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1 High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) 

2 Immunosensor for Pesticide Detection in Honey

3 Abstract

4 Quantification of chemical residues in honey is a market requirement to ensure 

5 consumer safety. The most common method used to analyze these compounds 

6 is the LC/MS/MS methodology, which requires highly qualified technicians and 

7 a tedious pre-treatment of the sample. The honey-packaging industry needs 

8 cheaper and faster alternatives for routine control. HFF-QCM (High 

9 Fundamental Frequency Quartz Crystal Microbalance) sensors are becoming a 

10 good option due to their high sensitivity, fast detection and low cost, while 

11 avoiding complex sample pre-treatment. The HFF-QCM technology is based on 

12 piezoelectric sensors with frequencies in the range from several tenths of MHz 

13 to hundreds of MHz. In this work a 100 MHz HFF-QCM sensor was used in a 

14 monoclonal antibody-based competitive immunoassay for specific bio-

15 recognition of carbaryl pesticide as testing contaminant. The work intends to 

16 validate the use of HFF-QCM technology, in comparison with liquid 

17 chromatography-tandem mass spectrometry (LC-MS/MS) technique, for the 

18 detection of contaminants in honey. For this purpose, the validation criteria 

19 required by SANCO 12571/2013 guidance document were considered. The 

20 precision and accuracy (recovery) of both methods were determined by 

21 comparison of 5 replicates at 4 different concentrations (from 0 to 100 μg/kg) 

22 using the same honey matrix. HFF-QCM technology showed good accuracy, 

23 with recovery percentages always between 110 and 120%. As regards to 

24 precision, HFF-QCM coefficients of variation (CV) were around 10% higher than 

25 those recommended by GC SANCO 12571/2013. HFF-QCM limits of detection 
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26 (LOD) and quantification (LOQ) were in the same order of magnitude as those 

27 for LC-MS/MS, which allows the analysis of carbaryl residues in honey under 

28 the established maximum residue limits (MRL), without sample pre-treatment. 

29 These results show that biosensors based on HFF-QCM technology has 

30 become a serious alternative to the traditional analytical techniques for food 

31 quality and safety applications.

32 Keywords

33 High-fundamental-frequency QCM; Piezoelectric immunosensors; Carbaryl; 

34 Pesticides; Honey

35 1.-Introduction 

36 Despite honey is a highly appreciated natural food with numerous properties 

37 and benefits, lately it has gone through many and frequent food alerts and 

38 consequently its health attributes have been devalued. This is due to the 

39 extensive use of antibiotics and pesticides in veterinary and agricultural 

40 practices (Juan-Borrás, Domenech, & Escriche, 2016). In order to protect 

41 human health, these chemical hazards must be controlled to prevent pesticides 

42 reaching the food chain (Barganska, Slebioda, & Namiesnik, 2013). 

43 Quantification of chemical residues in honey imposed by specific regulation (EC 

44 regulation 396/2005) is a market requirement to ensure consumer safety. The 

45 most common analytical  method used to quantify these residues is the liquid 

46 chromatography-tandem mass spectrometry (LC-MS/MS) methodology (Juan-

47 Borrás et al., 2016; Masiá, Suarez-Varela, Llopis-Gonzalez, & Picó, 2016; 

48 Souza Tette, Guidi, De Abreu Glória, & Fernandes, 2016). Although 

49 chromatographic methodology has key advantages such as sensitivity and 
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50 accuracy, its high cost prevents its routine use in local laboratories. LC-MS/MS 

51 requires tedious sample pretreatment, which makes it unsuitable for on-line 

52 analysis. Moreover, it requires highly qualified technicians and high volumes of 

53 toxic solvent (Souza Tette et al., 2016). ELISA (enzyme-linked immunosorbent 

54 assay) is another frequently used method. It is based on antibody-antigen 

55 recognition, which offers high specificity and sensitivity, as well as cost-

56 effectiveness (Abad & Montoya, 1997; González-Martínez et al., 1997; Marco, 

57 Gee, Cheng, Liang, & Hammock, 1993; Nunes, Toscano, & Barceló, 1998; Qian 

58 et al., 2009). However, ELISA often requires long incubation periods and 

59 repeated washing steps that make difficult their automation for on-line sample 

60 analysis (Mauriz, García-Fernández, & Lechuga, 2016). Routine control of 

61 pesticides in honey is carried out by the honey-packaging industry, which needs 

62 simpler, cheaper and faster screening methods than those currently used, while 

63 preserving their high sensitivity.

