample plots are uniformly spread throughout the study area (Zimmerman, 107 

(2006). 108 

The desirable option to study spatial correlation is to rely on data to directly analyze it, which 109 

may require special designs. Recent studies have proposed ways to obtain estimates of the spatial 110 

correlation when it cannot be directly estimated due to a lack field observations close enough to 111 

observe the correlation. These methods rely on estimating the residual spatial correlation from 112 

model predictions of the variable of interest (Magnussen et al., 2016a, Magnussen et al., 2016b). 113 

Unfortunately, these approaches try to overcome the problem of lack of field information by relying 114 

on strong assumptions relating spatial correlation of predictions and spatial correlation of model 115 

residuals, that cannot be empirically confirmed in the context of those studies. Insights about the 116 

potential importance of the spatial correlation of model residuals could be obtained from previous 117 
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studies such as (Gunnarsson et al. 1998) where no auxiliary information was used to predict 118 

different forest attributes of interest. Based on the spatial nature of LiDAR predictors one could 119 

expect smaller correlation ranges for the residuals than those observed for the attributes of 120 

interest, so information from previous studies might be considered as an upper bound for the 121 

spatial correlation of LiDAR model residuals. 122 

Due to difficulties to obtain data appropriate for studying spatial correlation of model 123 

residuals models using LiDAR as auxiliary information, studies on this topic are not very numerous 124 

(Breidenbach. et al. 2008, Finley et al. 2014). This number increases by one if one considers 125 

photogrammetric point clouds. The number of variables analyzed is very small, limited to volumes 126 

and stand table data, and no previous study has considered variables such as mean height, 127 

dominant height, above ground biomass, quadratic mean diameter or basal area. 128 

1.2 Support region overlap 129 

Field plots and pixels are not points, but fixed areas. When using either LiDAR or 130 

photogrammetric point clouds, spatial correlation has been always studied assuming that the 131 

distance between units is the distance between their centroids (Breidenbach. et al., 2008; 132 

Magnussen et al., 2009; Finley et al., 2014; S. Magnussen et al., 2016 a, Magnussen et al., 2016 b). 133 

An inherent consequence of having a support area is that, as the distance between units decreases, 134 

support regions can overlap. While this may not be an issue if the population is portioned into a grid 135 

of non-overlapping units (pixels) and a sample taken from those units, the reality of LiDAR 136 

supported ABA inventory is that the population grid and field plots are misaligned, therefore field 137 

plots and pixels can overlap (Figure 1). For example, field plot locations are often determined 138 

before knowing the LiDAR grid (e.g. Finley et al., 2014; Mauro et al., 2016), which would likely result 139 

in misalignment. The same would happen for systematic sampling designs, if the separation 140 

between plots is not a multiple of the pixel size (i.e. when national forest inventory field plots are 141 

used e.g. Breidenbach and Astrup, 2012). Even if the locations of the field plots were planned to 142 
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coincide with a pixel center, field crews typically navigate to pre-selected plot locations using coarse 143 

acquisition (C\A) code based Global Navigation Satellite Systems (GNSS) techniques (Breidenbach et 144 

al. 2016), resulting in positioning errors and misalignment between field plots and pixels that 145 

cannot be corrected in a subsequent post-processing of GNSS phase observations taken at the plot 146 

center. Studies on GNSS positioning using real time C\A code in forested environments reported 147 

errors that reached 21.60 m when no external corrections were used and 14.01 m when using code 148 

corrections (Andersen et al. 2009). Coordinates of plot centers can be differentially corrected later 149 

using relatively long phase observations, which would allow computing more accurate coordinates 150 

and ensure a correct matching of LiDAR point cloud and plot measurements. However, the 151 

computation of refined coordinates does not solve the initial misalignment of field plots and grid 152 

units. 153 

Plot overlap induces a correlation, because the overlapping area is measured by both plots. 154 

However, spatial statistics methods make use of spatial correlation but do not try to explain the 155 

reasons that generate it (McRoberts 2006, Breidenbach. et al. 2008, Magnussen et al. 2009, Ver 156 

Hoef and Temesgen 2013, Finley et al. 2014, Temesgen and Ver Hoef 2014, Breidenbach et al. 157 

2016). Even when induced by overlap, this correlation is a form of spatial correlation, inasmuch as it 158 

is a function of the distance between plot centers: it is 1 when the distance between the plot 159 

centers is 0, and decreases as the distance increases. There are neither practical nor theoretical 160 

reasons to distinguish between the correlation induced by overlap and a hypothetical, non-161 

overlapping spatial correlation at distances where overlap does exist. Because of misalignment, 162 

partial overlap between the grid that partitions the population and the field plots is a reality, so 163 

knowing the correlation at those distances where the overlap is still present would help improve 164 

the prediction for grid cells that share area with the field plots. Estimation of the empirical 165 

autocorrelation function is the same whether there is overlap or not, for it is simply the correlation 166 

between two plots at a given distance between plot centers: it does distinguish whether there is 167 
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overlap or not. Once this function is estimated, fitted models may account for differences between 168 

overlapping and non-overlapping portions of the autocorrelation function if warranted by the data. 169 

1.3 Field plot size 170 

Field plot size has important consequences for both fieldwork cost and the ABA workflow, 171 

and may also influence the spatial correlation. Larger plots contain more trees, thus requiring more 172 

measurements and being more expensive. However, larger plots may be less sensitive to 173 

positioning errors (Gobakken and Næsset 2009) and would result in better estimator quality (Ruiz et 174 

al. 2014), as the variance of the estimators is smaller in larger plots. In addition, at close distances, 175 

correlation of residuals from larger plots is expected to be greater than correlation of residuals from 176 

smaller plots, as more plot overlap can be expected for larger plots. Therefore, the use of smaller 177 

plots is desirable to avoid expensive fieldwork, and could reduce the need to account for spatial 178 

correlation. It is therefore necessary to find compromise solutions for the plot size, and information 179 

on how plot size and spatial correlation interact is relevant to that end. However, to the best of our 180 

knowledge, no study has analyzed such interaction in a LiDAR assisted inventory context. 181 

2 Objectives 182 

The objectives of the study are: 183 

1. Study the spatial correlation of residuals from models to predict forest attributes 184 

using LiDAR and relate spatial correlation ranges of the residuals to spatial correlation 185 

ranges for the raw attributes of interest. We focus on analyzing the spatial 186 

correlation at short distances, which are the most relevant for spatial prediction. 187 

2. Examine the interaction between plot size and spatial correlation. 188 

We studied a group of variables that can be considered as representative sample of the type 189 

of variables estimated in forest management inventories. Variables of interest were volume (V 190 

(m3/ha)), total biomass per hectare (Btot (kg/ha)), stem biomass per hectare (Bstem (kg/ha)), 191 
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quadratic mean diameter (QMD (cm)), basal area (G (m2/ha)), mean tree height (Hm (m)), dominant 192 

height (Ho (m)) and stand density (N (stems/ha)). Plot radii ranged from 7.5 m to 12.5 m. 193 

3 Material and methods 194 

3.1 Study area and AOI hierarchy 195 

The study area is a 4000 ha forest located in “La Serranía de Cuenca”, central Spain, described 196 

in Ruiz et al. (2014). Approximately 5% of the area is non-forested (considering as forest those areas 197 

with at least 10% canopy cover (FAO 2012)). European black pine (Pinus nigra Arn.) and scots pine 198 

