
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

https://doi.org/10.1177/0954405417711734

http://hdl.handle.net/10251/104265

SAGE Publications

Morillo-Torres, D.; Barber, F.; Salido, MA. (2017). A new model and metaheuristic approach
for the energy-based resource-constrained scheduling problem. Proceedings of the
Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 1(1):1-13.
doi:10.1177/0954405417711734



A new model and

metaheuristic

approach for the

energy-based

resource-constrained

scheduling problem

Journal Title

XX(X):2–28

c©The Author(s) 2015

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

Daniel Morillo Torres, Federico Barber and Miguel A. Salido

Abstract

This paper focuses on obtaining sustainable and energy-efficient solutions for limited

resource programming problems. To this end, a model for integrating makespan

and energy consumption objectives in multi-mode resource-constrained project

scheduling problems (MRCPSP-ENERGY) is proposed. In addition, a metaheuristic

approach for the efficient resolution of these problems is developed. In order to

assess the appropriateness of theses proposals, the well-known Project Scheduling

Problem Library (PSPLIB) is extended (called PSPLIB-ENERGY) to include energy

consumption to each RCPSP (Resource-Constrained Project Scheduling Problem)

instance, through a realistic mathematical model. This extension provides an

alternative to the current trend of numerous researches about optimization and

the manufacturing field, which require the inclusion of components to reduce the

environmental impact in the decision-making process. PSPLIB-ENERGY is available

at http://gps.webs.upv.es/psplib-energy/.
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Introduction

One of the main challenges in industry is to optimally carry out the process

of decision making. The current trend in various academic areas is oriented

towards environmental awareness [1, 2, 3]. More precisely, in the last decade,

eco-efficiency solutions have taken a relevant position in firms due to pressures

from government regulators, community activists, global competition, and non-

governmental organizations [4]. As a consequence, the need for measuring the

impact of sustainable solutions has increased since then [5].

In the artificial intelligence field, as well as in operations research, there is a

subset of characteristic problems called scheduling problems, whose objective is

to properly allocate available resources to the activities in order to optimize an

objective function that is usually related to time (e.g., the total execution time

of the project (makespan), tardiness, maximum lateness, etc.) [6]. Resources

can be machines, materials, people, money, time, etc. These problems have

great importance in industry due to their applications in different fields such as

production, distribution, transportation, project management, and supply-chain

optimization in general. Currently, the research effort is focused on analyzing

and developing new methodologies for the optimal allocation of resources to

minimize both makespan and energy consumption [7, 8].

In general, scheduling problems are combinatorial optimization problems.

Therefore, relatively small instances are highly complex, with most of them

being categorized as NP-hard, such as the job shop scheduling problem (JSP), the

flow shop scheduling problem (FSP), and the multi-mode resource-constrained

project scheduling problem (MRCPSP). Therefore, due to inherent complexity,

it is not possible to find an optimal solution in a reasonable period of time.

However, these problems show great applicability to real world situations. Hence,

the research community is constantly developing and improving the techniques
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Morillo D., et al. 3

and methods to solve these problems. Similarly, benchmark libraries are needed

to compare and evaluate these algorithms in an empirical way.

The MRCPSP is considered to be one of the most important scheduling

problems [9]. All benchmarks and most algorithms than have been developed to

solve this problem have focused on minimizing makespan. However, there are

few studies about optimizing energy consumption in MRCPSP.

There are two main contributions of this paper. The first one is to propose

a specific resource-constrained scheduling problem that takes into account both

energy consumption and makespan in order to optimize the project in an

efficient way. The second one is to provide a test instance library to compare

different algorithms to solve the proposed problem.

Thus, this work is focused on analyzing the MRCPSP in order to propose

MRCPSP-ENERGY, which is a single-objective problem where the activities

have different energy consumptions to be executed at different rates. The

objective is to minimize both makespan and energy consumption. Furthermore,

an extension of the most commonly used library to solve the MRCPSP, the

PSPLIB library (Project Scheduling Problem Library) [10], is proposed. To

this end, a mathematical model to relate the energy consumption and the

processing time of activities is proposed. Thereby, the instances of the PSPLIB

library are extended by associating an energy consumption to each activity of

the RCPSP. This new library, called PSPLIB-ENERGY, is available at http:

//gps.webs.upv.es/psplib-energy/. Finally, a genetic algorithm for solving

these instances is proposed to compare the performance of new algorithms. It is

based on the heuristic methodologies that produce the best results for solving

the MRCPSP.

