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Abstract 10 

Standardized drought indices have been traditionally used to identify and assess droughts 11 

because of their simplicity and flexibility to compare the departure from normal conditions 12 

across regions at different timescales. Nevertheless, the statistical foundation of these indices 13 

assumes stationarity for certain aspects of the climatic variables, which could no longer be 14 

valid under climate change. This contribution provides a framework to analyze the impact of 15 

climate change on meteorological and hydrological droughts, considering shifts in 16 

precipitation and temperature, adapted to a Mediterranean basin. For this purpose, droughts 17 

are characterized through a combination of relative standardized indices: Standardized 18 

Precipitation Index (rSPI), Standardized Precipitation Evapotranspiration Index (rSPEI) and a 19 

Standardized Flow Index (rSFI). The uncertainty and the stationarity of the distribution 20 

parameters used to compute the drought indices are assessed by bootstrapping resampling 21 

techniques and overlapping coefficients. For the application of the approach to a semiarid 22 

Mediterranean basin (Jucar River Basin), the Thornthwaite scheme was modified to improve 23 
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the representation of the intra-annual variation of the potential evapotranspiration and low 24 

flow simulation in hydrological modelling was improved for a better characterization of 25 

hydrological droughts.  Results for the Jucar basin show a general increase in the intensity 26 

and magnitude of both meteorological and hydrological droughts under climate change 27 

scenarios, due to the combined effects of rainfall reduction and evapotranspiration increase. 28 

Although the indicators show similar values for the historical period, under climate change 29 

scenarios the rSPI could underestimate the severity of meteorological droughts by ignoring 30 

the role of temperature. 31 

 32 

Keywords: standardized drought indices, climate change impact, meteorological droughts, 33 

hydrological droughts, evapotranspiration.  34 

1. Introduction 35 

Unlike aridity, a permanent feature of climate in low rainfall areas, droughts are temporary 36 

deviations that can happen in any climatic region (Wilhite 2000; Tallaksen & Van Lanen 37 

2004). Droughts, generally defined as divergences from normal conditions on water 38 

availability, often start with a prolonged lack of precipitation and then propagate to other 39 

components of the hydrological cycle. Persistent droughts can lead to a significant depletion 40 

of reservoirs’ storages and groundwater levels, with a subsequent broad range of socio-41 

economic and environmental impacts. According to the latest report of the Intergovernmental 42 

Panel on Climate Change (IPCC, 2014a), the current emission of greenhouse gases will 43 

increase global warming and produce durable changes in the climate system, raising the 44 

likelihood of extreme events. Under those conditions, droughts could become more frequent 45 

and severe around the world (Dai, 2013), with a growing impact on water resources. In this 46 

context, the Mediterranean region emerges as a prominent regional climate change hotspot  47 
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(Diffenbaugh and Giorgi, 2012). The most relevant key climatic drivers for water availability 48 

are precipitation, temperature, evaporative demand (which depends on net radiation), 49 

atmospheric humidity, wind speed and temperature (Bates et al., 2008). The current climate 50 

models are able to reproduce the observed continental-scale surface temperature patterns and 51 

trends with assurance, but the level of performance for large scale patterns of precipitation is 52 

lower than that of temperature (IPCC, 2014b). This fact poses high uncertainty regarding 53 

future climate projections and therefore, on the effects of climate change on drought severity 54 

at the regional level (Burke and Brown, 2007). Particularly in areas with high precipitation 55 

variability, such as the Mediterranean region, the drought patterns derived from the outputs of 56 

global climatic models are not consistent (Vicente-Serrano et al., 2004).  57 

 58 

In recent years, many studies have been conducted to assess the potential impact of climate 59 

change on meteorological, agricultural and hydrological droughts in different regions of the 60 

world, using different indicators depending on drought types (e.g. reviews by Mishra and 61 

Singh, 2010; Zargar et al., 2011; Pedro-Monzonis et al., 2015). Most of these studies are 62 

conducted using well-established indices, such as the Palmer Drought Severity Index (PDSI; 63 

Palmer 1965), based on soil water balance equation, or the Standardized Precipitation Index 64 

(SPI; McKee et al., 1993), based on a probabilistic approach for precipitation to evaluate 65 

meteorological droughts. Although the benefits and drawbacks of these indices for the 66 

analysis of historical droughts have been widely discussed (Alley, 1984; Dai, 2011; Hayes, 67 

1999), few authors have addressed the specific limitations of the traditional indicators under a 68 

nonstationary, climate change context. Vicente-Serrano et al. (2010) pointed out the inability 69 

of SPI to identify the role of global warming in future drought conditions, since it neglects 70 

the effect that a temperature increase and subsequent evapotranspiration increase can have on 71 

droughts. To overcome this issue, they propose a new climatic drought index (the 72 
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Standardized Precipitation Evapotranspiration Index (SPEI)), which combines the sensitivity 73 

of PDSI to changes in evaporation demand (caused by temperature fluctuations and trends) 74 

with the simplicity of calculation and the multi-temporal nature of the SPI. Nevertheless, it is 75 

important to note that potential evapotranspiration (PET) formulations introduce additional 76 

uncertainty to that due to the climate models (Kay and Davies, 2008). The use of 77 

standardized drought indices is appealing for many reasons: the procedure is simple and can 78 

be generalized for assessing different types of droughts (e.g. Shukla and Woods, 2008), they 79 

are comparable in time and space (Hayes, 1999). Nevertheless, the traditional statistical 80 

foundation of these indices cannot be used in climate change impact assessments, as they 81 

would provide approximately the same distributions for both present and changed climates 82 

regardless of the changes in the climate conditions (Dubrovsky et al., 2009; Zargar et al., 83 