(Pinus sylvestris L.) are the main species and appear mixed in different proportions. Black pine, 199 

however, dominates the forest in approximately 80% of the study area. In addition, other conifers 200 

such as Spanish juniper (Juniperus thurifera L.), maritime pine (Pinus pinaster Ait.) and hardwoods 201 

(e.g. holm oak (Quercus ilex L.) and Portuguese oak (Quercus faginea. Lam)) appear scattered over 202 

the study area. Slopes are very steep and the configuration of the hydrological network, with a main 203 

river crossing the study area from north to south and several seasonal tributaries running in east or 204 

west direction to join the main stream, result in a patch of areas with clearly differentiated slopes 205 

and orientations. The study area contains a total of 55 delineated stands ranging in area from 28.34 206 

ha to 75.92 ha. These stands were merged into 13 management units (MU) containing one or more 207 

stands. Stands grouped to form each MU are subject to similar treatments so the composition and 208 

structure of the MU is homogeneous. The area of the MUs ranges from 30.64 ha to 392.34 ha.  209 

3.2  LiDAR data 210 

LiDAR data were collected in November 2008 using an Optech ALTM-1225 operating at 25 211 

kHz and a maximum scanning angle of ± 18o. The minimum nominal LiDAR density was 4 points/m2. 212 

The resulting average point density was 11.4 points/m2, however, the point density was not 213 

homogeneous, due to irregular overlap of scanning stripes. The LiDAR point cloud was thinned using 214 

the software lastools (Isenburg 2013) to obtain a homogeneous density of 4 points/m2. Ground 215 
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points were filtered from the LiDAR point cloud and used to obtain a digital terrain model of 0.5 m 216 

pixel, that was employed to normalize the LiDAR point cloud. A visual inspection of the DTM and of 217 

the normalize point cloud were performed to ensure that these products were in fact free of spikes 218 

and outliers. All these processes were performed using FUSION (Mc Gaughey 2014). 219 

3.3 Field data collection and locating of field plots 220 

A total of 85, 25 m radius field plots (1963.5 m2) were measured in December 2008. The 221 

radius of field plots typically used in LiDAR based forest inventories range from 9 m to 12.5 m (Ruiz 222 

et al. 2014), so the plots in this study are 4 to 7.72 times larger than commonly used field plots, 223 

which allowed studying the spatial correlation at relatively short distances.  224 

Plots were located on the nodes of a 500 m regular grid. Field crews navigated to the 225 

preselected plot centers using a navigation grade Global Positioning System (GPS) using C\A code. 226 

Coordinates, relative to the plot center, of each tree with diameter at breast height (DBH) larger 227 

than 7 cm were obtained using a measuring tape and a compass. The expected accuracy of the 228 

relative positioning based on previous experience was around 0.5 m. Each tree was measured for 229 

DBH and height using a caliper and a Hagölf Vertex III hypsometer. Volume of each tree was 230 

computed using species specific regional equations developed by the Spanish National Forest 231 

Inventory (NFI) using DBH and H as predictors. Tree level total and stem biomass were computed 232 

for each tree using species specific models developed by (Montero et al. 2005) using DBH as the 233 

only predictor. 234 

Positioning errors of navigation grade GPS devices can frequently exceed 5 m and should be 235 

corrected to ensure a precise co-registration with the LiDAR data. For each plot, trees were first 236 

positioned using their coordinates relative to the plot center and overlaid on the orthophoto and on 237 

the LiDAR point cloud resulting from the filtering of the ground points. Then a manual correction 238 

was performed by a photo interpreter, and relied on the identification of at least seven different 239 

trees in both the digital canopy height model (DCMH), the orthophoto of the study area and the 240 

Page 10 of 51

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

11 

 

ground point cloud. Tree stem locations were identified as maxima in the DCHM and gaps in in the 241 

ground point cloud derived from LiDAR. All trees in a plot were manually translated and rotated as a 242 

block until most isolated and easy to identify trees overlapped with the stem locations identified 243 

from the LiDAR image (Figure 2). Certain trees were moved independently in each plot when their 244 

position was identified on the ground point cloud and on the orthophoto. These trees were less 245 

than a 0.5% of the total. The average displacement of the plot center was 1.13 m, the standard 246 

deviation of the displacement was 1.72 m and the maximum displacement was 9.14 m. 247 

3.4 Model fitting and spatial correlation assessment 248 

For each variable of interest, we estimated linear spatial models where the mean of the 249 

distribution was a function of typical LiDAR covariates (i.e. percentiles, moments, means, minimums 250 

and maximums of the LiDAR elevations as well as cover parameters such as percentages of returns 251 

above different height thresholds, Mc Gaughey, 2014) and correlation between residuals for two 252 

locations a function of the distance separating them. Suitable model were selected as follows: first, 253 

selected the LiDAR predictors, then we considered a weighting schema to account for 254 

heteroscedasticity. Then, we added a random effect for the management unit. Finally, we modeled 255 

the spatial autocorrelation as a function of subplot distance. 256 

3.4.1 Computation of sub-plot level values and auxiliary information  257 

For each 25 m radius plot, groups of subplots of radii 7.5, 8, 8.5,… 11.5, 12 and 12.5 m were 258 

created. Each group of subplots was obtained by first defining a subplot, concentric to the 25 m 259 

radius plot. New subplots were defined by moving outwards the central subplot in steps of 0.5 m 260 

following E-W, SE-NW, S-N and SW-NE directions, until the edge of the subplots were tangent to the 261 

25 m radius plot. The number of subplots in each 25 m plot, the total number of subplots and the 262 

maximum distances between subplots is indicated in Table 1. Note that the number of steps and 263 

the maximum distance between subplots (max_distance(radius)) is different for each radius (Figure 264 

3) and equals 50 m minus two times the subplot radius. For example, if we consider 10 m radius 265 
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subplots, max_distance equals 30 m and it is possible to allocate 30/0.5 +1=61 subplots in each 266 

moving direction within a large plot. For each subplot, the variables of interest were calculated and 267 

expanded to a per hectare basis when appropriate. Similarly, a set of 30 LiDAR predictors were 268 

computed for each subplot using FUSION (Mc Gaughey 2014).  269 

3.4.2 Non-spatial models 270 

Linear fixed effects models were fit to the variables of interest, as a function of the LiDAR 271 

variables. Because of the very large number of potential predictor variables, a parsimonious model 272 

was selected as follows: First, fixed effects linear models were selected using the R package leaps 273 

(Lumley 2009) based on the 12.5 m radius subplot only. The maximum number of predictors was set 274 

to 3 independent variables per model. We obtained the best 5 models in terms of adjusted 275 

coefficient of determination when considering 1, 2 and 3 auxiliary variables which makes a total of 276 

15 models. These models were denoted as 𝑚0,𝑣𝑣𝑣𝑣,𝑙  where 𝑣𝑣𝑣𝑣 is a sub-index to denote the 277 

variable of interest, and subscript l = 1, 2,…, 15 indicates the candidates.  278 

Typically, the variance of the model residuals was not constant, so a new set of 15 models, 279 

𝑚1,𝑣𝑣𝑣𝑣,𝑙 accounting for heteroscedasticity, was fit using the R package nlme (Pinheiro et al. 2015). 280 

For each of the 15 models selected previously, the standard deviation of the residuals 𝜎𝑒 was 281 

assumed to be proportional to a power of the predictor most correlated with the variable of 282 

interest, 𝑚𝑚𝑚𝜂, so that 𝜎𝑒 = 𝜎𝑒0𝑚𝑚𝑚𝑙
𝜂, where 𝜂 was a parameter. Models 𝑚0,𝑣𝑣𝑣𝑣,𝑙and 𝑚1,𝑣𝑣𝑣𝑣,𝑙 can 283 

be respectively expressed for a given unit 𝑗 in the 𝑖𝑡ℎmanagement unit as 284 

  𝑦𝑖𝑖 = 𝜷𝒙𝑖𝑖 + 𝑒𝑖𝑖 [1] 