64 In this regard, piezoelectric immunosensors based on HFF-QCM (High 

65 Fundamental Frequency Quartz Crystal Microbalance) transducers are 

66 becoming a good alternative to on-line screening methods in food control due to 

67 their high sensitivity and specificity, fast real time detection and low cost, while 

68 avoiding complex sample pre-treatment. Disadvantages of the method are its 

69 high sensitivity to external disturbances such as pressure or temperature 

70 (Gaudin, 2017) and its low throughput. The latter is a key remaining challenge 

71 for QCM to be competitive with other immunological methods such as ELISA 

72 (Tatsuma, Watanabe, Oyama, Kitakizaki, & Haba, 1999). HFF-QCM 

73 immunosensor technology is based on the combination of highly specific 

74 antigen-antibody recognition with highly sensitive HFF-QCM transducers 
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75 (March et al., 2015; Montoya et al., 2017).The transducer converts the bio-

76 recognition events, which take place near its surface due to the presence of the 

77 pesticide in the sample, into a measurable electrical signal (electrical phase). 

78 This way, the concentration of the pesticide in the sample can be quantified by 

79 monitoring transducer phase shifts, (March et al., 2015; Montagut et al., 2011). 

80 Usually, a second electrical parameter related to dissipation is monitored to 

81 ensure that other events different from bio-recognition, such as changes in 

82 viscosity or elasticity, do not significantly contribute to the sensor response 

83 (Jiménez et al., 2006). This technology provides highly sensitive devices, able 

84 to improve about one order of magnitude the limits of detection (LOD) for 

85 pesticides such as carbaryl provided by optical transducers based on Surface 

86 Plasmon Resonance (García et al., 2014; March et al., 2015). Moreover, the 

87 carbaryl LOD achieved by HFF-QCM was in the same order of magnitude as 

88 that for ELISA. Therefore, HFF-QCM could be considered a suitable and 

89 reliable technique for the analysis of contaminants in complex matrices such as 

90 honey.

91 The aim of the present work was the application of the HFF-QCM technology, 

92 for the first time, to the detection of pesticides in honey. For this purpose, the N-

93 methylcarbamate pesticide carbaryl was used as a model analyte, and the 

94 validation criteria required by GC SANCO 12571/2013 (European Commission, 

95 2013) were followed. The analytical performance of the proposed method in 

96 terms of LOD, limit of quantification (LOQ), accuracy and precision, was 

97 compared to LC-MS/MS as reference technique. 

98 2. Material and methods
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99 2.1 .Honey samples, reagents and immunoreagents

100 A carbaryl-free honey stock from the Spanish cooperative Melazahar (Valencia, 

101 Spain) was used as a “blank honey” and was fortified with the pesticide when 

102 required.

103 The reagents used for immobilization were: thiol compounds 11-mercapto-1-

104 undecanol 97% (MUOH) and 16-mercaptohexadecanoic acid 90% (MHDA) 

105 from Sigma-Aldrich Chemie (Steinheim, Germany); 1-ethyl-3-(-3-dimethyl-

106 amino-propyl) carbodiimide hydrochloride (EDC) and n-hydroxysuccinimide 

107 (NHS) from Pierce (Rockford, IL), and ethanolamine blocking agent from Sigma 

108 (St Louis, Mo). Immunoreagents [BSA-CNH protein-hapten conjugate used as 

109 assay conjugate and LIB-CNH45 monoclonal antibody (MAb)] were produced 

110 as described (Abad, Primo, & Montoya, 1997). Tween 20 surfactant was 

111 acquired from Fluka-Aldrich Chemie (St Louis, Mo). 

112 Reagents used for LC-MS/MS were: formic acid (99%), acetonitrile and 

113 methanol, all of them from Prolabo (Fontenay-sous-Bois, France). The 

114 composition of Quechers reagents was; Quechers I: 4 g of anhydrous 

115 magnesium sulfate, 1 g of sodium citrate tribasic dihidrate, 0,5 g of sodium 

116 citrate dibasic sesquihidrate, the three from Sigma Aldrich (Steinheim, 

117 Germany) and 1 g of sodium chloride from Prolabo (Fontenay-sous-Bois, 

118 France).  Quechers II: 100 mg of bonded silica (PSA) from Supelco (Bellefonte, 

119 USA) and 600 mg of anhydrous magnesium sulfate. All reagents were MS, 

120 HPLC or analytical grade.



ACCEPTED MANUSCRIPT

6

121 The carbaryl standard, was purchased from Dr. Ehrenstorfer (Augsburg, 

122 Germany). Ultrapure water was generated in-house from a Milli-Q 82 system 

123 (Millipore Corp., Billerica, MA).