2014). 84 

In this paper we study the impacts of climate change on meteorological and hydrological 85 

droughts in a Mediterranean basin through a combination of relative standardized indices that 86 

allow for the consideration of predicted shifts in precipitation and temperature. For dealing 87 

with the uncertainty on the parameters of the distributions used to compute the drought 88 

indices, bootstrapping techniques are applied to compute the overlapping coefficient (OVL) 89 

for each parameter between the historical and future density functions. The catchment and 90 

climate characteristics of the case require modifications to the method for PET estimation and 91 

to the conceptual hydrological simulation model (improved simulation of low-flow 92 

conditions to better represent hydrological droughts). The catchment characteristics help to 93 

explain the spatial differences on the historical and future drought characteristics.  94 

In the upcoming sections, the overall approach and its adaptation to the sui-generis 95 

characteristics of a Mediterranean basin are presented. Then, drought characterization under 96 

climate change conditions using standardized relative indices is explained. The study area, 97 
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the climate change projections, and the bias correction method are described. The specific 98 

modifications for adapting the method to the case study, including the hydrological 99 

simulation and the PET estimation methodology are presented. Finally, the paper shows the 100 

main results, the discussion and the main conclusions are presented. 101 

2. Method 102 

2.1. Overall approach 103 

The selected methodology (Fig. 1) involves three main steps: future time series generation, 104 

hydrological modeling and drought assessment. 105 

 106 

Fig. 1. Overall approach scheme 107 

A) Time series generation under climate change:  108 

This step first requires selecting a set of climate change projections, using the outputs from a 109 

combination of Global Circulation Models (GCMs) and Regional Circulation Models 110 

(RCMs). These future projections are based on the new IPCC scenarios, the Representative 111 

Concentration Pathways (RCPs), which define four different pathways of greenhouse 112 

emissions and atmospheric concentrations, air pollutant emissions and land use (IPCC, 113 

2014b). The main advantage of the new RCP scenarios over the Special Report Emissions 114 
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(SRES) scenarios is that the impacts of the international agreements and efforts to mitigate 115 

the gas emissions are considered.  116 

GCMs reproduce physical processes and the effect of an increase of greenhouse gases 117 

concentration in the climate system. Nevertheless, GCMs present the disadvantage of scale or 118 

resolution, normally having a horizontal resolution of between 250 and 600 km, 10 to 20 119 

vertical layers in the atmosphere (IPCC, 2014a). For this reason, the Regional Climate 120 

Models (RCMs) are used to perform the climate change projections with more accuracy at the 121 

local level, through downscaling techniques. The selection is made based on the goodness-of-122 

fit between the observed and the simulated values for the control period.  123 

Although RCMs downscale the outputs of GCMs, precipitation and temperature simulations 124 

from RCMs are known to be biased and need to be post-processed in order to produce 125 

reliable estimates of expected local climate conditions (Fowler et al., 2007). Several bias 126 

correction methods have been developed, mostly based on statistical transformations to adjust 127 

selected aspects of the distribution of RCMs so that the new distribution resemble the original 128 

(e.g., Teutschbein and Seibert 2012; Gudmunsson et al. 2012). In this research we apply the 129 

equidistant “quantile mapping” method (Li et al., 2010) to correct the bias of future climatic 130 

projections by adjusting the cumulative distribution function (CDF) for the future period 131 

based on the difference between the model and the observed CDFs for the control (baseline) 132 

period. The method has been proved to be more efficient in reducing biases than the 133 

traditional CDF mapping method for changing climates, especially for the tails of the 134 

distribution (Li et al., 2010). For the implementation of the bias correction process, we used 135 

the statistical package “qmap” for post-processing the climate model output (Gudmunsson et 136 

al., 2012). The tool, implemented in R statistical software (R development team, 2015), 137 

allows to use different fitting options and to select the transformation for modelling the 138 
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quantile-quantile relation between the observed and the modelled time series, choosing 139 

quantiles that are regularly spaced through least-square regression. 140 

B) Hydrological modeling: 141 

To assess the climate change impacts on hydrological droughts, it is necessary to simulate 142 

future flows (river discharges), using the bias corrected temperature and precipitation 143 

variables as inputs to a hydrological model. The most simple and straightforward method to 144 

estimate the potential evapotranspiration (PET) is the Thornthwaite model. However, as 145 

discussed in Section 4.3, this approach has some drawbacks when applied to semiarid areas, 146 

where it may underestimate the PET.  In our case, we apply a conceptual, lumped-parameter 147 

Temez model, modified to improve the representation of low flows, which is essential in the 148 

characterization of hydrological droughts. The application of this methodology to the case 149 

study is further developed in Sections 4.2 and 4.3. 150 

C) Drought assessment:  151 

Drought analysis is based on the use of relative standardized indices (rSPI, rSPEI and rSFI) 152 

and the “run theory” (Yevjevich, 1967; Dracup et al., 1980) to obtain main drought properties 153 

(magnitude, duration and intensity). One possible approach to tackle nonstationarity of 154 

hydrologic extremes is to assume that, at any given time, an extreme value distribution would 155 

still be used, but the distribution itself would shift over time (Coles 2001; Katz 2013; Salas 156 

and Obeysekera 2014). For this reason, these authors introduced nonstationarity by 157 

expressing one or more of the parameters of the GEV distribution as a function of time. The 158 

uncertainty of SPI's model parameters was addressed by Zargar et al. (2014), who proposed 159 

the generalization of the traditional deterministic definition to an uncertainty-driven one, 160 

capable of modeling both sources of uncertainty: aleatory (effect of climate change on 161 

variability) and epistemic (limited knowledge about the system). Here we propose a 162 

methodology to characterize both the uncertainty of the SPEI assumed distribution 163 
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parameters and the level of agreement between the historical and the future density function 164 

of these parameters, in order to assess shifts in the distribution under climate change 165 

scenarios. In this regard, we suggest that, whenever a low level of agreement exists, the 166 

parameter could be considered as nonstationary. 167 

2.2. Standardized drought indices 168 

In the present paper, drought definition is based on three standardized indices: the 169 

Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration 170 

Index (SPEI) to assess meteorological droughts, and the Standardized Runoff or Flow Index 171 