Where the variance of 𝑒𝑖𝑖, 𝑉�𝑒𝑖𝑖� = 𝜎0𝑒2  for 𝑚0,𝑣𝑣𝑣𝑣,𝑙, and 𝑉�𝑒𝑖𝑖� = 𝜎0𝑒2 𝑚𝑚𝑚𝑙,𝑖,𝑗
2𝜂 . Note that 285 

𝑚0,𝑣𝑣𝑣𝑣,𝑙 is a particular (i.e. nested) case of 𝑚1,𝑣𝑣𝑣𝑣,𝑙, where 𝜂 = 0. Then, 𝑚0,𝑣𝑣𝑣𝑣,𝑙  and 𝑚1,𝑣𝑣𝑣𝑣,𝑙  were 286 

compared using a likelihood-ratio and 𝑚0,𝑣𝑣𝑣𝑣,𝑙  was selected when including the heteroscedasticity 287 

did not improved the model fit significantly, and 𝑚1,𝑣𝑣𝑣𝑣,𝑙 otherwise (Pinheiro and Bates 2000). 288 
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Finally, a management unit random effect was added to the models selected in the previous step. 289 

Resulting models can be expressed as  290 

  𝑦𝑖𝑖 = 𝜷𝒙𝑖𝑖 + 𝑣𝑖 + 𝑒𝑖𝑖 [2] 

Here 𝑣𝑖 are, the Management unit random effects. These effects are assumed to be 291 

independent and identically distributed variables with variance 𝑉(𝑣𝑖) = 𝜎𝑣2. and 𝑉�𝑒𝑖𝑖� is the one 292 

determined in the previous step. These models were denoted as 𝑚2,𝑣𝑣𝑣𝑣,𝑙 and both 𝑚0,𝑣𝑣𝑣𝑣,𝑙 and 293 

𝑚1,𝑣𝑣𝑣𝑣,𝑙are specific cases of 𝑚2,𝑣𝑣𝑣𝑣,𝑙. The significance of the MU random effect was tested using a 294 

likelihood-ratio test (Pinheiro and Bates 2000). Selected models were denoted by 𝑚𝑣𝑣𝑣𝑣,𝑙
∗  and 295 

Pearson´s standardized residuals and normality of management unit random effects were 296 

graphically assessed and one of the fifteen candidates was selected and called 𝑚𝑣𝑣𝑣𝑣
∗∗ . 297 

Finally, for other subplot radii, we kept constant the fixed effects selected for the 12.5 m 298 

radius plot model, 𝑚𝑣𝑣𝑣𝑣
∗∗ . Then heteroscedastic variance patterns and MU random effects were 299 

included and their significance was tested as we did with the models for the 12.5 m radius subplots. 300 

The resulting models were denoted as 𝑚𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
∗∗ , where sub-index rad was included as it becomes 301 

necessary hereafter to index the subplot radius. 302 

5.1.1 Spatial correlation assessment 303 

To analyze the importance of the spatial correlation, Pearson’s standardized residuals from 304 

𝑚𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
∗∗  were obtained for each subplot, radius and variable. Pearson correlations were computed 305 

for all pairs of subplots separated distances 𝑑 of (0.5 m, 1 m, 1.5 m,…max_distance(radius)) in each 306 

moving direction by using only pairs of observations on the same moving line (dashed-lines Figure 307 

3). The result of this step can be regarded as a directional empirical correlation function. Then, all 308 

the pairs were pooled together to compute an isotropic empirical correlation function. Empirical 309 

correlation at distance 𝑑 are denoted hereafter as 𝜔𝑣𝑣𝑣𝑙,𝑟𝑟𝑟(𝑑) where subscripts meanings are the 310 

ones indicated in the previous section. Patterns of correlation were examined in order to select a 311 
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suitable spatial correlation model for each variable of interest. 312 

In a last step, for each variable and radius, the spatial correlation of the residuals of 𝑚𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
∗∗  313 

was modeled. Covariance of model residuals associated to location b and location c were expressed 314 

as 𝐶𝐶𝐶(𝜖𝑏 , 𝜖𝑐) = 𝜎𝑏𝜎𝑐𝐺�𝑑𝑏,𝑐 ,𝜌,𝜃� where 𝐺(𝑑𝑏,𝑐 ,𝜌,𝜃) is the correlation function, 𝜎𝑏 and 𝜎𝑐, are 315 

the standard deviation of the unit level random effects of the bth and cth subplot, db,c is the 316 

Euclidean distance between those elements. The model shape for 𝐺(𝑑𝑏,𝑐 ,𝜌,𝜃) was chosen after 317 

observing the empirical correlation function and it is a mixture of two components: 318 

𝐺(𝑑𝑏,𝑐 ,𝜌,𝜃) = 𝜃𝜃(𝑑𝑏,𝑐 < 2𝑟𝑟𝑟)��𝑎𝑎𝑎𝑎 �
𝑑𝑏,𝑐

2𝑟𝑟𝑟
��

2
𝜋
− �

𝑑𝑏,𝑐

𝜋𝑟𝑟𝑟2
�𝑟𝑟𝑟2 −

𝑑𝑏,𝑐
2

4
��+ (1 − 𝜃)𝑒−(

𝑑𝑏,𝑐
𝜌 ) [3] 

The first component is the proportion of overlapping area; the second component is a pure 319 

exponential model without nugget effect. 𝐼(𝑑𝑏,𝑐 < 2𝑟𝑟𝑟) is an indicator function and 𝜃 the weight 320 

for the first component. The effective range, denoted as 𝜑 hereafter is defined as the distance for 321 

which the correlation descends to 0.05, and it is a function of both 𝜌,𝜃 and the plot radius.  322 

5.1.2 Spatial correlation of raw variables and comparison to residual correlation 323 

The spatial analysis described above was conducted on the residuals of LiDAR models to 324 

predict different attributes of interest. Due to the spatial nature of LiDAR predictors, one can expect 325 

a reduction of the spatial correlation of model residuals when compared to the spatial correlation 326 

of raw variables of interest. Once the auxiliary information is taken into account through the model 327 

the spatial correlation that is left in the residuals can be substantially smaller than that present for 328 

the raw variables. To assess the reduction of the spatial correlation once the auxiliary information 329 

was considered, we examined the spatial correlation of the raw variables of interest. As with the 330 

residuals, we modeled the spatial correlation patterns observed for the response variables using the 331 

correlation function in [4]. For each variable of interest and subplot radius empirical correlations, 332 

the covariance function, the correlation function, its parameters and the effective range 333 
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(𝑤(𝑑),𝐶𝐶𝐶�𝑑𝑏,𝑐 ,𝜌,𝜃�,𝐺�𝑑𝑏,𝑐 ,𝜌,𝜃�,𝜌,𝜃, 𝜑) were indexed using sub-indexes vrbl and rad to denote 334 

the variable of interest and the subplot radius. A super-script res or raw was added to indicate 335 

model residuals or raw variables respectively. We computed the ratios of the effective empirical 336 

correlation ranges of the residuals and raw variables 𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑑𝑑𝑑,𝑟𝑟𝑟 = 𝜑𝑣𝑣𝑣𝑣,𝑟𝑟𝑟

