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Abstract

Modelling and simulation of the dynamic interaction between pantograph and cate-
nary has become a powerful tool to expedite the catenary design process since, among
other advantages, it helps in reducing the number of the costly experimental in-line
tests.

In order to tackle these numerical simulations, in this Thesis the catenary system
is modelled by the Finite Element technique, based on the absolute nodal coordinates
formulation, while a simple lumped-mass model is used for the pantograph. The
interaction between the two systems is accomplished with a penalty formulation.
After solving the initial nonlinear configuration problem, the equation of motion is
linearised with respect to the static equilibrium position and it is then solved in time
by applying the Hilber-Hughes-Taylor (HHT) time integration method. However,
dropper slackening and pantograph contact losses are two sources of nonlinearities
which must be considered in the solution procedure at the expense of an increase in
the computational cost.

The main objectives of this Thesis are both to find optimal catenaries in terms of
current collection quality and to analyse the effect of installation errors in the dynamic
behaviour of the system. To achieve these goals, it is mandatory to perform a large
number of pantograph-catenary dynamic simulations for which the computational
cost can become prohibitive.

In order to reduce this computational effort, the first proposal made in this Thesis
is to precompute a parametric solution of the pantograph—catenary dynamic inter-
action for all values of the design variables, by means of the Proper Generalised
Decomposition (PGD) technique. Thus, the dynamic response of the system would
be instantly available when it is requested by the optimisation or the stochastic al-
gorithms. If dropper lengths are considered as design variables, this parametric ap-
proach is successful when applied to the static equilibrium problem. Nevertheless,
in the dynamic case, when dropper slackening is considered, the solution exhibits a
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great sensitivity to small changes in the parameters and therefore, a huge number of
PGD modes are required to obtain the parametric solution with enough accuracy.

The impossibility of having a parametric solution leads the author to propose
a fast strategy to simulate the dynamic interaction problem, providing remarkable
saves in computational cost. The method is divided into two stages which are based
on moving the nonlinear terms to the right hand side of the dynamic equation. In
the first stage, the response of the system under unitary forces is precomputed and
stored. Then, in the second stage of the method, the treatment of the nonlinearities
is condensed into a small system of equations, whose unknowns are now the forces
associated with the nonlinearities instead of the nodal displacements of the whole
system.

With this proposed algorithm, it is possible to carry out efficient optimisations
of the catenary geometry. Specifically, contact wire height and dropper spacing are
considered as design variables in order to obtain the most uniform interaction force
that leads to the optimal current collection. The optimisation problem is solved by
means of a classic Genetic Algorithm, applied to both simple and stitched catenaries.
The results obtained show that an optimal catenary design can remarkably improve
the current collection quality of the actual catenaries.

Finally, the influence of the installation errors on the dynamic behaviour of the
system is analysed under a stochastic approach in which variability in dropper length,
dropper spacing and support height are involved in the simulations. The use of a
Monte Carlo method allows the propagation of the uncertainty to the magnitudes
of interest of the dynamic solution and therefore, to obtain their probability density
function. The results of Monte Carlo simulations demonstrate that dropper spacing
errors are slightly influential, whilst dropper length and support height installation
errors have a strong influence on the dynamic behaviour of the system. Thus, allowing
for the variability present in the actual catenaries seems to be important to perform
more realistic simulations.
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Resumen

El modelado y la simulacién de la interaccion dindmica entre el pantografo y la cate-
naria se ha convertido en una herramienta imprescindible para agilizar el proceso de
diseno de catenarias ferroviarias ya que, entre otras ventajas, es posible reducir el
numero necesario de los tan costosos ensayos experimentales en via.

Para la realizacion de dichas simulaciones numeéricas, en esta Tesis la catenaria
se modela mediante el método de los Elementos Finitos, con una formulacién en co-
ordenadas absolutas, mientras que para modelar el pantografo se utiliza un modelo
simple de pardmetros concentrados. La interaccién entre ambos sistemas se trata con
un método de penalti. Tras resolver el problema no lineal de configuracién inicial, la
ecuacion del movimiento se linealiza con respecto de la posicion de equilibrio estéatico,
y se resuelve en el dominio temporal con el uso de la técnica HHT. Sin embargo, el aflo-
jamiento de las péndolas a compresion y los despegues del pantografo son dos fuertes
no linealidades que deben ser consideradas en la resolucién del problema dinamico,
aunque aumenten notablemente el coste computacional de cada simulacion.

Los objetivos principales de esta Tesis son encontrar catenarias 6ptimas en térmi-
nos de calidad de captacion de corriente y analizar los efectos de los errores de montaje
de la catenaria en su comportamiento dindmico. Para alcanzar ambos objetivos, es
necesario realizar un ntiimero elevado de simulaciones de la interaccién dinamica entre
pantografo y catenaria, cuyo coste computacional puede llegar a ser prohibitivo.

Para reducir este coste computacional, la primera propuesta realizada en esta Tesis
se basa en el precédlculo de una soluciéon paramétrica de la interacciéon dindmica entre
pantografo y catenaria, para cualquier valor de las variables de diseno, por medio
de la técnica Proper Generalised Decomposition (PGD). De este modo, la respuesta
dindmica del sistema puede ser evaluada instantdneamente cuando lo requiera tanto el
algoritmo de optimizacién como el de propagacion de incertidumbres. Silas longitudes
de las péndolas son consideradas como variables de diseno, la aplicacion de este método
resulta exitosa en el caso del problema de equilibrio estatico. Sin embargo, para el
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caso de la dindmica, donde se considera que las péndolas no transmiten fuerzas a
compresion, la solucion del problema resulta muy sensible ante pequenos cambios de
estas variables y por tanto, se requiere de un elevado nimero de modos PGD para
tener una solucién paramétrica de suficiente precision.

La imposibilidad de disponer de una solucién paramétrica conduce a proponer
una estrategia rapida para resolver el problema de interaccién dinamica con la que se
reduzca considerablemente el tiempo de calculo. El algoritmo propuesto se divide en
dos fases y se basa en pasar los términos no lineales a la parte derecha de la ecuaciéon
de la dindmica del sistema. En la primera fase, se calcula y almacena la respuesta
del sistema sometido a fuerzas unitarias. Posteriormente, en la segunda etapa del
método, el tratamiento de las no linealidades se condensa en un sistema de ecuaciones
pequeno cuyas incognitas pasan a ser las fuerzas relacionadas con las no linealidades,
en vez de los desplazamientos nodales de todo el sistema.

Con este algoritmo eficiente, es posible llevar a cabo la optimizacion de la geometria
de catenarias ferroviarias. En concreto, la altura del cable de contacto y la separacién
entre péndolas son los pardmetros de diseno a optimizar para obtener asi una fuerza
de interaccion entre el pantografo y la catenaria lo mas uniforme posible y, por lo
tanto, conseguir una captacion de corriente 6ptima. El problema de optimizacion se
resuelve mediante un Algoritmo Genético cléasico, y se aplica tanto a una catenaria
simple como a una catenaria con falso sustentador. Con los resultados obtenidos
se demuestra que un diseno 6ptimo de la geometria puede mejorar notablemente la
captacion de corriente de las catenarias actuales.

Finalmente, se estudia la influencia que tienen los errores de montaje de la cate-
naria en el comportamiento dinamico del sistema. Con un planteamiento estocastico
del problema, se considera la variabilidad en la longitud de las péndolas, en la sepa-
racion entre ellas y en la altura de los soportes. Mediante la aplicacién de un método
clasico de Montecarlo, se propaga la incertidumbre a las magnitudes de interés de la
solucion dinamica y se obtiene su funcién de densidad de probabilidad. Los resultados
obtenidos muestran que los errores cometidos en la colocacion de las péndolas apenas
tienen influencia en la respuesta del sistema, mientras que los errores en la longitud
de las péndolas y en la altura de los soportes si que influyen considerablemente en
la dindmica del mismo. Por tanto, parece importante tener en cuenta la variabilidad
presente en las catenarias para poder realizar simulaciones més realistas.




Resum

El modelatge i la simulaci6 de la interaccié dinamica entre el pantograf i la catenaria
ha esdevingut en una ferramenta imprescindible per a agilitzar el procés de disseny de
catenaries ferroviaries degut, entre altres coses, a la possibilitat de reduir el nombre
dels tan costosos assajos experimentals en via.

Per a la realitzacié d’aquestes simulacions numeériques, en aquesta Tesi la catenaria
es modela mitjancant el métode dels Elements Finits, amb una formulacié en coor-
denades nodals absolutes, mentre que per a modelar el pantograf s’empra un model
simple de parametres concentrats. La interaccié entre ambdoés sistemes es tracta amb
un métode de penalti. Després de resoldre el problema no-lineal de configuracié ini-
cial, 'equacié del moviment es linealitza amb respecte de la posicié d’equilibri estatic,
i es resol en el domini del temps amb la técnica HHT. Tanmateix, I'afluixament de
les péndoles a compressio i la pérdua de contacte del pantograf son dues fortes no-
linealitats que han de ser considerades en la resoluci6é del problema dinamic, malgrat
I’augment que produeixen del cost computacional de cada simulacié.

Els objectius principals d’aquesta Tesi sén trobar catenaries optimes en termes
de qualitat de captacio de corrent i analitzar els efectes dels errors de muntatge de
la catenaria en el seu comportament dindmic. Per a assolir aquests objectius, és
necessari realitzar un nombre elevat de simulacions de la interacci6 dinamica entre
pantograf i catenaria, el que pot comportar un cost computacional prohibitiu.

Per tal de reduir aquest elevat cost computacional, la primera proposta real-
itzada en aquesta Tesi consisteix a precalcular una solucié paramétrica del problema
d’interaccié dinamica entre pantograf i catenaria, per a qualsevol valor de les vari-
ables de disseny, mitjangant la técnica Proper Generalised Decomposition (PGD).
D’aquesta forma, la resposta dinamica del sistema pot ser avaluada instantaniament
sempre que ho requerisca tant l'algoritme d’optimitzacié com el de propagacié de la
incertesa. Si les longituds de les péndoles es consideren com a variables de disseny,
I’aplicacié d’aquest métode és exitosa en el cas del problema d’equilibri estatic. Aixo
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no obstant, per al cas de la dinamica, on es considera que les péndoles no poden
transmetre forca a compressio, la solucié del problema és molt sensible davant xi-
cotets canvis d’aquestes variables i per tant, es necessita un elevat nombre de modes
PGD per a obtenir una solucié paramétrica amb suficient precisio.

L’impediment de no disposar d’una soluci6é paramétrica ens porta a proposar una
estratégia rapida per a resoldre el problema d’interaccié dinamica que reduisca con-
siderablement el temps de simulaci6. L’algoritme proposat es divideix en dues fases
i es basa a moure els termes no-lineals a la part dreta de I’equacié de la dinamica
del sistema. En la primera fase es calcula i s’emmagatzema la resposta del sistema
davant forces unitaries. A continuacid, en la segona etapa del métode, el tractament
de les no-linealitats es condensa en un xicotet sistema d’equacions les incognites del
qual passen a ser forces en compte de desplagaments.

Amb aquest algoritme eficient, s’ha pogut realitzar I'optimitzacio de la geometria
de catenaries ferroviaries. En concret, I’altura del cable de contacte i la separaci6
entre péndoles es consideren com a parametres a optimitzar per a obtenir una forga
d’interacci6 entre el pantografi la catenaria el més uniforme possible i per tant, acon-
seguir una Optima captacié de corrent. L’optimitzacié es porta a terme mitjancant
un Algoritme Genétic classic, i s’aplica tant a una catenaria simple com a una amb
fals sustentador. Amb els resultats obtinguts es demostra que un disseny optim de la
geometria pot millorar notablement la captacié de corrent de les actuals catenaries.

Finalment s’estudia la influéncia que tenen les errades de muntatge de la catenaria
en el comportament dinamic del sistema. Aquest plantejament estocastic del problema
considera variabilitat en la longitud de les péndoles, la separacié entre aquestes i
laltura dels suports. Per mitja d’un métode classic de Montecarlo, es propaga la
incertesa a les magnituds d’interés de la soluci6 dinamica i s’obté la seua funcio
de densitat de probabilitat. Els resultats obtinguts mostren que hi ha molt poca
influéncia per part de les errades comeses en la col-locacié de les péndoles, mentre que
les errades en la longitud de les péndoles i en l'altura dels suports si que influeixen
considerablement en el comportament dindmic del sistema. Per tant, és important
tenir en compte la variabilitat present en les catenaries per a realitzar simulacions
més realistes.
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Thesis report







Chapter 1

Introduction

“Thinking is the hardest work there is, which is
probably the reason why so few engage in it”
Henry Ford

1.1. Motivation

Today, the high-speed railway has become one of the most used means of trans-
portation around the world. Specifically, since the inauguration of the Madrid-Sevilla
line, Spain has been expanding its infrastructures, becoming the first country in Eu-
rope to have 3100 km of high-speed railways.

This large network is endowed with overhead contact line (OCL) equipment, also
known as catenary, which provides the required power to the electrical engines of the
locomotive. The power supply is carried out by means of a sliding contact between
the OCL and the pantograph, the mechanism located on the roof of the locomotive.
Technical criteria of such interaction are collected in European standards such as EN
50367 [1] and the Technical Specifications for Interoperability (TSI) [2].
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Planning, designing and setting up a new OCL [3] is a tough process that requires
a lot of effort and a great economic investment. Current collection performance, which
is one of the greatest challenges related to the development of high-speed rail systems,
largely depends on the results of this process. However, thanks to the increasing com-
putational power over the last decades, the pantograph—catenary coupled dynamics
can be studied by means of numerical simulations. With this option at hand, a wide
range of possibilities are opened for the catenary designers, who can simulate the use
of different materials, geometric configurations, train speeds, etc., with only the use
of a computer. Furthermore, several of the intricate in-line tests which require a great
amount and variety of resources can be replaced by numerical simulations.

As previously said, power supply is a key factor in high-speed railway systems.
Performance of the supply is strongly related to the force generated in the interaction
between the pantograph and the catenary. On the one hand, this interaction force
should be high enough to prevent pantograph detachments that cause both interrup-
tion in the supply and electrical arcing with the consequent damage to the interfaces.
On the other hand, the interaction force should not be too high, as this would pro-
duce excessive wear on the sliding surfaces. Thus, an undesirable interaction force will
produce damage to the system, shortening the service time and therefore, increasing
the maintenance costs. Considering that these costs can be very high, there is an
important need to find optimal topologies of catenaries in terms of current collection
quality.

Another important aspect is the accuracy of the simulation tools, which must be
guaranteed to give validity to the obtained results. In fact, specific standards (EN
50318 [4]) have been developed to validate the simulation tools with the purpose of
ensuring certain levels of accuracy. However, all these software follow deterministic
approaches, which ignore the uncertainties present in the actual system. For instance,
installation errors can have a significant impact on the dynamic behaviour of the
system, worsening the current collection performance. For that reason, it is important
to have models that account for these sources of variability, providing more reliable
results.

The main motivations of this Thesis are:

e The need for efficiently simulating the pantograph—catenary dynamic interaction
to reduce time and costs in the OCL design process.

e The high maintenance costs associated with the replacement of damaged ele-
ments due to arcing or friction wear produced by poor quality of the power

supply.

e The importance of having more realistic simulations allowing for the variability
present in the actual catenaries due to installation errors, which can modify the
dynamic behaviour of the whole coupled system.




1.2. Description of a high-speed catenary

1.2. Description of a high-speed catenary

The OCL is a cabling structure which provides the necessary current to propel
electric trains. A picture of a high-speed railway catenary with its main components
highlighted is shown in Fig. 1.1.

Among the vast variety of existing topologies of catenaries, from the mechani-
cal point of view, a railway catenary is mainly made of two groups of components:
structural elements and cables. Masts with brackets and steady arms are the support
points to which the cabling is attached.

Stitch wire el

Support

Messenger

e \ Dropper VR
e

Steady arm Contact
wire i

ik

Figure 1.1: Picture of a high-speed railway catenary.

Regarding the cabling, the messenger or carrier cable is directly supported by
brackets at regular intervals showing a characteristic catenary curve shape. The
section of catenary going from one bracket to another is called the span. The contact
wire is in charge of transmitting the electrical current to the locomotive by means
of a sliding contact with the collector strips of the pantograph. In order to keep the
contact wire at the desired height, it is connected to the messenger cable by means
of droppers, whose lengths play an important role in determining the contact wire
height profile.

Another interesting feature of a railway catenary is noticed when it is viewed from
above. Steady arms pull the contact wire to create a zigzag pattern along the track
path. This staggering is essential to assure uniform wear on the contact strips of the
pantograph collector.

Near the supports, a catenary usually exhibits higher stiffness. To reduce this
unevenness in the vertical stiffness, some types of catenaries include stitch wires,
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which provide more flexibility to this area of the system. Other catenaries present
the contact wire with some amount of static sag (pre-sag) to keep the contact point,
under the action of the pantograph, at a similar height.

To allow maintenance of the overhead line without turning off the entire system
and also to facilitate the stringing process, the line is divided into electrically separated
portions known as “sections” of approximately one kilometre in length. At the ends
of each section there is a compensation system, usually composed of pulleys and
counterweights, which keeps the tension of the contact and messenger wires constant,
even under dilatations or contractions produced by temperature changes.

1.3. Objective

This Thesis aims to extend and deepen the knowledge of the pantograph—catenary
dynamic interaction by means of numerical simulation. To this end, the following two
main objectives are proposed:

1. Optimisation of the geometry of a railway catenary. When dealing with
a high-speed OCL, the current collection performance is directly related to the
force produced within the interaction between the pantograph and the contact
wire. This dynamic interaction force depends, in turn, on the contact wire
height profile among other factors. Thus, optimisation of parameters such as
dropper lengths or dropper spacing seems to be crucial to obtain an adequate
contact wire height profile. With the achievement of this objective not only
the current collection will be improved, but also the wear of the sliding surfaces
will be decreased with the consequent reduction in maintenance tasks and costs.
The strategy used to optimise the catenary and the obtained results are detailed
in Paper C.

2. Assessment of the uncertainty produced by installation errors. The
current software, which is capable of simulating the pantograph—catenary dy-
namic interaction, is usually fed by the nominal or design values of the param-
eters that lead to the initial configuration of the catenary. However, in a real
set-up, the stringing process is not prevented from having some little mistakes,
thus leading to final geometries which differ from those planned in the design.
In order to perform more realistic simulations it is advisable to move from a
deterministic to a stochastic modelling, in which installation errors are taken
into account and their influence on the dynamic behaviour of the system can be
quantified. This objective is thoroughly discussed in Paper D.




1.4. Thesis layout

The above two main objectives require performing thousands of simulations of
the pantograph—catenary dynamic interaction. Thus, if each of these simulations is
time-consuming, the objectives set in this Thesis could not be achieved due to the
prohibitive computational cost of the simulations. That is why a third objective
emerges:

3. Reduction of the computational cost of the pantograph-catenary dy-
namic interaction simulation. Ideally, if the solution of the pantograph—
catenary dynamic interaction problem could be precomputed and stored for
any value of a given parameter, in an optimisation procedure or in a stochastic
scenario each simulation would be instantly performed by only evaluating the
precomputed solution with the given values of the parameters. The construc-
tion of such a parametric model is presented in Paper A. However, in view of
the drawbacks of the aforementioned strategy, another way of achieving this ob-
jective consists of modifying the time integration procedure to reduce as much
as possible the time invested in finding the solution. Thus, a reliable and fast
algorithm is proposed in Paper B.

1.4. Thesis layout

The Thesis is divided into two parts. After these introductory remarks, the re-
mainder of the first part is an overview of the Thesis which includes Chapter 2, with a
complete description of the state of the art. A detailed definition and justification of
the models chosen to deal with the problem at hand is provided in Chapter 3. Chap-
ter 4 groups and links the main contributions of the Thesis and finally, a summary of
the conclusions drawn from this work and further research proposals are presented in
Chapter 5.

The second part of the document consists of a compilation of the four papers which
provide the scientific contributions of the Thesis. All the papers are presented without
journal editing, and the citation of the corresponding journal or some information on
the submission is included on the cover of each paper.

Paper A describes the construction of a parametric model of the static equilibrium
problem of an overhead line. The model is based on the PGD technique and includes
initial dropper lengths as extra-coordinates. A fast strategy to deal with the time
integration of the pantograph—catenary dynamic interaction is proposed in Paper B.
This algorithm is fully exploited in Paper C in order to find the optimal configurations
of high-speed railway catenaries and also in Paper D to evaluate the uncertainty in
the dynamic behaviour of a catenary associated with its installation errors.







Chapter 2

State of the art

“The difference between stupidity and
genius s that genius has its limits”
Albert Einstein

The great expansion of railways across the world demands an accurate pantograph—
catenary interaction that entails cheaper maintenance costs and faster operation of
trains. That is the main reason why in the last decades high effort has been put into
research on topics related to pantograph—catenary interaction. As stated in [5], the
number of papers published on this topic have increased from 19 in 2005 to 80 in
2016.

Good overviews of simulation of the pantograph—catenary dynamic interaction
can be found in [5-8]. Also, the recent benchmark exercise [9] brought together ten
different simulation codes from nine different countries, providing a detailed picture
of the state of the art. Following this line, this section is aimed at providing a
review of the literature, paying special attention to the modelling of the pantograph—
catenary dynamic interaction, the techniques used to speed up the calculations, the
optimisation of the system and the introduction of irregularities and variability into
the simulations.




2. State of the art

2.1. Catenary modelling

First attempts at describing the catenary dynamics were based on simplified math-
ematical models, such as lumped-mass models [10] or infinite string models [11]. How-
ever, these basic techniques were soon replaced by more complex models enabling
reliable simulations of the system behaviour.

More realistic models were introduced to consider the stiffness variation along the
span [12-14] or even the apparent mass variation [15,16]. Although low computational
cost is required with the use of these simplified models, relevant features such as wave
propagation in the wires are not considered, leading to inaccurate results.

In order to consider wave propagation and reflection phenomena, a string model
with axial tension was widely used in the past [17,18], although it is also found in
recent publications [19,20]. These string models do not allow for bending stiffness, and
reveal a discontinuity in the slope of the wire, which is an unrealistic representation of
the physical behaviour. Thus, Euler-Bernoulli beam models became the most used to
represent the catenary wires (see for example [21,22]), since shear effects and rotatory
inertia are negligible for the usual frequency range of interest [6,23].

Other components of the catenary are modelled in different ways. Although some
authors do not allow for dropper slackening [24-30], it is an important feature that
should be regarded in the models as stated in [31], where experimental curves of
dropper behaviour are provided. Due to the low bending stiffness of these elements,
most dropper models are based on either a mass-spring-damper system with slack-
ening [20,32-34] or a bar element with slackening [22,35-38|. These two options are
also used to model steady arms [31].

Two approaches are usually used for the numerical treatment of the resulting
differential equations: the Finite Difference Method (MDF) and the Finite Element
Method (FEM). However, whilst few references are found in which the FDM is used
for the spatial discretization of the catenary model [19,28,29,39]|, the FEM has become
the most used method to this end, achieving a good balance between computational
effort and accuracy.