(SFI), which are applied to river discharge to analyze hydrological droughts. Although the 172 

original standardization procedure was defined for the SPI (McKee et al., 1993) using the 173 

precipitation as variable, the calculation of the SPEI and SFI indices follows the same process 174 

but changing the variable to standardize: the difference between precipitation and PET 175 

(climatic water balance) for the SPEI, and streamflow for the SFI. The steps involved in the 176 

procedure are: 177 

1. Time window selection: this window will reflect specific impacts and phenomena of 178 

interest. According to Zargar et al. (2011), specific aggregation periods for the SPI 179 

could be used to characterize different phenomena. Shorter SPI aggregation periods 180 

(3-6 months) could be used to obtain seasonal estimations of precipitation, as they 181 

represent short and medium-term moisture conditions and medium-term trends in 182 

precipitation, respectively. However, 12 month SPI is able to reflect long-term 183 

precipitation patterns, and it could be tied to streamflows, reservoir levels and also 184 

groundwater levels. The time window selection is further developed in Section 4.4. 185 

2. Fitting of a statistical distribution to the time series: McKee et al. (1993) originally 186 

fitted the gamma distribution to the precipitation data series to compute the SPI. This 187 

2-parameter distribution can also be applied to the streamflow series to obtain the 188 
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SFI, although it is not necessarily the best choice (Barker et al., 2015). Moreover, the 189 

gamma distribution cannot be used for the SPEI, because the climatic water balance 190 

is not bounded by zero and may take negative values if PET exceeds precipitation. 191 

Therefore, a 3-parameter distribution is required to compute the SPEI. Vicente-192 

Serrano et al. (2010) originally proposed the log-logistic distribution for the SPEI 193 

computation, but recently Stagge et al. (2015) suggested that the generalized extreme 194 

value (GEV) distribution produced the best goodness-of-fit across different 195 

accumulation periods for the SPEI. Mathematically, the GEV distribution is very 196 

attractive because its inverse has a closed form and the parameters are easily 197 

estimated by moments (Hosking et al., 1985). In this case, we apply the well-tested 198 

gamma distribution to the precipitation and streamflow series to obtain the SPI and 199 

the SFI, respectively, and the GEV distribution to compute the SPEI. 200 

3. Transformation to a standardized normal distribution: using an equi-percentile 201 

transformation, the selected cumulative probability function has to be transformed into 202 

a standard normal random variable with mean 0 and standard deviation 1. Therefore, 203 

the standardized indices are representations of the number of standard deviations of 204 

departure from the mean at which an event occurs (often called “score”).  205 

Using these scores, drought intensity can be further categorized. Instead of the original 206 

categories defined by McKee et al. (1993) for the SPI, we have adopted the classification 207 

suggested for the same index by Agnew (2000) (Table 1). This approach gives a lower 208 

probability of occurrence to the more severe droughts, unlike the original thresholds proposed 209 

by McKee (1993), which assigned some type of drought to all the negative SPI indices.  210 

 211 

 212 

 213 
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Table 1. Drought categories through SPI values (adapted from Agnew, 2000) 214 

SPI values Drought Categories 

0 to -0.84 No drought 

-0.84 to -1.28 Moderate 

-1.28 to -1.65 Severe 

 < -1.65 Extreme 

 215 

Finally, we apply the run theory (Yevjevich, 1967) to obtain two additional drought 216 

properties: duration and magnitude. A drought is considered as a run of deficits (time series 217 

values below a threshold). For each drought episode, duration is defined as run length, 218 

magnitude as run sum (cumulative deficit) and intensity as the maximum deficit in a run 219 

(Dracup et al., 1980). 220 

2.3. Drought characterization under climate change 221 

2.3.1 Relative indices 222 

Dubrovsky et al. (2009) found that the SPI provided approximately the same distributions for 223 

both present and changed climates regardless of the changes in the climate conditions. To 224 

solve the problem, they proposed the use of a “relative SPI” (rSPI) instead of the traditional 225 

SPI. Traditional indices computation involves the estimation of different distribution 226 

parameters for the historical data and for each of the future time series. Fig. 2 represents the 227 

SPI values computed in Sueca sub-basin for the historical time series (520 mm per year on 228 

average) and for the RCP 8.5 midterm scenario (402 mm per year), considering a temporal 229 

aggregation of 12 months. We can observe that the range of SPI values is about the same for 230 

the historical data and for the future time series, despite a rainfall reduction of 22.7%. 231 
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 232 

Fig. 2. SPI 12 for historical data (years) and RCP 8.5 midterm scenario (MT). Sueca sub-basin. 233 

In contrast, for the relative SPI (Dubrovsky et al., 2009), the parameters k and θ of the 234 

gamma distribution are obtained for a certain reference weather series (historical data) and 235 

then the same distribution is applied to tested series (future conditions). Fig. 3 shows the 236 

relative SPI in Sueca sub-basin for the RCP 8.5 midterm scenario and a temporal aggregation 237 

of 12 months. Unlike Fig. 2 (traditional SPI), the rSPI identifies multiple and long-lasting 238 

extreme drought spells for these future conditions, although the temporal structure is the same 239 

for both indices. 240 

 241 

 Fig. 3. Relative SPI 12 for RCP 8.5 midterm scenario. Sueca sub-basin. 242 
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Here, we apply the same approach to compute relative SPI (rSPI), relative SPEI (rSPEI) and 243 

relative SFI (rSFI) in the basin. The use of the rSPEI in addition to the rSPI for 244 

meteorological droughts allows to assess the effect that the increase in temperature and 245 

subsequently in ET can have on drought severity (Vicente-Serrano et al., 2010; Beguería et 246 

al., 2014). In the case of the rSPEI, it is important to note that the 3-parameters distribution 247 

functions considered for the SPEI calculation have a location parameter. This fact means that 248 

the distribution fitted to the reference series may not be defined for certain values of the 249 

tested series, as it happens for the 3-parameter log-logistic distribution when the value of the 250 

variable is less than the location parameter of the distribution. Nonetheless, this limitation can 251 

be addressed through the selection of proper limits for the index, considering that if the 252 

distribution is not defined for the value or it is under/above the limit, this merely indicates 253 