124 2.2. HFF-QCM methodology 

125 2.2.1. HFF-QCM immunosensor set-up 

126 Piezoelectric sensors were supplied by AWSensors (Valencia, Spain, 

127 www.awsensors.com). They were square shaped 100 MHz AT-cut, inverted 

128 mesa crystals, with 36 mm2 of total surface and with an etched area thickness 

129 of approximately 17 µm. The gold electrode active surface was 1 mm in 

130 diameter. The resonators were permanently fixed to a support of polyether ether 

131 ketone (PEEK) with a conical hole to expose the active surface of the gold 

132 electrode where interfacial events such as immunoassays will take place.

133 For the experiments, HFF-QCM sensors were placed into a flow-cell, designed 

134 and manufactured by AWSensors, taking into account the mechanical, electrical 

135 and chemical application requirements. 

136 AWS A20 platform (AWSensors) was used for real-time characterization of the 

137 sensor response through the experiments performed in flow conditions. This 

138 platform consists of an electronic characterization system based on the fixed-

139 frequency phase-shift measurement technique previously described (Montagut 

140 et al., 2011). The platform provides two electrical voltages directly related with 

141 the sensor phase and amplitude (uф and uA). The AWS F20 platform 

142 (AWSensors) was used to generate a uniform flow through the sensor cell. This 

143 platform consists of an automated flow-through equipment controlled by syringe 

144 pumps (Hamilton, Bonaduz, GR, Switzerland) and thermostatized at 25 °C. 

http://www.awsensors.com
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145 Sample injection was performed by an injection valve and a 250 μl loop. A 

146 degasser DEGASi® Compact from Biotech (Onsala, Sweden) was connected to 

147 the AWS F20 platform to prevent bubbles generation. The AWSuite software 

148 interface (AWSensors) was used to control both platforms and to register and 

149 process the acquired data. 

150 2.2.2. Sensor functionalization

151 Covalent immobilization of HFF-QCM sensors was performed employing mixed 

152 self-assembled monolayers (mSAM) of alkane thiols as intermediate layers for 

153 surface functionalization. This allowed the covalent attachment of the assay 

154 conjugate onto the gold electrode surface in a more orderly and stable way than 

155 with simple SAMs. With this aim, freshly cleaned crystals were placed in 

156 especially made immobilization cells (AWSensors). These cells were designed 

157 to expose only the active area of the sensors to functionalization reagents. The 

158 immobilization protocol was based on that previously described by March et al. 

159 (2015) with minor modifications: a) 250 μL of 0.25 mM solution of thiol 

160 compounds MUOH and MHDA in ethanol (50:1 molar ratio) was added to the 

161 immobilization cell cavity where the sensor active surface was confined; b) 250 

162 μL ethanolic solution of EDC/NHS was incubated for 3.5 h; and c) 50 μL of 

163 BSA-CNH assay conjugate (20 μg/mL) diluted in 0.1 M sodium phosphate 

164 buffer, pH 7.5 was placed onto the gold electrode active surface for 2.5 h, 

165 instead of 5 h.

166 2.2.3. Immunoassay format and protocol

167 The working conditions for carbaryl immunoassays were defined in the previous 

168 work by March et al. (2015). An indirect competitive immunoassay in the 
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169 conjugate-coated format was employed. For the inhibition assays, a fixed 

170 concentration of 2 µg/mL of LIB-CNH45 MAb was mixed (1:1 v/v) with the 

171 carbaryl standard solution or with the spiked honey samples. The mixture was 

172 pre-incubated for 1 h at 25 °C and 250 µL was pumped over the previously 

173 functionalized immunosensor surface. As the binding between free antibody 

174 and the immobilized conjugate took place, the variations in phase and 

175 amplitude were monitored in real time. The regeneration of the reactive surface 

176 was carried out with 0.1 M HCl to break the antibody-hapten conjugate binding.