The supremacy of the FEM is clearly seen in the benchmark exercise [9], in which
nine of the ten different simulation codes used it. The classical beam formulation with
rotational degrees of freedom [21,22,35,40,41] and the Absolute Nodal Coordinates
Formulation (ANCF) [38,42-44] are the two most used formulations. The main ad-
vantage of the latter is that large deformation effects can be easily considered. Other
less common approaches, use analytical expressions of the elastic cable [45], include
torsional effects [46] or are even based on the analytic catenary equation [47].
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2.2. Pantograph modelling

In order to model the pantograph, two or three lumped-mass linear models are
widely used in the literature [9,19,23,46,48] whose parameters can be adjusted by
experimental tests [49]. These simple models can be improved by the addition of
two contact points [50] or more degrees of freedom, such as the rolling motion of the
pan-head [33,41,51,52], by the use of modal coordinates to consider the flexibility of
the collectors [53], or even by simulating nonlinear elements such as friction dampers
or bump stops [36].

However, to take into account more realistic features and geometric nonlinearities,
multibody approaches are currently gaining more and more acceptance [21,54,55] to
model the pantograph. These models are not only composed of rigid bodies [25,42]
but also rigid-flexible hybrid models [56,57] are used to enlarge the frequency range
of validity of the models.

2.3. Coupling modelling and numerical
integration

The pantograph—catenary coupling equations must allow for the possible loss of
contact between both systems. This is usually carried out either by kinematic con-
straints with Lagrange multipliers [13,23,50,58] or by the penalty method, which is the
most used in the benchmark [9]. The latter ranges from the simplest case with a high-
stiffness element [27,46], accompanied sometimes with a damping element [22,31], to
the more general case of Hertzian type contact with internal damping [55, 59].

Although punctual contact is widely accepted, other formulations can consider
distributed contact by means of a density function [23,50,60], the lateral component
of the contact force [41,61] or the flexibility of the collectors [57].

Regarding the time integration methods, the central differences method is used
in [50], Runge-Kutta is applied in [44] and a explicit two-step method is considered
in [39]. However, there is a major consensus in the literature for using the Hilber-
Hughes-Taylor (HHT) family of implicit time-integration methods [9,30,35,40], which
are unconditionally stable and allow the use of longer time steps.

Modal Superposition Method is an option broadly used [26,30,62-65], especially
when a fast solution is required. Although the displacement of the contact point can
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be calculated without interpolation, the modal truncation error makes this approach
not valid to consider more realistic conditions.

Another interesting strategy used by some authors consists of simulating the cate-
nary and pantograph by different codes in which the time integration process is co-
ordinated on both subsystems via a co-simulation procedure [40,54,55,66].

2.4. Initial configuration problem

The initial configuration of the catenary comprises both static equilibrium and
design requirements (tensions in wires, arrangement of droppers, initial sag...).

A very simple approach assumes the messenger wire follows a parabola [3], but
considers neither mechanical equilibrium nor contact wire sag. To circumvent this
drawback, some authors split the catenary into two subsystems (contact wire and
messenger cable) and iteratively compute the dropper forces to obtain the desired
position of the cabling [22,36].

Other iterative methods, such as the negative-sag method applied in [34] or the
one used in [21,33], are based on linear formulations and proceed by modifying the
dropper lengths at each step of the procedure. Analytic expressions for calculating
length of droppers and pre-sag of messenger wire are also found in [43].

An efficient algorithm based on the analytic catenary equation is proposed in [67],
whereas in [68] the catenary configuration is continuously evolved by dynamic simu-
lation until an equivalent configuration of the catenary at static equilibrium is com-
puted. Optimisation techniques are also used to find the dropper lengths that hold
the contact wire as close as possible to the target position [55].

The above mentioned methods assume that the initial length of messenger and
contact wire elements are given. This assumption is not made in [45], where the
proposed strategy leads to very accurate results. Finally, one of the most reliable
methods present in the current literature was proposed in [69] and it is fully exploited
in this Thesis. It is based on the use of ANCF beam elements to build a nonlinear
problem in which the nodal coordinates and the initial lengths of certain groups of
elements are set as unknowns to fulfil both the static equilibrium and the design
requirements.
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2.5. Real-time simulations

One of the trends in the last decades is to replace part of the numerical model by
the physical system in what is known as Hardware-In-the-Loop (HIL) simulations. In
the case of pantograph—catenary interaction, the actual pantograph interacts with a
numerical model of the catenary, which needs to have real-time capabilities.

In order to alleviate computational cost when solving the pantograph—catenary
dynamic interaction problem, a moving mesh strategy is proposed in [70], a high
performance tool was developed in [50] and the modal superposition technique is
recommended in [7]. Despite these attempts, to date only very simplified catenary
models are able to be used in HIL simulations.

The first papers dealing with HIL simulations for pantograph—catenary interaction
present a test rig in which the catenary is modelled by a modal approach [62,71]. The
catenary model used in these works does not consider the slackening of droppers.
Similarly, a simple modal-based catenary model is proposed in [7] with real-time
capabilities.

Dropper slackening is introduced by modal superposition techniques in [64] along
with a shift forward strategy that enables the consideration of only a simplified model
of a few spans of the catenary. This strategy also appears in [72] to assess an active
control pantograph, in [73] with the introduction of the stagger in the test rig and
in [74] to explore a new type of non conventional dropper.

The most recent proposal is found in [28]|, where the formulation is transformed
using moving spatial coordinates. The absorbent boundary conditions to avoid wave
reflections on the boundaries of the small scale catenary model introduce significant
deviations in the response of the catenary when compared to the use of a full catenary
model. Following the same approach, dropper slackening is taken into account in [75]
and [29], where different control strategies are discussed.

This short review on real-time simulations reveals the need to put more effort
into reducing the computational cost while maintaining a reasonable accuracy of the
pantograph—catenary dynamic interaction simulations.

2.6. Parametric analyses and optimisations

The influence on the contact quality of several parameters of pantograph and
catenary models has been extensively studied in the literature. From a static point
of view, first investigations [76] proposed optimal values of several parameters, such
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as tension in the wires, to achieve the most uniform stiffness distribution along the
span.

However, dynamic behaviour is more critical for assuring a good current collection
performance. Regarding the pantograph, the dynamic sensitivity analysis performed
in [77] reveals that the frame and bow masses, along with the damping and stiffness
of its attachment with the vehicle roof, are the most influential parameters on the
power supply quality. With the use of a direct differentiation method, it is found
that the pantograph movement is strongly influenced by the span length according
to [78]. The results given in [79] state that the less the pan head mass and the higher
the stiffness of the collector bow, the better the contact quality. Furthermore, the
influence of the main components of the pantograph is also studied in [27, 66, 79].
Optimisation of the pantograph model parameters is accomplished in [80] using a
differential evolutionary algorithm, in [14] with a robust design technique and in [81]
applying a genetic algorithm.

Focusing on the catenary system, tension in the wires, pre-sag and arrangement
of the end droppers in the span are studied in [82] to find out their best values. The
optimal amount of contact wire initial sag is thoroughly discussed in [83], which states
that no benefits of pre-sag are found at high speeds. However, dropper spacing is only
briefly analysed in [84]. In order to increase the operational speed, the influence of
several parameters is revealed in [85], and the best choice from those gave rise to an
upgraded catenary. A parametric analysis of catenary geometry, including parameters
such as dropper lengths, support heights and wire tensions, is made in [86] with the
Sobol index method. Finally, knuckle junctions are optimised in [87] and also studied
in [66].

2.7. Simulation of irregularities and
uncertainties

Although defects and irregularities are always present in high-speed railway cate-
naries, dynamic simulations of pantograph—catenary interaction are mainly based on
deterministic approaches, disregarding the variability present in the system. Never-
theless, some contributions have been found in recent years.

The topic was first addressed in [88] with the development of a diagnostic proce-
dure based on measurements of the pantograph dynamics and the application of an
Extended Kalman Filter to estimate the interaction force. With this procedure, the
impact of overhead line irregularity on current collection is discussed in [89].

Other authors have proposed installation guidelines [90] which ensure several pa-
rameters characterising the dynamic behaviour to be within acceptable ranges. Local
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singularities of contact wire height produced by the length of a single dropper or the
height of a single support are investigated in [91] by means of simulations.

Geometric parameters, such as dropper lengths, are statistically identified from
a wide set of experimental measurements in [92]. This allowed the introduction of
variability into pantograph—catenary dynamic interaction in [93], where the authors
reveal the need for further research on the topic.

2.8. Other related topics

Apart from the topics discussed above, there are many more interesting contribu-
tions related to pantograph-catenary interaction.

Overlap sections are of major interest when studying the catenary dynamic be-
haviour. They are successfully simulated in [60,63,94] and also in [95], which studies
the effect of section insulators too. Furthermore, multiple pantograph operation is
commonly found in actual high-speed trains. Effects of the leading pantograph pas-
sage to the rear pantograph are analysed in [18,59].

Pantographs with active control are emerging as a promising solution to increase
the operational train speed. Among the several proposals for control laws and system
actuators that are found in the literature, [15,16,96-99] are especially relevant.

When two surfaces are in sliding contact, analysis and prediction of wear becomes
a key aspect for maintenance operations. A model to predict the contact wire wear
is proposed in [100,101] and pantograph collector strips wear is studied in [102,103].

Other researches focused on the effects of locomotive vibrations on the dynamics
of the pantograph—catenary coupled system. While a significant influence is reported
in [24], the results given in [104] show that vertical vibrations of the train, caused by
irregularities in the track, are not relevant to the pantograph—catenary interaction.

Finally, wind loads also have an important effect on the catenary cabling and
the pantograph movement. The galloping instability phenomenon is studied in [105].
Wind tunnel tests are performed in [106] to find the aerodynamic forces acting on the
collector of different pantographs. Furthermore, cross-wind action with turbulence is
considered in [107] to simulate its effect on the pantograph—catenary system.
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Chapter 3

Pantograph-catenary dynamic

Interaction simulation

“I know that I am intelligent, because
I know that I know nothing”
Socrates

This section is devoted to offering a thorough description of the pantograph and
catenary models used in this Thesis and the strategy followed to deal with their
dynamic interaction. Starting from the formulation governing each subsystem model,
the initial configuration problem and the time integration scheme used are explained
in detail.

3.1. Mathematical models

The current collection system is composed of two subsystems that need to be
modelled, namely the catenary and the pantograph. Besides, an additional model is
also required to consider the sliding contact which couples them.
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3. Pantograph-catenary dynamic interaction simulation

3.1.1. Catenary

Among the different options identified in Chapter 2, the Finite Element Method
(FEM) is the most used method to model realistic catenary behaviour [9]. Specifically,
in this work the catenary cables are modelled by beam elements based on the absolute
nodal coordinate formulation (ANCF). As previously stated, this formulation has
also been used by other authors for railway catenary models [43,108]. With this
formulation, both the initial configuration and the dynamic interaction problems can
be dealt with, which is clearly a major benefit.

ANCF applied to very slender beams results in elements which only have six
degrees of freedom per node in a three-dimensional problem, taking into account
axial and bending deformations. This ANCF beam element is used to model both
the messenger cable and the contact wire. Fig. 3.1 shows a sketch of the reference,

Figure 3.1: Reference (a), undeformed (b) and deformed (c) configurations of the
ANCEF beam element.

the undeformed and the deformed configurations of a beam element. The position
vector in the deformed configuration r = [z y 2|7 can be interpolated using the shape
function matrix as:

r=Ngq (3.1)

The vector of degrees of freedom for a beam element with nodes ¢ and j is:

T
— ) ) . Oxzy  Oyi Oz ) ) ~ Oz;  dy; 0z
qy = |: Ti Yi Zi Dx Dx dx Tj Y Zj a—XJ 3_);7 3_)(] (32)

where x € [0, lycf] is the local coordinate, I, being the undeformed or initial length
Ox; Oyi

of the element. z;, y; and z; are the absolute coordinates of node 7 while O Ox
0z;

and Ox denote the slopes in each spatial direction. In this case, the absolute position
at a given point with local coordinate x is defined by means of a cubic Hermitian
interpolation which guarantees the required C' continuity of the solution between
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the elements. The shape function matrix can be written as:
Np(x) = [Noals | Nools | NisIs | Npsls)]

3.3
Np1(€) =1 =362 +26% Npa(&) = lres(§ — 262 + &%) (3:3)

Nb3(§) = 352 - 253 Nb4(§) = lref(_§2 + 53)

where the normalized local coordinate & = x/l,r € [0,1] and I3 is the 3 x 3 identity
matrix.
Steady arms, droppers and stitch wires are modelled by nonlinear bar elements.
In this case, their degrees of freedom are only the absolute position of the two nodes
of the element, that is:
T
Qo = | Ti Yi Zi X5 Yj Zj (3-4)

For these elements, as no bending deformations are taken into account, we use the
linear interpolation

Na(x) = [Nails | Ngols]

(3.5)

E+1

Na(©) =-S5 Na(e) =37

in which the normalised coordinate is £ € [—1, 1] in this case.

Fig. 3.2 shows a picture of the FE model of a straight catenary section in which all
the modelled components are highlighted and supports have been replaced by suitable
boundary conditions (triangles). In this model we also consider the dropper clamps as
punctual masses. The x direction is aligned with the track and the vertical direction
is on the z axis. The y direction is chosen perpendicular to them to form an Euclidean
coordinate system.

The displacements of the initial and final points of the messenger cable and contact
wire (red triangles) are restricted like those of the ends of the steady arms connected
to the brackets (orange triangles). The points where the messenger cable is connected
to the supports (black triangles) have the displacements in y direction restricted and
two options are possible regarding z direction: i) the displacement is also restricted, or
ii) a spring-damper system is placed instead. Displacement in « direction is allowed in
these connections except for the anchor point, usually located on the central support
of the section (yellow triangle), in which it is also restricted.

3.1.2. Pantograph

A vast number of different pantograph models can be found in the bibliography,
as explained in Chapter 2. Although there are some models based on FEM or multi-
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Stitch wire

Droppers
Messenger
cable

Contact
wire

Figure 3.2: FE catenary model with boundary conditions.

body approaches [109,110], the most widely used is a ‘low-order’ pantograph model
composed of lumped parameters. In this work, a model with three vertical degrees of

freedom has been chosen, as depicted in Fig. 3.3.

my
k1 ‘—‘]r‘ c1

m2
ko == co

m3 oy
ks =lc3 Ifup

Figure 3.3: Lumped mass pantograph model.

The validity of this model is restricted to the usual studied frequency range (< 20
Hz). The external force f,, is acting on the bottom mass, simulating the force exerted
by the uplift mechanism. Other forces such as the aerodynamic force can also be

included in this simple model.
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3.1.3. Interaction

In order to couple the dynamics of the pantograph and the catenary models, some
approaches have been revisited in Chapter 2. In this Thesis the pantograph—catenary
interaction is simulated by the simple and widely used penalty method. This method
introduces a high stiffness elastic element which connects the pantograph head with
the contact wire and accomplishes the impenetrability constraint. A scheme of this
type of interaction is represented in Fig. 3.4.

Figure 3.4: Pantograph—catenary interaction scheme.

According to the reference model given in [4] and most of the references in [9],
the value of the penalty stiffness is set at k, = 50 kN/m in tension and null in
compression, which would imply a contact loss. The contact or interaction force is
assumed to be punctual and vertically oriented. If z; and z.,, are the vertical absolute
coordinates of the upper mass of the pantograph and the contact point on the contact
wire respectively, the value of the interaction force is computed as:

k - *cw f > cw
finter = h(21 : ) 1 = (36)
0 if 21 < zZew
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3.2. Static equilibrium and initial
configuration problems

As in any cabling structure, when dealing with a railway catenary it is necessary
to differentiate the two following problems. On the one hand, given a catenary model
in which all the lengths of the elements are known, the static equilibrium problem
consists of finding the nodal coordinates which fulfil the force equilibrium equations.
On the other hand, the initial configuration problem is devoted to obtaining not only
the nodal coordinates, but also the length of the elements in order to satisfy both
static equilibrium and some constraints imposed in the catenary stringing.

The static equilibrium problem, in which the undeformed lengths of all the ele-
ments are given, can be set by the virtual work principle. This is a nonlinear problem
due to the large displacements undergone by the cabling structure.

Let 2 be defined as the spatial domain of a certain railway catenary system, which
is discretised into N, elements of length lﬁef, such that Q = UY<Q, and Q. NQy = 0,
e # d, where Q. = [0, IS, f]. The total virtual work, produced by internal and external
forces, is obtained as the contribution of each element, so that:

Ne
SW = (W, — W) (3.7)
e=1

For an element e, with Young’s modulus E, cross-sectional area A and second
moment of area I, the contribution to the internal work comes from both axial and
bending strains [111],

int —

swe / (EAcy, dep, + ETkox) dx (3.9)

where €7, and k represent the longitudinal deformation and the curvature of the
element, respectively. The former can be defined using the Green strain tensor as:

e = % (r-r —1) (3.9)

where ’ represents the derivative with respect to the reference coordinate y, namely
r = dr _ 1 dr
dx lref g’

The latter, from the Frenet-Serret frame, is defined as [111]:

e
ds?

/ /1
- w (3.10)
||
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where s is the local coordinate in the deformed configuration as shown in Fig. 3.1.
However, as the axial strains within the catenary wires are observed to be small,
ds =~ dx and the curvature can be approximated by [112]:

K~ || (3.11)

If we compute the axial deformation and the curvature produced by a virtual
displacement, and replace them into Eq. (3.8), the virtual work of internal forces
results in:

SWE, :/ [EI&r” i ETA&, (¢ = 1) dy (3.12)

Regarding the external forces acting on the catenary, the gravity must be taken
into account. For a single element e, the virtual work caused by the gravity force is:
We, = or - £, dx (3.13)
QC
where f; = {0 0 —gAp}?, g is the gravitational constant and p is the density of the
material.
Finally, the weak form of the static equilibrium problem is obtained by placing

Egs. (3.12) and (3.13) into Eq. (3.7) to consider the contributions of all the elements.
It consists of finding r() for all the admissible dr, such that:

al EA
Z/ [Eldr” '+ 751" ' (¢’ —1)—or- fg} dx =0, Yér (3.14)
e=1 ¢

Introducing the FE interpolation defined in Eq. (3.1), the internal and gravita-
tional force vectors for the element e are:

£ — / [EIN”TN”q+ ETA ((N/TN/q) (qTN/TN/q— 1))] dy

fo= [ N'f,dx
Qe

(3.15)

After the usual assembly process, the static equilibrium equation for the whole
catenary system reads:

Fmt(q) + Fg =0 (316)

which can be solved using for example the Newton-Raphson method.

The second type of problem, the initial configuration problem, also known as the
‘shape-finding’ problem, consists of obtaining the nodal coordinates and the initial
length of each element which fulfil both the static equilibrium equations and certain
constraints imposed by design. In this work, the method proposed in [69] is fully
adopted.
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In this method, as the number of unknowns must be equal to the number of
equations, some groups of elements are defined whose reference length [T, , is modified
by a factor ;. Thus, the static equilibrium equation (3.16) incorporates not only the
nodal coordinates q, but also the factor x; of each group of elements as unknowns,
that is:

Fini(q, k1) + Fg(k)) =0 (3.17)

Additionally, the final equilibrium position must fulfil that certain elements such
as those modelling the messenger cable, the contact wire and the stitch wire, are
pre-stressed with a given tension T'. For the element e, this constraint is defined as:

01((1, ﬁl) = ( iGntI)2 + ( ienty)2 + ( iGntz)2 - T2 = O (318)

where f,, is the j component of the internal nodal force vector. Other constraints

are related to the right placement of certain elements of the catenary. These point-
wise restrictions enforce the height of the contact wire at dropper connections, the
position of droppers within the span, the position of supports along the track and also
the coordinates of the points at which stitch wires and steady arms are connected to
the cables. This type of constraint can be defined with the following expression:

C[](q):qi—P:O (319)

where ¢;, for i = z, y, z, is the nodal coordinate enforced to have a value of P.
If static equilibrium equations (3.17) and constraints c(q, 15, f) are put together,
the nonlinear initial configuration problem reads:

F(q,k;) =0
el —0 } (3.20)

Again, it can be solved by the Newton-Raphson method to obtain both the nodal
absolute positions q and the factors k; (or equivalently the initial length of the el-
ements 17_,), which fulfil not only the static equilibrium but also the restrictions

imposed by the catenary stringing.

3.3. Dynamic interaction problem

The dynamic behaviour of the catenary when interacting with the pantograph is
characterized by small displacements of the cables. Unlike in the static equilibrium
problem, it is common to linearise the catenary dynamic equations with respect to
the static equilibrium position of the catenary, rg, obtained from Eq. (3.16). Thus,
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the absolute position of an arbitrary point r = [z y z]7 can be obtained as r = ro + v,
v = Nu° being the displacements with respect to the configuration in which the
system has been linearised, and u® the nodal displacements for a beam element with
nodes i and j as follows:

e __ . . . Ou, v, Ow; ) ) o Ouy Ovj  Owj
u —[uz v wi FE R e ouy v ow; ok o

(3.21)

If Eq. (3.14) is linearised and the inertial term is considered, the dynamics of the
catenary system without any applied external force is described by:

Ne
Z/ |:pA5V -V + EIV" v + E—2A5v’ S[2rh (Vo xp) + ¥V (xg -T) — 1)]] dx =0
e=1 ¢

(3.22)
for all admissible §v, where the dot symbol ~ denotes a time derivative.
After introducing the FE interpolation, the mass and stiffness matrices of the
catenary are:

N,
M = A [ pANTN dy
e Qe

Ko =j§ N [EIN”TN” +EA ( (N'TN'qO) (qOTN/TN') N (3.23)

% (N’TN’) (qOTN’TN’q0 - 1))] dy

where A is the assembly operator.
Regarding the damping, a proportional Rayleigh model is considered, which leads
to the catenary damping matrix:

Ccat = arMcat + BrKcat (324)

where «, and (3, are the damping coefficients. Hence, the linear dynamic equation of
the catenary system can be expressed in matrix form as:

Mcatﬁcat + Ccatucat + Kcatucat =0 (325)

The lumped mass model chosen for the pantograph is a linear model which only
introduces vertical displacements (w;) with respect to a given reference height z..s
(see Fig. 3.4). The equation of motion of this system is:

Mpanwpan + Cpanwpan + Kpanwpan = Fpan (326)

Finally, the interaction model couples Eqs. (3.25) and (3.26). Using a penalty
method, the virtual work produced by the interaction force fi,ter is:

(021 — 0zcw)kn(z1 — zew) = (w1 — dWew ) kn (Zres + W1 — 20,c0 — Wew) (3.27)
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where zg ., is the vertical coordinate of the contact point of the contact wire in the
static equilibrium configuration. This value changes as the pantograph moves forward.
If the contact point is located on the local coordinate x. of a beam element with nodes
i and j, and the FE interpolation is introduced, Eq. (3.27) leads to:

finter = kinteruinter + fO,inter =

N2 Nyiz Nyis Npwa | =Nyt w; —Npy

Npa1 N7, Npos Npas | —Neo w; —Np2 (3.28)
kn | Nost Nesz2 N7 Nisa | —Nes Wy | 4 kn(Zref — 20,0w) | —No3 .