that the effective precipitation is very small/large. 254 

 255 

2.3.2 Assessment of uncertainty and nonstationarity in the probability distributions of 256 

the SPEI parameters  257 

For the uncertainty-driven SPEI, epistemic uncertainty in parameter estimation has been 258 

assessed using the bootstrap resampling method (Efron, 1979). Concretely, a parametric 259 

bootstrap has been performed using the package "boot" of the R statistical software (Canty et 260 

al., 2015) to compute the sampling density function of each parameter. The magnitude of 261 

variability with regard to epistemic uncertainty is introduced through the overlapping 262 

coefficient (OVL), which measures the agreement between the density function of the 263 

parameter for the historical period and the density function of the same parameter for future 264 

scenarios. The reason for selecting the OVL for the comparison of density functions is that it 265 

is easy to interpret. Of the three possible OVL described in literature (Matusita’s measure ρ, 266 
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Morisita’s measure λ and Weitzman’s measure Δ), we have selected the last one (Weitzman, 267 

1970), which is the most commonly used (Eq. 1): 268 

  dxxfxf )(),(min 21                                                   [1] 269 

Where f1(x) and f2(x) are two probability density functions. 270 

 271 

3. Material 272 

3.1. Case study 273 

The case study is the Jucar River Basin, a Mediterranean basin of 22261 km
2
 in Eastern pain 274 

(Fig. 4). The system is highly regulated, with a share of water for crop irrigation about 80%. 275 

The main consumptive water demands, concentrated in the lower basin (except for 276 

groundwater irrigation in Mancha Oriental, in the upper basin), are of irrigation and urban 277 

water supply. Water scarcity, irregular hydrology and groundwater overdraft cause droughts 278 

to have significant economic, social and environmental consequences. Most surface water 279 

resources are regulated through the 3 main surface reservoirs: Alarcon and Contreras, in 280 

parallel in the upper basin, and Tous, downstream. There is a vulnerable equilibrium between 281 

available resources (1798 million of m
3
 is the average annual inflow from 1940/41 to 282 

2011/12) and total demand (1640 million of m
3
) (CHJ, 2015). The Jucar river basin has been 283 

split into 9 sub-basins (Fig. 1) in order to characterize the spatial variability of droughts in the 284 

system. The division was done according to the drainage network of the system, location of 285 

main reservoirs, climatic characteristics, and data availability. 286 



Confidential manuscript submitted to J. Hydrology 

 

14 

 

 287 

Fig. 4. Location of the Jucar river basin (left) and sub-basins (right) 288 

Three geographical areas can be identified in the basin regarding climatology. The upper 289 

Jucar presents a continental climate, with mean precipitation of 630 mm/year and mean air 290 

temperature of 11.6
o
C. The area includes the catchment draining to the Alarcon reservoir in 291 

the Jucar river (mean annual flow of 396.1 million of m
3
/year, 1940/41-2011/12), the 292 

catchment of the Cabriel river, its main tributary (mean annual flow of 342.1 million of 293 

m
3
/year, 1940/41-2011/12), and the catchment of the Mancha Oriental aquifer, an extensive 294 

carbonate aquifer (7260 km
2
) hydraulically connected to the river. Intense overpumping in 295 

the last decades for irrigation has led to a significant drop in the water table, with the 296 

consequent streamflow depletion in the Jucar river (Sanz et al., 2011). Understanding the 297 

behavior of this stream-aquifer interaction is essential for characterizing the hydrology of the 298 

basin, and particularly, the low flow situations.  299 

The Mid Jucar region presents a mild climate (between the continental and Mediterranean 300 

climates), extending from Embarcaderos to the Tous dam in the Jucar river and including the 301 

Magro, Albaida and Sellent basins. Finally, the Lower Jucar, downstream the Tous dam, 302 

presents a typical Mediterranean coastal climate, with mean precipitation of 450 mm/year and 303 

mean air temperature of 17
o
C (CHJ, 2015). The river basin has suffered several significant 304 

droughts in the last 60 years, registering the most severe dry spells in the last two decades: 305 
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from 1991/92 to 1994/95 (average SPI of -1.02), from 1997/98 to 1999/00 (average SPI of -306 

1.13) and from 2004/05 to 2007/08 (average SPI of -1.08) (CHJ, 2007). Several previous 307 

studies have evaluated the impact of climate and land use changes in the Jucar basin or sub-308 

basins (e.g. Pulido-Velazquez et al., 2015;  Pérez-Martín et al., 2015; Marcos-Garcia and 309 

Pulido-Velazquez, 2017;). 310 

3.2 Historical and climate change data 311 

In order to characterize climatic variables for the historical control period (1971-2000), daily 312 

precipitation and temperature were obtained from the SPAIN 02 project (Herrera et al., 313 

2010), with high-spatial resolution (0.11
o
). Monthly discharge time series data at the gauging 314 

stations at the outlet of each sub-basin, previously transformed into impaired flow, were used 315 

for the calibration and validation of the hydrological model.  316 

We used the outputs from the CORDEX project to get the future time series of precipitation 317 

and temperature, through the Earth System Grid Federation platform (ESGF). CORDEX 318 

evaluates and improves regional climate downscaling models and techniques, producing a 319 

great range of sets of regional downscaled projections all over the world (Christensen et al., 320 

2014). 321 

The gross climatic projections have been obtained for three periods of time: control period 322 

(1971-2000), short-term period (2011-2040) and mid-term period (2041-2070). In this study 323 

we selected RCP 4.5 and RCP 8.5 scenarios in order to include a medium and a high, more 324 

extreme emission scenario. 325 

4. Application 326 

4.1. Climate change scenarios 327 

Results from different combinations of GCMs and RCMs (Table 1 at supplementary material, 328 

spatial resolution of 0.44
o
) have been analyzed in order to select the most suitable climate 329 
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model. The monthly average precipitation and temperature time series for the control period 330 

(1970-2000) have been compared (Fig. 5), obtaining that the simulated precipitation from the 331 

combination of the GCM simulations from the Canadian Centre for Climate Modelling and 332 