Literature review

There are different strategies for energy optimization in manufacturing

processes. These strategies can be classified into two levels: the machine tool

level and manufacturing system level [11]. The first level refers to improving

the process taking into account the machine design that performs the operation

from a technological point of view [12, 13, 14]. For a comprehensive review

about this first level, we refer the reader to [15]. The second level emphasizes

energy optimization through the management and allocation of the activities

and resources with the objective of minimizing energy requirements [16, 1, 17].

Energy optimization at this level is of great importance and provides several
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improvement opportunities [18, 19]. This work focuses on this second level to

minimize makespan and energy consumption as a single-objective function.

For the manufacturing system level, there are several studies that deal with

scheduling optimization taking into account energy consumption, both from

a general point of view, by analyzing general scheduling problems as well as

from a specific perspective by applying them to specific manufacturing areas.

Among these research studies, one of the most important ones was proposed by

Mouzon et al. [1]. They developed a multi-objective model for minimizing both

the energy consumption and makespan of a single machine scheduling problem.

They found that it is possible to save up to 80% of energy when non-bottleneck

machines were turned off until needed during the period of next job arrival.

Fang et al. [20] developed a new approach to schedule a flow shop problem in

manufacturing for power consumption and carbon footprint reduction. Bruzzone

et al. [16] provided an energy-aware mathematical model for the flexible flow

shop problem to modify a given schedule in order to account for peaks of power.

Artigues et al. [21] analyzed an industrial case-study, which led to a generic

problem called the Energy Scheduling Problem. It consists of scheduling a set

of activities which have a required total energy and have to be processed using

a constrained energy resource. The energy amount used by an activity can be

different for each period of time. Activities have a release date and deadline.

Furthermore, they have a minimum and maximum energy consumption. The

goal is to find the start time of each activity. Luo et al. [22] proposed a new ant

colony optimization for solving a hybrid flow shop scheduling problem taking

into account machine electricity consumption cost.

More recently, Okubo et al. [23] proposed a model that can deal with energy

consumption during the setup operation on the RCPSP by using partially

renewable resources. Zhang et al. [24] proposed a mathematical formulation

for minimizing the energy consumption of a machining system by integrating

planning and scheduling. The solution method was a genetic algorithm. That

model considers a set of jobs with few alternative process plans and a set of

machines. Each job is loaded and processed according to the predetermined

sequence of operations in the process plan. Thus, the objective is to find the

optimal process plan and machine allocation for each job. Li et al. [25] proposed

a multi-objective mathematical model for the permutation flow line scheduling

problem in order to simultaneously minimize the total flow-time and the energy

consumption. Since this problem has a NP-hard complexity, they adapted the

non-dominated sorting genetic algorithm II to solve it.
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However, there are few studies that consider energy efficiency or provide a

common benchmark where these methods can be evaluated. Specifically, the

MRCPSP under energy efficiency optimization has not been studied in great

depth, and there is not a common benchmark that includes both makespan

and energy consumption. Therefore, the library proposed in this paper is a

clear contribution to the evaluation of energy efficiency-based solutions to the

MRCPSP.

On the other hand, different metaheuristic strategies to solve the MRCPSP

have been proposed. These are mainly based on genetic algorithms, scatter

search, simulated annealing, particle swarm optimization, among others.

According to computational experiments from academic literature, the

population-based heuristics are those that achieve the best results. For an

extensive review of the most relevant methodologies, we refer the reader to

[26, 27].

Description of the MRCPSP

Formally, the standard MRCPSP can be defined as follows [28]. A project

consists of a set I of n activities I = {1, ..., i, ..., n}, a set B of Kρ shared

renewable resources B = {1, ..., b, ...Kρ}, and there is a maximum amount Rρb
of every renewable resource. There exists a set K of Kν shared non-renewable

resources K = {1, ..., k, ...Kν}, and there is a maximum amount Rνk of every

non-renewable resource. A list of all the symbols used in this paper is included

in the Appendix.

Each activity i ∈ I has m = {1, ...,M} execution modes and a non-preemptive

execution time dim, which requires a total rρimb renewable resource of each type

b and a total rνimk non-renewable resource of each type k for its realization.

Generally activities 1 and n are dummy activities and their duration and

resource consumption are zero, representing the start and end of the project.

Activities are subject to precedence constraints, which indicate that each

activity cannot be started before all its predecessor activities are completed.

The objective is to minimize the total duration of the project.

The MRCPSP is a well-known NP-hard problem [29]. It can be modeled as a

mixed integer linear programming formulation which is detailed in Expressions

(1) to (6). The decision variables ξimt take the value one when the activity i is

executed in mode m and finishes at time t, and zero otherwise. It is noteworthy

that this formulation needs time intervals: an early start time and a late start
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time [esi, lsi] for each activity by computing an upper bound and applying the

method of forward pass and backward pass with the lowest execution time of

activities.