Npar Npaz Npag NPy | —Npa w) — N4

—Np1 —Np2 —Np3 —Nps | 1 wy 1

where Ny;; = Np;IVp; and all the shape functions are evaluated in x..
If the global vector of displacements is defined as u = [ucqt wpan]T, Eq. (3.28)
can be expanded to the global size. That is:

Finter = Kinteru + FO,inter (329)

At this point, all the matrices are available to be combined, leading to the dif-
ferential equation which governs the coupled dynamics of the pantograph—catenary
system, namely:

Mii + Ca + Ku = F (3.30)

where

MCG. ca KCG.
M = t 0 C = C K 0 K= ¢ 0 + Kinter
0 M,an 0 Cpan 0 Kpan
(3.31)
and
0
F = < ) - FO,inter = Fert - FO,inter (332)
Fpan

The first step to solve Eq. (3.30) consists of finding the initial conditions necessary
to begin with the time integration scheme. In order to obtain the initial position
r® = rg + u, the static problem Ku® = F is solved. Regarding the initial velocity,
1, it is assumed to be null and finally, the initial acceleration ii° can be obtained
from Eq. (3.30).

With the initial conditions of the movement at hand, the Hilber-Hughes-Taylor
(HHT) time integration scheme [113] is used to obtain the dynamic response of the
system. This time integrator can be seen as a generalization of the well-known New-
mark method. It uses a constant time step At and the parameters «, 5 and v which
control the stability and the numerical damping introduced by the method.
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Despite the linear assumption in the dynamics of the cables, this problem in-
cludes two sources of nonlinearities. The first comes from the unilateral behaviour
of droppers shown in Fig. 3.5. Droppers have stiffness k4 in traction, while under
compression it is assumed to be null. In this figure, f; represents the internal force
of the dropper and fy q is its traction force in the static equilibrium configuration in
which the equations are linearised. §y 4 is the elongation that the dropper suffers in
the static equilibrium position.

fa A

Figure 3.5: Force - elongation curve for dropper d.

The second nonlinearity comes from the fact that the pantograph can be detached
from the contact wire inducing a null interaction force. These two features require
the use of an iterative scheme in order to obtain the solution in each time step.

By applying the HHT algorithm to Eq. (3.30), the displacements at time step t,
t =1,..., Ngp, and iteration j are obtained by solving the following linear system of
equations:

Alul =D} (3.33)
where
Al =(1+a) K +b,Cj] + 1M (334)
bl = —aF""! + (1+ o)F. + Fig '
and
F?C —a (Kt—lut—l + Ct—ll-lt—l) +M (blut—l _ b21-1t—1 _ bgﬁt—l) + (3 35)

(1+a)Cl (bgu'™" —bsu'™" — bei" 1)

All the constants b;, i = 1, ...,6 depend on the time step and the method’s param-
eters 5 and ~ as follows:

1 1 1
by = —— by = — by =1— —
YT BA T OBA 3 28 (3.36)

by Z"yAtbl bs =1+’}/Atb2 bg = At(l + b3 —"y)
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3. Pantograph-catenary dynamic interaction simulation

Once ué- is obtained, the state of all the N; droppers must be checked. To this
end, given a dropper d, it is necessary to compute its internal force. If kg is the
stiffness matrix of the element, and u’;_’ ;18 the vector of element displacements, then:

t t

fa,= [kdud,j]k (3.37)
where the operator [ ] selects only the components of the force vector that are applied
on the node n of the dropper, whose modulus is fé, I The slackening criterion is stated
as:

if fij + fo,a4 < 0 then dropper d is slackened

- . . (3.38)
if f4;+ fo,a > 0 then dropper d is tensioned

from which the the slackening state vector, D, is defined with ones for the N,
slackened droppers and zeros for the remaining droppers.

In this direct integration method, the slackened droppers’ stiffness and damping
are removed from the global matrices and their internal force in the static equilibrium
position must be included in the next iteration j+ 1 to account for this new slackening
state. Then, the required updates for the next iteration are:

Nia Nia Nia
K =K' - Z Ka Cl=C' - Z Ca Fio=F+ Z Fo.a
d d d

(3.39)
where K4, Cq and F( 4 are the stiffness and damping matrices and the force vector
in static equilibrium position of dropper d, respectively, expanded to the global size
of the problem.

In addition, before moving to the next iteration, the value of the interaction force,
finter, must be obtained according to Eq. (3.6) to define the contact loss state C;-.
This is set to zero if contact exists, finter > 0, or to one in case of contact loss, leading
to a null interaction force.

The iterative process keeps going until both the dropper slackening state D and
the contact loss state C! are identical in two consecutive iterations. In that case, we
can also move to the next time step ¢ + 1.
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Chapter 4

Contributions

“It always seems impossible until it’s done”

Nelson Mandela

This chapter is an overview of the main contributions of the Thesis, focusing on
their novel aspects and key ideas.

As pointed out in Section 1.3, the two main objectives of this Thesis, namely
the optimisation of the geometry and the simulation of the installation errors of a
railway catenary, have the common feature of requiring thousands of simulations of
the pantograph—catenary dynamic interaction. Following the procedure described in
Chapter 3, each of those simulations can take long time, which makes it infeasible from
a practical point of view to be applied in optimisation and uncertainty propagation
algorithms. For example, the dynamic simulation of a conventional catenary section
when the pantograph moves at 300 km/h during 10 s, takes about 30 minutes using
an Intel® Xeon® CPU E5-1660 v3 processor. Hence, the first efforts were made to
devise an efficient simulation algorithm that enables the proposed objectives to be
achieved with a reasonable computational cost.

Each of the following four sections of the current chapter is directly linked with
a paper included in Part IT of this document. In Section 4.1, a parametric model
of the pantograph—catenary dynamic interaction is proposed (see Paper A). Due to
the drawbacks of this model, an efficient strategy to deal with the nonlinearities
of the problem is presented in Section 4.2 (see Paper B). With the obtained high-
performance tool for the simulation of the pantograph—catenary dynamic interaction,
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optimisation of the catenary geometry is carried out in Section 4.3 (see Paper C).
Finally, assessment and analysis of the most common installation errors found in
actual catenaries are accomplished in Section 4.4 (see Paper D).

4.1. Parametric model

Dropper lengths are parameters with direct influence on the contact wire height
and therefore, on the dynamic behaviour of the coupled pantograph—catenary system.
Due to their major effects, they are seen as good candidates to be optimised to build
catenaries with an optimal behaviour and also, to analyse the effects of accidentally
installing droppers with different lengths than those planned in the design.

The analysis of the influence of undeformed dropper lengths on the dynamics of
the coupled system would require a great number of simulations for different com-
binations of these parameters, which would be infeasible in practice with traditional
finite element technology. One of the novelties proposed in this Thesis (see Paper A)
consists of finding a parametric solution of the pantograph—catenary dynamic inter-
action problem, so that it is computed only once for all dropper lengths. Thus, when
a simulation of a particular catenary is required, it can be directly obtained by only
evaluating the precomputed parametric solution with the value of its dropper lengths.

The above mentioned parametric solution can be built by means of the Proper
Generalised Decomposition (PGD) technique [114]. The PGD allows the solving of
parametric models defined in high dimensional spaces, such as the problem at hand, in
which undeformed dropper lengths are introduced as new coordinates of the problem.
The PGD is an a priori Model Order Reduction (MOR) technique which can be easily
used to solve a wide range of problems in a multidimensional framework [115]. The
main pillar of the PGD is to include parameters as extra-coordinates into the weak
formulation in order to circumvent the so-called curse of dimensionality when a large
number of parameters are considered.

In order to obtain a parametric solution to the dynamic problem, it is first nec-
essary to have at hand the parametric solution to the static equilibrium problem.
This can be obtained by applying the PGD technique to the nonlinear Eq. (3.14), in
which some initial dropper lengths lfa pd=1 ...,/ are not treated as parameters
any more, but as coordinates. Thus, r = r(x,lief, ...,ZT{f), where x € [0, I}, ;] is the
local coordinate of the element (see Fig. 3.1).

The PGD technique proposes approximating the solution to a summation of modes
in which the separation of variables is applied as follows:
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4.1. Parametric model

where the previous modes

n—1
= Z Ri(x) Li (l}ef) - Li‘/v(lr{f) (4.2)
i1

are assumed to be known.

If Eq. (4.1) is introduced into the variational form of the static problem (see
Eq. (3.14) for its discretised counterpart), the unknowns are now the functions R, (x)
and L2(1% p) for d =1,..,.#". These functions can be obtained iteratively by means
of an alternating fixed-point strategy, in which at each iteration a three-dimensional
problem and .4 one-dimensional problems are solved to obtain R,, and L¢ respec-
tively. Thus, instead of a multidimensional problem to obtain r(x,l}ef, ...,lr‘/er), a
sequence of lower dimensional problems are dealt with using classical discretisation
techniques.

One of the main features of a catenary is the inability of droppers in transmit-
ting compressive forces. This unilateral behaviour is also included within the PGD
framework, which also represents a challenging new contribution to the field. A good
overview of the PGD constructor is given in [114] and the details of its application to
the catenary static equilibrium problem are provided in Paper A.

Table 4.1: Material and geometrical properties of the elements.

Element E(Pa) p(kg/m3) A(mm?) I(mm?*)
Messenger wire 9114 1.1-10% 94.8 1237.2
Contact wire 9160  1.1-10% 150 2170
Droppers 9114 1.1-10't 10 0

Although in Paper A there are more realistic numerical examples, the performance
of the method is tested here through an academic problem. The spatial domain €2 of
this 2D catenary span model, which only includes two droppers, is shown in Fig. 4.1.
Material and geometrical properties of the elements are listed in Table 4.1. The two
droppers are considered to have a variable undeformed length l}e ¢ and lfe - In order
to explore all the capabilities of the method, both variables are defined in the same
domain, Q} = Q? = [1.15,1.25] m, which ensures droppers are compressed in certain
regions of it. This domain is uniformly discretised into 20 values. The z and z
coordinates of the ends of both wires are imposed as boundary conditions.

The parametric solution is obtained under two different assumptions: i) droppers
are able to transmit compressive forces and ii) droppers slacken under compression.
Let us define the global error of the parametric solution with n modes as:

n :/ HrFEM—IJIlDGD” dll dl/V (4 3)
90 Jorwxan lIrreul ref el '
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Figure 4.1: Academic example spatial mesh.

where rrppp and '’ are the absolute position fields obtained from the FE standard
approach and the PGD parametric solution with n modes, respectively.

Fig. 4.2 shows a plot of the global error versus the number of modes included in the
parametric solution. If the enrichment procedure is stopped when Eg,, < 1073, the
parametric solution converges very fast with only 11 modes when dropper slackening
is not considered (Fig. 4.2a). However, the strong nonlinearity of dropper slackening
notably slows down the speed of convergence, since with 11 modes E;llob ~ 0.33, as
can be seen in Fig. 4.2b. Hence, although affordable, a remarkable computational
effort is necessary to obtain parametric solutions of the catenary static equilibrium
problem when allowing for dropper slackening.

. (a) (b)

10 1
-1
10 0.5
Ky 10 K '
1
1
108 ==========--------~- :
1 ]
2 1
1
10 0.1 1
2 4 6 8 10 5 0 15 20 25
n n

Figure 4.2: Ego, of PGD parametric solution. (a) Dropper slackening is not consid-
ered and (b) dropper slackening is allowed for.

Moving to the dynamic interaction problem, the PGD technique can also be ap-
plied to introduce dropper lengths as extra coordinates. In this case, the absolute
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4.1. Parametric model

position field reads:

n

Yot Do ) = 100 0T+ Un (1) Lo (o) - 2 () (4.4)

where r(° is the parametric solution of the static equilibrium problem in which the
dynamics have been linearised, and u™~! is the solution with n — 1 modes, which is
assumed to be known.

Again, by introducing Eq. (4.4) into the weak form of Eq. (3.30), the functions
U, (x,t) and ZJ(1¢,;) for d = 1,...,.# become the unknowns of the parametric
problem. If the fixed-point method is applied, these functions are obtained iteratively
by solving a time-spatial problem and a sequence of univariate problems, respectively.
The former is solved with the HHT time integration scheme, and the latter are solved
with a traditional FE discretisation technique.

This strategy is applied to the example defined above, disregarding dropper slack-
ening and pantograph contact loss, so that the problem is fully linear. In this example,
we use the pantograph model defined in [9], which moves forward at 300 km/h. The
convergence of the parametric solution is checked in Fig. 4.3 in which the interaction
force finter, obtained from the standard FE approach, is depicted in a dashed black
line. This force is compared with those obtained with the PGD technique, includ-
ing m = 1,...,4 modes. A great convergence is observed in both cases, in which the
solution has been evaluated with two different dropper length sets, since only three
modes are necessary to achieve a high accuracy in the results.

(a) (b)
800 : ‘ ‘ ‘ 600 : ; :
n=4
n=3 L
600 A 500
n=1 |
400 |- = =FEM 400
—~ 300
Z. 200 z
5 200
i i
S or =
100 f
-200 f ol
1 _ 1
-400 lgef =1.205m | 100 Lep=115m
_ 27
Lep=117Tm Lep=122m
-600 : : : : -200 : : : : :
0 01 02 03 04 05 06 0 01 02 03 04 05 06

t(s) t(s)

Figure 4.3: Comparison of the interaction force between the parametric solution, with
different number of modes n, and the reference FE solution for two specific points in
Q. (a) lief =1.205 m and lfef =1.17m, (b) lief =1.15m and lfef =1.22 m.

Despite this good convergence of the parametric solution, in a more realistic
problem allowing for dropper slackening and pantograph contact losses, the scenario
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changes radically. In this case, the system dynamics become very sensitive to little
changes in the value of dropper lengths. To exemplify this behaviour, Fig. 4.4 shows
the interaction force value for the time at which the pantograph passes under the
second dropper (t = 420 ms), in the parametric domain Q; x Q3.

(a)

2 : 1.16 2 : 1.16
Lrey l}ef Lo I

Figure 4.4: Interaction force at instant 420 ms for the whole parametric domain
Q! x Q7. (a) Linear behaviour of droppers, (b) dropper slackening is considered.

Fig. 4.4a is obtained if dropper slackening is not considered, while in Fig. 4.4b,
droppers slacken under compressive forces. Crucial differences between them are
observed. If droppers behave linearly, dropper length variations produce a smooth
tendency in the interaction force. In contrast, if considering a bilinear behaviour in
droppers (see Fig. 3.5), the interaction force varies abruptly and is very sensitive to
small changes in the parametric domain.

This fact was already intuited when solving the parametric static equilibrium prob-
lem, but it becomes even worse in the dynamic case. Thus, due to the non-separable
nature of the dynamic problem observed when nonlinear droppers are considered, ob-
taining an accurate enough parametric solution of the dynamic problem, as stated in
Eq. (4.4), becomes infeasible due to the huge number of required modes.
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4.2. Fast simulation algorithm

4.2. Fast simulation algorithm

Due to the major difficulties found when dealing with the parametric dynamic
interaction problem, other strategies must be conceived to have a solver which allows
to efficiently apply optimisation and stochastic techniques.

As previously said, dropper slackening and pantograph—contact wire interaction,
are the two sources of nonlinearities present in the dynamic problem. In this Thesis we
propose a new strategy in which, after moving the nonlinear terms to the right hand
side of the dynamic equation (3.30) as proposed in [31], the use of the superposition
principle to transfer the unknowns from the displacements to the forces is its basic
pillar. Hence, the nonlinearities are dealt with iteratively but now, the size of the
nonlinear system to be solved in each time step is equal to the number of elements
with nonlinear behaviour (slackened droppers and penalty stiffness element) in lieu
of the global size of the problem.

The method is divided into two stages, namely the Offline and the Online. In
the first stage, the response of the catenary in a single time step At, subject to
unitary forces, is computed and stored. Then, in the Online stage, by applying
the superposition principle, the time integration is carried out making use of the
information computed in the Offfine stage so that the nonlinearities are efficiently
treated in each time step.

4.2.1. Offline stage

As the nonlinear terms are moved to the right hand side of the dynamic equa-
tion, damping and stiffness matrices become constant in time and therefore the HHT

integration matrix
Mca 0 Aca 0
+b ! = ‘
0 Mpan 0 Apan
(4.5)

<Kcat 0 ) + b4 <Ccat 0 )
0 Kpan 0 Cpan
does not change in time either (see Eq. (3.34)).

In the Offline stage, the catenary is treated as a fully linear system, and three
different problems are solved in order to obtain the single time-step response of the
system under unitary external loads and null initial conditions. They are:

A=(1+0a)

1. A unitary force pushing upwards at the interaction point on the contact wire
(blue arrow in Fig. 4.5b). If A4 is taken from the elements of matrix A only
related to the degrees of freedom of the catenary, the problem:

Vt € [1, Ngip) (4.6)

*,t _ ot
Acatuinter,cat - Finter,cat
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must be solved Ny, times, in each of which Ffﬁtter)cat is the result of assembling
fiter car» Which is applied to the corresponding interaction point on the contact

wire.

2. A unitary force compressing each dropper (black arrows in Fig. 4.5b). Therefore,
the linear problem:
Acqu; =F); Vde[l,Ng] (4.7)

needs to be solved Ny times in which, £ is applied on a different dropper and
assembled in vector F}.

3. A unitary force pushing downwards on the upper mass of the pantograph in
which, the interaction with the contact wire takes place (blue arrow in Fig. 4.5a).
If A, extracts the elements of matrix A related to the degrees of freedom of
the pantograph, the problem:

* _ *
Apllnwintenpan — ~+inter,pan (48)
* Q Q <) 1 * 3
where F7, ;.. ., results from assembling £ ;... ..,,, needs to be solved only once.
(a) (b)
*
l inter,pan
my
Ky LJ[-J (&}
ma
ko LJ|=1 (&)
m3
ks ‘—'IL‘ c3
* f
inter,cat d

Figure 4.5: Unitary external forces applied in the Offline stage. (a) Pantograph and,
(b) Catenary.

As A, is constant, it can be prefactorised in order to obtain substantial com-
putational cost savings when solving Eqgs. (4.6) and (4.7). Additionally, velocities
and accelerations of all the aforementioned problems are also computed and stored
following the rules of the HHT time integrator.
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4.2. Fast simulation algorithm

4.2.2. Online stage

In the Online stage, the time integration is carried out taking into account the non-
linearities introduced by dropper slackening and pantograph contact loss. Starting
from Eq. (3.33) at time step ¢, the nonlinear sources are moved to the right hand side
of the equation, which results in:

Au' =Fi +Fopp — aF 7+ (1 4+ a)FE, (4.9)

where F?C contains information of the previous time step and F.,; considers the
constant external uplift force applied onto the pantograph. If there are N!, slackened
droppers in the current time step, the nonlinear force term is:

Niy
Fle = _Fé,inter - Kﬁnterut + Z (Fé,d + Kfiut + Cfiut) (410)
d

in which Ff ;,,;., + K., u’ is the interaction force and Ff, ; + Kju® + Chu' is the
correction force of the slackened dropper d.

With this rearrangement, there is no coupling between pantograph and catenary
degrees of freedom in the system of equations. The known and unknown terms can

be grouped as

Nig
d
where
i, = Pl t Fuu - aFt]
F;‘Tnter = _F67inter - K;‘Tnterut (412)

F) = F} , + Kju' + Chu’

F!  contains all the known forces, but the interaction force F?, , . and the correc-

tion forces of the slackened droppers F, remain unknown since they depend on the
sought displacements u’.

By applying the superposition principle, the total response of the system can be
computed as the sum of the responses caused by the three forces in Eq. (4.12) acting
separately, that is:

Nig
ul = u’}kn +(1+a) u’};mm + Z u}d (4.13)
d

or equivalently, taking benefit from the responses under unitary forces calculated
in the Offline stage, and explicitly splitting the system in terms of catenary and
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pantograph:
ut u* ,t Nstd
P =, At a) | fer | )+ Z fa (4.14)
Wpan znter,pan

Now, the magnitude of the interaction force, ff ,.., and the correction forces of
the slackened droppers, f for d =1,..., N, are the set of unknowns of the problem
at the current time step t¢.

The displacements coming from initial conditions can be directly computed from

AAcatuF,m cat — Fkn cat (4 15)

ApanWF;m pan — Fkn,pan

in which A.,: has been factorised in the Offline stage into two sparse triangular
matrices. Thus, solving the whole system consists of applying forward and backward
solvers which are computationally very efficient.

To deal with the nonlinearities, by including Eq. (4.14) into the last two equations
in (4.12) it is p0s51b1e to define a linear system of equations whose unknowns are f}, ..
and f! for d = 1,...,N!,. Although this is a linear system in itself, the nonlinearity
is present in the number of equations of which it is composed, because N!,; depends
upon the solution of the system. Further details for the construction of this system
are provided in Section 4.3.2 of Paper B.

This small system can be iteratively solved at each time step, which is much
more efficient than solving iteratively a global sized system with displacements as
unknowns. After obtaining the unknown forces, the slackening (3.38) and the contact
loss states must be checked out. As in the direct approach, the procedure lasts until
in two consecutive iterations the slackening state D and the contact loss state C are
equal. When the iterative procedure finishes, one can move to the next time step of
the time integration scheme, as summarised in Algorithm 1.

If the proposed strategy is compared with respect to the direct approach defined
in Section 3.3, the solution of the dynamic interaction problem is obtained with the
same accuracy in both strategies; however, the Offline/Online approach is much more
efficient in terms of computational cost.

In order to highlight the benefits of the procedure, four catenary models are de-
fined. Cat.1, Cat.2 and Cat.3 are three-dimensional models with five, ten and 18
spans, respectively. Cat.4 is the two-dimensional version of Cat.3. The computa-
tional time required for the direct time integration procedure, for the Offline stage
and for the Online stage are shown in Table 4.2 for both the HHT and the Newmark
time integrators.

As revealed by these values, a simulation of the pantograph—catenary dynamic
interaction is performed with the proposed strategy from about 25 to 30 times faster
than with the direct procedure explained in Section 3.3. Furthermore, no deterioration
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Algorithm 1 Offline/Online time integration.

OFFLINE stage:
Assemble A.,; and calculate its LU factorisation;
Solve the Ny, problems (4.6): u:ﬁttemat;

Solve the Ny problems (4.7): uj;
Solve the equation (4.8

. * .
)‘ Winter,pan’

ONLINE stage:
Initializations: P° = 0; C° =0
for t =1...Ng, do
Obtain the response to the initial conditions (4.15): uf; ..., W
Set: j=1;D,_, =D, =D Cl_| =Cl=C""1;
while (D}_; # D} and C!_| #C!) or j =1 do
J=J+L
D, =D Ci_ ) =Cl;
Set the linear system of Ny + 1 equations;
Apply the slackening criterion (3.38): D%;
Apply the contact loss criterion: C;-;

t .
Fyn ,pan?

end while
With Eq. (4.13) obtain the total displacements u‘;
end for
Table 4.2: Computational time comparison.
Cat.1 Cat.2 Cat.3 Cat.4
d.o.f. 5996 11986 21570 14385
Simulated time (s) 3 5 10 10
HHT
Direct (s) 56.05 205.38 802.80 412.46

Offline stage (s) 0.76 2.39 9.83 5.28
Online stage (s) 1.74 5.22 19.27  10.86
Offline/ Online (s) 2.5 7.61 29.1 16.14
Newmark

Direct (s) 52.60 218.74 785.10 417.60
Offline stage (s) 0.79 2.50 9.64 5.19
Online stage (s) 1.37 4.48 15.75 9.10

Offline/ Online (s)  2.16 6.98 25.39  14.29
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in the accuracy of the results is introduced with the fast simulation algorithm. If we
only focus on the Offifine stage, in which the time integration is carried out, some
simulations can even be performed in real-time. This feature allows the algorithm to
be used in Hardware-In-the-Loop (HIL) [116] simulations in which the mathematical
model of the pantograph is replaced by a real pantograph mechanism.