Analysis (CCCmaCanESM2) and RCA4 (as RCM) provides the best fit to the observed 333 

monthly precipitation during the control period. This GCM-RCM combination also shows a 334 

good performance in reproducing the observed average monthly temperature for the control 335 

period. For those reasons, it has been the selected combination in the present study. 336 

 337 

Fig. 5. Observed vs simulated (climate models) monthly average rainfall and temperature  of the control period 338 

4.2 Hydrological modelling with improved low flow simulation 339 

The hydrological simulation has been implemented through a set of monthly Temez models 340 

(Temez, 1977) for the 9 sub-basins in which the study area is divided into (Fig. 4). The 341 

Temez hydrological model (Temez, 1977) is a conceptual, deterministic and continuous 342 

monthly water balance model, lumped and with few parameters (just 4), which has been 343 

widely used for water resources assessment in Spain (Estrela et al., 1999). 344 

In this study we have modified the original formulation of the Temez model to improve the 345 

representation of the low-flow conditions (the hydrograph recessions), what is essential in the 346 

characterization of hydrological droughts (Fig. 6). The recession limb in a hydrograph easily 347 

deviates from a single exponential law or single linear reservoir model (Tallaksen, 1995). 348 
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Mathematically, the structure of the stream-aquifer interaction can be conceptualized as the 349 

drainage of an infinite number of independent linear reservoirs (Pulido-Velazquez et al., 350 

2005). In most practical problems, stream-aquifer flow exchange can be accurately 351 

reproduced with few linear reservoirs (Pulido-Velazquez et al., 2005), even in the case of 352 

complex karstic aquifers (Estrela and Sahuquillo, 1985). In this case, we use 2 linear 353 

reservoirs to improve the representation of the low-flow, recession conditions. The aquifer is 354 

modeled as two independent linear reservoirs, in which groundwater discharge from each 355 

reservoir or tank is linearly proportional to the storage V(t) above its outlet, with αi 356 

(groundwater discharge or recession coefficient) as the proportionality factor. The recharge is 357 

shared between the two tanks according to a certain allocation factor to be calibrated. The 358 

variation introduces two additional parameters (a second recession coefficient and an 359 

allocation factor to distribute the recharge between the two tanks) and one additional state 360 

variable (volume stored in the second tank). 361 

 362 

 363 

Fig. 6. Temez model scheme considering the aquifer as two linear reservoirs. 364 

The model has been calibrated for the 9 sub-basins using monthly discharge data from the 365 

gauging stations at the outlet of each sub-basin for the period 1971-2000, previously 366 

transformed into natural flow using historical data of water use in the basin (provided by the 367 

river basin authority) and nonlinear optimization to minimize an indicator of the goodness-of-368 
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fit between the observed and the simulated time series. The validation has been carried out 369 

for the period 2001-2007. Table 2 shows the goodness of fit of the hydrological model for the 370 

different sub-basins, using the original formulation (sub-index 1) and the modified procedure 371 

(sub-index 2). We can observe that the overall performance of the modified procedure 372 

overtakes the one of the original formulation. 373 

Table 2. Goodness of fit of the hydrological models 374 

Calib. Alarcón 

upper 

Alarcón 

middle 

Alarcón 

lower 

Contreras Molinar Tous Sueca Forata Bellús 

NSE1 0.78 0.81 0.73 0.65 0.50 0.58 0.54 0.67 0.77 

NSE2 0.84 0.82 0.73 0.73 0.50 0.60 0.61 0.75 0.75 

R1 0.89 0.90 0.91 0.81 0.71 0.58 0.78 0.82 0.88 

R2 0.91 0.90 0.91 0.86 0.71 0.60 0.80 0.87 0.89 

LNSE1 0.61 0.82 0.89 0.64 0.42 0.58 0.56 0.25 0.79 

LNSE2 0.75 0.82 0.90 0.77 0.42 0.58 0.57 0.69 0.69 

Valid.          

NSE2 0.87 0.94 0.89 0.63 0.09 0.21 0.47 0.56 0.52 

R2 0.94 0.98 0.96 0.91 0.25 0.78 0.76 0.64 0.87 

LNSE2 0.79 0.84 0.80 0.75 0.01 0.20 0.30 0.39 0.56 

 375 

The Temez model is able to properly represent the hydrology of the system, with the 376 

exception of Molinar and Tous sub-basins, with low values of the Nash-Sutcliffe coefficient. 377 

These values are not only attributable to the model’s behavior, but also to the uncertainty 378 

associated with the transformation of the data registered at the gauging stations into 379 

naturalized flow. In the first case, Molinar sub-basin presents a complex interaction with the 380 

Mancha Oriental aquifer, which has changed over time due to intensive pumping. In the 381 

second case (Tous sub-basin), the two existing gauging stations have incomplete time series, 382 

with only a few common years. The model also presents a low performance during the 383 

validation period for these sub-basins. Fowler et al. (2016) argue that Split Sample Test 384 

evaluations sometimes undervalue the predictive capacity of conceptual lumped models. 385 
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4.3 Corrected potential evapotranspiration  386 

We need a simple and efficient procedure that can be applied when temperature is properly 387 

characterized throughout the river basin but there is a poor spatial definition of other climate 388 

variables. For our study area we have used gridded daily temperature datasets from SPAIN 389 

02 project (Herrera et al., 2010) for the period 1971-2007 with high-spatial resolution (0.11
o
) 390 

and daily records of temperature, radiation, humidity and wind speed for the period 1999-391 

2014 in 23 stations.  392 

It is broadly documented that Thornthwaite’s method (Thornthwaite, 1948) undervalues the 393 

potential evapotranspiration (PET) in areas of continental climate (e.g. Sellers, 1963; 394 

Trajkovic, 2005). For example, it considers that PET is null when the temperature is near 395 

zero. For that purpose, we decided to use an "effective temperature" (Tef) instead of the 396 

original average temperature (as suggested by Camargo et al., 1999), as in Eq. 2, and a 397 

correction based in the daily photoperiod (Pereira et al., 2004) (Eq. 3): 398 

)3(
2

1
)( minmax TTkATkT avgef                                                     [2] 399 