Expression (1) shows the optimization function where the objective is to

minimize the finish time of the last activity (n). Expression (2) ensures that each

activity starts only once. Expression (3) represents the precedence constraints,

and the set Pi contains the immediate predecessor activities of activity i.

Expressions (4) and (5) ensure that the capacity of each type of resource is

not exceeded.

Min :

lsn∑
t=esn

t ∗ ξn1t (1)

Subject to:

M∑
m=1

lsi∑
t=esi

ξimt = 1 ∀ i ∈ I (2)

M∑
m=1

lsj∑
t=esj

t ∗ ξjmt ≤
M∑
m=1

lsi∑
t=esi

(t− dim) ∗ ξimt ∀ j ∈ Pi, ∀i ∈ I (3)

n∑
i=0

M∑
m=1

rρimb ∗
min{t−1,lsi}∑

s=max{t−dim,esi}

ξims ≤ Rρb ∀b ∈ B; ∀i ∈ I (4)

n∑
i=0

M∑
m=1

rνimk ∗
lsi∑
t=esi

ξimt ≤ Rνk ∀k ∈ K (5)

ξimt ∈ {0, 1} (6)

Kolisch and Sprecher [10] proposed a generator algorithm of instances for

the uni-modal and multi-modal RCPSP (ProGen, http://www.om-db.wi.tum.

de/psplib/main.html). The set of generated instances were grouped into the

PSPLIB library. The purpose of this library is to provide a common set of test

cases to evaluate the efficiency of newly developed methods to solve the RCPSP

and the MRCPSP, and it has become a reference point for researchers of these

problems. The test cases for the RCPSP consist of four sets (j30, j60, j90,

and j120), each of which has 480 instances (except the set j120 which has 600

instances), the test cases for the MRCPSP consist of seven sets (j10, j12, j14,
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j16, j18, j20, and j30), each of which has 640 instances, with some of them

being infeasible. For instances where the optimal solution is known, the average

deviation regarding the optimal can be calculated. For those sets of problems

whose optimal solution is unknown, the error is calculated based on the length

of the critical path with the lowest execution time of activities, which is called

the deviation to LB0.

MRCPSP-ENERGY: a MRCPSP extension for energy

efficiency

This paper focuses on the MRCPSP considering only renewable resources

to propose MRCPSP-ENERGY, which incorporates energy consumption that

allows the execution time of jobs to be changed. The analysis between energy

consumption and makespan in scheduling is outlined below.

It assumes that energy is a resource consumed by activities. As usually

occurs in the machinery of materials, the energy consumption of activities is

independent of when the activities are scheduled [30]. Generally, the greater

the energy consumption of an activity, the shorter its processing time. Typical

examples are lathes, milling machines, rolling stock, elevators, etc. [13, 20].

Hence, here a similar energy behavior for MRCPSP activities is assumed.

Finally, the total energy consumption of a project (CETPw) can be calculated

by Expression (7), where eim is the energy consumption for activity i executed

in mode m.

CETPw =

n∑
i=1

eim, m ∈ {1, 2, ..,M} (7)

Project efficiency: optimization criterion in MRCPSP-ENERGY

In this section, an efficiency-based criterion is proposed. MRCPSP-ENERGY

requires a bi-objective criterion that simultaneously minimizes both makespan

(as the usual MRCPSP criterion) and energy consumption. In literature, when

managing two objectives, a convex combination is normally used to generate

the Pareto front; however, it is not appropriate for making a fair performance

comparison between them since the weights of both objectives may vary from

one method to another. Grouping them into a single objective that is related

to the concept of efficiency allows us to obtain a better solution for the whole

system without influencing the significance of the objectives.
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Generally, the concept of efficiency can be defined as the ratio between

the energy supplied to a process and the transformed energy that it delivers.

For example, in manufacturing machine operations (e.g., like milling, turning,

drilling, etc.), the theoretical efficiency of an electric motor is the conversion

of electrical energy into mechanical energy. This is represented by Expression

(8), where η is the efficiency, Pmechanical represents the energy output from the

motor shaft and, Pelectrical is the energy absorbed [31].

η =
Pmechanical
Pelectrical

=
Pmechanical

Pmechanical +
∑
losses

(8)

Expression (8) is a theoretical efficiency, which cannot reach a value 1 because,

during the transformation of electricity to mechanical energy, there are always

losses, mostly in the form of heat. These losses tend to increase as the electrical

energy consumption increases [32]. Therefore, efficiency is characterized by an

initial increasing curve until it reaches a horizontal asymptote (see Figure 1-a).