4.3. Catenary optimisation

Once we already have an efficient algorithm to simulate the pantograph—catenary
dynamic interaction, optimisation of the catenary system can be addressed with rea-
sonable computational cost.

Current collection quality is influenced by many parameters, such as the mass of
the pan-head, the contact wire tension, the uplift force applied to the pantograph
or the speed of the train. Some recent attempts in optimising the current collection
performance are found in the literature [14,81], but most of them are focused on the
parameters of the pantograph model.

In this Thesis, a first attempt to find the optimal catenary geometry, in terms
of current collection quality, is made by exploring alternatives such as the contact
wire height profile and the dropper spacing. To characterise the quality of the in-
teraction, the coefficient of variation of the interaction force is usually used. It is
defined as the quotient between the standard deviation and the mean of this force
Vv=0 (finter) /,U(finter)-

Following the standard [1], the maximum mean contact force applied to the contact
wire must fulfil the relationship:

p( finter) < 0.00097v2 + 70 (4.16)

for an alternating current catenary, in which 200 < v < 320 km/h. To guarantee
the fulfilment of Eq. (4.16), the uplift force f,p, is properly tuned in each simulation.
Additionally, before computing v, the interaction force is low-pass filtered at 20 Hz
according to the standard [1].

Thus, for a given train speed v, if contact wire height or dropper spacing are
considered as the optimisation variables p, the optimisation problem reads:

mgn v (finter(P))
s.t. (4.17)
p;nlngngpmaz izlv"'va

K2
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where p7in
respectively.

To solve the problem (4.17), a metaheuristic method is required because the use
of gradient-based strategies would require the computation of the derivatives of the
objective function with respect to the optimisation variables, which would be cum-
bersome in this case. Specifically, a Genetic Algorithm (GA) is chosen due to its wide
range of applicability, even for highly nonlinear or discontinuous objective functions.

The GA used in this Thesis is that included in the MATLAB® software. An initial
population evolves towards better solutions from generation to generation following
the principles of natural selection, crossover and mutation (see Fig.4.6). Selection is
ruled by a stochastic uniform process. The three best-scored parents are considered as
elite and are moved directly to the next generation. A crossover fraction of 0.8 is set
to guarantee that the 80% of children come from a random combination of parameters
of their parents. The remaining children are randomly obtained by mutation of the

parameters of a single parent.

and p%*

7% are the lower and upper bounds of each of the IV, parameters,

Parents Children
[]——[] e
I:' / I:| Crossover

. —_— I:I Mutation

Figure 4.6: Scheme of the next generation creation process.

In this problem, the N, optimisation variables are taken as discrete variables in
order to make a finite size space of search.

In order to evaluate the objective function, it is necessary to solve both the initial
configuration problem (3.20) and the dynamic interaction problem by means of the
method described in Section 4.2. Nonetheless, during these evaluations some com-
binations of parameters p could produce non-desirable catenaries from a practical
point of view. In these cases, individuals that fulfil one of the following conditions
are excluded from the population:

e If a contact loss is detected the individual is not valid any more.

e If any dropper is slackened in the static equilibrium position, this catenary is
no longer admissible.

Other restrictions, such as a maximum steady arm uplift, could be incorporated
into the previous list without any further consideration.
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Although a thorough discussion of the optimised catenaries is made in Paper C, for
the purpose of enlightening the potential of the results, the optimisation of the contact
wire height profile of a simple type catenary and a stitched catenary is presented here.
The simple catenary model matches with that used in the benchmark [9]. The stitched
catenary model is described in Appendix A of Paper C. Both models are composed
of 20 spans each, although fi,ter is measured on the ten central spans to prevent
boundary effects. The optimisations are carried out at a train speed of 300 km/h.

Regarding the simple catenary, as there are nine droppers per span and the cate-
nary must be symmetric, the optimisation problem is set with only five variables cor-
responding to the contact wire height at the connection points with droppers (black
points in Fig. 4.7). Therefore, p = [z}, ... 23,] is defined from p" = —0.06 m to

Pt =0.02 m for ¢ =1,...,5, at intervals of 1 mm.

0.01f
—~

=t 0
= |
w 001
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Figure 4.7: Optimised simple catenary with zoom of the contact wire in the bottom
picture.

After 120 generations of the GA with a population of 100 individuals, a span of
the optimised simple catenary is shown in Fig. 4.7, in which a zoom of the contact
wire height profile is provided in the bottom image.

The stitched catenary has only seven droppers per span and therefore, four vari-
ables suffice to define the contact wire height (black points in Fig. 4.8), with the same
bounds as in the previous case. With a population of 80 individuals, the GA took 90
generations to obtain the optimised stitched catenary shown in Fig. 4.8.

To sum up, Table 4.3 presents, for the two studied catenaries, the optimal values
of the contact wire height at dropper connections, the minimum value of the objective
function, and its reduction with respect to that obtained from the reference catenaries.
The 56% of decrease in v(finter), from a simple catenary with a standard pre-sag
of 1/1000 of the span length to the proposed optimal contact wire height profile,
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Figure 4.8: Optimised stitched catenary with zoom of the contact wire at the bottom
picture.
is remarkable. This reduction is 37% for the case of the stitched catenary when

compared to its reference model with a completely horizontal contact wire.

Table 4.3: Contact wire height optimisation results.

Catenary Optimal values (m) V(finter) (N)  Reduction (%)
Simple -0.008 -0.002 0.003 -0.012 -0.016 0.1126 56.52
Stitched 0.002 0.004 -0.009 -0.001 0.0899 36.60

The vertical stiffness along a catenary span is depicted in Fig. 4.9. Especially for
the simple catenary, a more uniform stiffness is found for the optimised catenaries
when compared to that of the reference models.

Other magnitudes to be analysed are the forces carried by droppers in the static
equilibrium position. While droppers in the reference catenaries are almost uniformly
loaded (Figs. 4.10a and 4.10c), the forces in the optimised catenaries notably differ
from one dropper to another (Figs. 4.10b and 4.10d).

How the optimised catenaries behave at different train speeds is another interesting
point to be analysed. To this end, o(finter) is plotted for both the simple and stitched
catenaries in Figs. 4.11a and 4.11b, respectively.

The conclusions drawn from these results are that there are more benefits in
optimising the simple catenary since, as seen in Fig. 4.11a, not only is there a greater
reduction at the optimisation speed (300 km/h) but also the behaviour at other speeds
is similar to that shown by the reference catenary. However, this feature is not
observed for the stitched catenary in Fig. 4.11b.
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Figure 4.9: Vertical stiffness of the simple catenary span (a), and the stitched catenary
span (b).
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Figure 4.10: Dropper forces in the static configuration of the reference simple catenary
(a), the optimised simple catenary (b), the reference stitched catenary (c), and the
optimised stitched catenary (d).
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Figure 4.11: Comparison of the standard deviation of the interaction force between
the reference and the optimised catenaries at different train speeds. (a) Simple cate-
nary and, (b) Stitched catenary.

This contribution reveals to the catenary designers that there are other promising
alternatives apart from the usual pre-sag in order to have better catenaries in which
interaction force fluctuations can be remarkably reduced.

4.4. Stochastic simulations

Simulations of the pantograph—catenary dynamic interaction usually provide de-
terministic results in which the output magnitudes, such as the interaction force or
the steady arm uplift, do not allow for the variability present in the system. Although
there are countless sources of variability, the catenary installation procedure itself and
some human faults made during the installation, lead to a final catenary configuration
that differs from the designed one.

These discrepancies can have a high impact on the dynamic performance of the
system. Very few works in the literature deal with uncertainties when simulating
the dynamic behaviour of the catenary, as can be seen in Chapter 2. Among them,
guideline values for certain installation error rates based on real measured data were
proposed in [90], whereas variability in contact wire wear, aerodynamic effects and
geometry irregularities are introduced in [93].
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In this Thesis, an approach is proposed to account for the variability introduced
by installation errors. Specifically, dropper lengths (dl), dropper spacing (ds) and
support height (sh) errors are considered due to their main role in determining the
contact wire height. A sketch of these installation errors is depicted in Fig. 4.12.

Support height

Dropper length {

Dropper spacing

Figure 4.12: Sketch of the installation errors considered in the analysis.

The three different errors considered are assumed to be normally distributed with
null mean and standard deviations o4 = 0.0066 m, o4s = 0.02 m and s, = 0.02 m,
respectively. These values agree with those measured in [86]. Technical details for
the modelling of these errors from the computational point of view are provided in
Section 4 of Paper D.

The classic version of the Monte Carlo method (MC) [117] has been chosen to
propagate the aforementioned uncertainties. It consists of evaluating the model a
sufficiently large times IV, with a random sampling of the input quantities x,. for r =
1,..., N, from their probability density function (PDF). As a result of each simulation,
the output quantities yx for k =1, ..., M, are measured and their PDF can be built.

This large number of simulations [V, is achievable thanks to the efficient simulation
strategy presented in Section 4.2. However, it is important to quantify the value of
N which provides enough accuracy in both the mean and standard deviation of the
PDFs of the output quantities.

If v = 0(finter)/W(finter) is considered as the output parameter of main interest,
the central limit theorem states that the sample mean 7 is normally distributed with
mean pu(v) and standard deviation o) for a large enough N. Thus, with a confidence

level o, and assuming an absolute error d, the population size can be determined by:

N 2 U(V)2

where 2,/ is the value with an occurrence probability lower than 3 in a normal
standard distribution.
Following again a central limit approach for the sample standard deviation S(v),

. S(v)?— 2
for a confidence level o and an assumable relative error e = %, the popu-
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Figure 4.13: PDFs of vy (Fay = 0.2649, S(v)y = 4.71-107%) and Az7*® obtained
when uncertainty in dropper lengths is considered. Vertical lines indicate the v and
Az™* obtained from the nominal catenary.

lation size is now determined by:

1) -1

where (v) is the kurtosis, which can be estimated from a large enough population.

Thus, to obtain 7 with less than 1% of error with respect to p(v) 99% of times,
it suffices with N = 50. However, if S(v) is sought with an accuracy of 3.4% with
respect to o(v) and a 99% of confidence level is considered, N = 10000 simulations
are needed. It is remarkable the large population size required to obtain an accurate
standard deviation if compared with that required to obtain the mean with acceptable
accuracy.

To reveal the power of the method, it is applied to the simple type catenary defined
in [9]. Although the model is composed of 20 spans, the results are only taken from
the ten central spans to avoid boundary effects. The output parameters of interest
are in this case the coefficient of variation v of the 20 Hz low-pass filtered interaction
force, and the maximum steady arm uplift, Az"™%*. The examples are carried out at
300 km/h, with an uplift force of f,, = 168.47 N to meet the requirement of Eq. 4.16.

Figs. 4.13, 4.14 and 4.15 show the PDFs of v and Az™** when dropper length,
dropper spacing and support height errors are considered, respectively. The reference
values of v and Az™%" obtained from the nominal catenary without installation
errors, are indicated by a vertical red line. Besides, the values of 7 and S(v) are given
in the three cases.

The first conclusion drawn from these results is the little influence of dropper
spacing errors if compared with the other two sources of variability. Dropper length
and support height errors provide similar dispersion in v and Az™* but the former
presents a mean value g higher than the reference value of v, while the latter produces
a PDF of v centred to the reference value. Therefore, dropper length error can be
seen as the most harmful installation error, even though the variability of the obtained
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Figure 4.14: PDFs of vgs (7gs = 0.2588, S(v)gs = 8.14-107%) and AzZ* obtained
when uncertainty in dropper spacing is considered. Vertical lines indicate the v and
Az™% obtained from the nominal catenary.

results increases if the two most influential installation errors are considered together.
This last scenario is fully explored in Paper D.

0.245 0.255 0.265 0.275 48 50 52 54 56 58 60
v AZ™ (mm)

Figure 4.15: PDFs of vy, (7g, = 0.2599, S(v)s, = 6.01-1073) and Az7%® obtained
when uncertainty in support height is considered. Vertical lines indicate the v and
Az obtained from the nominal catenary.

Another option that offers this methodology is to perform parametric studies by
considering the mean value of the parameter instead of its deterministic value. For
example, it is possible to investigate how 7 changes with respect to variations in the
amount of contact wire pre-sag.

As previously stated, 50 individuals are enough to accurately determine . Fig. 4.16
shows these values obtained from 12 catenaries with different pre-sag, allowing for
both dropper length and support height installation errors, when the pantograph
moves forward at 250 km/h. This is a clear example in which considering the un-
certainty of the installation procedure produces significant differences in the results
if compared with those obtained from the deterministic approach. Specifically, the
optimal pre-sag was approximately 35 mm with classical deterministic simulations,
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Figure 4.16: Comparative between v and v for different pre-sag values when the train
runs at 250 km/h. 50 catenaries with dropper length and support height errors are
simulated to obtain .

but when installation errors are taken into account, the optimal pre-sag is found to
be around 15 mm.

Thus, this last contribution of the Thesis reveals the importance of treating the
pantograph—catenary dynamic interaction from a stochastic point of view to have
better consideration of the features present in the actual installed catenaries.
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Chapter 5

Closure

“If I have seen further than others, it is
by standing upon the shoulders of giants”
Isaac Newton

The main contributions and conclusions of this Thesis and the opened lines of
research are summarised in the following two sections.

5.1. Summary and conclusions

In this Thesis an efficient strategy for solving the pantograph—catenary dynamic
interaction is introduced. This high-performance tool is fully exploited to perform
optimisations of the catenary geometry and to involve installation errors within simu-
lations. The key points of the work done in the Thesis can be summarised as follows:

e A first attempt to achieve a parametric solution of the pantograph—catenary
dynamic interaction problem is made by considering dropper lengths as extra-
coordinates. The Proper Generalised Decomposition technique is successfully
applied in both the static equilibrium problem and the dynamic interaction
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5. Closure

problem only if droppers are modelled as linear bars. However, when the uni-
lateral nonlinearity of dropper slackening is considered, the solution becomes
very sensitive to small changes in dropper lengths, thus preventing obtaining
the separate solution sought.

Given the difficulty in obtaining a parametric solution, a highly efficient strategy
is proposed to reduce the computational cost required for the time integration
of the pantograph—catenary coupled system. It consists of two stages, namely
the Offline and the Online. The method begins by moving the nonlinear terms
to the right hand side of the dynamic equation. Then, by applying the super-
position principle, the nonlinearities can be solved in terms of forces instead of
displacements, which notably reduces the size of the system to be solved itera-
tively. This strategy allows the dynamic problem to be solved from about 25 to
30 times faster than with the use of the direct procedure.

The fast time integration strategy is first used to optimise the catenary geometry.
Dropper lengths and dropper spacing are chosen as the optimisation parameters.
The use of a standard Genetic Algorithm allowed optimal configurations to be
found in terms of current collection quality, measured by the ratio between the
standard deviation and the mean of the interaction force. The results obtained,
for both simple and stitched catenaries, reveal reductions of about 40% of this
ratio when compared to their respective reference catenary geometry, even with
the use of fewer droppers per span.

Finally, a simple Monte Carlo method is applied to include in the simulations the
variability produced by certain installation errors. Specifically, dropper length,
dropper spacing and support height errors are taken into account. The method
allows the probability density function of several magnitudes of interest to be
obtained. The results demonstrate the little influence that dropper spacing
errors have on the current collection quality. However, dropper length and
support height errors are notably influential on the dynamic behaviour of the
system, being more critical for higher speeds.

5.2. Open research lines

This work has opened up several lines of research on pantograph—catenary dynamic

interaction simulation as follows:

e In order to be closer to the actual system, the pantograph—catenary model

used in this Thesis can be further improved by adding more elements such
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5.2. Open research lines

as the mechanical compensating system, overlap sections, multiple pantograph
operation, curved tracks, the vibration of the locomotive or the wind action on
both the cables and the pantograph. These features will be included in the code
to widen the knowledge about the system as well as to analyse their effect on
the current collection performance.

Another research line is related to further reducing the computational cost of
the simulations with no loss of accuracy in the results. Some options such as the
use of modal basis combined with the Offline/Online strategy or the application
of machine learning techniques, such as kernel Principal Component Analysis
(kPCA) or Locally Linear Embedding (LLE), are being considered to speed up
the code. This will allow a test rig to be built to perform Hardware-In-the-
Loop simulations, with which different pantographs can be tested or eventually
validated without expensive in-line tests.

In this Thesis the catenary has been optimised following a deterministic ap-
proach for a single train speed. Future investigations will be focused on finding
the optimum for a range of pantograph speeds and different options for the ob-
jective functions must be tested. Furthermore, robust optimizations in which,
optimization techniques are combined with stochastic methods, will be needed
to consider the uncertainty coming from installation errors in the optimisation
process. This achievement will provide useful and practical information to cate-
nary designers.
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Abstract

Dynamic simulations of pantograph—catenary interaction are nowadays essential
for improving the performance of railway locomotives, by achieving better current
collection at higher speeds and lower wear of the collecting parts. The first step in
performing these simulations is to compute the static equilibrium of the overhead line.
The initial dropper lengths play an important role in hanging the contact wire at an
appropriate height. From a classical point of view, if one wants to obtain the static
equilibrium configuration of the system for different combinations of dropper lengths,
one static problem must be solved for each combination of lengths, which involves
a prohibitive computational cost. In this paper we propose a parametric model of
the catenary, including the undeformed dropper lengths as extra-coordinates of the
problem. This multidimensional problem is efficiently solved by means of the Proper
Generalized Decomposition (PGD) technique, avoiding the curse of dimensionality
issue. The capabilities and performance of the proposed method are shown by nu-
merical examples.

Key words

Railway catenary; Model order reduction; Dropper slackening; Static equilibrium
problem
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1. Introduction

1. Introduction

The overhead line equipment, or the so called overhead catenary, is the system
responsible for providing electric energy to railway locomotives by means of the pan-
tograph. As a result of the pantograph—contact wire interaction and the dynamic
response of the system, a time-varying contact force is generated. The overhead line
is wished to operate at the smallest possible contact force (to minimize wear due to
friction) but maintaining at least a minimum value to ensure that the pantograph
always remains pushing the contact wire. The numerical models used to simulate this
system are a useful tool in catenary design for achieving better high-speed current
collection [1-3]. Fig. 1 shows the main elements of a typical railway catenary.

Many factors influence the dynamics of the overhead system and affect the con-
tact force. These include dropper lengths, which are parameters that can be easily
modified in engineering practice using the current catenary-stringing technology. The
static position of the contact wire largely depends on the length and position of the
droppers. Thus, the interaction of the pantograph with the contact wire and the
contact force generated also depend on the dropper lengths. In fact, some amount of
the so-called pre-sag of the contact wire (deviations of the contact wire height from
the horizontal position) has been shown to improve catenary performance at high-
speeds [4,5]. Tt is still an open question whether or not there are optimal dropper
lengths for a certain pantograph and train speed that provides the best performance
in terms of contact force. Numerical simulation tools can help in solving this issue.
However, at the present time, the analysis of the influence of undeformed dropper
lengths on the dynamics of the system would require a great number of simulations
for different combinations of these parameters, which would be infeasible in practice
with traditional finite element technology.

The aim of this paper is to present a numerical method able to perform this type
of analysis at a reasonable computational cost. In particular, there is an especial
interest in finding the static equilibrium position of the railway catenary system for
any combination of dropper lengths. By using the Proper Generalized Decomposition
(PGD) technique it is possible to solve parametric models that are defined in high
dimensional spaces, such as in the problem at hand, in which undeformed dropper
lengths are introduced as extra-coordinates.

PGD [6] is a Model Order Reduction (MOR) technique which can easily solve
multidimensional problems. PGD has already successfully addressed a variety of
problems, including shell-type geometries [7,8], shape optimization problems [9], com-
putational rheology [10], linear elastic fracture mechanics [11] or mechanic simulation
for biological tissues [12,13] among others, in a multidimensional framework. Space-
time decompositions are also dealt with in [14] under a PGD approach. The errors of
the PGD solutions are studied in [15]. PGD is thus able to provide a multiparametric
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solution of the problem that explicitly depends on the parameters to be identified (in
this case dropper lengths) and avoids the curse of dimensionality issue when a large
number of parameters are considered. The interested reader is addressed to [16] and
the references therein for a deeper analysis of this technique.

The main interest of the proposed method is to obtain a solution of the static
equilibrium position, required to simulate the dynamic interaction, for any combina-
tion of dropper lengths. With the parametric solution it is possible to perform an
efficient geometry optimization process of the catenary, based on different criteria,
such as the minimal standard deviation of the contact force. With a parametric dy-
namic solution of the problem, the effect of wrong stringing, which leads to a static
configuration other than the one designed, can be reproduced and analysed

The paper is organized as follows. The overhead line and the elements which
compose the catenary are described in Section 2. In Section 3 the finite element model
of the catenary is introduced. This model is based on the absolute nodal coordinate
formulation (ANCF). On the basis of the virtual work principle, in Section 4 the static
equilibrium problem is presented from a classical point of view. In Section 5 the static
equilibrium problem is dealt with the PGD approach. The proposed formulation is
given in two versions: i) without considering dropper slackening and ii) including the
effect of dropper slackening. A linearised problem is also presented in order to reduce
the computational cost. The accuracy and performance of the method is analysed in
Section 6 through some numerical examples. Finally, the conclusions are summarized
in Section 7.

2. Description of the overhead line

Fig. 1 shows a high-speed train catenary. The catenary is mainly composed of
two groups of components, structural elements and cables. Masts, brackets and regis-
tration arms are responsible for supporting the entire cabling in the desired position.
The cables include the messenger or carrier wire, droppers and contact wire. The
messenger wire hangs from the brackets at regular intervals. Its main aim is to hold
the contact wire at the required height from the track. This can be achieved by
means of droppers clamped to the messenger and contact wire at certain points in
every span. The contact wire transmits electrical power to the locomotive through
the pantograph head on the locomotive roof. Some types of catenaries include stitch
wires near the masts in order to reduce the variation of the stiffness along the span.
Both the messenger and contact wires are prestressed and keep the tension constant
with the aid of a compensation system located at both ends of each section along the
overhead line.
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S § Stitch wire
Support
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\ Dropper wire

Contact
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wire
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Figure 1: Picture of a high-speed railway catenary.

Viewed from above, the catenary follows a zigzag pattern from one bracket to
another. This stagger is designed to guarantee uniform wear on the contact strip of
the pantograph collectors. Another important geometric issue in many catenaries is
their pre-sag, which reduces the variations in contact force caused by the reduced
stiffness in the central region of the spans, and is controlled by means of appropriate
dropper lengths.

It is important to point out that small changes in certain parameters, such as the
undeformed dropper lengths, may change the height of the contact wire and therefore
affect interaction with the pantograph. Also, if the initial length of a dropper is larger
than a certain value, the dropper can slacken and fail to hold the contact wire in the
static position.

3. Catenary finite element model

The catenary system was modelled by finite elements. Only the main features of
the model are summarized here (for further information see [17]). An example of this
model is depicted in Fig. 2, in which the nodes are plotted as circles. A beam element
based on the absolute nodal coordinate formulation (ANCF) is employed to model the
cables. The original 3D ANCF element was proposed in [18,19] and used for railway
catenary models in [20,21]. For the interested reader, a good comparison between
this element and the elements based on the classical formulation can be found in [22].
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Figure 2: Finite element model of the catenary.