N

N
TT efef




24

*
                  If              max

* TTT efavg                                         [3] 400 

Where Tef is the effective temperature, Tavg is the average daily temperature, Tmax is the 401 

maximum daily temperature, Tmin is the minimum daily temperature, A is the daily 402 

amplitude (Tmax-Tmin), k is a constant value empirically estimated and N is the 403 

photoperiod. The parameter k was calibrated by fitting the output values of the modified 404 

Thornthwaite scheme to the ones computed by Penman-Monteith equation for each of the 23 405 

complete stations available. Nevertheless, it continues to underestimate  the 406 

evapotranspiration in the continental climate zone during winter months (Fig. 7). 407 
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 408 

Fig. 7. Estimated PET (mm) using Penman-Monteith equation and modified Thornthwaite at two stations within 409 

different climate areas (using Eq. 2) 410 

To overcome this issue, we propose a modification of Eq. 2 for the calculation of the 411 

effective temperature by adding a new parameter b to provide more flexibility to the scheme 412 

(Eq. 4) 413 

b

avgef ATaT  1)(
                                                               [4] 

414 

Where Tavg is the average daily temperature, A is the daily amplitude and a and b are 415 

parameters. For the case study, we have generally obtained a good fit using values of a=4.5 416 

and b=0.5. The suggested formula was able to properly represent the intra-annual variation of 417 

PET within the continental climate area, even during the coldest months (Fig. 8). With 418 

regards to the stations located in the Mediterranean climate, there is little improvement under 419 

the new version (Fig. 8). 420 
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 421 

Fig. 8. Estimated PET (mm) using Penman-Monteith equation and modified Thornthwaite scheme at two 422 

stations within different climate areas (using Eq. 4) 423 

4.4. Time window selection 424 

We used the Anderson test to find that the annual autocorrelation is statistically significant 425 

(Fig. 1 at Supplementary material). We also analyzed the autocorrelation for time lags of 3 426 

(0.18), 6 (0.12) and 12 months (0.21). Since the highest autocorrelation is for an aggregation 427 

period of 12 months, this was the temporal lag selected. 428 

 429 

5 Results 430 

5.1 Historical droughts 431 

The results for both the SPI and SPEI indices are very similar within the historical period 432 

(1971-2000). As an example, Fig. 9 shows SPI vs SPEI for Contreras sub-basin (upper Jucar). 433 
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Therefore, SPI could be a suitable drought indicator during this period in the Jucar river 434 

basin, even though it ignores the role of temperature.  435 

 436 

Fig. 9. Historical SPI12 and SPEI12 in the Contreras sub-basin (upper Jucar) 437 

The run theory has been applied to the SPI historical time series for assessing the magnitude, 438 

intensity and duration of droughts (Table 3). The table reveals that in general, the mid (Tous) 439 

and lower (Forata, Bellus and Sueca) basins present longer and more severe (in magnitude 440 

and intensity) droughts than the upper Jucar (Alarcon and Contreras). This is consistent with 441 

the distribution of the main climatic areas in the basin (continental climate in the upper Jucar, 442 

transitional continental-Mediterranean in the mid basin, and typical Mediterranean in the 443 

lower basin).  444 

Table 3. Analysis of historical meteorological droughts based on the SPI12  445 

 Number of 

droughts 

Average 

magnitude 

Average 

Duration 

Average 

Intensity 

Drought 

category 

Contreras 10 14.92 16.10 1.32 Severe 

Alarcon upper 12 11.36 14.25 1.23 Moderate 

Alarcon middle 14 9.51 11.36 1.21 Moderate 

Alarcon lower 9 16.52 16.67 1.45 Severe 

Molinar 10 12.37 13.90 1.40 Severe 

Tous 2 25.95 26.50 1.70 Extreme 

Bellus 8 19.99 20.38 1.46 Severe 

Forata 10 15.00 17.50 1.37 Severe 

Sueca 8 16.01 17.25 1.46 Severe 

 446 
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The magnitude, intensity and duration of hydrological droughts derived from the 447 

Standardized Flow Index (SFI), unlike the meteorological droughts, cannot be directly linked 448 

to the main climatic areas in the Jucar river basin. Maximum mean drought magnitude, 449 

intensity and duration values could be observed in both, the upper (Contreras) and lower 450 

basin (Bellus, Sueca) (Table 4). As expected, the number of hydrological droughts is lower 451 

than the number of meteorological droughts, since not all meteorological droughts end up 452 

generating hydrological droughts. But, once a hydrological drought happens, its duration and 453 

magnitude overcome those of the meteorological drought. For example, in Contreras sub-454 

basin, 10 meteorological droughts are identified against only 4 hydrological droughts. 455 

However, the average magnitude of the meteorological droughts is 14.92, while for 456 

hydrological droughts is more than twice (37.49). 457 

Table 4. Analysis of historical hydrological droughts based on the SFI12  458 

 Number of 

droughts 

Average 

magnitude 

Average 

Duration 

Average 

Intensity 

Drought 

category 

Contreras 4 37.49 39.25 1.45 Severe 

Alarcon upper 8 16.72 20.50 1.18 Moderate 

Alarcon middle 6 18.71 25.50 0.91 Moderate 

Alarcon lower 6 18.63 25.83 1.00 Moderate 

Molinar 4 20.85 45.75 0.72 No drought 

Tous 3 15.49 18.00 1.43 Severe 

Bellus 5 32.06 36.40 1.52 Severe 

Forata 8 17.25 22.50 1.19 Moderate 

Sueca 4 35.00 44.75 1.40 Severe 

 459 

5.2 Droughts under climate change scenarios 460 

5.2.1 Drought analysis using relative indices 461 

Meteorological droughts were identified using the relative SPI (rSPI). In all cases, the worst 462 

scenario is the RCP 8.5 mid-term, which produces a higher increase in magnitude, more than 463 