Different efficiency curves of different processes or machines maintain the same

trend, varying according to the technical specifications of each machine. The

theoretical behavior of efficiency is different from the real one since the real

behavior of efficiency decreases after reaching a maximum. For instance, Figure

1-b shows the efficiency performance of a real 4kw electric motor [31].

Figure 1. a) Theoretical efficiency of an engine [33]. b) Real efficiency of a motor [31].

When energy is supplied to a motor, the output is mechanical energy.

Meanwhile, the output for a project in which activities are carried out by

machines or people should be a duration that is affected by the amount of

energy. The more energy, the shorter the duration until the highest reduction

is obtained, and then more input might cause the machines to work slower due

to overload, as occurs in Figure (1.b). Expression (9) describes this behavior for

Prepared using sagej.cls
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the duration di and the energy consumption ei of an activity, but the range is

not necessarily between 0 and 1.

η
′

i(ei) =
1/di(ei)

ei
(9)

The previous concept can be extended to an entire project, Expression (10).

Nonetheless, as this relation is outside of the interval [0− 1], it cannot yet be

considered an efficiency value. If the optimal values of makespan and energy

consumption were known, Expression (10) could be standardized, but these

values are unknown. Therefore, they are approximated by two lower bounds:

eminw and LB0minw, respectively. The first is computed as (
∑n
i=1 ei1) where

ei1 is the minimum energy consumption of activity i. The second is estimated

by using the critical path method, considering the minimum processing time

of each activity i within its m modes. In this way, an upper bound of the

project performance CSRw can be calculated to standardize Expression (10).

Expression (11) shows how to calculate CSRw. It can be interpreted as the ideal

efficiency of a project.

η∗w =
1/makespanw
CETPw

(10)

Expression (12) standardizes Expression (10) by dividing it by Expression

(11). It is defined as the relative efficiency of the project w with respect to an

ideal efficiency value.

CSRw =
1/LB0minw
eminw

(11)

ηw(makespanw, CETPw) =
1

CSRw
∗ 1/makespanw

CETPw
(12)

As pointed out above, the energy consumption of a project is the sum of

the energy consumption of its activities. However, it is important to remark

that project efficiency is not equal to the sum of the efficiency of its activities.

The reason is that the makespan of a project (which represents the inverse of

Pmechanical of the project) is not the sum of the durations of its activities.

On the basis of the above concepts, MRCPSP-ENERGY can be defined as

follows:

Definition 1: MRCPSP-ENERGY is a project that consists of a set of

n activities I = {1, ..., i, ..., n}, a set B of Kρ shared renewable resources B =
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{1, ...b, ...Kρ}, and there is an available amount Rρb of every renewable resource.

Each activity i has m = {1, ...,M} execution modes and a non-preemptive

execution time dim, requiring a total of rib renewable resources of type b and

an amount of energy eim for its realization. Activities are subject to precedence

constraints, which indicate that each activity cannot be started before all its

predecessor activities are completed. The different energy consumptions for an

activity give rise to different execution modes. Thus, MRCPSP-ENERGY is

similar to the RCPSP, where the activities have different execution modes that

are associated to different energy consumptions.

The main differences with respect to the MRCPSP are the following (1) the

modes depend entirely on energy consumption eim; (2) the relation between

energy consumption and processing time is inverse; and (3) the objective is

to maximize the project efficiency, which means to minimize both energy

consumption and makespan.

The formal mathematical model of MRCPSP-ENERGY maintains the same

constraints as the MRCPSP, (constraints (2) to (6)) without the non-renewable

resources constraints (5). The objective function for PSPLIB-ENERGY is

reformulated according to Expression (13).

Max : ηw(makespanw, CETPw) (13)

PSPLIB-ENERGY: An extension of the PSPLIB library

In this section, the PSPLIB-ENERGY library is proposed. It complements

PSPLIB with different levels of energy consumption and processing times

associated to each activity. This extension aims to evaluate search methods

for optimizing MRCPSP-ENERGY, taking into account both makespan and

energy consumption, by using the proposed efficiency-based criterion.

The proposed model for energy consumption

In order to expand the PSPLIB library, the values of energy consumption for

activities and their corresponding processing times must be consistent with

the behavior of real machines. For this purpose, a standard value of energy

consumption ei and processing time di for each activity is assigned a priori.

Afterwards, a mathematical model relates the standard values with every mode

of an activity to compute its value of energy consumption and processing time.
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In machining, there is no global mathematical model that describes all

behaviors of energy consumptions of machine tools. This is due to the fact that

energy consumption behavior depends on several technical factors. Nevertheless,

the behavior is quite similar in most machines. The relationship between energy

consumption and processing time in machining has a decreasing trend [30].

Thus, Expression (14) is proposed, where ti(ci) is the proportion of processing

time compared with the standard duration of activity i, and ci is the proportion

of energy consumption compared with the standard consumption of activity i.