Catenary wires are much longer than their cross-sectional area, so that the tor-
sional effects can be neglected. This results in the element introduced in [23] with only
6 degrees of freedom per node, taking into account axial and bending deformations.
In this paper, this type of element is called ‘cable element’ and is used to model both
the messenger and the contact wires. Droppers and registration arms are modelled as
single large displacement nonlinear elements called ‘bar element’ throughout the pa-
per. The nonlinear bar element is only capable of transmitting axial forces in traction
and slackens under compressive forces.

Figure 3: Undeformed and deformed configurations of the ANCF element.

In this model the masts and brackets are replaced by suitable boundary conditions.
Dirichlet boundary conditions are applied at the ends of the registration arms joined
to the brackets (nodes marked with a cross in Fig. 2). Spring-damping elements can
be used to simulate the supports (nodes marked with a square in Fig. 2).
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Fig. 3 shows a scheme of the reference and deformed configurations of an ANCF
cable element. The vector of degrees of freedom of a cable element of nodes i and j
containing the coordinates and their gradient is:

Oz;  Oyi Oz Ow;  Oy; Oz T (1)

Qe = | Ti ¥Yi % Jy oy ox T Yi % Bx ox  ox

where x € [0, lg] is the local coordinate, Iy being the length of the undeformed element.
In a deformed configuration, the absolute position coordinates r(x) are defined by
means of a cubic polynomial that can be written as:

r(x) = Sc(x) qc (2)

The interpolation is defined as:

S 0 0 So O 0 Sa O 0 S O 0
Sc(X) = 0 Se1 0 0 Seo 0 0 ch 0 0 Sea 0 (3)
0 0 S O 0 S O 0 Ss O 0 Su

Se1(€) =1—-362+26% Sep(€) = lo(§ — 262+ €°)
Ses(€) = 3¢% —2¢° Sea(€) = lo(—=€* + &)

The coordinate & = x/lg € [0, 1] denotes the normalized local coordinate. These
Hermite cubic polynomials guarantee the C' continuity between elements.

The element vector of degrees of freedom of the bar element contains only the
absolute positions of the two nodes as:

(4)

T
Qb:[ilii Yi Zi X5 Y5 Zj} (5)

The interpolation used for this element is linear, and the length of the undeformed
element does not appear explicitly in the shape functions, that is:

Sp1 0 0 Sk 0 0
Su(x) = 0 S, 0 0 Sk O (6)
0 0 Su 0 0 Sk

in which
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For the sake of clarity, in the following sections the equations are particularized for
cable elements, since they are directly applicable to bar elements only by neglecting
the term of bending deformations. Subscripts ¢ and b are deleted for simplicity in the
notation.

4. Static equilibrium problem

This section introduces the classical FEM formulation to solve the static equilib-
rium configuration of a railway catenary under gravitational effects. In a catenary
system, before computing the static equilibrium position, the so-called ‘shape-finding’
or initial configuration problem must be solved. The goal of this problem is to com-
pute the undeformed lengths of the elements fulfilling the force equilibrium equations
and all the constraints introduced during the catenary stringing. The tension in the
messenger and the contact wire, and the height of the latter are the main constraints
taken into account. A thoroughly detailed explanation of a method for dealing with
the ‘shape-finding’ problem of the overhead line can be found in [17]. In this contribu-
tion, it is assumed that the initial configuration problem is solved, i.e. the undeformed
length of all the cables is given. It is the static equilibrium position under gravitational
forces what is sought for any value of initial dropper lengths.

The formulation of the static equilibrium problem is obtained by using the virtual
work principle. Let €2 be defined as the spatial domain of a certain railway catenary
system, i.e. the catenary components modelled by FE. If  is discretised into N,
elements such that Q = UNQ¢ and Q¢ N Q% =0, i # j, the total virtual work of
internal forces obtained as the combination of each element is:

Ne
Wit =Y _ 6We, (8)
e=1

For an element, this work is due to the contribution of the axial and the bending
strains, that is

Wi = / (EAdeper + Eldk k) dx (9)

where E represents the Young’s modulus, A denotes the cross-sectional area, I is
the second moment of area and, €7 and s represent the axial deformation and the
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curvature of the element, respectively. The axial strain can be defined using the Green
strain tensor as:

1 /dr dr
=_(=.2=_1 1
o Q(dx dx > (10)

From the Frenet-Serret frame, the curvature [24] is defined as:

dr d*r
. &’r . d_xxdx2 1
=2l = T TF (11)
s dr
dx

where s is the local coordinate in the deformed configuration as showed in Fig. 3.
Since on the catenary wires the axial strains are observed to be small, ds =~ dx and
the definition of curvature can be approximated by [19]:

d*r
dx?

After computing the variations of the axial deformation and the curvature and
replacing them into (9), the virtual work of the internal forces results in:

d?5r d*vr FEAdér dr (dr dr
e _ preor ¢r  Lador dar fdr o odar 1
OWint / . { OE DE T2 dx dx (dx dx ﬂ o (13)

R~

(12)

On the other hand, the force of gravity acts on the catenary. For an element, the
virtual work caused by this external force is:

WS, = or - gdx (14)

ext
Qc

where g = {0 0 — gAp}”T, being g the gravitational constant and p the density of
the element.

Finally, the weak form of the static problem is obtained by equating (13) and (14)
and accounting for all the element contributions. It consists of finding r(x) for all the
admissible dr, such that:

N,
< d?6r d’r FEAdér dr (dr dr
pr—— 4+ 22 () —6reg| dy=0, Vér (15
Z}/[ oZ a2 dx dx<dx dx ) rg}x Vo 18)

After the usual assembly process taking into account all the Dirichlet boundary
conditions, a nonlinear algebraic system of equations is obtained. The static equilib-
rium equation for the whole catenary system reads:

f(q) =0 (16)
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It can be solved using for example the Newton-Raphson method. Note that if
one wish to obtain the static equilibrium position for different sets of initial dropper
lengths, the domain Q changes, therefore a new static problem (Eq. (15)) must be
solved.

5. Proper Generalized Decomposition
approach

The objective of this section is to solve the static equilibrium problem (15) for
any initial configuration of dropper lengths. For this purpose the PGD model order
reduction technique is used. In this approach the geometrical parameters ‘dropper
lengths’ are considered as extra-coordinates of the problem. Thus, the unknown field
of absolute positions, and also its variations, now depends on both the spatial and
dropper length coordinates, r = r(x,lp1,lp2,...). For the sake of simplicity, in this
section the presented formulation only includes one undeformed dropper length as
extra-coordinate of the static equilibrium problem, so that r(x,). In the last part
of the current section, the proposed formulation is generalized to .4 undeformed
dropper lengths extra-coordinates.

Remark: Note the difference between [y, the constant value of the undeformed
length of an element, and /,, which represents any possible value of the undeformed
dropper length in an given interval.

5.1. PGD formulation

With the addition of one dropper length as extra-coordinate, {, € ; = [l;, l;‘],
l, and ll‘," are the lower and upper bounds of the interval €; for which it is desired to
obtain the static equilibrium position. Now, the variational problem (15) is extended
to the whole geometry of the catenary, {2 and to the domain ;. The new problem
consists of finding the absolute position r(x, l,) such that for all virtual displacement

Vor:

N,
= d?5r d*vr FEAdSr dr [dr dr

Fl— —+ ——+—- . — | —-— 1| —6r-g| dydl,=0 (17
Z_;/m/[ i D¢ 2 dy dx(dx dx ) rg}xp 4o

Note that the spatial domain €} depends on the initial length of the dropper [,,
which is problematic for the proposed formulation. In the same way as in [9], the
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following change of variable is applied to (17) in order to circumvent this problem:
X=X, x€[0,1] (18)

With the introduced change of variable, the contribution of an element to the
static equilibrium reads:

EI d*r d2 EAdér dr (1dr dr
EAdor dr (1dr dr .\ o ) .
/nl/ {12 @ de T2 dy dx (lgdx dx ) or g} lpdxdl, (19)

which is possible to be solved with the PGD technique. PGD is based on a separate
representation of the unknown field. In this case:

r(%hp) ~r" = 3 R0 Lil) (20)

where each mode is composed of an R;() function that only depends on the spatial
coordinate ¥, and an L;(l,) function that depends on the extra-coordinate I,.

In order to account for the non-homogeneous Dirichlet boundary conditions (the
absolute position of the points that connect the wires with the fixed structure), let us
consider a function d that satisfies these conditions. It is possible to state d(x,l,) in
a separate form

d(X, ) = Dy (X) Di(lp) (21)

where D, (X) is the FE solution of problem (15) for a particular value of the dropper
lengths and Dy(lp) is a constant function with unitary value in all ;. Considering
Ri(x) = Dy(x) and L1(l,) = Dy(lp), the remaining functions R;(x) and L,(l,), for
i > 1, are calculated with homogeneous Dirichlet boundary conditions. The inter-
ested reader is referred to [25,26] for a detailed explanation of the PGD construction
algorithm for problems with homogeneous Dirichlet boundary conditions.

The solution enrichment process starts from the assumed computed r”, n > 1,
and then the next term of the separated solution is sought

Z Ri( )+ Roy1(X) L 1(lp) (22)

with an admissible variation
or = 5Rn+1Ln+1 + Rn+16Ln+1 (23)

Introducing (22) and (23) in (19) leads to a nonlinear expression in which R, 41
and L, 11 are the unknown functions. A widely used procedure to find these functions
is based on an alternating fixed point strategy [10,25,26]. In each iteration of the
proposed algorithm, two problems have to be solved in order to obtain both the
R,+1(X) and L,41(l,) functions. These problems are detailed in Appendix A and
are briefly described below:
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o Calculation of Ry11(X). In this problem, r” is known and L, 41(l,) comes from
either the previous iteration of the alternating strategy or it is randomly chosen
in the case of the first iteration. Introducing Eq. (22) into (19) and integrating
over Q;, Ry41(xX) is the only unknown of the problem. If

or = 6Rn+1Ln+1 (24)

is considered to be the test function, the element contribution to the static
equilibrium is:

/0 1 [EI(SR” (wR] + 7R, ) + ETAaR' JouR] (R) Ry +
iy (2R (1R ) 1 ()
Vi (2Rln+1 (Rlz . R;1+1) +R,; (R;1+1 'Rln+1)) +

9R;z+1 (R;H-l 'R;H-l) — wiR; - TIR;H—I} — TpASR - g] dx

(25)

where R" and R are the first and second derivatives of R respect to x, and
the repeated subscripts i, j, k represent summations from 1 to n, following the
Einstein notation. The coeflicients ojx, Bij, Vi, 0, wi, n and 7 are the integrals
in €; described in Appendix A. Finally, this second order nonlinear boundary
value problem is solved for R,,+1(¥) using the FEM discretization described in
Section 3.

o Calculation of Lp4+1(lp). r™ is again known and Ry,,41(X) is the just-computed
function. Introducing Eq. (22) into (19) and integrating over X, Lyn+1(lp) re-
mains the only unknown of the problem. In this case,

or = Rn+15Ln+1 (26)

is the test function which leads to the following element contribution:

oL 1
/ [— |:12iLi + 1 Lny1 + o5 (@i LiLi L + (Brij + B2i5) L1 LiLj+
o Ll I (27)

(v1i + 72i) LiHLi + 9Lfl+1) —w;L; — T]Ln+1} — 5L7'lp] dl,

The coefficients 11, Io;, oji, Biij, B2ijs Viis V2is 0, wi, n and 7 are the integrals
in the variable x given in Appendix A. Finally, a nonlinear algebraic problem
is obtained, which in this paper is solved for L,11(l,) using an appropriate
discretization technique.

Both functions obtained at fixed point iteration p are compared with the same
functions at the previous step p — 1. The iterative process proceeds until its relative
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difference becomes smaller than a certain prefixed value ¢, that is,

p D p—1rp—1
HRn-l-an-l-l - Rn+1Ln+1 H

p— <e (28)
|roin

The solution enrichment process ends when the error ¥(n) is small enough, 3(n) <

€. Among the existing stopping criteria, for its simplicity and short calculation time,

we chose
_ RaLall

Y(p) = 12tnznll
() R Ll

where k is 2 if the first mode is employed to enforce the non-homogeneous Dirichlet
boundary conditions, or 1 otherwise.

When the just described separated representation constructor is used in nonsym-
metric problems, the obtained solution contains more modes than those provided by
the Singular Value Decomposition (SVD) (or its multidimensional counterpart, the
High Order Singular Value Decomposition (HOSVD)) applied to the problem solu-
tion computed by using standard discretization techniques. Thus, the decomposition
provided by the PGD constructor is not optimal [27]. This reveals that some modes
do not make an important contribution to the solution reconstruction and are not
necessary in the reduced basis.

Therefore, a post-compression should be envisaged in order to express the solution
in a more compact form (see [27] and [26]). If r™ is the PGD solution of the original
problem with 7 modes, the post-compression is carried out by solving the following
problem:

(29)

/ / ore [re(X,1p) — v (%, 1p)] dxdl, =0 (30)
Q JQ

in which r.(xX,1,) is the unknown field. The PGD is here applied only for approx-
imation purposes. With this technique the number of modes of the approximated
solution r} are usually fewer than those making up the original solution, i.e. n < n.
Therefore, post-processing the PGD solution requires a lighter computational effort.

5.2. Generalization to ./ extra-coordinates

It is straightforward to extrapolate the previous method to a more general case in
which there are .4 different undeformed dropper lengths extra-coordinates. In this
case, the domain Q; = Q;, x Q, x ... x Q; ., in which Q;, = [l;-,l;-], i=1,..,4.
The separated representation of the absolute position field is:

n N
(% Lty oo b)) 2" = Ri(R) [ Livsly) (31)
i=1 j=1
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Assuming r"™(X, lp1, ..., lp.4) to be known, the next term of the separated repre-
sentation is:

N
o =" R 1 (0) [ [ Lot () (32)
j=1
and the virtual displacements field can be chosen as:
N N N
dr = 6Rp 11 H Lyt1,(lpj) + Rpga Z OLn41,i H Lyt (33)
j=1 i=1 j=1
J#i

Replacing Egs. (32) and (33) in (19) and applying the fixed point iterative strat-
egy, the resolution of .4 + 1 one dimensional problems at each fixed point iteration
must be performed in order to calculate the functions Ry, 41(X), Ln+1,1, -y Lnt1,
respectively.

5.3. PGD formulation: Dropper slackening

In the formulation presented in the previous section the droppers are allowed to be
in compression due to the forces applied by the messenger and contact wires. However,
this is not strictly true, since the droppers behave as cables and they can slacken when
the pantograph pushes them upwards. In the case of the static configuration problem,
they may have some combinations of undeformed dropper lengths that result in the
slackening of some droppers in the static equilibrium position. Although this is not
desirable in a railway catenary, if the model could take it into account it would be
possible to simulate mistakes in the assembly process or failures in the design.

In a classic FEM approach it is easy to account for this effect by neglecting the
axial strain term in Eq. (15) for the droppers whose deformed length is shorter than
its undeformed length. When the problem is solved by the PGD approach there is
not a straightforward solution. Here, we propose the following procedure to capture
dropper slackening in the separate solution:

1. Solve the PGD problem described in Section 5.1, in which droppers work in
compression.

2. For each dropper p, identify the combinations of extra-coordinates in which the
dropper is compressed. For this pupose, the function h? € ; is defined, which
takes the value of 1 when the dropper is stretched and is set to 0 otherwise.

3. If there is more than one extra-coordinate, separate each h? function in a sum-
mation of the product of one dimensional functions:
NP
W =" Hiy(lp))Hio(lp2) .. Hi oy (Lpy) (34)

=1
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4. Solve a PGD static problem in which, for the dropper p, the axial strain term
of the element contribution to the static equilibrium (19) is multiplied by its
respective separate hP function.

In practice, in a real catenary with a realistic range of variation of dropper lengths,
if we focus on a single dropper, its slackening can be assumed to depend only on its
initial length and the undeformed length of its two neighbor droppers. With this as-
sumption, each AP function depends, at most, on three extra-coordinates. Otherwise,
in problems with several extra-coordinates, it would be challenging to explore all §);
to identify the dropper slackening due to computational memory limitations.

Let us assume that there are p droppers in the spatial domain 2 but, for simplicity
in the notation, only the undeformed length of the first two droppers are considered as
extra-coordinates, namely [, and ly2. By solving the problem posted in Section 5.1
but now with these two extra-coordinates, the separated absolute position field is

obtained:
n

e (X oty Ip2) = Y Ri(X) Lia (lp1) Lia (1p2) (35)
i=1
Next, for each dropper p the domain ; = €, x €y, is explored and the AP function
is built. Specifically, for dropper 2:

1oif lez>g (36)
0 if ez

lpg

B (Lp1, Lp2, los) = {

where [gc¢2 is the deformed length of dropper 2 and /g3 denotes the undeformed length
of dropper 3, which is assumed to be constant in this case.

Following the procedure described in Appendix B, all of these h? functions are
exactly represented with n, modes in a separate form:

pla p2 Z Hz 1 pl 7 2(lp2) (37)

The last step of the proposed strategy consists of solving a PGD static equilibrium
problem with the use of the h? functions, in order to cancel the axial force of the
droppers for all the combinations of [,,; and [,,2 that make them slacken. The procedure
for obtaining the separated representation of the absolute position field is exactly the
same as described in Section 5.1. However, in this case, for a dropper p with variable
initial length ,1, its contribution to the static equilibrium (Eq. (19)) becomes:

EAdér dr [ 1 dr dr
m, m l 79 1~ " 7~ T - 5 . l d~dl dl
/Qz/ [ 1(lp1) H, (p2)2lz dX dX <12 dy dx ) r g] pl WX Alp1 Glp2

(38)
where the subscript m denotes a summation.
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This method leads to accurate results in spite of having some drawbacks. For
example, when the high nonlinearity of the dropper slackening is introduced into the
problem, the fixed-point alternating strategy needs more iterations to converge, with
a consequently higher computational cost. Moreover, looking at expression (38), when
the separated field (22) is introduced there is a summation whose number of terms
depends cubically on the previous computed modes, and linearly on the number of
terms in the separated h? function.

It is true that these calculations are performed offline and only once, however they
can require excessive computational time. For this reason, we propose the linearization
of the problem (15) with respect to one static equilibrium position computed from a
given value of dropper lengths. The linear solution is close to the nonlinear solution,
as will be seen in Section 6, but the time required to obtain this solution is orders of
magnitude lower.

5.4. PGD formulation: Linearized static problem

In a classic FEM approach, in order to linearise the static equilibrium problem,
the first step is to calculate the static equilibrium configuration for which the problem
is linearised This involves solving the problem stated in (15) for a certain values of
undeformed dropper lengths 1. defining the reference catenary spatial domain Q..
This provides rye¢(x), the reference equilibrium position field. For a different set of
undeformed dropper lengths 1y defining the spatial domain €2, the new equilibrium
position can be expressed as r = ryer + u, where u(y) is the displacement field with
respect to the reference solution r,.s(x). Therefore, the linearised static equilibrium
problem consists of solving for all admissible du:

Ne o o
Z/ [EI@ d’u + EAd(S_u. {er”f (d_u . drmf) + du (drref ) drref) n
e=1 ¢

A2 dx 2 dy dy \dx dyx dy \ dx dx
drrey (dryey drpey du  drpey
. —— - —pASu-g| dy =0, Vi
dx < dx  dx ) dx  dx pAOTTB| X = Tou

(39)

In order to apply the PGD to such a variational problem, the reference solu-
tion rr.f(x), which only depends on the spatial coordinate, is obtained again solving
Eq. (15), in which 1,y are now defined as the intermediate values of the undeformed
dropper lengths in €2;. From now on, the same steps as detailed in Section 5.1 must
be followed. The displacements field also depends on all the extra-coordinates, so the
change of variable defined in (18) is introduced. Taking only one extra-coordinate for
simplicity in the notation, the element contribution to the linearised static equilibrium
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problem reads:

d?5u d*u  EAdSu drres (du dry.s
~/Ql/ [EI > e T2 A {2 dx (dx dx )+
d_u (drmf ' drmf> N drycs (drmf ' drmf> P <d_u N drmf)] B (40)
dy \ dx  dx dx dx  dx PAdy  dx
pAly, du - g] dxdi,

The separated form of the unknown field is:
u(x,lp) ~ut =Y Ui(X)Li(ly) (41)

where U(x) is a function that only depends on the normalized spatial coordinate ¥,
and L(l,) is a function which depends on the extra-coordinate I,. As the Dirichlet
boundary conditions are fulfilled by the reference static solution r,.f, the linearised
problem is solved with homogeneous Dirichlet boundary conditions.

In order to obtain the next mode u™*!, the procedure used is again the same
as described in Section 5.1. In order to account for the dropper slackening, the
procedure explained in Section 5.3 is applied combined with the linearised problem
defined above, considering now that Eq.(36) becomes:

WPl ) = Loaf [l lpe) > floy (42)
pip 0 if ffnt(lplvlp?) < ff@f

in which f!, is the projected internal force of the dropper element p in its axial
direction for a given value of I, and lps, and 7 ¢ 1s the internal force of the same
element in the reference configuration.

By using the linearised formulation, when solving the problem defined in € x €
with the fixed-point algorithm, the number of terms involved in the internal forces
increases linearly with the number of already evaluated modes. On the other hand,
if the nonlinear formulation is used, the number of terms increases cubically with the
evaluated modes. This means there is a considerable reduction in computational cost
when the linearised formulation is employed.

6. Numerical examples

In this section, the proposed method is checked through some numerical exam-
ples. The first one is quite simple, allowing all the FEM static solutions to be obtained
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and thus making it possible to compare the whole nonlinear PGD solution with the
solutions obtained from the FE analysis. The second example includes a more real
catenary geometry, with which a more realistic application of the algorithm is shown.
Finally, the third example reveals that when the nonlinear formulation includes drop-
per slackening, the solution process is very expensive in terms of computational cost,
so that the linearised approach is used and validated.

6.1. Example 1: Academic example

The proposed method is validated with the first numerical example. The spatial
domain Q of this 2D academic example is shown in Fig.4. It simulates a single span
with two droppers, in which the contact and messenger wires are discretized into 30
elements each. The material and geometrical properties of these elements are listed
in Table 1. Regarding the Dirichlet boundary conditions, the vertical and horizontal
displacements of the nodes located at the ends of both cables are constrained. Al-
together, there are 240 spatial degrees of freedom. The two droppers are considered
with variable undeformed length. The domains of the extra-coordinates l,; and I
are §, =y, = [1.15,1.25] m, which ensure dropper slackening in certain regions of
);. The domains of each extra-coordinate are discretized into 20 elements of the same
length.

7
o \__/
E ¢}
N
55F
5 ‘
0 10 20 30 40 50

Figure 4: Academic example spatial mesh.

The first PGD solution is obtained allowing the dropper elements to work in
compression. The iterative process converges with 12 modes. Fast convergence of
fixed-point alternating strategy was observed (around 8 iterations each mode) and
short computational time was required.
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Table 1: Material and geometrical properties of the elements.