177 Standard curve. Carbaryl calibration curves were performed in buffer solution 

178 (PBS: 10 mM phosphate-buffered saline solution, 0.9% NaCl, pH 7.4.) and in 

179 honey diluted with PBS (1:200). From a 1 mM carbaryl stock solution in N-N’-

180 dimetylformamide, carbaryl standards in the 2·103 to 2·10-4 µg/mL range were 

181 prepared by serial dilutions in PBS and in honey diluted with PBS. Standards 

182 were run four times, and calibration curves were subsequently obtained by 

183 plotting the phase shift vs analyte concentration. The experimental points were 

184 fitted to the four-parameters logistic equation: 

185 (1)𝑦 = 𝐷 + (𝐴 ‒ 𝐷) (1 + (𝑥 𝐶 )𝐵)

186 Where: x is the analyte concentration; y is the HFF-QCM signal (phase variation 

187 at the fixed fundamental frequency ∆uɸ). A is the asymptotic maximum 

188 (maximum signal in the absence of analyte); B is the slope of the sigmoidal 

189 curve at the inflection point; C is the analyte concentration giving 50% inhibition 

190 (I50 value) and D is the asymptotic minimum (background signal).
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191 Standard curves were normalized by expressing the phase shift provided by 

192 each standard concentration as the percentage of the maximum response 

193 (maximum signal, Smax=100%) in the absence of analyte.

194 Immunoassay protocol. A 20 µL/min continuous flow rate of working buffer 

195 (PBST: PBS containing 0.005% Tween 20) was pumped through the sensor. 

196 When a nearly constant baseline was reached (signal variation less than 1 

197 mV/min), the sample (250 μL of the pre-incubated antigen-antibody mixture) 

198 was injected. The interaction process was allowed to proceed for 20 min. 

199 Sensor regeneration was achieved by flowing 0.1 M HCL (4 min) followed by 

200 PBST (5 min), at 250 µL/min in both cases. Finally, the flow was returned to 20 

201 μL/min in order to recover the baseline.

202 2.2.4. Honey sample preparation

203 The only requirement to make honey suitable for HFF-QCM immunosensor 

204 analysis was a 1/200 dilution in PBS. No other sample pre-treatment was 

205 needed.

206 2.3. Chromatographic methodology

207 2.3.1. Analytical standards

208 From a 1000 mg/L stock solution of carbaryl in methanol, stored at -20°C, a 1 

209 mg/L working solution was prepared and stored at 4 °C. The working solution 

210 was used to obtain the carbaryl standards (from 0.5 to 100 μg/L in methanol) for 

211 the calibration curve, and also to prepare the spiked honey samples at 20, 50 

212 and 100 µg/kg. 

213 2.3.2. LC-MS/MS procedure
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214 Analytical determinations by the LC–MS/MS reference method were performed 

215 with an Agilent 1200 LC system coupled to a triple quadrupole mass 

216 spectrometer (Agilent 6410 triple Quad LC/MS) with electrospray ionization 

217 source. The column used was Atlantis T3-C18 (100 mm x 2.1 mm, 3 µm particle 

218 size), from Waters (Mildford, Massachusetts), kept at 30°C. Chromatographic 

219 separation was carried out with a mobile phase composed by 0.5% formic acid 

220 (phase A) and methanol (phase B), with a flow rate of 0.3 mL/min. The elution 

221 program used was as follows: 5% B at 0 min and held for 0.3 min, increased to 

222 20% B at 0.5 min, reaching 100% B at 6 min, where it was held during 2 min, 

223 then the percentage of B was decreased to 5% over 8.1 min where it was held 

224 for 5 min (13 min total run time). The injection volume was 5 µL. The operating 

225 parameters for the mass spectrometer were as follows: capillary voltage 4 kV; 

226 source temperature 350°C; nebulization gas (nitrogen) at a flow rate of 12 L/min 

227 and collision gas (nitrogen) at a 40 psi.

228 The monitored transitions (MRM) were 202>145.1 (qualitative information) and 

229 202>117.1 (quantitative) with a collision energy of 5 and 10 respectively, setting 

230 the fragmentor to 80. The confirmation of the compounds in the samples was 

231 made taking into account: a) the analyte retention time, b) the presence of both 

232 transitions, and c) the ratio of both transitions.