Expression (14) has a decreasing trend in a way similar to the energetic behavior

in machine tools. This function represents an approximation of the proposed

efficiency model in the previous section. The values of the constants A1 =

4.0704 and A2 = 2.5093 center the function in ci = 1(100%) and ti = 1(100%),

representing the standard of the energy consumption and the processing time,

respectively. As an example, a value of ci = 1, 6(160%) represents a consumption

of 60% of additional energy for activity i, and a value obtained ti = 0, 67(67%)

represents a decrease of 33% in the processing time of activity i. Figure 2 shows

the graph of Expression (14).

Figure 2. The proportion of processing time in relation to proportion of energy
consumption, Expression (14).

ti(ci) =
A1 ∗ ln(2)

ln(1 + (ci ∗A2)3)
(14)

As a result of the above energy-time model, Expression ηi(ci) (15) is defined

as the relative efficiency of activity i depending on ci. This expression can be
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interpreted as the efficiency percentage of activity i respect to its efficiency, when

both standard energy and standard processing time are used. For instance, a

ηi(ci) = 130% indicates that, given a proportion of energy consumption ci, an

efficiency of 30% higher than the standard is obtained. Figure 3 shows the

relative efficiency Expression (15). It is important to note how the trend of the

curve is similar to the real efficiency shown in [34, 31].

ηi(ci) =
1/ti(ci)

ci
=
ln(1 + (ci ∗A2)3)

ci ∗A1 ∗ ln(2)
(15)

Figure 3. Relative efficiency of the activity, Expression (15).

Energy extension for PSPLIB

To extend PSPLIB to MRCPSP-ENERGY, energy consumption and processing

times are included for each activity in the uni-modal RCPSP instances, through

the mathematical model described above (Expression (14)). Therefore, the four

problems sets j30, j60, j90, and j120 are created with 30, 60, 90, and 120

activities, respectively. The values of the standard efficiency of the projects is

available in the ENERGY-PSPLIB library.

Without loss of generality, three specific values for energy consumption

eim are taken. Therefore, three modes are defined. The first mode (ci1 = 0.8)

corresponds to a decrease of 20% in the energy consumption related to the

standard value ei2. The second mode (ci2 = 1) has the standard value of energy

consumption estdi = ei2, which corresponds to the standard duration dstdi = di2
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provided by the original PSPLIB library. The third mode (ci1 = 1.2) corresponds

to an increase of 20% in energy consumption related to the standard value ei2.

The corresponding values of processing time (dim) and energy consumption

(eim) can be calculated using Expressions (16) and (17), respectively. The values

of ti(cim) are calculated using Expression (14).

dim = ti(cim) ∗ dstdi , i ∈ I, m ∈ {1, 2, 3} (16)

eim = cim ∗ esdti , i ∈ I, m ∈ {1, 2, 3} (17)

The values of esdti are defined by assigning a random consumption value with

an interval [1, 10] to each instance’s activity on the PSPLIB-ENERGY library.

This range of values was proposed considering the same intervals used for the

original parameters in the PSPLIB library. Since all parameter values in the

PSPLIB library are integers, the values of the parameters for the PSPLIB-

ENERGY library are also integers. Note that an activity i with duration dim = 1

cannot be reduced. Similarly, if an activity i has an energy consumption of

eim = 1, it cannot be reduced. The approximation of the other cases were made

taking into account their corresponding mode m. Then, for m = 3, dim was

rounded downwards and eim was rounded upwards. In the case m = 1, dim was

rounded upwards and eim was rounded downwards.

For the evaluation of future techniques to be developed using the PSPLIB-

ENERGY library, the evaluation criteria is to maximize the relative efficiency

presented in Expression (12). This expression takes into account both the

makespanw and the total energy consumption CETPw (Expression (7)) in a

single-objective.

To calculate the average value η̄ for the problems of the sets j30, j60, j90, or

j120 in PSPLIB-ENERGY, Expression (18) is defined, where nP is the number

of evaluated projects.

η̄ =

∑nP
w=1 ηw(makespanw, CETPw)

nP
(18)

Example of a MRCPSP-ENERGY instance

In this section, an example of a small MRCPSP-ENERGY instance is presented.

This instance consists of n = 8 activities and B = 3 renewable resources. Table

1 shows the energy consumption (eim), the processing time (dim), and the
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resource usage. The first column shows the activities (activities 1 and 8 are

fictitious with duration and consumption equal to 0). The second to the seventh

columns show the modified duration of the activities and the corresponding

energy consumption (dim, eim). The values of di2 and ei2 (columns in bold) are

considered the standard values with a usage of 100% in energy consumption and

processing time. The eighth to the tenth columns show the resource usage.