𝑟𝑟𝑟

𝜑𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟 . These ratios summarize 337 

the reduction of the spatial correlation range, when comparing the raw variables with the residuals 338 

(i.e. random part that is left once the auxiliary information is used to predict a response). 339 

5.1.3 Influence of plot size in the spatial correlation of residuals 340 

To analyze how plot size interacted with the spatial correlation of the residuals two different 341 

comparisons were performed. First, for each variable we plotted the ranges of the spatial 342 

correlation models for the residuals against the plot radius and computed the correlation 343 

coefficients between these two variables. Same analysis was performed for the spatial correlation 344 

ranges of the raw variables. Second, a more detailed analysis directly using the empirical 345 

correlations observed rather than model parameters was performed. In this analysis subplot radius 346 

for which no overlap occurred at a given distance were considered. For each variable of interest and 347 

distances from 20 m to 30 m, all pairs [𝜔(𝑑), 𝑟𝑟𝑟] (computed Pearson’s correlation at distance 𝑑 348 

and plot radius) were gathered and the effect of increasing the plot radius in the empirical 349 

correlation 𝜔𝑟𝑟𝑟(𝑑) of model residuals was tested by means of a Kendal’s 𝜏 test.  350 

6 Results 351 

For all variables and subplot radii the empirical correlation at the maximum possible distance 352 

was always below 0.26, and in most cases it did not exceed 0.1. For 38.6% of the analyzed 353 

combinations variable of interest-radius (34 out of 88), the empirical correlation at the maximum 354 

distance was below 0.05.Thus, the sample always covered more than 74% of the range of possible 355 

values for the spatial correlation, in most cases the coverage was larger than 90% (Table 2) and in 356 

more than a third of the cases the empirical correlation apparently reached the range. 357 
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The estimated parameters of the selected models, 𝑚𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
∗∗ , for each variable of interest and 358 

subplot radius as well as the spatial correlation parameters for raw variables and residuals are 359 

shown in Appendix A, Table A1. The exploratory analysis revealed that the correlation of residuals 360 

as a function of distance showed decreasing pattern without marked differences between 361 

directions (Appendix A, Figure A1 shows Hm as an example) and an isotropic model without nugget 362 

effect (Eq. 1) was appropriate to capture the variability of the empirical correlation function (Figure 363 

4). For G, with subplots radii 7.5,8.5,9 and 9.5 m and for N with subplots radius of 9.5, 10 and 10.5 364 

m the right tail of the empirical correlation function for the residuals was specially flat. That 365 

resulted in models with a very large 𝜌 parameter for the exponential part resulting in unrealistically 366 

large values when computing the effective ranges. This seven cases were removed in the remaining 367 

analysis but their parameters are reported in Apendix A Table A1. This effect was especially 368 

prominent for G, where computed ranges for these four subplot radii were orders of magnitude 369 

longer than those observed for other subplots radius with the same variables or for other variables.  370 

For all raw variables, the effective spatial correlation range calculated from the model was 371 

always less than 200 m (Figure 5). For the residuals, except for N and the seven cases commented 372 

before, the effective range was below 60 m. The raw variable that shows the shortest spatial 373 

correlation range is QMD. In this study, the LiDAR variables do not explain much of the variability of 374 

QMD, and when included, the spatial correlation range of the residuals for this variable increased. 375 

The prediction of this variable is very poor and it seems that the LiDAR information introduces noise 376 

as 𝛾𝑄𝑄𝑄,𝑟𝑟𝑟
𝑑𝑑𝑑,𝑟𝑟𝑟  is close but smaller than one. Among the variables included in this study, N is the one 377 

that typically shows weakest correlation with LiDAR auxiliary information (Næsset 2002). In this 378 

case, the raw variable N exhibits the largest correlation range. The reduction in the correlation 379 

range after including the LiDAR is low and 𝛾𝑄𝑄𝑄,𝑟𝑟𝑟
𝑑𝑑𝑑,𝑟𝑟𝑟 , ranges from 1.06 to 3.45. After QMD, the 380 

variables with the smalest correlation ranges are V, Ho and Hm being those ranges slightly lower for 381 

the first two. Early studies on prediction of forest variables have shown that LiDAR information is 382 
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highly correlated to these structural variables, specially to Ho (Næsset 1997b, Magnussen et al. 383 

1999, Næsset and Økland 2002, Næsset and Bjerknes 2001). The high predictive power of LiDAR 384 

data for this variable explains why the spatial correlation range of the residuals for Ho decreases to 385 

distances 3.14 to 5.14 times shorter than that observed for the raw variable (𝛾𝐻𝑜,𝑟𝑟𝑟
𝑑𝑑𝑑,𝑟𝑟𝑟) and become 386 

even smaller than the spatial correlation ranges of the residuals for Hm,  Figure 5). For V, the values 387 

of 𝛾𝑉,𝑟𝑟𝑟
𝑑𝑑𝑑,𝑟𝑟𝑟 are similar or larger than those obtained for 𝛾𝐻𝑜,𝑟𝑟𝑟

𝑑𝑑𝑑,𝑟𝑟𝑟 and considerable larger than those 388 

observed for Btot and Bstem (Figure 5). This can be explained by the high correlation of LiDAR 389 

predictors with tree height, a variable that was included in the tree volume equations, but not in 390 

the biomass equations. The remaining variables (Btot, Bstem, G) show correlation ranges for the 391 

residuals larger than those observed for QMD,Hm, Ho and V and smaller than those observed for N 392 

and similarly, the reduction of the spatial correlation when the LiDAR auxiliary information is 393 

included is larger than that observed for QMD and smaller than that observed for Ho and V. Both 394 

Btot, Bstem, and G, are related in different ways to N and tree height, which may explain this average 395 

behavior. 396 

The spatial correlation range consistently increased with the plot radius for both the model 397 

residuals and the raw responses. For all variables, except for G and N, where four and three radius 398 

were excluded, this positive correlation was significant for the residual part (Figure 5). The 399 

correlation between plot radius and empirical correlation for non-overlapping plots was studied at 400 

19 different distances for each variable (152 pairs variable-distance). For 136 cases (approximately 401 

90% of the cases), the Kendall’s 𝜏 coefficient was positive indicating that typically larger radii result 402 

in larger empirical correlation (Figure 6). This result suggests that assuming uncorrelated residuals 403 

might have a larger impact in subsequent estimates when using larger plots which raises questions 404 

for further research about the use of different plot sizes with different spatial correlation ranges. 405 
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7 Discussion 406 

The spatial correlation of model residuals have received important attention recently as they 407 

might be required:1) to improve predictions 2) for computation of uncertainty measures for pixel 408 

and\or stand level estimates (Magnussen et al. 2016a) and 3) to up-scale LiDAR predictions from 409 

different inventories made with different plot\pixel sizes to a common area (Magnussen et al. 410 

2016b). Both studies recognized that directly studying spatial correlation of model residuals 411 

requires field observations that are difficult to obtain and proposed methods to anticipate the 412 

spatial correlation of model residuals. Unfortunately, the proposed methods try to overcome this 413 

problem by relying on strong assumptions, such as proportionality of the spatial correlation range 414 

of predictions and model residuals that, in the context of those studies, cannot be empirically 415 

confirmed. The spatial correlation models for the residuals obtained here are empirical results that 416 

can be directly used in the three stages mentioned above. The ratios 𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟  could be used to 417 

anticipate the spatial correlation of model residuals if previous information about the raw forest 418 

attributes of interest, such as that provided by Gunnarsson et al., (1998), were available in a similar 419 

study area. Although they are not direct estimates of the spatial correlation needed by the methods 420 

described in Magnussen et al. (2016a) and Magnussen et al.,(2016b) to obtain mean square error 421 

estimators and to scale up model predictions, the ratios 𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟  were empirically obtained and 422 

provide an alternative way to anticipate spatial correlation of model residuals. 423 