233 2.3.3. Honey sample preparation

234 To extract the pesticide and to remove impurities from honey samples, a 

235 dispersive solid phase extraction technique following the QuEchERS procedure 

236 was performed. The protocol applied was: To 5 g of honey placed in a conical 

237 centrifuge tube, 10 mL of Milli-Q water was added and it was shaken manually 

238 until homogenization. Then, 10 mL of 0.1% formic acid in acetonitrile was added 
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239 and shaken for 5 min. Subsequently, Quechers I was added and the mixture 

240 was shaken manually for 1 min and in a vortex for a further 1 min. The extract 

241 was centrifuged at 5000 rpm for 5 min. The obtained supernatant (4 mL) was 

242 transferred to a 15 mL centrifuge tube containing Quechers II. This mixture was 

243 vortexed for 30 s and centrifuged again at 5000 rpm for 5 min. An aliquot of the 

244 supernatant was collected for subsequent LC-MS/MS analysis.

245 2.4. Method comparison

246 The comparison between HFF-QCM and LC-MS/MS methods was performed in 

247 accordance with SANCO 12571/2013 guidance document. The analytical 

248 performance of the methods was assessed in terms of precision (reproducibility 

249 and repeatability), accuracy (% recovery), limit of detection (LOD), limit of 

250 quantification (LOQ) and working range. The maximum residue limit (MRL) 

251 established by the European Food Safety Authority (EFSA) for carbaryl in 

252 honey is 50 μg/kg (Commission Regulation 1096/2014). 

253 In analytical methods for compounds with established LMRs, it is recommended 

254 that the LOQ should be as low as (or even lower than) the MRL, i.e., the MRL 

255 should be included in the operative working range. For this reason, 20 µg/kg 

256 was included as a fortification level.

257 3. Results and discussion

258 3.1. Standard calibration curves: Immunoassay sensitivity and matrix effect.

259 An immunoassay cycle performed in the HFF-QCM immunosensor is shown in 

260 Fig. 1. After baseline stabilization sample was injected and changes in both 

261 phase (uΦ) and amplitude (uA) were produced due to the specific binding of the 

262 MAb to the assay conjugate immobilized on the sensor surface. As shown, the 
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263 phase voltage shift was evident and significant enough, whereas the amplitude 

264 voltage shift was negligible. Therefore, the phase voltage shift (ΔuΦ) was 

265 selected as the suitable immunosensor signal to quantify the antibody-antigen 

266 interaction. After sensor regeneration, the baseline returned to its initial level.

267 Determination of pesticide residues in honey is a challenge, due not only to their 

268 very low concentrations, but also to the interferences of the complex matrix on 

269 the analysis. (Souza Tette, Guidi, De Abreu Glória, & Fernandes, 2016). To 

270 assess the possible interference of the honey composition on HFF-QCM 

271 measurements and to minimize matrix effects (Caldow et al., 2005), the 

272 calibration curve was performed both in PBS and in PBS-diluted honey (1/200 

273 p/V).

274 Both calibration curves were performed with carbaryl standards ranging 

275 between 2·10-4 and 2·103 μg/L. The results are shown in Fig. 2. Signals (phase 

276 voltage shifts) were normalized by expressing them as 100 x ∆uΦ/∆uΦ0, where 

277 ∆uΦ is the phase change produced by a given carbaryl concentration and ∆uΦ0 

278 is the phase change obtained at zero analyte concentration (maximum signal). 

279 The experimental values were fitted to the mathematical logistic function 

280 according to Eq. (1). As shown in Fig. 2, standard curves had a typical 

281 decreasing sigmoidal shape, as expected for competitive immunoassays 

282 (Osterloh et al., 1989). Since a competition was established between the 

283 immobilized assay conjugate and the pesticide in the sample for binding to the 

284 limited free MAb, lower analyte concentrations produced the higher assay 

285 signals, whereas higher analyte concentrations provided the smaller ones. In 

286 both sigmoidal regressions, the D parameter (lower asymptote) was nearly 

287 zero, thus indicating a total inhibition at high carbaryl concentrations. 
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288 Furthermore, no statistical differences were found for parameters A, B and C in 

289 both curves according to the t-test (p<0.05).

290 The analytical parameters obtained for the standard curves in PBS and in 

291 diluted honey are shown in Table 1. The I50 value is the analyte concentration 

292 that produces the signal at the midpoint between the two asymptotes, and it is 

293 considered as an estimate of assay sensitivity. LOD and LOQ are concepts 

294 used to quantify the smallest concentration of the analyte that can be reliably 

295 detected and measured, respectively, by an analytical method. In HFF-QCM 

296 immunosensors, LOD and LOQ are defined as the pesticide concentrations that 

297 produce 10% and 20% of maximum signal inhibition, respectively. Finally, the 

298 working range is the linear portion of the calibration curve and is defined by the 

299 analyte concentrations providing 20% and 80% inhibition of the maximum 

300 signal.