Table 1. Energy consumption (eim), processing time (dim), and resource usage for the
MRCPSP-ENERGY instance.

Num.Job di1 ei1 di2 ei2 di3 ei3 ri1 ri2 ri3
1 0 0 0 0 0 0 0 0 0
2 4 4 3 5 2 6 1 1 1
3 3 1 2 2 1 3 2 1 1
4 2 5 1 7 1 7 1 0 1
5 7 3 5 4 4 5 0 1 1
6 3 4 2 6 1 8 2 1 0
7 8 4 6 6 5 8 2 1 2
8 0 0 0 0 0 0 0 0 0

Figure 4 shows the precedence relationships and the information provided in

Table 1: the use of each renewable resource, and the processing time versus the

energy consumption in each mode of execution.

1

0

0,0,0

3

(3,1),(2,2),(1,3)

2,1,1

8

0

0,0,0

7

(8,4),(6,6),(5,8)

2,1,2

4

(2,5),(1,7),(1,7)

1,0,1

2

(4,4),(3,5),(2,6)

1,1,1

5

(7,3),(5,4),(4,5)

0,1,1

6

(3,4),(2,6),(1,8)

2,1,0

Duration, energy

consumption 

(dim, eim)

Resource usage 

rib:  ri1, ri2, ri3

Resource 

availability

b1 = b2 = b3 = 3

Figure 4. A network for the MRCPSP-ENERGY instance.

Figure 5 shows three Gantt charts of three solutions for the given instance.

Figure 5.a shows an optimal solution when the problem only uses a proportion
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of energy consumption ci = 100%. Figure 5.b and Figure 5.c represent two

solutions using different energy consumptions, and, consequently, different

processing times.
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Figure 5. Three Gantt charts of the example in Figure 4.

To calculate the efficiency ηw of each solution, the values LB0w = 6 and

eminw = 21 were calculated from Figure 4. Figure 5 shows the upper level of

project performance CSRw, the value of the total project duration makespanw,

the total energy consumption of the project CETPw, and the value of the

evaluation criterion ηw of three different solutions.

Solution (a) has the lowest value of efficiency ηa = 38, 2%. The lowest

makespan is achieved in Solution (c). However, it has the highest energy

consumption, its efficiency is ηc = 41, 1%, and it is considered better than

Solution (a). Solution (b) maintains the same energy consumption as Solution

(a) but improves in makespan. Therefore, it achieves the highest value of

the relative efficiency of the project ηb = 42%. In conclusion, Solution (b) is

considered to be the best solution of the three.

It is noteworthy that the efficiency values are relatively low in all cases (close

to 40%) because they are compared with the ideal value of the upper bound of

project performance CSRw.
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A genetic algorithm for solving the PSPLIB-ENERGY library

Generally, genetic algorithms are well-recognized and appropriate approaches

for solving MRCPSP [27, 35]. Therefore, in this section, a genetic algorithm is

proposed for solving MRCPSP-ENERGY library instances. This is considered

a good starting point for the research community to compare the performance

of their techniques for solving MRCPSP-ENERGY library instances. The main

contribution in this section is the new application and adaptation of a genetic

algorithm to the proposed library. The pseudo code for the proposed genetic

algorithm is shown in Algorithm 1.

Algorithm 1 Pseudo code for the proposed genetic algorithm.

1: Initiation and data reading;
2: Calculation of values by using the PERT/CPM method;
3: Generation of the initial population;
4: Evaluation of the initial population;
5: while Scheduling number ≤ iterations do
6: Parent selection;
7: Crossover of selected parents;
8: Offspring mutation;
9: Replacement of the current population;

10: Evaluation of the new population;
11: end while
12: Local improvement;
13: return The best schedule in the population;

Codification of solutions. There are several compatible codifications for

modeling the MRCPSP in terms of genes and chromosomes [36]. The activity

list representation and random key representation are those that have obtained

the best results [27]. In this work, the activity list is used as codification. It

consists of a precedence feasible activity list {a1, a2, ..., ai, ..., an}, in which the

activity position in the list represents the priority to be scheduled.

A chromosome is created to contain all of the information of a complete

feasible schedule. It consists of n activity genes (the activity list), one schedule

generation scheme (SGS) gene, and one direction gene. The activity genes have a

pair of values (ai, zi), where ai represents the activity position and zi represents

how the activity consumes energy. The SGS gene is 0 when the serial scheme

is used and 1 when the parallel scheme is used. The direction gene is 0 when

the forward direction is used and 1 when the backward direction is used. An

example of the codification used is shown in Figure 6.
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a1, z1 sgs dir...