Element E(Pa) p(kg/m?)  A(mm?) I(mm?)
Messenger wire 9114  1.1-10% 94.8 1237.2
Contact wire 9160  1.1-10% 150 2170
Droppers 9114 1.1-10% 10 0

From this solution, the ! and A? functions are calculated. It should be remem-
bered that the h? function controls whether or not the dropper p is under compression
(h =0) or (h = 1) for any combination of variable undeformed dropper lengths. These
functions are plotted in Fig. 5. The magenta area is the region of the domain 2, in
which the respective dropper is stretched, while the cyan area shows the values of the
extra-coordinates at which the dropper is compressed.

h2

1.25 1.25

1.15 1.15
1.15 1.2 1.25 1.15 1.2 1.25

ly ly
Figure 5: h function for droppers 1 and 2. h =0 in cyan, h = 1 in magenta.

Focusing on k', it can be seen that when dropper 1 becomes longer it tends to
slacken, while on the other hand, dropper 1 is more likely to slacken when dropper 2
becomes shorter. The same conclusions can be drawn for dropper 2, looking at h2.

The separation of h! results in a summation of 9 terms and h? is separated prop-
erly with 10 modes. The next step of the calculation is to compute the PDG solution,
taking dropper slackening into account. The strong nonlinearity introduced by the AP
functions slows down the speed of convergence of the fixed-point strategy. Further-
more, the number of modes necessary to obtain a similar error to the case of droppers
without slacking increases hugely, as can be seen in Fig. 6. For these reasons, the
computational cost required to solve this problem is much higher than that required
to solve the PGD problem without dropper slackening.
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Let us define the local error of the separated solution with N modes and for specific
values of the extra-coordinates, as:

Crex (b2, o) = RanUpts bpg,s oo by )|

EN (Lt lpy) = —
focllpt- lp.r) e ex U, bp2s s Lo )|
lo | ; .
\/va_el o [P Ex (U, L2, o bpo) = T pp (1 Ly, s Lpy)
1 .
\/va:cl foo riex (Ip1, lp2, - Z;DJV)|2 dx
where rpx and r¥,, are the absolute position field from the FEM solution and the

PGD solution, respectively. To account for all €;, a global error is defined as the
integral of the local error in this domain:

(43)

2
|

EN = /Q EN (L1, lpay ooy Ly ) dlpy dlys ... dlyy (44)
l

In Fig. 6 is shown a plot of the global error versus the number of PGD modes. The
graph on the left shows the case without dropper slackening and the one on the right
gives the error of the problem which accounts for dropper slackening. As mentioned
above, the speed of convergence to the reference FEM solution is noticeably slower
than the case without dropper slackening.

The twenty-seven computed modes of the separated solution can be compressed
into a few modes using (30) with almost the same accuracy, as shown in Fig. 7.

10

10

Eglob
Eglub

10°
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107
2 4 6 8 10 12 5 10 15 20 25

N N

Figure 6: Eg0 of PGD solution without dropper slackening (left) and with dropper
slackening (right).

A comparison between the solutions considering (blue line) and obviating (red
line) the slackening of dropper 1 is shown in Fig. 8. In both cases, the values of the
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%107
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Figure 7: Ego, of PGD post-compressed solution.

undeformed lengths are [,; = 1.25m and [y = 1.15m. The difference in the static
equilibrium position is quite clear, and it becomes even more apparent in the dynamic
interaction problem. Thus, it is necessary to include dropper slackening into the PGD
approach to obtain realistic solutions.

651 T~

55¢

Figure 8: Static position for l,; = 1.25m and [y2 = 1.15m. With dropper slackening
(blue), without dropper slackening (red).

93



Paper A

6.2. Example 2: Variable pre-sag

In this case, a real span of an overhead line set-up is studied. The span consists
of 9 droppers, and the messenger and contact wires are discretized into 100 elements
each. As in the previous example, the vertical and horizontal displacements of the
nodes at the ends of both cables are constrained.

In a real railway catenary the presence of a certain amount of pre-sag is fairly
common. Pre-sag is defined as the vertical deflection, in the static equilibrium con-
figuration, of the contact wire at the midspan, as shown in Fig. 9.

6.6

6.4r

6.2

Figure 9: Geometric model of a real span, with defined pre-sag.

The method described in this paper not only allows the undeformed dropper
lengths to be directly included as extra-coordinates, but also it allows to consider
a parameter on which the undeformed dropper lengths depend, i.e. for a certain
dropper i, l,; = fi(parameter). Since the amount of pre-sag is defined with the
initial dropper lengths, it is possible to include an extra-coordinate of the problem
that controls the pre-sag. Each undeformed length of droppers 2 to 8 is variable and
depends on the x coordinate of the dropper, on the undeformed dropper length that
leads to a static position in which the pre-sag is null, and finally on the new variable
psg € Qpsg = [0,0.18] m. This range of values of the extra-coordinate psg is equiva-
lent to a pre-sag of [0, 85] mm. The domain of the extra-coordinate is discretized into
20 uniform distributed elements.

The PGD solution to this problem, in which any dropper slackens, is accurate
enough with 5 modes, as showed in Fig. 10.

In Fig. 11 the L;(psg), ¢ > 1 normalized functions are plotted. It is notorious
that L;(0) =0, ¢ = 2,...,5. This is because the first mode Ry (x)L1(psg) introduced
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104+

Figure 10: Global error for PGD solution with variable pre-sag.

into the solution to fulfill the Dirichlet boundary conditions is the FEM solution of
the static equilibrium problem for zero pre-sag. Therefore, as expected, the following
PGD modes do not change the solution for psg = 0.

-0.4¢

-0.6

0 0.03 006 009 012 015 0.18
psg

Figure 11: L;(psg), ¢ > 1 normalized functions.

Once the solution is obtained, we have to check if there are any compressed drop-
pers. For the case at hand, all the hP functions are null because all droppers are
tensioned in all €;. This example shows what is expected to take place in a real
railway catenary static configuration. The values of the initial dropper lengths are
designed so that in the static equilibrium configuration all the droppers work under
tension. This PGD solution could therefore be used as the initial modes of the solution
of a parametric dynamic simulation problem following the PGD approach.
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Table 2: Definition of the domains for each extra-coordinate.

Dropper Extra-coordinate Range (m)

1-9 It 1.00 - 1.05
2-8 L2 0.82 - 0.87
3-7 L3 0.70 - 0.75
4-6 Ipa 0.62 - 0.68

5 Ly 0.59 - 0.64

6.3. Example 3: Multidimensional catenary span

The same geometrical model of the catenary span used in the example 2 is also
used in this case. The nine droppers in the span are considered as elements with
variable initial length. In particular, as regards the span symmetry, the symmetric
droppers are related to the same extra-coordinate, and so five extra-coordinates are
introduced. The range of variation of each variable and the droppers related to them
are listed in Table 2. The 5D domain €; is composed of the product of the 1D domains
Qy;, which are discretized into 20 uniform elements each.

The first step deals with the PGD problem without dropper slackening, using
the nonlinear formulation of the static equation. In the current case, due to its
high dimensionality, it is not possible to generate a reference solution with classical
methods, so that the local and global error cannot be evaluated. As all the L; ; (i =
1,...,N;j=1,..,5) functions are normalized, the weight of the mode n is defined as
wy, = ||Ry||. Fig. 12 represents the weight of the first 30 modes, where its decreasing
tendency can be seen.

When building the AP functions the nine droppers are compressed in certain re-
gions of ;. Therefore, the next step is to solve the static equilibrium problem,
including dropper slackening. However, even if this is performed offline, using the
nonlinear formulation takes an excessive time. Consequently, when there are sev-
eral extra-coordinates, the linearised formulation is highly advantageous in terms of
computational cost without major changes in the required accuracy.

In Fig. 13 there is a comparison of the static equilibrium position obtained after
solving the nonlinear and the linearised problem. The maximum values are used for
the [, coordinates, so that this case is the furthest case from the reference solution,
i.e. the distance between €2,.; and ) is maximum for the current ;. Even so, the
largest differences observed in the height of the contact wire are around 1 mm. These
discrepancies are perfectly assumable and confirm the validity of the linearised static
formulation for this ;.

When computing the PGD solution with dropper slackening, using the linearised
formulation, 225 modes are computed to achieve good accuracy in the separate so-
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Figure 12: Weight of the PGD modes of the nonlinear problem without dropper
slackening.
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Figure 13: Comparison of linear and nonlinear static equilibrium positions.

lution. This amount of modes would be challenging to obtain with the nonlinear
formulation, whilst it requires little computational cost with the linearised problem.

Fig. 14 shows the weights of the computed modes for the original solution (left)
and the post-compressed solution (right). Although there are some peaks, the general
trend is to reduce the weight of the modes while the PGD solution tends to the exact
solution of the problem. This tendency is clearly improved when the post-compressor
problem (30) is solved. However, for the established accuracy, the number of modes
required is not reduced when the solution is compressed, which means that every
mode plays an important role in the reconstruction of the solution.
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Figure 14: Weight of the PGD modes of the linear problem solution, with slackening.
Original solution (left), post-compressed solution (right).

Finally, in order to emphasize the effect of considering dropper slackening, Fig. 15
shows the static equilibrium configuration for l,1 = 1m, 2 = 0.82m, [,3 = 0.75m,
lpa = 0.62m and l,,5 = 0.64 m. On the blue plot, droppers 2, 4, 6 and 8 are compressed,
while on the red plot they are slackened.

6.6

o\

52 Il Il Il Il Il Il
0 10 20 30 40 50
z (m)

Figure 15: Static equilibrium with compressed droppers and slackened droppers.
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7. Conclusions

This paper addresses the static equilibrium problem of a railway catenary. The
catenary system was modelled by FE according to the absolute nodal coordinate
formulation. The undeformed dropper lengths were introduced into the nonlinear
formulation as extra-coordinates in order to obtain a general solution valid for any
value of undeformed dropper length, using PGD. The proposed strategy was applied
to an academic example showing good convergence and accuracy.

Not only undeformed dropper lengths can be added as extra-coordinates, but
also any parameter on which these lengths depend. In order to demonstrate the
method’s capabilities, pre-sag was included as an extra-coordinate in the model. The
proposed method also allows for the strong nonlinearity of dropper slackening. This
high nonlinear effect has a remarkable influence in the number of modes needed for
the solution and thus, it increases the required computational time. In order to make
the separated construction more efficient, a linearised formulation of the problem,
which provides a similar level of accuracy in the results, is also proposed.

This work constitutes the first step towards the major objective of optimizing
the geometry of the catenary, which normally requires a large number of dynamic
catenary simulations for different values of the parameters to be optimized, e.g. un-
deformed dropper lengths. With the parametric solution provided by the PGD ap-
proach, i.e. the dynamic response of the system for any combination of undeformed
dropper lengths, addressing the optimization problem would be faster because one
dynamic simulation would be substituted by a evaluation of the parametric solution.
However, in order to obtain the parametric dynamic solution, it is necessary to have
at hand the parametric solution of the static configuration problem presented in this

paper.

A. The PGD constructor

The aim of this section is to explain in depth the formulation of the two problems
dealt with in Section 5.1, in which the functions R,,41(x) and L,,41(l,) are computed.
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A.1. Computing R,,.1(x) from L, (l,)

For this problem, the test function is:
or = 0R(X) Lnt1(lp) (45)

where L,+1(lp) in supposed to be known. Introducing equations (22) and (45)
into (19), the following expression is obtained:

" " 2 EA ’ ’ ’
/ /Q [ Loi16R -(Rl- Li+Rn+1Ln+1) + 57 Las10R -(Rl-Lz-JarHLnH)
1 p

[1—2 (R L+ Rn+1Ln+1) : (R;Lk + RInHLnH) - 1} — pAL,.10R - g] L, dl, dy
p

(46)
Integrating in €, the coefficients
1
o= [ planLiLilidy, Gy 8 LL2 L LiLydl, / lgLiHLi d,
97} P Q
1, 1 1
0= Z—SLn+1 dlp Ww; = Z—Ln+1Li dlp n= Z—Ln+1 dlp
Q 'p Q 'p Q ‘p
7':/ Lyialydly
Q
(47)

can be introduced into Eq.(46) leading to:
1 " " " EA ’ ’ ’ ’
/O [E]dR (wR + 7R )+ —-OR - iR, (R - RY) +

Bij (2Rli (R; : R;z+1) + R;1+1 (R; R;)) +7 (2Rln+1 (R; : R;1+1) +

R; (Rn+1 ) R;1+1)) + 0R;z+1 (R;L+1 ) R;z-i—l) - %R an+1:| — 7pASR - g} dx
(48)
If function R,, 41 is discretized, after applying the usual Galerkin FEM a nonlinear

system of algebraic equations is obtained which can be solved with the Newton-
Raphson method.

A.2. Computing L, 1(l,) from R, ()

For the next step of the fixed-point iterative process, the test function is chosen
as

ot = Rps1(V)SL(L,) (49)
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in which R,,4+1(x) is the solution of the problem solved in the previous step. In this
case, the contribution of an element to the problem at hand is:

1" " EA ’ ’
/ / [ SLR,, (RZ- Li+ Rn+1Ln+1) o0 ZZ5LR,, (RZ-Li +Rn+1Ln+1)
Q
[12 (R L+ Rn+1Ln+1) (R;Lk + R;HL,ZH) - 1} — pASLR 41 - g | 1y dly dY
(50)

Integrating the known functions over its corresponding domain we can define the
following coeflicients:

IleI/OlR;;H-R;;HdX Izz-:EI/OlRZH-R;—'dX

= [ e =0 [ ) ()

= 20 [ ) (o o= [ () ()

= 2 [ ey e 0= 20 [ (R R 0
EA/R RLdg UZETA/()lR;+1.R;+1d>z

T=pA/ Ryt1-gdy
0

(51)
Thus, Eq. (50) can be rewritten in the following fashion:

oL 1
/ {— [ImLi + D1 L1 + o (i LiLi Ly + (Brij + B2i5) L1 LiLj+
Q l;D lp (52)

(v1i +72i) L2 Li + 0L, |) — w;L; —nL;| — 6L7l,] dl

which can be solved using an appropriate discretization technique. However, this
expression can be turned into its associated nonlinear strong form:

{1—21[/ +ILiLpty + 5 2 (aijkLiLij + (Brij + B2ij) Lnt1 Li L+

I (53)

(vii +72i) L2 41 Li + OL2 1) — wiLi — nLny1] — 71,

The nonlinear system equation resulting from the result of both strategies can be
solved again using the Newton-Raphson method.
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B. Separation of the h function

Let h? be a function dependent on three variables, h?(Ip1, lp2, lp3). An example of
such a function is depicted in Fig. 16. The domain €; is discretized into N1 X No X N3
points in which A? could be one (vertices of shadowed squares) or zero (other points).
The goal of the separation process is to obtain the functions H; 1(Ip1), H; 2(lp2) and
Hi)g(lpg) such that:

WP (Lt L2, 1p3) = D Hi 1 (Ipt) Hi o (Ip2) Hi 3 (Iya) (54)
=1
1
Hy

Z
Z

V4

H,

Figure 16: Example of h function and separation method. The value of A in the
corners of the shadowed cubes is 1 and in the rest is 0.

All these functions are step unitary functions. Defining the residual Res; as the
difference of h? and the right hand side of Eq. (54) for a certain value of 4, the proposed
algorithm reads:

L. Initialize i = 1, [2 = |5 and I3 = [ 3.

2. Evaluate Res;. Three cases are distinguished:
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(a) If all values are 0, there is not a new term. Go to Step 3.

(b) If all values are 1, the new term is composed of H;1(lp1) = 1, Hia(l,5) =1
and H;3(l,3) = 1. Update i =i+ 1, and go to Step 3.

(c) If some values of Res; are 1 and others are 0, H; 1(I,1) = 1. For the other
two directions Res; is evaluated starting from the first nonzero value of
the function H;; (black point in Fig. 16). Each function of the new term
corresponds to the evaluation of Res; in its direction. Update i = i + 1,
and go to Step 3.

3. Move to the next value of [,3 and/or [,3 and repeat Step 1 until all the domain
is explored. In this case, move to Step 4.

4. All the modes where H; 1(l,1) = 1 are compressed in an appropriate way in
order to minimize the number of terms in (54).
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Abstract

Simulation of the pantograph-catenary dynamic interaction has now become a
useful tool for designing and optimizing the system. In order to perform accurate sim-
ulations, including system non-linearities, the Finite Element Method is commonly
employed combined with a time integration scheme, even though the computational
time required may be longer than with the use of other simpler approaches. In this
paper we propose a two-stage methodology (Offline/Online) which notably reduces
the computational cost without any loss in accuracy and makes it possible to success-
fully carry out very efficient optimizations or even Hardware in the Loop simulations
with real-time requirements.

Key words

Catenary; Pantograph, Efficient simulation; Real-time simulations
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1. Introduction

1. Introduction

The catenary provides the energy supply to railway locomotives through contact
with the pantograph. This overhead equipment is composed of structural elements
such as masts, brackets and registration arms that hold the contact wire in the de-
sired position. However, other cables form part of the catenary. These include the
messenger wire, which is hooked to the brackets, and the droppers, which suspend
the contact wire from the messenger wire.

Current collection quality is vital for good performance and is usually measured
by the pantograph-catenary interaction force. High contact forces cause high levels of
wear on the sliding surfaces [1], while contact losses produce arcing and cut out the
energy supply to the engines [2], limiting the operational railway speed. This means
numerical simulations can be very useful in the design of improved pantographs and
overhead equipment.

In recent decades a lot of effort has been put into the simulation of the pantograph-
catenary dynamic interaction (see [3] and the references therein), and has triggered
European projects (EUROPAC) and regulation in the field [4] (UNE 50318). Starting
with very simple models [5, 6], the Finite Element Method (FEM) now seems to be
the most suitable approach for modelling the overhead line [7]. Pantograph mathe-
matical modelling ranges from linear lumped parameter models to flexible multibody
models [8].

Computational cost is always an issue if simulations have to be performed sev-
eral times as occurs in optimization procedures. In the catenary—pantograph field
some authors have proposed simplified catenary models [9], modal decomposition
approaches [10], models based on moving meshes [11] or even a priori model order
reduction techniques [12] in order to reduce the computational effort. However, the
common feature of all these approaches is that they are less accurate than the full FE
models.

At the present time, hybrid or Hardware In the Loop (HIL) simulations are an-
other field in which the computational cost is crucial. The main requirement of such
approaches is a numerical model that can be solved in real-time. A wide range of
applications can be found in many fields, such as in earthquake engineering [13],
electronic engineering [14] and railway mechanics [15] to cite just a few. When test-
ing pantographs, it is advisable to have an accurate catenary model. Although HIL
simulation techniques have been implemented for pantograph-catenary dynamic in-
teraction (see the pioneering works [10,16]), even though they all achieve real-time
performance, a somewhat simplified catenary model with a modal approach is gener-
ally used.

This paper aims to provide a realistic model of the pantograph-catenary dynamic
interaction that can be solved efficiently without losing any of the accuracy achieved
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by classical FE techniques. The computational cost saves can be exploited to per-
form efficient optimizations and furthermore, the method is suitable to be used in
HIL simulations if real-time response is achieved. Extending on the idea first intro-
duced by Collina and Bruni in [17] and used by Ambrésio et al. in [18], in which
the nonlinearities of the model are moved to the right hand side of the equation of
motion, the main novelty of the method proposed here relies on pre-calculating as
much information as possible in an Offline stage. In this phase of the calculations,
the catenary is treated as a linear system, and then in the subsequent Online stage
the nonlinearities introduced by dropper slackening and loss of pantograph-catenary
contact are dealt with. The pre-calculated information makes it possible to obtain
the total system response by solving a system with a small set of unknowns, which
notably reduces the computational cost required for the time integration.

The paper is organized as follows. After this brief introduction, the numerical
models chosen for the different subsystems are described in the next section. The
static equilibrium formulation is a requirement for the dynamic simulation and is
detailed in Section 3. In Section 4 we explain in detail the dynamic interaction
problem. The features of the new Offfine/Online approach are deduced from what we
call the classical time integration procedure and its modified versions. Some numerical
examples are given in Section 5 to validate the assumed hypotheses and also to show
the saving in simulation time of the proposed method. Finally, we provide some
concluding remarks in Section 6.

2. Catenary and pantograph models

In this section we describe all the models used to perform the numerical simulations
of the pantograph—catenary dynamic interaction. There are three different subsystems
which need to be modelled: the catenary, the pantograph and the interaction between
these two subsystems.

2.1. Catenary model

Among the different options found in the literature, the FEM is the method most
frequently used to model realistic catenary behaviour. In the present work the cate-
nary cables are modelled by a beam element based on the Absolute Nodal Coordinate
Formulation (ANCF) first proposed by Shabana [19] and adapted for thin beams
and cables in [20]. This formulation has also been used by other authors for rail-
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way catenary models [21,22]. The interested reader is referred to [23,24] for detailed
comparisons between the ANCF element and those based on the classical formulation.

For very slender beams like catenary cables, the ANCF element has only 6 degrees
of freedom per node in 3D, taking into account axial and bending deformations. Here-
inafter, this type of element is referred as ‘cable element’ and is used to model both
the messenger and the contact wires. Droppers and registration arms are modelled as
a single large displacement non-linear element, known as the ‘bar element’ throughout
the paper.

ol

Figure 1: FE catenary model with boundary conditions.

All the supports are replaced by suitable boundary conditions. The displacements
at the ends of the registration arms joined to the brackets (nodes marked with a cross
in Fig. 1) are constrained.

Figure 2: Reference and deformed configurations of the ANCF element.

In Fig. 2 the reference and deformed configurations for a cable element is schemat-
ically represented. The vector of degrees of freedom for an element with nodes ¢ and
j is:

T

- o s, Oz Qi Oz ) ., Oz Oy; 0z
qc = i Yi % W dx ox Li Yj Zj G_X W W (1)
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where x € [0, l,¢f] is the local coordinate, l,.s is the initial length of the element, z;,
Yi, 2; are the coordinates of node 7 and %ﬂig‘, %711', 6627‘ are the slopes. In a deformed
configuration, the absolute position at a given point with local coordinate x is defined

by means of a cubic Hermitian interpolation that can be written as:

r(x) = Ne(x) qe (2)

where
Nc(x) = [Ne1l3|NeoI3| NegI3| NeaIs)]

3
Nei(€) =1 =362 4+26% Neo(€) = lres(§ — 287 + &%) ®)

NcS(f) = 352 - 253 Nc4(€) = lref(_§2 + 53)

The coordinate £ = x/lyes € [0,1] denotes the normalized local coordinate and Is
is the 3 x 3 identity matrix. The C! continuity of the solution between elements is
guaranteed with this interpolation. The degrees of freedom of a bar element are the
absolute positions of the two nodes of the element only, namely:

T
Qb:[xi Vi oz T Y Zj} (4)

In these elements, as no bending deformations are taken into account, a linear
interpolation is enough to ensure continuity of the solution,

Ny (x) = [No1I3| Np2Is]

E—-1 E+1 )
Nei(§) = —=—5— Nez(§) = =——
2 2
For simplicity in the notation, subscripts ¢ and b will not appear henceforth unless

necessary.

2.2. Pantograph model

A number of accurate pantograph models can be found in the bibliography. Al-
though these models are based on FEM or multibody approaches [8,25] and are able
to account for deformable bodies, the most widely used pantograph model in the lit-
erature is a lumped mass model with 2 or 3 vertical degrees of freedom. We have
assumed a model with 3 masses, which is depicted in Fig. 3.
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my
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Figure 3: Lumped mass pantograph model.