The demanding fieldwork needed is the main reason why studies analyzing correlation of residuals 424 

from models specifically based on LiDAR auxiliary information are not very numerous, (Breidenbach. 425 

et al., 2008; Finley et al., 2014). This number increases by one when photogrammetric point clouds 426 

are considered (Breidenbach et al., 2016). Breidenbach. et al., (2008) and Breidenbach et al., (2016) 427 

only consider volume as dependent variable and Finley et al., (2014) analyzed stand tables (i.e. 428 

number of stems in predefined diameter classes). For volume there exist two references in the 429 

literature, however, the one that uses LiDAR (Breidenbach. et al., 2008) reported spatial 430 
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correlations that descend below 0.05 for distances of 202 m of larger. The design used in that study, 431 

provide pairs of observations with a separation between plots of 100, 200 m 223 m and larger, in 432 

conclusion, only two of those distances were within the spatial correlation range, and reported 433 

results lack robustness. The second study on volume is more consistent but it does not consider 434 

LiDAR auxiliary information. While some relations exist between some of the variables considered 435 

here (i.e. QMD or G), and those considered in (Finley et al., 2014) they are not completely the same. 436 

In our study we include eight different variables and for seven of them (Btot, Bstem, QMD, G, Hm, Ho, 437 

and N), no study to the date has reported correlation ranges of residuals from LiDAR models. 438 

Another novelty of the present study is the analysis of the effect of the plot size ion the spatial 439 

correlation. A consistent increase of the spatial correlation range was observed when increasing the 440 

plot radius. This results raises questions about the implications of using different plot sizes to derive 441 

estimates and measures of uncertainty for different subpopulations. 442 

Excluding the 4 and 3 subplot radius discarded for G and N respectively, where the empirical 443 

correlation was flat at the end, for all the variables analyzed here the spatial correlation range of 444 

the residuals never surpassed 100 m and for most variables they were always below 60 meters 445 

(Figure 5 and Table A1). This makes clear the need of sampling designs with very close observations 446 

if the modeler aims at analyzing\using the spatial correlation of model residuals. A controversial 447 

point of our field sampling design is that it provides overlapping subplots. As mentioned in the 448 

introduction, overlap occurs in real applications and it should not be disregarded. In addition, 449 

except for 12.5 m radius subplots, the design used here provides distances without overlap. Even if 450 

the overlap was considered an issue, if the spatial correlation models fit well in the section without 451 

overlap, the overlap causes no harm in subsequent estimates.  452 

Limitations from our sampling design did not allowed us to study spatial dependences for 453 

distances lager than 25 to 35 meters depending on the subplot radius. However, this constraint can 454 

be regarded as minor. Extrapolations would be needed for distances lager than the maximum 455 
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distance studied here, however, the correlation of the residuals decreases when the distance 456 

increases, and we empirically confirmed that for the maximum distances studied here the empirical 457 

spatial correlation have almost disappeared (Table 2), being for most variables and subplot radius 458 

smaller than 0.1 at the maximum distance. Therefore, extrapolation errors for distances within the 459 

range will be bounded by a small quantity. 460 

For most variables, the spatial correlation ranges of the residuals were so sort that the 461 

assumption of independent residuals seem to be reasonably accurate, at least for prediction. The 462 

effect of omitting the spatial correlation analysis in the prediction stage in a spatial correlation 463 

scenario like the one observed here can be illustrated with the following example. If we considered 464 

a systematic design with plots on the nodes of a rectangular grid, a hypothetical plot density of 0.1 465 

plot/ha, a management unit of 50 ha and a pixel size of 15 m, the MU would contain approximately 466 

2222 pixels and 5 plots. If the spatial correlation of the residuals vanishes at 40 m, plots could be 467 

assumed to be independent for model fitting purposes. Incorporating the spatial structure to 468 

improve the predictive performance of the models would have very little impact, compared to a 469 

model that assumes independence: it would only affect the prediction for about 35 pixels per 470 

measured plot (i.e., pixels that surround a plot and are closer than 40 m). In total, only predictions 471 

for around 175 pixels out of 2222 (which approximately represents 8% of the total number of pixels 472 

in the MU) would be different from those obtained omitting the spatial correlation. 473 

However, the spatial correlation should be accounted for not only on the prediction stage, 474 

but also when computing uncertainty measures for predictions. The effect of omitting the spatial 475 

correlation on the computation of variances and mean squared errors of predictions would result in 476 

overoptimistic uncertainty measures. Breidenbach et al., (2016) analyzed the effect of such model 477 

misspecification in variance estimators for V using 9 m radius plots and found that the omission of 478 

the spatial correlation resulted in variance estimates that were 15% smaller than those obtained 479 

when accounting for the spatial correlation. Only volume and one plot radius were studied but a 480 
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15% underestimation for the variance is an important quantity and further studies should analyze 481 

the same effect for different plot sizes and for other forest attributes like the ones studied here. 482 

Using our results as a reference for further forest inventories in similar areas, we can say that 483 

commonly used systematic sampling designs are inappropriate for modeling spatial correlation. 484 

Even with plots overlaid on the nodes of an extremely dense grid, where distance between nodes is 485 

100 m (1 plot/ha), estimating the spatial correlation would be very difficult, or even impossible for 486 

all variables. Sample designs where plot locations are random could provide pairs of observations 487 

within the correlation ranges, but still, sampling efforts have to be very high due to the short 488 

correlation ranges observed for residuals of most variables. Based on our experience, the best 489 

alternatives for operational forest inventories aiming at analyzing this factor are the use of large 490 

plots with georeferenced tree positions, like the ones used in this study, or clusters of subplots as 491 

those used in some national inventories (e.g., the U.S. Forest Inventory and Analysis (FIA), (Bechtold 492 

and Patterson 2005)). In the latter case, it may be necessary to incorporate more subplots at a 493 

greater range of distances, as the actual FIA design, for example, only allow to consider two 494 

distances (36.58 m and 63.35 m) between subplots, which seems insufficient to model spatial 495 

correlation patterns. In any case, both designs would allow obtaining clusters of observations, which 496 

is the option recommended by Zimmerman, (2006) to optimize sample designs to account for 497 

residual spatial correlation when both fixed effects and spatial correlation parameters are 498 

unknown. 499 

An advantage of the design employed here is that it provides a relatively operational way of 500 

obtaining data that can be used to directly model spatial correlation of residuals from LiDAR 501 

models. To obtain large plots with georeferenced trees it is necessary to obtain tree coordinates 502 

relative to the plot center as well as absolute coordinates of the plot center. Specially promising for 503 

the first task are photogrammetric point clouds obtained using inexpensive cameras providing 504 

centimetric accuracies for relative coordinates (Gatziolis et al. 2015). Unfortunately, these newer 505 
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technologies or even highly accurate devices such as terrestrial laser scanners or total stations do 506 

not solve the problem of the absolute positioning of the field plot center. 507 

8 Conclusions 508 

In situations where highly correlated auxiliary information is available, the assumption of 509 

uncorrelated residuals that has been implicitly accepted in large number LiDAR assisted forest 510 

inventory applications seems to be reasonable accurate, and misspecification by omitting 511 

accounting for spatial correlations may not have a significant effect on model predictions. However, 512 

the effect of such misspecification on uncertainty measures needs to be studied. 513 