301 As shown, the I50 values were quite similar in PBS and in diluted honey (the 

302 calculated I50 value in 1/200-diluted honey was in fact lower than that in PBS). 

303 Therefore, the dilution process applied to honey seemed to be effective to 

304 minimize matrix effects without reducing the assay sensitivity. 

305 As for I50 value, LOD and LOQ seemed to improve (lower values) in diluted 

306 honey as compared to those obtained in PBS. Nevertheless, the differences 

307 observed were not statistically significant, so they were probably due to the 

308 assay variability. Likewise, the assay working range was very similar in both 

309 conditions, although a tendency to expand was found in diluted honey. This 

310 would probably facilitate the analysis of real honey samples. 

311 In summary, the developed HFF-QCM immunosensor for carbaryl in 1/200 

312 diluted honey showed a LOD of 0.035 µg/L and a LOQ of 0.083 µg/L in the 
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313 assay, corresponding to 7 and 17 µg/L, respectively, in undiluted honey. The 

314 LOD and LOQ of the LC-MS/MS method used as reference, calculated 

315 according to reference (Litte, 2015), were in the same order of magnitude (2 

316 and 10 µg/L, respectively). Therefore, both methods were comparable in terms 

317 of detectability.

318 3.2. Analysis of spiked honey samples: comparison with the LC-MS/MS method

319 A preliminary validation of the HFF-QCM immunosensor method was conducted 

320 in accordance with SANCO 12571/2013 guidelines. Five independent replicates 

321 of commercial honey were spiked at three different carbaryl concentrations, and 

322 the pesticide was subsequently analyzed with the HFF-QCM immunosensor. 

323 The honey stock used as blank matrix for fortification had a density of 1.4 g/mL. 

324 Therefore, potential honey matrix effects or interferences could be due to the 

325 high sample density, together with its high viscosity and sugar content.

326 Accuracy was evaluated as the mean recovery percentage and precision was 

327 estimated from the coefficient of variation at each pesticide concentration. 

328 Fig. 3 shows a real screen record of the phase signals obtained for the 

329 consecutive injections of five honey samples spiked with 50 μg/kg of carbaryl. 

330 As a reference, an initial injection of a non-spiked honey sample was run to 

331 show the maximum assay signal. The injection of honey samples and the 

332 regeneration reagent are indicated by continuous and dashed arrows, 

333 respectively. The measurement repetitiveness and the baseline stability can be 

334 observed. 

335 The reference method for carbaryl determination specified by the Food and 

336 Agriculture Organization of the United Nations (FAO) and by the World Health 

337 Organization (WHO) is reverse phase high performance liquid chromatography 
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338 using UV detection and external standardization (FAO specifications and 

339 evaluations for carbaryl, 2006). Nevertheless, in this work LC-MS/MS was used 

340 for comparison with HFF-QCM because of its higher sensitivity (Debayle, 

341 Dessalces, & Grenier-Loustalot, 2008).

342 In Table 2 the results obtained with HFF-QCM and LC-MS/MS methods for 

343 carbaryl-spiked honey samples are compared in terms of accuracy and 

344 precision. Honey samples were fortified in the 20-100 μg/kg range and blank 

345 honey (zero carbaryl level) was included to account for false positives. As 

346 shown, HFF-QCM technology showed good accuracy, with recovery 

347 percentages ranging from 110 to 120%. No false positives were detected in 

348 non-spiked honey,

349 To compare the accuracy of the HFF-QCM immunosensor and the LC-MS/MS 

350 method, their respective results when applied to honey samples spiked with the 

351 mentioned carbaryl concentrations were correlated with the fortification levels 

352 (Fig. 4). Both methods provided good linear regressions, with correlation 

353 coefficients of 0.999 and 0.992 for HFF-QCM and LC-MS/MS, respectively. Y 

354 intercept was near zero for both models, which is in agreement with the 

355 absence of false positives. The linear regression slopes were 1.14 for HFF-

356 QCM and 1.02 for LC-MS/MS, without any statistically significant difference 

357 according to the t-test. Therefore, we could assume that both techniques are 

358 statistically equivalent.