2.3. Interaction model

In order to model the pantograph-catenary interaction, approaches like the imposi-
tion of unilateral constraints by Lagrange multipliers [26] or an Hertzian type contact
force with internal damping [27] are found in the literature. However, in this work
the pantograph-catenary interaction is simulated by a simple and widely used penalty
method. This method introduces a high stiffness elastic element which connects the
pantograph head with the contact wire in order to accomplish the impenetrability
constraint. A scheme of this type of interaction is represented in Fig. 4. According to
the reference model in [4], the value of the penalty constant is set at k;, = 50000 N /m.
The contact or interaction force vector is assumed to be oriented vertically and its
value can be computed as:

(6)

kh(zl - ch) if 21 2 Zew
fi= .
0 if 21 < Zew

where z; and z., are the vertical absolute coordinates of the upper mass of the
pantograph and the contact point on the contact wire respectively.

3. Static equilibrium configuration

As in any cable structure, the first step in the simulation consists of solving the
so-called shape finding problem. During catenary stringing certain constraints must
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Figure 4: Pantograph—catenary interaction scheme.

be fulfilled by the cabling. In the problem at hand, the main constraints are the initial
tensions of the messenger and contact wires, contact wire height and the separation
between droppers. In this initial configuration problem, the non-deformed element
lengths and the nodal degrees of freedom are therefore set as the unknowns. A detailed
explanation of this problem is thoroughly discussed in [28].

Here we assume that the undeformed element lengths are known and that € rep-
resents the spatial domain of the catenary. This domain is discretized into N, non-
overlapping elements with a domain ¢ that fulfil 2 = Ué\f:el Q¢. The virtual work
principle states that the virtual work produced by the internal forces must be equal
to the virtual work produced by the external ones,

Ne
Z(S int —OWepe =0 (7)
e=1

For a certain element e belonging to a cable with cross-sectional area A, Young’s
modulus £ and second moment of area I, the internal virtual work is produced by a
combination of axial and bending strains:

int = / (EAdeqeq + ETk k) dx (8)

where ¢, is the axial strain and & is the curvature. During catenary stringing, the
cables undergo large displacements, so that a non-linear measure of the deformation
is required. Using the Green strain tensor, the axial deformation is defined as:

1 /dr dr
«=3 (% &) )

Since the cables undergo small deformations, we can assume ds ~ dx and therefore
curvature can be approximated by [29]:
d’r
dx?

K~

(10)
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4. Dynamic interaction problem

The only external force applied to the system is the force of gravity. The virtual
work produced by this force is:

Wey = [ or-gdy (11)
Qe

where the vector g = [0 0 — gAp|”, while g is the gravitational constant and p is the
density of the cable. By combining all the previous expressions, the static equilibrium
problem consists of finding the field r() for any admissible dr, such that:

Z 00 Pr EAdor dr (dr dr
o\ gy ) o = 12
/[ FDE T2 Ay dx (dx dx ) or g} dx =0, Vor (12)

where the first term related with bending strain vanishes for the bar elements since
I =0 for them.

After the assembly process, taking into account all the Dirichlet boundary condi-
tions, the non-linear algebraic system of equations

is obtained, which can be solved using for example the Newton-Raphson method.

4. Dynamic interaction problem

Catenary

The dynamic behaviour of the catenary system is characterized by the small ca-
ble displacements. A common assumption is to linearise the dynamic problem with
respect to the static equilibrium position of the catenary cables.

Once the static equilibrium position of the catenary cabling ry has been calculated
by solving Eq. (12), a new absolute position r = [z y 2|7 can be computed as r =
ro+u, where u = [u v w]” are the displacements with respect to the static equilibrium
position. Note that subscript 0 refers to the configuration for which the system has
been linearised.

If Eq. (12) is linearised and we add the inertial term, the linear dynamic problem
for the catenary consists of finding u for any compatible du such that:

d’6u  d*u EA déu drg (du drg
A BEl—— 2—
Z/e[” w B BT T T ay {dx (dx dx>+

du (dry drg
——— -1 dy =0 Vo
dx (dx dx )” =5 "
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Introducing the interpolations defined in Section 2.1 for each type of element, the
mass and stiffness matrices of the catenary are:

Mo = A, | pANTN dy
o
Kear = A - (BN N+ pA (N Na) (alN'N) + (15)
% (N’TN’) (qOTN'TN'qo) - %N’TN’H dx

where A is the assembly operator, N is the shape functions matrix for both cable and
bar elements whose derivatives are N = % and N = U;XIZI.

In addition to this linearisation, if we analyse Eq. (14) in more detail, another
simplification can be introduced for the dropper elements. The vector dﬂ = ny
has the direction of the dropper in the configuration in which the problem has been

linearised (i.e. the static equilibrium position) and its modulus is ll—"f Therefore,

the virtual work produced by axial strains can be decomposed into two terms. For a
single dropper element, the first of them reads:

déu du déu du
EA M ong)dy= [ EA Mo (16
A <dx “d> <dx “”‘) = (w) T (@0 Godx (10

where the unitary vector ng =

The second term is:

Hndll

EA 2
_d‘s_“d_“<< ZO> _1> dy = EAgaOd5u dudX_
QC

Qe 2 dx dyx lyef dx dx

déu du
To— - —d
/codx dxx

where €, 9 and Tp are the axial strain and the tension in the static equilibrium position
respectively.

(17)

2
If Ty < FA (lf—zf) , the components of (17) aligned with the dropper can be

neglected. Furthermore, assuming that the movements in the perpendicular direc-
tions to the dropper are small (what is not applicable for the messenger and contact
wires), the fully contribution of the term (17) is negligible and therefore, the simplified
stiffness matrix for a dropper element is:

kd:/ EA (llo > N, a2l 1Ny dx (18)
e ref

Once the inertial and elastic properties of the catenary have been defined, propor-
tional Rayleigh damping is also introduced. This leads to a catenary damping matrix
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4. Dynamic interaction problem

Ceat = Mgt + 8, Keqt, where o, and (3, are the damping parameters. Finally, the
matrix form of the linear dynamic equations of the catenary system is:

Mcatﬁcat + Ccatﬁcat + Kcatucat =0 (19)

Pantograph

The lumped mass model chosen for the pantograph is linear and it only introduces
vertical degrees of freedom. Applying the Lagrange equation of motion to the system,
we obtain:

miwi + Cl(’lbl — ’lbz) + kl(wl — u}g) =0
Mmots + 1 (’lbg — wl) + Cz(’lbg — w3) + k1 (’w2 — wl) + kz(wg — w3) =0 (20)

maws + co (Ibg — Ibz) + c3ws + kQ(wQ — ’LU3) + ksws = Fpan

where w;, i = 1,2, 3 denotes the displacement of the lumped masses with respect to
the equilibrium position z,.;. This position is defined as the z¢ (third component of
ro) coordinate of the initial interaction point in the catenary (see Fig. 4). Fpqp is
the external uplift force applied to the mass 3 of the pantograph. Besides, all three
masses of the pantograph are assumed to be in equilibrium at z,.f. In matrix form,
the previous equations become:

Mpanwpan + Cpanwpan + Kpanwpan = Fpan (21)

Interaction

The interaction force f; depends on the position of mass 1 z; and the contact wire
height z.,, which varies as the train moves. Using a penalty method, the virtual work
produced by the interaction force is:

521’ fz = (621 - 5ch)kh(21 - ch) = (511}1 - 5wcw)kh(2ref +wy — 20,cw — wcw) (22)

where kj, is the penalty constant defined in Section 2.3. The subindex cw shows
that the variable is particularized at the interaction point on the contact wire. From
now on, if one variable requires more than one subindex they will be separated by a
comma.

From Eq. (22), the interaction stiffness matrix, which couples the catenary and
pantograph degrees of freedom, is:

Nfl N¢iNez NeiNes NeigNey | —Ne1
NeoNet N2 NeaNes NeaNey | —Neo
ki = (ll?;c 1]?2) =ky | NeaNet NesNea  NZ% o NeaNea | —Nes (23)
ipe ki, NeyNet NeNey NesNes N2 | =N
|

C

—4Vcl —4Ve2 —4Ve3 —iVed 1
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where all the shape functions are evaluated in the local coordinate of the contact wire
cable element particularized at the interaction point. Furthermore, a force that only
depends on the static equilibrium position from Eq. (22) has also to be considered:

S; = [Si,cc Si7pp]T = kh(zref - ZO,cw) [_Ncl - NcZ - Nc3 - Nc4 | 1]T (24)

At this point, all the matrices are available to be combined, leading to the semidis-
crete dynamic equations of the whole system. If the global vector of displacements is
defined as u = [ucqt wpan]T, and the different matrices m, c, k, f and s presented
above are assembled, the dynamic equation of the global system is:

Mii + Cu+ Ku=F (25)

where:

0 Sz cc
F= — ’
Fpan Si,pp

and the capital letters denote that the variable has been expanded to the global size.

The initial conditions necessary to begin the time integration are now obtained
by solving the small displacements linearised problem with the uplift force Fjq, as
external force. Hence, u® is found after solving the linear system of equations Ku® =
F. When the pantograph pushes up the catenary some droppers may be compressed.
In order to consider the effect of dropper slackening we apply here the same iterative
procedure as will be explained in Section 4.1. Finally, since the whole system is at
rest at the initial time, 1° and i are null.

4.1. Direct time integration procedure

In order to solve Eq. (25) and therefore obtain the displacements, velocities and
accelerations of the whole system, we use the Hilber-Hughes-Taylor (HHT) time in-
tegration scheme [30]. This time integrator can be seen as a generalization of the
well-known Newmark method. It uses a constant time step At and some parameters
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4. Dynamic interaction problem

a, B and v which control the stability and the numerical damping introduced by the
method.

We assume a bilinear behaviour of the droppers, as shown in Fig. 5, where the
force-elongation curve for a dropper d of the linearised catenary is depicted. In this
figure, fyq represents the internal force of the dropper while s4 is the value of its
traction force in the static equilibrium configuration, i.e. in the configuration in
which the equations are linearised. The horizontal axis denotes the elongation of the
dropper, dg,q being the value of elongation at the static equilibrium position. It is
also shown that in traction the dropper presents stiffness kg, while in compression it
is null.

fa A

kq

Sd { 5d

C —
00,d

v

Figure 5: Force-elongation curve for dropper d in the linearised problem.

This bilinear behaviour requires the use of an iterative scheme in order to obtain
the solution in each time step. Moreover, an additional non-linearity appears from the
fact that the pantograph can be detached from the contact wire with the interaction
force vanishing. By applying the HHT algorithm to Eq. (25), as described in A, the
displacements at time step ¢, t = 1, ..., Ng,, and iteration j are obtained by solving
the following linear system of equations:

Ajuj = bj (27)
where
Al = [(1+a) [K)+b,C)] + b1 M] o8)
bl =—aF"" + (1+ a)F} + Fi¢
being
Fio = o (K4 G e MU' ™ = bt bl 4 )

(1+a)Cl (bgu'™" — bsu' ™" — beia' 1)

All the b;, i = 1,...,6 depend on the time step and the method’s parameters «, g
and 7.
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Once ut- has been obtained we have to evaluate the state of any dropper. The

internal force at node n of dropper d is fd [kdud J where the operator [-],, selects

only the components of the force applied at the node n of the dropper. This vector
is aligned with s4 due to the use of the simplified stiffness matrix considered in (18).
Projecting it in the direction of dropper d in the static equilibrium configuration
ng (which is equivalent to calculating its modulus) we obtain futl_’ ;- The slackening
criterion is then:

if futl_’j + sq < 0 then dropper d is slackened (30)
if fé)j + sq > 0 then dropper d is tensioned

from which the slackening state D is defined.

The elemental stiffness k; and damping cg matrices of the slackened droppers
have to be removed from the global ones, and also the internal force of the element in
the static equilibrium position must be included in the next iteration j 4+ 1 in order
to account for this state change. Then the given changes are:

Nsa
K§‘+1 =K'— ZKd
ci,, =cC' Z Cq (31)

j-‘rl _Ft+zsd

where Ngq is the total number of slackened droppers. These modifications imply
changes in both, the global time-step matrix A% and the right hand side of Eq. (27)
b at every iteration.

Before moving to the next iteration, the value of the interaction force f; must be
obtained from Eq. (22) and then we enforce the contact loss criterion which defines
the state C. This consists of setting the contact force to 0 if its value is negative, i.e.
if there is contact loss, or leaving it unchanged otherwise.

Now we are ready to start the next iteration j + 1, compute ué- 41> check the
slackening criterion on each dropper, recalculate the interaction force and apply the
contact loss criterion. This iterative procedure is schematized in Algorithm 1. It keeps
going until the dropper slackening state D and the contact loss state C are identical
in two consecutive iterations. When this happens, we can also move to the next time
step t + 1.

The main feature of this direct approach is that a different system of equations
of the global problem size is solved several times in each time step, which requires a
significant computational effort. Another disadvantage of this method emerges when
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4. Dynamic interaction problem

changes in the pantograph model are studied, because it entails a different resolution of
the whole dynamic interaction problem for every change introduced in the pantograph
model.

Algorithm 1 Direct time integration.

for t =1...Ng, do
Find the interaction point;
Initializations: j = 0; D}_, = D} = DLl = Ci= ct1;
while (D!_, # D} and C_, #Ct) or j =0 do
j=j+1
Di_, =D Ci_ ) =Cl;
Obtain the displacements u’ by solving (27);
Apply the slackening criterion (30): D%;
Update the global matrices and vectors as defined in (31);
Apply the contact loss criterion: Cf;
end while
end for

4.2. Modified time integration procedures

As mentioned above, the main drawback of the direct approach is the reassem-
bling the global matrix at each time step, which makes this procedure inappropriate
in practice, due to the high computational cost required. Some ideas have been pro-
posed to circumvent this issue in [17] and exploited in [18], considerably improving
the computational cost. Specifically, the non-linearities of the system are moved to
the right hand side of the dynamic equilibrium equation, and are therefore treated
as non-linear forces. In this way, the global time-step matrix AE» does not vary in
time, keeping the analysis linear. Hence, it can be factorised only once, reducing the
computational effort. In practice, this modification of the direct approach can be
carried out according to the following two procedures:

e Method 1: The global matrix of the system does not include the stiffness and
damping of all dropper elements. They are fully treated as non-linear forces
instead.

e Method 2: The droppers’ stiffness and damping are fully accounted for in the
global matrix of the system as in [18]. In this case, the non-linear force term
added to the right hand side of the dynamic equation compensates for the
slackened droppers.
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Despite the clear advantages of these approaches over the direct method, in order
to account for the non-linear behaviour of the droppers and the pantograph loss of
contact, the iterative procedure requires solving a global size system several times in
each time step in which the nodal displacements are still the unknowns of the problem.

4.3. Offtine/Online time integration methodology

Starting from the ideas of the modified Method 2, we try to concentrate as much
computational effort as possible on the Offline stage, leaving the minimum number
of calculations to the so-called Online stage, in which the time integration itself
takes place. Another important feature of the proposed methodology is that both
the pantograph and the catenary are treated as independent systems, which makes
it easier to deal with different pantograph models, or even a real system, as in HIL
simulations.

In the Offline phase of the algorithm, the catenary is treated as a fully linear sys-
tem in which the droppers are not able to slacken. Several single time step problems
are solved and stored at this stage. In the Online calculations, the superposition prin-
ciple is applied and both the initial conditions of movement and all the non-linearities
of the system are considered, i.e. dropper slackening and pantograph contact loss. Us-
ing the information calculated in the Offline stage, these non-linearities are accounted
for iteratively by solving a very small system of equations in which the unknowns are
no longer the nodal displacements, but the slackening compensating forces and the
pantograph-catenary interaction force. This small set of unknowns is responsible for
reducing the computational cost of the solution method.

4.3.1. Offtine stage

All the calculations which take place before the time integration loop are called
Offline stage. In this phase we solve several sub-problems whose solution will be used
afterwards in the Online computations. All these sub-problems are aimed at obtaining
the single time-step forced response of the system under a unitary external load and
null initial conditions. These unitary external forces are applied at the interaction
point and at the dropper ends, as shown in Fig. 6.

As the pantograph moves forward throughout a dynamic simulation, the contact
point changes in each time step. The goal of the first sub-problem in this stage is
to calculate the response of the catenary system considering a unitary vertical force
pushing upwards at each point at which the pantograph interacts with the contact
wire (dashed arrows in Fig. 6). We have to solve as many linear problems of the form

*,t okt
Acatui,cat - Fi7cat

(32)

126



4. Dynamic interaction problem

*,1

as total time steps Ny in order to find the displacements u;’.,;. Recalling the idea
introduced in [17], it is important to underline that the matrix of this linear system

Acat == [(1 + OZ) [Kcat + b4Ccat] + blMcat] (33)

does not change in each time step ¢ and therefore for any load position. Hence, it can
be factorised as A.qt = LeatUcat, where Leg: and U,y are lower and upper triangu-
lar matrices, respectively. Applying the Cuthill-McKee reordering algorithm [31] to
matrix A ¢, it is possible to obtain very sparse matrices L., and U,y which will
reduce the computational cost in the Online calculations.

The other necessary catenary responses, which also will be used in the next stage,
are obtained considering the unitary external forces acting on the ends of each of the
N, droppers of the catenary (solid arrows in Fig. 6). These external forces are aligned
with droppers. The displacement field uj ., is obtained as the solution of the one
time-step problem: )

Acatu;,cat = Fz,cat (34)

in which now d = 1,..., Ng. Note that Ny, + Ny linear problems for the catenary
must be solved, but as mentioned above they are performed Offfine and only once.

N/

fi-1 1
v f; v g .
ITI
)
£ .1 f;T $ir ]
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fi*,f—At fi*,l fv*'t+At f?s.t,#»ZAt

Figure 6: Unitary external forces applied in the Offline stage.

Finally, we only need the pantograph response under a unitary force pushing
downwards on the top mass where the interaction with the contact wire takes place.
The dynamic response of one time step provided by the HHT integrator is w} ..

which does not depend on the time step. The only problem to solve related with the
pantograph is:

Apanw;'k,pan = Fr,pan (35)
where the matrix
Apan = (1+a) [K;Dan + b4cpan] + blMpan] (36)
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is also constant regardless the time step that is being solved.
The velocities and accelerations of all the sub-problems described above are also
computed following the rules of the HHT time integrator.

4.3.2. Online stage

In this stage the time integration is carried out taking into account the non-
linearities introduced by dropper slackening and pantograph contact loss. In order to
obtain the formulation of the proposed approach we start from Eq. (27). Proceeding
as in the modified approaches introduced in Section 4.2, the terms involving the
interaction, as well as the corrections forces for the slackened droppers, are moved to
the right hand side of the dynamic equation. It results in:

Kcat 0 Ccat 0 t t
1+« +b + 0 M| u =F'-+Fpan—
Ngq
a (-sg—l —KTat Y S K e Cg‘lﬁt‘1> + (37)
d

Nsd
(1+a) (—S§ ~Kiu'+ ) 8h+Kju' + Cgut>
d

where, by the use of the hypotheses assumed in the HHT algorithm, the velocity
ul = by(u! —ull) + byt~ + beiit L. It is also important to mention that in this
rearrangement there is no coupling between pantograph and catenary degrees of free-
dom in the system of equations. By grouping terms, the previous equation can be
rearranged as:

Nga
Aut=Fi +(1+a) <F§+ZF3> (38)
d

where

Nsa
Fi =Fi+Fpun —a (—Sf-‘l —KT T Y (S K T Cg—lut—1)>
d
F! = —S! — K'u!

Fi =S, + Kiu' + Ciu!
(39)
In this expression, F{  groups all the known forces: those coming from the initial
conditions, the constant uplift force and the forces arising from the previous time step.
Thus, the unknown forces at time step ¢ are the interaction force F! and the slackened
dropper correction forces FY, since they depend on the sought displacements u’.

128



4. Dynamic interaction problem

The total displacement u’ in Eq. (38) is the response of two linear systems (cate-
nary and pantograph) subjected to the three different actions defined in Eq. (39), two
of which depend on u’ itself. Hence, the total response of the system can be com-
puted as the sum of the responses caused by these forces acting separately. Denoting
as uf, , uf and uf the displacement produced respectively by the forces Fy,,, F;
and FY, the total response of the system is computed as:

kn>

Nsa
ot = u’},m +(1+a) (u’},1 + Z u%d> (40)
d

or equivalently, taking benefit from the responses under unitary forces calculated
in the Offline stage, and explicitly splitting the system in terms of catenary and
pantograph:

u u}
fat _ f‘kn,cat + (1 + a) fzt u; cat + Z ft d cat (41)
Wpan WF;M.,pan W i,pan

Now, the magnitude of the interaction force f} and the internal forces of slackened
droppers f! for d = 1, ..., Nyq at instant ¢, are the set of unknowns of the problem.
uf . and wh pan are easy to compute because you only must solve the systems
Acatl ot = Fhp o and Apgnwi = Fj . Although the first of these
systems of equations can be quite large, we remember that the matrix of the system
has been factorized in the Offline stage into two sparse triangular matrices. Thus,
solving the whole system consists of applying forward and backward solvers which are
computationally very efficient. Besides, this global size system need only be solved
once at each time step, unlike the Methods 1 and 2 defined in Section 4.2, which
require several solutions of systems of this size in every time step.

To deal with the non-linearities, we define the vector f = [ff ff --- f& |7, which
contains all the unknowns of Eq. (41). Note that although they are forces, only their
magnitude is unknown, since their direction has been previously established. It is also
important to emphasize that the number of unknowns is significantly smaller than the
total number of degrees of freedom of the system. In order to find these unknowns,
due to the non-linearities introduced by the dropper slackening and the pantograph
contact loss, we must set and solve iteratively a system of equations of variable size
because we do not know which droppers are slackened.

The first equation of such a system comes from the force balance at the interaction
point. Looking at the second expression of Eq. (39) (or equivalently Eq. (22)) and
introducing the solution in terms of Eq. (41), the external force at the contact point
that must be applied is:

fzt :kh(ZTGf + w;an - Zé,cw - wa) = kh (Zf”ef + w%’k ,pan + (1 + O‘)fitw;pan_

(42)
Zé,cw - w%'kmcw - (1 +a <fzt z cw + Zfdwd cw >
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The remaining Ngq equations of the system are derived from the third expression
of Eq. (39) particularized on every slackened dropper d. By doing this we obtain the
compensating forces on both nodes of the slackened dropper element. In order to
obtain a scalar equation, we select only the forces on the node n and project them in
the direction ng. Finally, introducing Eq. (41) again, and its velocity counterpart, we
obtain:

fé =ng- (Sd + [kdu’; + Cdﬁfi]n) =

Nsd
ng - (Sd + |ka <utF,m,d +(1+a) < w4 fonufnd>> +

Nsd
ca <ﬁ%,m,d +(1+a) < Tart 4> ffnu:;d»] )
m n

Rearranging Eqgs. (42) and (43) in a matrix form leads to:

)l

Recalling that the index d =1, ..., Ngq, the matrix of the system is defined by

(43)

0= = (L )Wl gon — 0k (45)
the row vector b with the entries
ba = (1 + a)wy .y (46)
the column vector c such that
ca=—(1+a)ng - [kqujly + cdl'lffd}n , (47)

and the squared matrix D = Iy, — G, being Iy, the identity matrix of size Nsq and
G a matrix whose entries are

gdaa = —(1 + a)ng - [kgujy + cqiyyl, (48)
The right hand side vector is composed of
€= Zref — 2 pp + W —wt (49)
ref 0,cw Fin,pan Fip,cw

and the column vector g with the components

gqa =ngqg - (Sd + [kauf, 4+ Cdﬁtkad}n) 0

130



5. Numerical examples

After solving the system defined in (44), the fulfilment of the slackening (30) and
the contact loss criteria are checked out. For the next iteration, only the droppers
which slacken will take part in the linear system of equations (44). This iterative
procedure is summarized in Algorithm 2. As in the direct approach, it lasts until in
two consecutive iterations the state of all droppers D and the contact loss state C are
equal, which is always achieved with only 3 or at most 4 iterations in the numerical
examples that we have solved. When the iterative procedure ends, one can move to
the next time step of the time integration scheme.