Sampling designs able to provide clusters of plots separated by small distances are needed to 514 

study spatial correlation, as it tends to vanish at distances shorter than the minimum separation 515 

between plots employed in most LiDAR assisted inventories. 516 

Spatial correlation ranges increased with the plot size.  517 

Except for QMD, once the LiDAR information was included, spatial correlation ranges of the 518 

residual were smaller than the spatial correlation ranges for the raw variables. The reduction was 519 

greatest for variables highly correlated with LiDAR. 520 
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Tables 616 

Table 1Number of subplots, maximum distances, and number of pairs of observations at 0.5m and at max_distance used to compute spatial 617 

correlation parameters. 618 

Subplot radius Subplots/25 m plot Total subplots Max distance (m) Pairs at 0.5 m Pairs at max distance 
7.5 284 24140 35 23800 

340 

8 276 23460 34 23120 
8.5 268 22780 33 22440 

9 260 22100 32 21760 
9.5 252 21420 31 21080 
10 244 20740 30 20400 

10.5 236 20060 29 19720 
11 228 19380 28 19040 

11.5 220 18700 27 18360 
12 212 18020 26 17680 

12.5 204 17340 25 17000 
 619 

 620 

 621 

 622 

 623 

 624 
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 625 

 626 

Table 2. Empirical correlations observed for each variable and subplot radius at the máximum distance. .𝑚𝑚𝑚 _𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟𝑟𝑟𝑟𝑟) = 50 − 2𝑟𝑟𝑟𝑟𝑟𝑟 627 

Radius(m) 
Variable 

V Btot Bstem G Hm Ho QMD N 
7.5 0.04 0.07 0.07 0.15 -0.03 0.02 0.12 0.26 

8 -0.02 0.03 0.04 0.03 -0.03 0.02 0.10 0.26 
8.5 0.03 0.10 0.08 0.19 -0.03 0.02 0.11 0.26 

9 0.02 0.11 0.08 0.19 0.00 0.00 0.12 0.26 
9.5 0.02 0.11 0.08 0.19 0.03 0.02 0.13 0.26 
10 0.01 0.11 0.08 0.19 0.06 0.02 0.13 0.25 

10.5 0.00 0.12 0.08 0.20 0.09 0.04 0.12 0.24 
11 0.01 0.12 0.09 0.21 0.10 0.03 0.11 0.25 

11.5 0.02 0.12 0.09 0.06 0.13 0.04 0.10 0.24 
12 0.03 0.05 0.07 0.06 0.14 0.05 0.10 0.24 

12.5 0.06 0.03 0.04 0.07 0.16 0.05 0.10 0.24 
 628 

 629 
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Figure captions 630 

 631 

 632 

 633 

 634 

 635 

 636 

Figure 1. Field plot and grid of pixels. Note the overlap between plot and the four pixels surrounding 637 

it. 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 
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 651 

 652 

Figure 2. Manual correction of field plot positions. Tree locations were corrected by translating and 653 

rotating around the plot center, all trees as a block. For certain trees easy to identify, 654 

coordinates were changed to match the DCHM and the stem location identified on the 655 

ground point cloud after the first correction (rotation and translation). 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 
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 673 

 674 

Figure 3. Example of 25 m radius plot and subplots of radius 7.5 m, 10 m and 12.5 m (for 675 

clarity, other subplots radii are omitted ) moving in an East to West direction. South East to North 676 

West, South to North and South West to North East directions in which field plots were moved in 677 

0.5 m steps are marked with dashed lines. Trees are plotted according to their crown radius 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 
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 695 

 696 

Figure 4. Spatial correlation models for the residuals from 𝑚𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
∗∗  and for the raw 697 

variables. 698 

 699 
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 716 

 717 

Figure 5. Distances (𝜑) for which correlation between pairs of observations decreases to 0.05 718 

and parameters 𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟 . 719 

 720 

 721 

 722 

 723 
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 725 

 726 
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 728 
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 737 

 738 

 739 

 740 

 741 

 742 

Figure 6. Results for the Kendall’s 𝜏 significance test for each variable and subplot radius. Only 743 

non-overlapping plots are considered. Subfigures a,b,c and d are examples included as a graphical 744 

legend for the figure in the upper panel. 745 

 746 
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 758 

 759 

 760 

 761 

Figure A1. Empirical correlation functions observed for Hm and for its residuals in different 762 

directions and for different subplot radii. Fifth column shows the empirical correlation computed 763 

assuming isotropy. 764 
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Appendix  807 

Table A1. Estimated model parameters for each variable of interest and sub-plots radius. 𝛽0 denotes the intercept and 𝛽1, 𝛽2 and 𝛽3 are the 808 

regression parameters associated to 𝑥1, 𝑥2 and 𝑥3 in respectively. The most correlated predictor (𝑚𝑚𝑚) is. 𝑥1. The modeled standard deviation of residual 809 

was equal to 𝜎𝑒𝑚𝑚𝑝𝜂. The parameter 𝜎𝑣 is the standard deviation of the management unit random effects. 𝜑𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟  and  𝜑𝑣𝑣𝑣𝑣,𝑟𝑟𝑟

𝑑𝑑𝑑  represent the effective 810 

spatial correlation range of residuals and raw variables and 𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟  denotes the ratio 

𝜑𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟

𝜑𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟 .. 811 

Variable 
Aux variables 

rad 𝛽0 𝛽1 𝛽2 𝛽3 𝜎𝑒 𝜂 σv 
Residuals Raw Variables 

𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟  

𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 

V(m3/ha) 
x1=Elv_mean 
x2=Elv_P01 
x3=Elv_P40 

7.5 0.30 24.61 0.59 6.50 14.68 0.78 9.01E-02 5.44 0.00 16.32 16.93 0.18 47.34 2.80 
8.0 1.49 28.77 46.33 7.13 33.51 -- 1.19E-01 1.84 0.75 13.65 17.60 0.16 49.55 2.82 
8.5 1.34 24.31 0.18 8.57 12.68 0.82 3.40E-01 6.45 0.00 19.34 18.60 0.18 52.05 2.80 
9.0 1.21 24.66 0.52 8.74 12.05 0.83 3.72E-01 6.58 0.00 19.74 20.29 0.18 56.63 2.79 
9.5 0.99 25.09 0.83 8.34 11.59 0.81 3.57E-01 7.12 0.00 21.35 22.62 0.20 62.81 2.78 
10.0 0.76 25.49 2.00 8.05 11.12 0.81 3.73E-01 1.47 0.71 16.93 24.86 0.21 68.51 2.76 
10.5 0.55 25.84 2.90 7.81 10.71 0.81 4.42E-01 7.22 0.17 20.44 29.90 0.26 80.64 2.70 
11.0 0.82 26.05 4.85 7.68 10.22 0.81 6.08E-01 1.69 0.73 18.69 36.00 0.30 94.77 2.63 
11.5 0.88 26.30 5.85 7.59 9.77 0.81 7.67E-01 1.50 0.73 19.55 43.40 0.34 111.85 2.58 
12.0 1.46 26.51 10.42 7.44 9.26 0.83 8.67E-01 1.67 0.72 20.34 54.81 0.39 137.40 2.51 
12.5 1.94 26.97 17.11 7.20 8.98 0.80 9.18E-01 1.68 0.70 21.13 70.25 0.42 172.44 2.45 