50 % greater than for the historical period (Fig. 10). It is important to note that, although the 464 

number of dry spells decrease in future scenarios, the average duration and intensity 465 
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increases. Particularly, in Molinar sub-basin, the rSPI identifies a single dry spell that covers 466 

the entire analysis period for each scenario with the highest magnitude by far regarding the 467 

rest of sub-basins.  468 

 469 

Fig. 10. Meteorological droughts, average magnitude (rSPI12) in the short term (ST) and in the midterm (MT). 470 

To evaluate the role of the temperature increase in future droughts, the relative SPEI (rSPEI) 471 

was also computed and compared with rSPI for each sub-basin. Fig. 11 shows that the rSPEI 472 

identifies more intense droughts than the rSPI: for the RCP 8.5 mid-term in Contreras sub-473 

basin, the rSPEI average drought magnitude triples the estimated using the rSPI. This result 474 

makes clear that the effects of the future temperature increase on droughts in the basin could 475 

not be ignored, which requires moving from the classic SPI indices to the relative SPEI. The 476 

temperature rise in the scenarios would increase potential evapotranspiration, consequently 477 

enlarging the difference between SPI (which only depends on precipitation) and SPEI (which 478 

depends on precipitation minus potential evapotranspiration). Fig. 2 at supplementary 479 

material shows the drought magnitudes for the different sub-basins according to the rSPEI. In 480 

comparison with Fig. 10, it reveals that not only Molinar sub-basin presents a continuous dry 481 

spell, but also the adjacent sub-basins of Alarcon lower and Tous show the same pattern. 482 
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 483 

 484 

Fig. 11. Comparison between rSPI12 and rSPEI12 for Contreras. RCP 8.5 midterm 485 

Future streamflow time series were simulated using the times series of predicted precipitation 486 

and PET (estimated from temperature as described in Section 4.3) as inputs for the Temez 487 

hydrological model at each sub-basin for the RCP 4.5 and 8.5 scenarios. Results (Fig. 12) 488 

suggest that there is a huge uncertainty regarding the future availability of water resources, 489 

although mid-term scenarios agree in a large reduction of the average annual discharge 490 

(ranging between 8-43% for RCP 4.5 and 28-45% for RCP 8.5).  491 

 492 

Fig. 12. Changes in average annual discharge in the short-term (ST) and in the mid-term (MT) 493 

 494 

Hydrological drought assessment was performed calculating the relative SFI (rSFI) and then 495 

applying the run theory (Fig. 3 at supplementary material). Mid-term scenarios predict severe 496 

droughts in Contreras and Alarcon sub-basins, where the main reservoirs are located, and 497 
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extreme droughts in Molinar (one of the principal recharge areas of Mancha Oriental aquifer) 498 

and Tous. For the RCP 8.5 mid-term (worst scenario), the Jucar basin would suffer a 499 

generalized extreme drought. Moreover, Molinar and Tous sub-basins would register the 500 

major hydrological drought magnitudes (cumulative deficit) increase for each scenario, as it 501 

happened when considering meteorological droughts (Fig.10). 502 

 503 

5.2.2 Assessment of SPEI distribution parameters uncertainty and stationarity 504 

Fig. 13 shows a comparison between the percentage of change in mean (ΔM) of the effective 505 

precipitation (P-PET) for the future scenarios with respect to the historical period, and the 506 

OVL computed for the GEV distribution parameters. 507 

 508 

Fig. 13. Comparison between the average OVL of the distribution parameters (SPEI12) in the short-term (ST) 509 

and in the mid-term (MT) 510 

The percentage of change in mean (ΔM) for the short-term scenarios varies between 24.27% 511 

(Molinar) and 1.11% (Forata) for the RCP 4.5, and among 26.63% (Tous) and 0.72% (Forata) 512 

for the RCP 8.5. In the mid-term, the highest ΔM occurs in Alarcon upper (more than 100% 513 
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for the RCP 8.5), and the lowest is again located in Forata sub-basin (27.25% for the RCP 514 

8.5). For the mid-term scenarios, the OVL of the location parameter (OVLμ) is null or close 515 

to 0. Even for the short-term scenarios, OVLμ remains near 0 for the same sub-basins (lower 516 

Alarcon, Molinar, Tous and Sueca). Thus, there is no agreement between the density function 517 

of the location parameter for the historical period and the density function of the same 518 

parameter for the future scenarios. Only the upper sub-basins (Contreras, upper and middle 519 

Alarcon) and the small sub-basins of Forata and Bellus present higher values of the OVLμ for 520 

the short-term scenarios. Therefore, nonstationarity of the location parameter needs to be 521 

considered even for the short-term scenarios, with the possible exception of Forata sub-basin, 522 

which presents OVLμ values of 0.82 and 0.76 for the RCP 4.5 and RCP 8.5 short-term 523 

scenarios, respectively. Some sub-basins show high OVLα for the different scenarios 524 

(Contreras, Forata) whilst others present a low level of agreement (Molinar, Tous). Thus, the 525 

scale parameter does not shift homogeneously under climate change scenarios throughout the 526 

river basin; the convenience of considering it as time-dependent should be evaluated for each 527 

sub-basin. The shape parameter κ is difficult to estimate reliably and, for this reason, it is 528 

normally modeled as a constant (Coles 2001; Katz 2013, Salas and Obeysekera 2014). 529 

However, our results suggest that this assumption could not be appropriated in some sub-530 

basins (Alarcon lower, Sueca), which present OVLκ values lesser than 0.5 for different 531 

scenarios. Fig. 4 at supplementary material shows the spatial distribution of the OVL values 532 

in the different scenarios. 533 

6 Discussion 534 

The statistical foundation of the standardized indices assumes that, for any location, certain 535 

characteristics of statistical distribution of  precipitation such as the mean and distribution 536 

parameters remain stationary over time. This assumption constitutes the main limitation for 537 

the direct application of those indices to drought assessment under climate change, as they 538 
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provide the same values for both present and changed climates regardless of the changes in 539 

the climate conditions. Therefore, relative standardized indices have to be used to 540 

accommodate climate change.  541 

Two additional issues arise in the application and interpretation of the relative standardized 542 

indices. First, the selection of a proper threshold, as values outside the limits stated in current 543 

literature are frequently observed. No agreement about the thresholds for the standardized 544 

indices limits has been reached yet. McKee et al. (1993) proposed -2 and 2 as the lower and 545 

upper bounds for the SPI. Dubrovsky et al. (2009) subjectively selected these bounds to be -546 