Chromosome

 

Activity genes SGS gene Direction gene

a2, z2 an, zn

Figure 6. The codification used in the genetic algorithm.

The initial population and population size. Following Kolish et al. [36],

the regret based biased random sampling (RBBRS) and the latest start time

(LST) priority rule [37, 38] are used to generate an initial population, with the

parameters ε = 1 and α = 1.

In the methodologies for solving the MRCPSP, there is no standard method to

estimate an appropriate population size. Debels and Vanhoucke [39] state that

the larger the number of activities, the smaller the population size. Cervantes

et al. [40] propose a mathematical expression where the relation between the

population and the activities is inverse. Based on these statements, Expression

(19) and Expression (20) are proposed.

population =

(
2700

N

)
∗ ln

(
e ∗ iterations

1000

)
with N ≤ 120 (19)

generations =
iterations

population
(20)

Fitness function. The fitness function allows the quality of solutions to be

determined. The proposed relative efficiency (Expression (12)) is used in this

work as a fitness function. Thus, a solution with a greater relative efficiency

value ηw is considered better than another with a lower value.

Selection. In the MRCPSP, roulette and ranking are the most commonly

used selection methods. The selection by roulette does not work properly when

the range between the fitness values of individuals gets bigger. It happens in the

MRCPSP, but not in MRCPSP-ENERGY because all of the values of relative

efficiency of the project are ranged in the interval [0, 1]. Therefore, the roulette

selection is used, in which the parents are selected according to their fitness.

The best chromosomes are more likely to be selected [41].

Crossover. An appropriate crossover operator has to be defined for each

gene type. For activity genes, one-point crossover is used. A random integer q
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with 0 < q < N is generated. Thus, the first genes from 0 to q are taken from

Parent 1 while the remaining ones are taken from Parent 2. Thus, the list of

activity genes is gone over one by one and only those that are different from

Parent 1 are chosen. For SGS and direction genes, the gene value is inherited

when it is the same in both parents, otherwise it is randomly generated.

Mutation. The proposed genetic algorithm uses the insertion of Boctor [42]

because it is considered a good operator since it produces feasible solutions

and is compatible with the activity list codification. Thus, given an activity

i to be inserted into the activity list, first, the maximum position of all its

predecessors in the list (maxPred) and the minimum position of all its successors

(minSuc) are computed, and then a random integer Rnd is generated with

maxPred ≤ Rnd ≤ minSuc. Activity i is inserted in this position. A 0.05

mutation probability value for each activity is selected. An activity that has

been selected to mutate will change the position in the activity list as well as

its energy consumption and execution time.

Replacement. The replacement strategies are the way the next generations

are formed. A semi-elitist strategy is used, which consists of building the new

population from the individual with the best solution in the current population

and the offspring of that population.

Local improvement. Finally, a local improvement is applied to the best

solution. It consists of going over all of the activities and checking if they can be

executed with less energy consumption (longer execution time) without breaking

precedence or resource constraints.

Evaluation and analysis of results

The experiments were performed on a PC with Intel(R) Core(TM) i7 CPU

to 2.20GHz and 16gb ram. The proposed genetic algorithm was developed in

C + +. First, the results are shown by keeping the standard academic format,

then the behavior of the proposed algorithm is presented. Finally, how different

energy levels can increase process efficiency is analyzed.

The results are shown in Table 2. The sets of problems j# are shown in

the first column and the remaining columns show the average value of relative

efficiency (η̄) for the problem sets j30, j60, j90, and j120 of the PSPLIB-

ENERGY library, for 1, 000, 5, 000, and 50, 000, respectively. In [27], Kolisch

and Hartmann clarify the reason for using iterations as comparison criterion,
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and they define what an iteration is. In Table 3 the execution times (in seconds)

are shown for the same number of iterations (1, 000, 5, 000 and 50, 000).

Table 2. η̄ obtained by using the proposed
genetic algorithm for solving the
MRCPSP-ENERGY library.

j# Iterations/η̄
1, 000 5, 000 50, 000

j30 0.5966 0.6091 0.6293
j60 0.6029 0.6182 0.6424
j90 0.6052 0.6216 0.6478
j120 0.4760 0.4875 0.5032

Table 3. Processing time obtained by using
the proposed genetic algorithm for solving
the MRCPSP-ENERGY library.

j# Iterations/seconds
1, 000 5, 000 50, 000

j30 0.053s 0.198s 1.514s
j60 0.159s 0.544s 4.163s
j90 0.286s 0.957s 8.210s
j120 0.424s 1.282s 10.624s

To test the consistency and the convergence behavior of the proposed genetic

algorithm, the algorithm was executed up to 100, 000 iterations. The relative

efficiency (η̄) of each iteration for all sets is shown in Figure 7. It exhibits

a typically growing function with a horizontal asymptote when the iterations

tend toward infinity for the four sets. In fact, all of the sets obtained an average

improvement that was lower than 0.083% in the last 5, 000 iterations.