Btot (kg/ha) 
x1=Elv_mean 
x2=CRR 

7.5 -482.86 20498.27 292.61  12217.26 0.78 4.56E-02 6.44 0.00 19.32 17.47 0.40 43.49 2.49 
8.0 -7556.84 16271.57 102258.52  24586.30 -- 1.94E-01 6.51 0.24 17.75 17.98 0.38 45.29 2.52 
8.5 -392.22 20748.02 677.19  11224.13 0.76 9.41E-02 8.19 0.00 24.58 18.89 0.39 47.24 2.50 
9.0 -602.99 20933.98 708.84  10830.21 0.74 1.08E-01 8.62 0.00 25.86 20.51 0.39 51.39 2.51 
9.5 -661.42 21019.10 666.94  10439.33 0.73 1.39E-01 9.51 0.00 28.54 22.99 0.39 57.33 2.49 
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Variable 
Aux variables 

rad 𝛽0 𝛽1 𝛽2 𝛽3 𝜎𝑒 𝜂 σv 
Residuals Raw Variables 

𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟  

𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 
10.0 -789.75 21073.42 1046.41  10064.25 0.73 1.87E-01 10.01 0.00 30.02 25.11 0.40 62.37 2.48 
10.5 -740.51 21074.72 1409.97  9746.68 0.72 2.52E-01 10.72 0.00 32.16 30.72 0.43 74.65 2.43 
11.0 -511.05 21011.64 1929.48  9433.28 0.71 3.53E-01 11.42 0.00 34.27 37.62 0.47 88.88 2.36 
11.5 -246.73 20868.41 3249.89  9154.14 0.70 4.57E-01 12.03 0.00 36.09 45.02 0.49 104.49 2.32 
12.0 -1888.65 18434.29 47567.08  9322.38 0.60 5.95E-01 11.01 0.00 33.03 56.31 0.52 126.78 2.25 
12.5 -2477.69 17912.21 59069.51  9168.77 0.56 7.31E-01 10.56 0.19 29.46 72.00 0.55 158.00 2.19 

Bstem (kg/ha) 
x1=Elv_mean 
x2=CRR 

7.5 -183.97 13322.18 181.63  8124.30 0.79 5.64E-02 6.29 0.00 18.87 17.32 0.36 44.08 2.55 
8.0 -6244.16 11504.19 67144.69  16910.59 -- 1.99E-01 6.58 0.23 18.04 17.67 0.34 45.58 2.58 
8.5 76.33 13492.76 440.80  7419.93 0.77 1.50E-01 7.68 0.00 23.05 18.54 0.35 47.52 2.56 
9.0 -69.16 13671.49 450.32  7144.41 0.76 1.62E-01 8.00 0.00 23.99 20.23 0.35 51.87 2.56 
9.5 -145.27 13779.77 420.10  6868.77 0.75 1.80E-01 8.83 0.00 26.50 22.48 0.35 57.52 2.56 
10.0 -275.36 13869.16 610.48  6590.74 0.75 2.18E-01 9.21 0.00 27.63 24.73 0.37 62.77 2.54 
10.5 -288.86 13926.97 699.01  6370.98 0.74 2.72E-01 9.77 0.00 29.30 30.20 0.41 74.75 2.48 
11.0 -181.39 13943.14 840.66  6142.53 0.74 3.80E-01 10.40 0.00 31.19 37.15 0.45 89.29 2.40 
11.5 -109.95 13952.33 1203.12  5912.13 0.74 4.95E-01 11.07 0.00 33.20 45.23 0.47 106.54 2.36 
12.0 -816.20 13209.10 16580.32  5827.23 0.70 6.16E-01 11.06 0.00 33.17 56.83 0.51 130.08 2.29 
12.5 -1258.10 12903.82 24075.74  5756.19 0.66 7.33E-01 11.21 0.00 33.62 72.04 0.53 160.93 2.23 

QMD (cm) 
x1= Elv_P95 
x2= Rt_Abvmean 
x3=Elv_P99 

7.5 11.36 -0.10 2.46 -0.95 7.60 0.04 5.93E-02 6.80 0.00 20.39 7.53 0.45 18.01 2.39 
8.0 14.45 -0.13 2.70 -1.30 8.03 -0.01 6.47E-02 7.14 0.00 21.41 7.37 0.55 16.24 2.20 
8.5 16.76 -0.14 2.79 -1.48 8.39 -0.05 6.68E-02 7.54 0.00 22.62 7.61 0.54 16.87 2.22 
9.0 17.97 -0.15 2.69 -1.45 8.53 -0.08 6.55E-02 8.10 0.00 24.29 8.08 0.47 19.15 2.37 
9.5 18.56 -0.16 2.58 -1.36 8.38 -0.08 6.68E-02 8.77 0.00 26.32 8.86 0.42 21.69 2.45 
10.0 19.54 -0.17 2.47 -1.30 8.48 -0.11 6.60E-02 9.79 0.00 29.37 9.64 0.47 22.82 2.37 
10.5 20.25 -0.18 2.34 -1.22 8.66 -0.13 6.34E-02 10.59 0.00 31.77 10.36 0.46 24.63 2.38 
11.0 21.04 -0.18 2.28 -1.22 8.79 -0.16 6.24E-02 11.31 0.10 32.69 10.99 0.48 25.64 2.33 
11.5 21.48 -0.18 2.18 -1.16 8.86 -0.18 6.31E-02 11.59 0.10 33.54 11.02 0.46 26.18 2.38 
12.0 21.75 -0.18 2.07 -1.09 8.70 -0.18 6.62E-02 12.26 0.16 34.58 11.66 0.50 26.96 2.31 
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Variable 
Aux variables 

rad 𝛽0 𝛽1 𝛽2 𝛽3 𝜎𝑒 𝜂 σv 
Residuals Raw Variables 

𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟  

𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 
12.5 22.04 -0.19 2.01 -1.05 8.62 -0.20 6.69E-02 13.38 0.26 36.06 12.91 0.60 26.92 2.09 

G (m2/ha) 
x1=Elv_mean 
x2=CRR 

7.5 -0.15 4.84 0.08  2.82 0.74 5.65E-06 1E05 0.87 1E05 18.46 0.31 48.45 2.62 
8.0 -2.03 3.11 32.49  5.16 -- 1.46E-05 6.73 0.34 17.35 18.39 0.15 52.09 2.83 
8.5 -0.15 4.86 0.15  2.55 0.73 1.09E-05 1E05 0.82 1E05 19.36 0.26 52.23 2.70 
9.0 -0.18 4.86 0.17  2.45 0.72 1.31E-05 1E05 0.81 1E05 20.90 0.25 56.49 2.70 
9.5 -0.19 4.85 0.18  2.36 0.71 1.64E-05 1E05 0.80 1E05 22.98 0.26 62.05 2.70 
10.0 -0.22 4.84 0.31  2.29 0.70 2.07E-05 13.90 0.00 41.69 24.95 0.26 67.20 2.69 
10.5 -0.22 4.81 0.51  2.24 0.69 2.55E-05 14.70 0.00 44.11 29.75 0.30 78.58 2.64 
11.0 -0.18 4.78 0.80  2.18 0.67 3.17E-05 15.30 0.00 45.89 35.63 0.34 91.73 2.57 
11.5 -1.03 3.45 24.06  2.59 0.34 3.77E-05 11.64 0.23 31.89 42.95 0.38 108.30 2.52 
12.0 -1.21 3.37 26.54  2.23 0.45 4.93E-05 12.11 0.26 32.56 54.59 0.42 133.41 2.44 
12.5 -1.26 3.35 27.36  2.13 0.44 5.86E-05 12.24 0.28 32.59 70.87 0.46 168.67 2.38 