359 As regards to precision, at any of the assayed fortification levels HFF-QCM 

360 technology gave coefficients of variation (CV) around 10% higher than those 

361 established by SANCO. To this respect, dispersion has been pointed out in the 

362 literature (Gaudin, 2017) as a drawback of traditional QCM sensors working at 
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363 low frequencies (5-10 MHz). Piezoelectric transducers are very sensitive to 

364 external disturbances such as thermal variations or pressure changes 

365 (evidenced as bubbles). In our experiments, the temperature was continuously 

366 controlled and kept at 25ºC by AWS A20 and F20 platforms. Moreover, an 

367 external degasser was incorporated to the set-up to prevent bubbles on the 

368 sensor surface. As previously reported (Johannsmann, 2015), measurements 

369 made on the fundamental mode of the sensor have greater dispersion than 

370 those made at its third overtone, being energy trapping and electric fringe fields 

371 putative sources of this behavior. This possibility will be checked in future work 

372 by using 50 MHz fundamental frequency sensors working at its third harmonic.

373 Other possible sources of dispersion could be the variability in the manual 

374 process of sensor functionalization when measurements are made with different 

375 sensors, or differences in surface regeneration when measurements are 

376 performed with the same sensor.

377 Conclusions

378 To our knowledge, this is the first report dealing with pesticide detection in 

379 honey using the HFF-QCM technology. The developed HFF-QCM 

380 immunosensor is able to determine carbaryl in honey with a limit of 

381 quantification 17 µg/L without any sample pre-treatment. Only a 1/200 sample 

382 dilution is required to minimize matrix effects. Therefore, this method allows the 

383 analysis of carbaryl residues in honey down to the levels established by the 

384 current European legislation (MRL= 50 µg/kg, (Commission Regulation 

385 1096/2014).

386 A preliminary validation of the immunosensor method was conducted in 

387 accordance with SANCO 12571/2013 guidelines. The HFF-QCM immunosensor 
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388 has proved to be accurate enough, with recovery percentages between 110 and 

389 120% and the absence of false positives. As regards to precision, coefficients of 

390 variation ranged from 25 to 33%, not reaching the high standards 

391 recommended by SANCO 12571/2013 criteria. Further work with the aim of 

392 improving the method precision is going on, including the use of 50 MHz 

393 fundamental frequency sensors working at its third harmonic.

394 Immunosensors based on HFF-QCM technology could be a reliable alternative 

395 to current techniques for pesticide quantification in honey, since they are able to 

396 reach the limits of detection and quantification offered by traditional 

397 chromatographic methods such as LC-MS/MS, without the need of sample pre-

398 treatment.
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507 Figure captions

508 Figure 1.HFF-QCM Immunoassay cycle.

509 Figure 2. HFF-QCM carbaryl calibration curves in PBS and in honey diluted 

510 1/200 in PBS. Each point is the average of 4 determinations. Vertical bars 

511 represent standard deviation.

512 Figure 3. HFF-QCM immunosensor response of five independent honey 

513 samples spiked with carbaryl at 50 μg/kg. Continuous and dashed arrows mark 

514 the injection of honey samples and regeneration steps, respectively. The upper 

515 panel shows the temperature during the assays.

516 Figure 4. Comparison of HFF-QCM and LC-MS/MS in the analysis of fortified 

517 honey samples.
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Table 1. Analytical parameters obtained for the HFF-QCM standard curves of carbaryl 
in PBS and in 1/200 diluted honey.

Analytical parameter 
(µg/L) PBS 1/200 diluted honey

I50 0.465 0.360

LOD 0.118 0.035

LOQ 0.195 0.083

Working range 0.195 - 1.108 0.083 - 1.572
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Table 2. Analysis of carbaryl spiked honey samples. Comparison of HFF-QCM 
technology with LC-MS/MS.

Analysis of carbaryl in spiked honey samples*

Fortified 
level 

(μg/kg)
Detected 
(μg/kg)

Recovery 
(%) CV (%) Detected 

(μg/kg)
Recovery 

(%) CV (%)

 HFF-QCM1 LC-MS/MS2

0 <LOD No false positives <LOD

20 22 ± 7 110 32 21 ± 4 106 20

50 57 ± 19 115 33 43 ± 10 85 23

100 117 ± 29 117 25 101 ± 11 101 11

*Average of 5 independent replicates. All of the replicates for HFF-QCM and LC-
MS/MS analysis came from the same original honey sample.
1 Sample dilution factor 1/200
2Sample dilution factor 1/2