5.55 and 5.55, while Stagge et al. (2015) discussed the necessity of placing reasonable limits 547 

on SPI/SPEI, bounding them between -3 and 3. For our purposes, the values outside the 548 

previous stated limits were kept, since we were mainly interested in reflecting the appearance 549 

of extreme events although the values reflecting the relative severity of those events could not 550 

be accurately quantified. The second issue is the appearance of extreme dry spells over many 551 

consecutive months, which provide no information on the evolution of the dry/wet 552 

conditions. For some scenarios extreme drought seems to become a common situation whilst 553 

it should be, by definition, a temporary deviation of the normal conditions. However, it only 554 

indicates that the future variable values belong to the tails of the historical distribution and, 555 

according to this past information, have a low or even null associated probability. Future 556 

water resource systems will have to adapt to different climate conditions than those we 557 

currently know and, therefore, what we consider “normal” today may be a wet spell in the 558 

future. 559 

When considering climate change scenarios, another uncertainty source emerges: the effect of 560 

climate change on variability, which can shift the distribution parameters over time. 561 

According to Salas and Obeysekera (2014), the scale parameter may have to be assumed as 562 

time-dependent if the upper bound of annual maxima may increase with time. Here we 563 
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propose to characterize both the uncertainty of the assumed GEV distribution parameters for 564 

the SPEI and the level of agreement between the historical and the future density function of 565 

these parameters. For this  reason we suggest that, if a low level of agreement exists, the 566 

parameter should be considered as nonstationary.  567 

Results show that the overlapping coefficients for the three parameters of the GEV 568 

distribution present a wide variation throughout the river basin, and it is not possible to 569 

identify a common pattern. Nevertheless, it is important to note that OVL for the location 570 

parameter is null or close to 0 for the mid-term scenarios in all sub-basins. Hence, the 571 

possible positions of the future variable distributions are outside the probable values 572 

corresponding to the historical distribution and nonstationarity should be considered. In 573 

relation to the scale and shape parameters, they do not shift homogeneously under climate 574 

change scenarios throughout the river basin and each sub-basin should be evaluated 575 

separately. Nevertheless, we suggest that the common assumption of a constant shape 576 

parameter could not be accurate in some of these sub-basins (Sueca, Alarcon-lower), which 577 

showed low values of the OVL for this parameter. To cope with the nonstationarity of 578 

climate, an interesting challenge is the definition of nonstationary standardized drought 579 

indices, in which some parameters of the distribution may vary in accordance with time or 580 

incorporate climate indices as covariates (Wang et al., 2015; Li et al., 2015). 581 

Finally, our results show a huge uncertainty with regard to the future availability of water 582 

resources in the basin. This is consistent with the dispersion observed in the literature in 583 

assessments of future precipitation and temperature in Mediterranean areas. For example, 584 

Mourato et al. (2015) found changes in precipitation ranging from +1.5 to −65 % and an 585 

increase in temperature from +2.7 to +5.9°C for the Sado and Guadiana basins in Southern 586 

Portugal, whilst Senatore et al. (2011) found an increase in the average annual temperature 587 

between +3.5 C and +3.9 C and a decrease between 9% and 21% in the cumulative annual 588 
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precipitation for the Crati basin in Southern Italy. In the Jucar basin, Chirivella Osma et al. 589 

(2015) found that the impact of climate scenarios on water resources showed a great degree 590 

of dispersion (ranging from -13.45% to 18.1% with a mean value of -2.13%) and, more 591 

recently, Marcos-Garcia and Pulido-Velazquez (2017) quantified this impact between -33.6% 592 

and 5.5% in the short-term and -43.5% and 2% in the mid-term. 593 

7 Conclusions 594 

Relative standardized indices have been used to assess climate change impacts on 595 

meteorological and hydrological droughts in the Jucar river basin, a Mediterranean basin in 596 

Eastern Spain with a gradient of climatic areas: from continental (upper basin) to 597 

Mediterranean (lower basin), with a transition in the mid basin. 598 

 599 

To compare the dry spells between the historical and  future conditions, we have used a 600 

combination of relative standardized indices. In order to enhance the capabilities of the 601 

standardized indices for the climatic and catchment conditions of the case study, we have 602 

improved PET estimation and the hydrological simulation of low-flow conditions. Finally, 603 

we have characterized the uncertainty and shifts of the assumed distribution of the parameters 604 

for the statistical representation of the indices under climate change scenarios.  605 

 606 

The results have shown that the climate change scenarios lead to a general increase in the 607 

severity of both meteorological and hydrological droughts, due to the combined effects of 608 

rainfall reduction and evapotranspiration increase. Although the Standardized Precipitation 609 

Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) show similar 610 

values for the historical period, under climate change scenarios the SPI could underestimate 611 

drought intensity and magnitude. Short-term scenarios presented droughts of lower 612 

magnitude and intensity than those identified for the mid-term scenarios. Our results also 613 
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suggest that the areas where most of the water resources in the basin are located (inner areas) 614 

are more prone to suffer an increase in drought severity under climate change, which would 615 

get worse in the mid-term. This fact may play an important role in the design of future 616 

drought management plans and adaptation strategies. The deep uncertainty associated with 617 

the assessment of the potential effects of climate change on water resource systems (Wilby 618 

and Dessai, 2010) calls for a sound combination of conventional top–down analysis and 619 

bottom–up approaches for designing robust and dynamic adaptation plans at the local scale 620 

(e.g.  Brown and Wilby 2012; Girard et al., 2015). 621 
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