On the other hand, it is important to analyze the search space when the

energy consumption is included. In order to do this, the results obtained for

solving PSPLIB-ENERGY using one and three levels of energy are compared

(see Figure 8). For the first case, only the standard duration and the standard

energy consumption (i.e., di2 and ei2) are used, whereas, for the second case,

the three levels of energy consumption are used. It can be observed that as the

number of energy levels increases, a better solution can be achieved.

Conclusions and further works

Currently, many research works follow the strong trend to develop models that

include an energy component for obtaining a sustainable solution to scheduling

problems. As a result, it is imperative to develop new libraries to evaluate the

behavior of new developed heuristics.

In this paper a efficiency-based MRCPSP is proposed. It is called MRCPSP-

ENERGY, which includes energy consumption in a scheduling problem. The

proposed bi-objective approach consists of maximizing relative project efficiency.

This is carried out by simultaneously minimizing the makespan and the energy

consumption. The efficiency concept tries to find the best solution for the system

as a whole and to avoid the generation of the Pareto front. Furthermore, the
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Figure 7. Convergence behavior of the proposed genetic algorithm for sets j30, j60, j90,
and j120.

library PSPLIB-ENERGY is proposed. It is an extension to PSPLIB library for

assessing the MRCPSP-ENERGY solution methods. This extension is supported

by a proposed model of energy consumption. This model is consistent with

the surveys reported in the academic literature about energy consumption for

machines. Therefore, this library can be used to evaluate and compare different

solving methods.

Since genetic algorithms have been competitive methods for solving the

classical MRCPSP, a genetic algorithm has been proposed to solve MRCPSP-

ENERGY by adapting well-known strategies that have been previously

developed. The results show the convenience of assigning different energy

consumptions and processing times to activities in machine scheduling problems

in order to achieve energy-efficient solutions. The aim of these results is to

establish an initial comparison point for future solving methods.

The PSPLIB-ENERGY library has been developed, keeping the same format

as the PSPLIB library, with four sets of problems (j30, j60, j90, and j120),
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Figure 8. Comparison between levels of energy consumption and relative efficiency of
sets j30, j60, j90, and j120.

each of which has 480 problems (except the set j120, which has 600 instances).

This library is available at http://gps.webs.upv.es/psplib-energy/.

In further works, we aim to extend this work to consider the energy

consumption as a non-renewable resource with a dynamic threshold. This

problem occurs when a limited energy budget is allocated to a project or the

available energy is limited in some time intervals. As long as the available

energy allows the construction of feasible solutions, the new solutions must

take into account these dynamic thresholds, so the search must be focused on

these bottlenecks to obtain energy efficient solutions. Thus, our metaheuristic

proposal must be extended to address this issue.

Finally, this paper aims to encourage the development of future research

to find sustainable and efficient solutions in resource-constrained scheduling

problems.
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Appendices

List of symbols

ci The proportion of energy consumption compared with
the standard consumption of the activity i.

dim The duration of activity i in execute mode m.
eim The energy consumption for activity i executed in mode

m.
esi The early start of activity i.
lsi The late start of activity i.
m = {1, ...,M} A set of M execution modes.
nP The total number of evaluated projects.
rρimb The amount of renewable resource of kind b consumed

by activity i in execution mode m.
rνimk The amount of non-renewable resource of kind k

consumed by activity i in execution mode m.
ti(ci) The proportion of processing time compared with the

standard duration of activity i.
B = {1, ..., b, ...Kρ} A set of Kρ shared renewable resources.
CETPw The total energy consumption of a Project w.
CSRw The upper bound of the project performance.
I = {1, ..., i, ..., n} A set of n activities.
K = {1, ..., k, ...Kν A set of Kν non-renewable resources.
Pelectrical The input energy.
Pi A set of immediate predecessor activities of activity i.
Pmechanical The output energy.
Rρb The maximum amount of every renewable resource b.
Rνk The maximum amount of every non-renewable resource

k.
η The efficiency concept.

η
′

i(ei) The relation between di and ei of an activity i. The
range is not necessarily between 0 and 1.

η∗w The relation between makespan and CETP of a project
w. The range is not necessarily between 0 and 1.

ηw(makespanw, CETPw) The relative efficiency of a project w with respect to
CSRw.

ηi(ci) The relative efficiency of activity i depending on ci.
ξimt Binary decision variable, which takes a value of one

when the activity i is executed in mode m and finishes
at time t, and zero otherwise.
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