Hm (m) 
x1=Elv_AAD 
x2=Elv_P75 

7.5 2.78 2.33 -0.26  2.71 -0.04 1.54E-01 2.87 0.41 12.07 29.05 0.60 60.63 2.09 
8.0 3.11 2.27 -0.27  2.64 -0.07 1.54E-01 3.22 0.41 12.97 19.90 0.47 46.91 2.36 
8.5 3.42 2.19 -0.26  2.58 -0.10 1.53E-01 3.37 0.41 13.73 13.90 0.18 38.86 2.80 
9.0 3.69 2.09 -0.25  2.53 -0.13 1.59E-01 4.27 0.30 14.68 13.96 0.12 40.06 2.87 
9.5 3.88 2.03 -0.24  2.48 -0.16 1.63E-01 6.29 0.00 18.86 14.80 0.10 42.84 2.89 
10.0 4.05 1.99 -0.24  2.43 -0.17 1.63E-01 7.20 0.00 21.59 15.57 0.12 44.66 2.87 
10.5 4.13 1.96 -0.24  2.37 -0.19 1.66E-01 8.21 0.00 24.64 16.43 0.13 47.00 2.86 
11.0 4.19 1.94 -0.24  2.31 -0.19 1.76E-01 9.23 0.00 27.70 17.94 0.17 50.48 2.81 
11.5 4.23 1.94 -0.25  2.24 -0.20 1.89E-01 10.04 0.00 30.12 19.48 0.20 53.99 2.77 
12.0 4.29 1.91 -0.24  2.16 -0.20 2.07E-01 10.76 0.00 32.29 23.26 0.33 60.43 2.60 
12.5 4.32 1.90 -0.24  2.08 -0.19 2.25E-01 11.36 0.00 34.07 32.80 0.50 75.39 2.30 

Ho (m) 
x1=Elv_AAD 

7.5 3.41 2.28   2.83 -0.04 1.87E-01 4.56 0.00 13.69 20.46 0.30 53.90 2.63 
8.0 3.95 2.21   2.77 -0.08 2.02E-01 4.80 0.00 14.39 16.54 0.13 47.20 2.85 
8.5 4.40 2.16   2.72 -0.11 2.19E-01 2.38 0.48 13.68 15.14 0.00 45.42 3.00 
9.0 4.34 2.09   2.56 -0.14 2.09E-01 2.77 0.44 14.35 17.73 0.12 50.79 2.86 
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Variable 
Aux variables 

rad 𝛽0 𝛽1 𝛽2 𝛽3 𝜎𝑒 𝜂 σv 
Residuals Raw Variables 

𝛾𝑣𝑣𝑣𝑣,𝑟𝑟𝑟
𝑟𝑟𝑟,𝑟𝑟𝑟  

𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 𝜌𝑟𝑟𝑟 𝜃𝑟𝑟𝑟 𝜑𝑟𝑟𝑟 
9.5 4.68 2.07   2.53 -0.16 2.36E-01 2.24 0.54 15.52 19.25 0.15 54.59 2.84 
10.0 5.00 2.04   2.48 -0.18 2.54E-01 2.34 0.56 16.42 20.66 0.00 61.99 3.00 
10.5 5.27 2.02   2.44 -0.18 2.80E-01 2.59 0.58 17.34 22.22 0.24 60.38 2.72 
11.0 5.16 1.99   2.33 -0.20 2.81E-01 7.26 0.00 21.77 25.92 0.30 68.32 2.64 
11.5 5.38 1.98   2.28 -0.20 3.35E-01 7.80 0.00 23.39 33.52 0.41 82.91 2.47 
12.0 5.25 1.97   2.17 -0.21 3.41E-01 8.44 0.00 25.32 46.48 0.48 108.83 2.34 
12.5 5.45 1.96   2.11 -0.21 3.98E-01 8.98 0.00 26.94 61.90 0.53 138.67 2.24 

N (stems/ha) 
x1=PercR1_Abvmea 
x2=PercRt_Abvmea 
x3=Elv_AAD 

7.5 -1.14 34.10 -26.24 -10.82 7.13 0.94 1.61E+01 29.60 0.58 62.98 24.38 0.00 73.13 3.00 
8.0 -3.84 33.72 -25.44 -12.35 6.11 0.97 2.22E+01 30.73 0.57 66.09 25.82 0.00 77.45 3.00 
8.5 -6.50 33.46 -24.89 -12.92 5.34 1.00 3.18E+01 25.70 0.49 59.60 27.31 0.00 81.93 3.00 
9.0 -9.85 33.29 -24.55 -12.31 4.88 1.02 3.98E+01 38.90 0.58 82.57 29.15 0.00 87.46 3.00 
9.5 -13.13 33.02 -24.03 -12.64 4.70 1.02 4.43E+01 53.15 0.63 105.99 30.84 0.00 92.52 3.00 
10.0 -15.02 32.72 -23.42 -14.01 4.42 1.03 5.25E+01 63.42 0.67 120.40 32.76 0.00 98.28 3.00 
10.5 -15.88 32.51 -22.94 -15.12 4.16 1.04 6.12E+01 145.03 0.73 244.45 34.78 0.00 104.33 3.00 
11.0 -15.54 32.48 -22.70 -16.44 3.90 1.05 7.10E+01 20.50 0.30 54.16 36.82 0.00 110.45 3.00 
11.5 -15.89 32.45 -22.54 -16.96 3.63 1.06 8.17E+01 20.80 0.30 54.97 39.07 0.00 117.21 3.00 
12.0 -16.03 32.33 -22.25 -17.87 3.40 1.08 9.03E+01 20.25 0.24 55.00 41.62 0.00 124.86 3.00 
12.5 -16.40 32.17 -21.89 -18.88 3.17 1.09 1.01E+02 21.25 0.29 56.38 69.89 0.19 194.84 2.79 
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Figure 1. Field plot and grid of pixels. Note the overlap between plot and the four pixels surrounding it.  
Figure 1.  
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Figure 2. Manual correction of field plot positions. Tree locations were corrected by translating and rotating 
around the plot center, all trees as a block. For certain trees easy to identify, coordinates were changed to 

match the DCHM and the stem location identified on the ground point cloud after the first correction 

(rotation and translation).  
Figure 2.  
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Figure 3. Example of 25 m radius plot and subplots of radius 7.5 m, 10 m and 12.5 m (for clarity, other 
subplots radii are omitted ) moving in an East to West direction. South East to North West, South to North 
and South West to North East directions in which field plots were moved in 0.5 m steps are marked with 

dashed lines. Trees are plotted according to their crown radius  
Figure 3.  
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Figure 4. Spatial correlation models for the residuals from m**
varbl,rad and for the raw variables.  

Figure 4.  
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Figure 5. Distances (φ) for which correlation between pairs of observations decreases to 0.05 and 
parameters γ_raw,res

vrbl,rad  
Figure 5.  
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Figure 6. Results for the Kendall’s τ significance test for each variable and subplot radius. Only non-
overlapping plots are considered. Subfigures a,b,c and d are examples included as a graphical legend for the 

figure in the upper panel.  

Figure 6.  
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Figure A1. Empirical correlation functions observed for Hm and for its residuals in different directions and for different subplot radii. Fifth 

column shows the empirical correlation computed assuming isotropy.  

Figure A1.  
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