Algorithm 2 Offline/Online time integration.

OFFLINE stage:
Assemble A.,; and calculate its LU factorization;
Solve the N, problems (32): uj’,;;

Solve the Ny problems (34): u} ..;;

Solve the equation (35): w )

* .
i,pan’

ONLINE stage:
for t =1...Ng, do
Obtain the initial conditions response: uf, .0 W o0
Initializations: j = 0; Dj_; =D} =D 1 Ct_ | =CL=C""1;
while (D§—1 # D! and C!_| #Cl) or j=0do
J=J+1
t " _ .ot _ ot
Dj1 =Dy Gy =Cj;
Set the linear system of Nyq + 1 equations (44);
Apply the slackening criterion (30): D%;
Apply the contact loss criterion: Cf;
end while
With Eq. (41) obtain the total displacements u’;
end for

With this proposed method the pantograph and the catenary are absolutely in-
dependent, which allows us to use the proposed method with a real pantograph in a
HIL simulation. In such a case, the contact force would be an input at every time
step. The computational cost of this methodology is much smaller (even achieving
real-time response) than the one required in the direct method and its modified ver-
sions. For every time step we only perform a unique global backward and forward
resolution with very sparse triangular matrices, and a linear system of equations of
the small size Ngq + 1 must be set and solved few times, instead of solving the global
size system several times at each time step, as in the direct approaches.
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5. Numerical examples

The numerical examples given in this section are intended to verify the simplifying
hypothesis we assumed for the formulation of the dynamic problem and also, to
demonstrate the significant reduction in computational cost offered by the proposed
Offtine/Online method, as compared with the classical direct approaches.

5.1. Hypothesis verification

In the beginning of Section 4, we applied two important simplifications. The
first concerns the linearisation of the dynamic equations with respect to the static
equilibrium position of the catenary cables. With this assumption we got rid of the
geometrical non-linearity introduced by the strain measure. The second simplification
is based on the small deformation undergone by the droppers in the static equilibrium
configuration. This leads to an elemental stiffness matrix which is independent of the
absolute position in which the system has been linearised.

To check whether or not these assumptions affect the solution, we are going to
simulate the same problem formulated with the non-linear behaviour and the two
versions of the linearised dynamic equations. For the simulations we use the catenary
model proposed in [3], whose geometry is depicted in Fig. 7. This is a 3D catenary
with a stagger of 20 cm from the centre line of the track. It is composed of 10 spans 55
m long and 9 droppers each. The material properties of the different components are
listed in Table 1. A proportional Rayleigh damping model is defined by the constants
a, = 0.0125 and S, = 0.0001.

/‘

Figure 7: Catenary geometry used for the hypothesis validation.
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Table 1: Material and geometrical properties of the catenary components.

Component  E (MPa) p (kg/m®) A (mm?) I (mm?)

Messenger wire 9114 1.1-10% 94.8 1237.2
Contact wire 9160 1.1-10% 150 2170
Droppers 9114 1.1-104 10 0

Table 2: Pantograph model parameters.

d.o.f. m (kg) ¢ (Ns/m) k (N/m)

1 6.6 0 7000
2 5.8 0 14100
3 5.8 70 80

The parameters used for the lumped mass pantograph model are shown in Table 2.
The applied uplift force is Fqn = 180 N. A time step of At = 0.001 s is used for the
dynamic simulation. The pantograph moves at 270 km/h and the HHT parameters
are set to a = —0.05, 8 = 0.2756 and v = 0.55. The penalty stiffness assigned for the
interaction model is k;, = 50000 N/m.

The results shown in the figures below are focused on the contact force at the
two central spans in order to minimize unwanted contributions from boundary effects.
This magnitude is considered a good representative output of the dynamic simulation.
Fig. 8 shows the interaction force obtained from two simulations, one using the non-
linear formulation (solid line) and the other with the linearised formulation (dashed
line). At first glance no difference is observed, but plotting the relative error between
the two curves shows that it does not exceed 3.4%, confirming the validity of the
linearisation hypothesis.

As regards the second assumption, Fig. 9 shows the interaction force obtained con-
sidering the full dropper stiffness matrix (solid line) or its simplified version (dashed
line). Again, the differences between the two simulations are negligible, with a mean
relative error around 1%.

Considering the two simplifications together, the mean of the relative error in the
contact force between the linearised formulation using the simplified dropper stiffness
matrix and the non-linear problem is less than 1.6%. Hence, we can conclude that
using the linearised formulation along with the simplified dropper stiffness matrix (18)
does not significantly affect the results.

After verifying the simplifications introduced into the formulation, we should now
investigate other changes that may save computational cost. Specifically, we are going
to look for the largest time step At in the HHT algorithm that provides accurate
results.
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Figure 8: Interaction force from the linearised (solid blue line) and the nonlinear
(dashed red line) formulation. Relative error between them.
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Figure 9: Interaction force using the full dropper stiffness matrix (solid blue line) or
the simplified one (dashed red line). Relative error between them.

For this purpose, the interaction force obtained with three different time steps
is compared in Fig. 10. The use of At = 0.002 s (dashed red curve), produces
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quite accurate results when compared with the ones (solid blue curve) obtained with
At = 0.001 s. However, if At = 0.005 s the solution does not match with the reference
interaction force at all. Hence, in the light of these results, we can select the time
step of 2 ms.

350
—— AL=0.001s
3001 = = At=0002s 1
At =0.005 s n
250 B
Z 200k B E i
=
150
100 .
50 ‘ ‘ ‘ ‘ ‘ ‘ ‘
3 3.2 3.4 3.6 3.8 4 4.2
Figure 10: Interaction force using different time steps.
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3 3.2 3.4 3.6 3.8 4 4.2
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Figure 11: Relative error between the solution obtained with a = 0 and o = —0.05.

Another aspect to analyse is the value of the constant « in the HHT method.
Fig. 11 represents the relative error of the interaction force obtained from a = 0
(equivalent to the Newmark method) and o = —0.05. As can be seen, this error does
not exceed 1% in most of the interest interval. This means the Newmark method can
be used at a lower computational cost because we do not need to include in Eq. (37)
the terms evaluated in the previous time step ¢t — 1.
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5.2. Computation time study

The direct approach and the proposed Offline/Online methodology come from
the same dynamic equilibrium equation. This means that there are no differences
in the time history of the interaction force, obtained by both methods. This is why
in this section we only compare the computational cost of the commonly used direct
approaches and the proposed Offline/Online methodology.

To carry out this comparison, four different catenary models are studied. Three
of them are 3D models with 5 (Cat.1), 10 (Cat.2) and 18 (Cat.3) spans respectively,
and the other one is a 2D model 1 km in length and with 18 spans (Cat.4).

As mentioned previously, the displacements, velocities and accelerations calculated
in the Offline stage must be stored to be used in the succeeding Online phase. This
requires a certain amount of RAM memory available in the computer in order to
avoid swapping data on the hard disk, which would slowdown the computations. For
Cat.3, the biggest example studied here, approximately 2.5 GB of RAM memory is
large enough to store all the results.

In Table 3 we compare the computational cost required to perform the simulations
with these four catenary models. The first two rows show the number of degrees
of freedom of each catenary model and the total time simulated, respectively. All
the simulations are carried out with a time step At = 0.002 s, and the rest of the
time integration parameters are equal, as in the previous section. The code was
implemented in MATLAB® and launched in an Intel® Core i7-6700 CPU.

The computational time required for the direct approach time integration, the two
modified methods, the Offline stage of the new approach and also the Online phase
are displayed using both HHT and Newmark methods.

The remarkably high computational cost required for the modified Method 1 is
about four times more than the direct integration algorithm. This is because the
matrix of the system does not include any information of droppers, leading to conver-
gence problems in the iterative procedure, which needs a large number of iterations
to obtain accurate solutions. Hence, although the system matrix has been factorised,
there is no improvement in computational cost, due to the large number of times the
global size system needs to be solved.

However, there is a noticeable time gain with the use of the modified Method 2. In
this case, the time integration can be solved more than three times faster than with the
direct scheme. In this procedure, apart from taking advantage of having a factorised
matrix, no more than ten iterations are usually needed to achieve convergence with
a good degree of accuracy.

The good performance of the proposed Offline/Online method can be clearly
seen in Table 3. The same simulation with exactly the same accuracy is carried
out around 25 times faster than with the direct approach. This total gain factor is
slightly increased for large catenary models, which require more computational effort.
Focusing only on the time consumed by the Online stage, in most cases it comes
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Table 3: Computational time comparison.

Cat.1 Cat.2 Cat.3 Cat.4

d.o.f. 5996 11986 21570 14385
Simulated time (s) 3 5 10 10
HHT
Direct (s) 56.05 205.38 802.80 412.46

Modified 1 (s) 156.76  676.1 2575.2 1405.7
Modified 2 (s) 20.98  90.58 325.47 187.35
Offline stage (s) 0.76 2.39 9.83 5.28
Online stage (s) 1.74 5.22 19.27 10.86
Newmark

Direct (s) 52.69 218.74 785.10 417.60
Modified 1 (s) 91.99 323.89 1270  757.8
Modified 2 (s) 1493  50.87 201.24 111.64
Offline stage (s) 0.79 2.50 9.64 5.19
Online stage (s) 1.37 448  15.75 = 9.10

close to (light green boxes), or is even less than the simulated time (green boxes),
which allows real-time responses for HIL simulations. These low computational costs
are due to the way we treat the non-linearities; for the four catenaries solved, they
account for solving iteratively a system of maximum size of 6 equations, with only 4
iterations at most.

It is very clear that, regardless of the catenary model, the proposed approach is
highly suitable for optimization purposes, when a large number of simulations must
be performed.

6. Conclusions

This paper deals with the numerical simulation of pantograph-catenary dynamic
interaction. The catenary is modeled by FE according to the absolute nodal coor-
dinate formulation, while the pantograph is treated as a lumped mass system. The
major difficulty in the simulations lies in the nonlinearities introduced by dropper
slackening and the possible loss of contact of the pantograph. With a classical ap-
proach, a linear system of equations of the overall size of the problem must be solved
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several times at each time step in order to account for these nonlinearities. This has
a considerable computational cost and makes the approach useless for optimization
purposes, in which many simulations are required.

Certain modifications are intended to avoid reassembling the matrix each time step
by dealing with the nonlinearities as forces keeping the global matrix constant in time.
Starting from these modified formulations, we developed a new strategy that notably
reduces the computational effort in each simulation without any loss of accuracy. The
proposed procedure is based on two stages: the Offline phase, performed only once,
in which we solve several single time-step problems, applying unitary forces. This
is followed by the Online stage in which we account for the initial conditions and
deal with the nonlinearities by only solving a very small system of equations whose
unknowns are the interaction force and the slackened dropper correction forces.

The Offline/Online method results in a highly computational-cost-saving ap-
proach, making it a very suitable tool for optimizing the catenary and pantograph
models. Furthermore, it has been shown to be capable of computing the real-time re-
sponse of the catenary unlike any other previous method in which there were no losses
in accuracy. This means that the Offline/Online approach can be used to implement
HIL simulations, in which a pantograph model is replaced by a real system.

A. The HHT time integration method

The Hilber-Hughes-Taylor (HHT) method [30] is an implicit time integration
scheme widely used in structural dynamics. Given the linear system of equations

of motion:
Mi+Cua+Ku=F (51)

the HHT method is based on the Newmark hypotheses:

At?
u' Tt = uf + Ata? + - [(1-2B)i + 2B
a =0+ At (1 — )i’ + it

(52)

which depend on the coefficients § and 7 and the time step At. The damping,
elastic and external forces in Eq. (51) are weighted in two consecutive time steps by
a coefficient « leading to:

Mii' ™ + (1 4+ a)Cu'™ — aCu’ + (1 + a)Ku'™ — aKu’ = (1 + a)F* — oF" (53)
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We can rearrange Eq. (52) in order to obtain @!*! and u'*! as a function of the

displacements u**! and all the variables evaluated in the previous time step as:

't = by (Ut — ') — bsu’ — beit’

it = by (! — ut) — by’ — byt (54)
where the constants b; are:
1 1 1
"TEae "7 =175 (55)
by = yAtby by =14+ ~vAtby b = At(1l + vbs — 7)
Then, substituting them in (53) results in:
Au'tt =b (56)

where
A=(1+4a)K+bC]+bsM
b= (1+a)F*" —aF" 4+ o [Ku' 4+ Ca'] + M [biu’ — by’ —bsit']  (57)
+ (1 + a)C [b4ut — b5f1t — bgflt]

Once the displacements have been obtained by solving the system (56), it is easy
to compute the velocities and accelerations from Eq. (54).

B. List of symbols

For the sake of clarity, in the table below we list all the symbols used throughout
the paper in order of appearance:

Qc, Ap Vector of degrees of freedom for cable and bar elements.
I'(CL‘, Y, Z) Absolute position vector and coordinates.

X, S Local reference and deformed element coordinates.

13 Normalized local element coordinate.

lre f Undeformed element length.

:Nc7 N, Shape functions matrix for cable and bar elements.

mg, i, ki, © =1,2,3 Mass, damping and stiffness parameters of the pantograph model.

kn, Penalty interaction stiffness.
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Interaction force value.

Absolute vertical position of the degree of freedom 1 of the panto-
graph.

Absolute vertical position of the contact wire at the contact point.
Catenary and element spatial domains.

Total number of finite elements.

Elemental virtual work produced by internal and external forces.
Young’s modulus.

Cross-sectional area.

Second moment of area.

Density.

Gravitational force vector and gravitational constant.

Axial strain.

Curvature.

Internal and external equivalent nodal forces.

Static equilibrium position of the catenary.

Vector of displacements from the reference position.
Displacements on directions z, y and z.

Director vector of dropper d at the static equilibrium position and its
unitary counterpart.

Axial strain and tension of an element in the static equilibrium con-
figuration.

Stiffness matrix and stiffness constant for dropper d.
Damping matrix for dropper d.

Proportional Rayleigh damping parameters.

Mass, damping and stiffness matrices of the catenary.

Displacements, velocities and accelerations of the catenary respect to
the static equilibrium configuration.

Mass, damping and stiffness matrices of the pantograph.

Vertical displacements, velocities and accelerations of the pantograph
d.o.f.

External uplift force applied to the pantograph.

Vertical displacement, respect to the static equilibrium position, of
the contact wire particularized at the contact point.

Static equilibrium vertical position of the contact wire at the contact
point.

Local and global interaction stiffness matrix.

Local and global interaction static force vector.



B. List of symbols

M, C, K, F

0 O, ﬁO

u’, u
At
Nty
a, B,y
bi,i=1,..,6

f4, sa
dd, 0,4

o, O
A'b

Frc

D, C

Acats Apan
Leat, Ucat
o

Ng, Ngq
Fin, Fi, Fy

Uury,, Ur;, UF,

*
wd,cw

Global assembled mass, damping, stiffness matrices and force vector.
Initial displacements, velocities and accelerations of the global system.
Time step.

Total number of time steps.

HHT parameters.

Constant values depending on At and the HHT parameters.

Total internal force and internal force in the static equilibrium position
for dropper d.

Total elongation and elongation in the static equilibrium position for
dropper d.

Any variable particularized at time step ¢ and iteration j.

Global time integration matrix and force vector.

Global initial conditions force vector.

Dropper slackening and contact loss state variables.

Time integration matrix for the catenary and the pantograph systems.
LU factorisation of Acg¢.

Unitary force or displacement produced by a unitary force.

Number of total and slackened droppers.

Vectors of known, interaction and slackened dropper correction forces.

Displacements produced by the known, interaction and slackened
dropper correction forces.

Vertical displacement of the contact wire at the interaction point,
produced by a unitary force applied on dropper d.
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Abstract

The quality of current collection becomes a limiting factor when the aim is to
increase the speed of the present railway systems. In this work an attempt is made
to improve current collection quality optimizing catenary geometry by means of a
Genetic Algorithm. As contact wire height and dropper spacing are thought to be
highly influential parameters, they are chosen as the optimization variables. The
results obtained show that a Genetic Algorithm can be used to optimize catenary
geometry to improve current collection quality measured in terms of the standard
deviation of the contact force. Furthermore, it is highlighted that apart from the
usual pre-sag, other geometric parameters should also be taken into account when
designing railway catenaries.

Key words

Railway catenary; Genetic Algorithm; Optimisation; Pantograph—catenary interac-
tion
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1. Introduction

1. Introduction

The overhead equipment, commonly named the catenary, is the system in charge of
providing the energy supply to the electric railway vehicle by means of a sliding contact
with the pantograph, which is a mechanism located on top of the locomotive. The
interaction force between the pantograph and the catenary contact wire determines
the quality of the supply. High contact forces can cause excessive wear on the sliding
surfaces, while too weak forces may lead to contact losses and sparking, which apart
from the damage it can cause, it interrupts the energy provision.

As the maximum speed of commercial railways is mainly limited by the quality
of the pantograph—catenary interaction [1, 2|, an appropriate design (the reader is
referred to [3] for a wide overview of the design of overhead contact lines) is crucial
for the correct behaviour of such a system. This explains why in recent years a lot of
effort has been put into developing accurate models capable of simulating the dynamic
pantograph-catenary interaction. Among the vast diversity of studies found in the
literature, the benchmark [4] and the references therein deserve special attention for
the insight they provide into the present state of the art.

According to [4], Finite Element Method (FEM) and lumped mass models are the
most frequently used approaches to model the catenary and the pantograph systems,
respectively. Euler Bernoulli beam elements are commonly employed to model the
catenary wires. However, in this work we have chosen the Absolute Nodal Coordinate
Formulation (ANCF) [5]. The contact between the pantograph and the contact wire
is mostly dealt with by a penalty method, although some other approaches such as
kinematic constraints may be also used to this end.

This work is aimed at optimising the catenary in terms of current collection quality.
This quality can be quantified by the standard deviation of the interaction force, which
defines the objective function to be minimised. Current collection quality is influenced
by many parameters, such as the stiffness and damping of the pan-head and frame, the
contact wire tension or the static uplift force, whose influence on the contact force is
thoroughly analysed in [6]. Some optimisations are found in the literature concerning
the parameters which define the pantograph model. In [7] a robust design technique
was used to find the optimal lumped parameters for the best current collection in
catenaries with variable span lengths. By optimising the stiffness, damping and mass
values of the pantograph lumped model, the standard deviation of the contact force
was reduced by 11% in [8], where a Genetic Algorithm (GS) was used. A 9% of
reduction was achieved in [9] using a differential evolutionary algorithm. Similar
improvements are found in [10] with the use of pneumatic head suspensions instead
of the classical mechanical systems.

Apart from the above mentioned parameters, the amount of initial sag (pre-sag)
given to the contact wire also seems to be a key factor in current collection quality. Its
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influence on the pantograph—catenary dynamics was studied in [11]. One of the main
conclusions drawn from this work is that pre-sag does not improve current collection
quality in the high-speed range, where the process is dominated by wave propagation
rather than the stiffness variation in the catenary. In [12] the limitations of pre-sag in
improving the current collection quality were also revealed. This scenario suggests it
would be advisable to follow other approaches to find better catenaries, such as setting
the appropriate number of droppers and their spacing, which have been practically
ignored in the literature and can also affect the interaction force [13].

The present study is, up to the authors knowledge, the first attempt in finding
the optimal catenary geometry, in terms of current collection quality, by exploring
alternatives such as the contact wire height profile and dropper spacing. Two cate-
nary topologies are analysed, namely, with and without a stitch wire. The catenary
system is modelled by the Finite Element Method (FEM) and a lumped-parameters
representation is used to model the pantograph.

When planning an optimisation, the chosen procedure is of crucial importance.
Optimisation methods are mainly divided into two groups [14]: gradient-based and
metaheuristic methods. Gradient-based methods need the computation of the deriva-
tives of the objective function with respect to the optimisation variables. The problem
dealt with in this work is a dynamic problem with a moving load and unilateral non-
linearities. In this case the calculation of these derivatives would be cumbersome
and therefore, metaheuristic techniques [15], such as Genetic Algorithms, have been
considered for the problem at hand with the addition of some operational restrictions.

The paper is organized as follows: after this brief introduction, all the mathe-
matical models used to describe the whole system are explained in Section 2. The
initial configuration problem of the catenary is treated in Section 3, while Section 4 is
devoted to explain the dynamic interaction problem, which is solved efficiently. These
three sections are included for the sake of completeness since they provide a summary
of the models presented in [16], the shape-finding problem solved in [17] and the time
integration procedure proposed in [18], respectively. The optimisation problem is set
in Section 5, together with the Genetic Algorithm used to solve it. The results ob-
tained from these optimisations are given in Section 6 for both catenary topologies.
Finally, the main conclusions drawn from this work are offered in Section 7.

2. Catenary, pantograph and interaction
models

The FE technique is the most widely used to model high-speed railway catenaries
as can be seen from the review [19] and references in [4]. The catenary is mainly com-
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posed of a messenger wire, a contact wire, steady arms, droppers and some typologies
also have stitch wires as can be seen in Fig. 1. In this work, the messenger and the
contact wires are modeled by beam elements based on the Absolute Nodal Coordinate
Formulation (ANCF), which account for axial and bending deformations, and they
are identified as ‘cable elements’ throughout this paper. This type of element was first
proposed by Shabana [5] and adapted for thin beams and cables in [20]. Unlike other
beam formulations, ANCF elements use absolute positions and their gradients as de-
grees of freedom instead of rotations [17]. Bar elements are used to model droppers,
steady arms and stitch wires, since they only transmit axial forces.

Messenger
wire

Stitch wire

Droppers

Contact
wire

Figure 1: Finite element catenary model.

The reference and deformed configurations for a cable element are schematically
represented in Fig. 2. In order to guarantee C' continuity, standard Hermite inter-
polation is used in which, the length of the undeformed element ¢, ¢ is present.

Figure 2: Reference and deformed configurations of the ANCEF element.

The degrees of freedom of bar elements are only composed of the absolute positions
of the two nodes of the element, so that a linear interpolation is enough to ensure the
required C° continuity, since bending deformations are not taken into account.

A wide variety of solutions can be found to model pantographs [10]. Due to its
simplicity, a linear lumped-parameters model is used in this work. It only introduces
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Figure 3: (a) Pantograph and (b) interaction model schemes.

three vertical degrees of freedom, as shown in the scheme depicted in Fig. 3a. F),
represents the force exerted by the uplift mechanism, which acts on the lower mass
of the pantograph. This force should not be confused with the static uplift force in
the contact between the pan head and the contact wire, which is obtained by solving
the dynamic interaction problem.

A penalty method is considered to model the pantograph-catenary interaction.
A scheme of this interaction is shown in Fig. 3b. In this model, a spring element
with high stiffness, k;, = 50000 N/m, relates the vertical degrees of freedom of the
cable element, which models the contact wire, with the pantograph upper mass. The
interaction force is obtained by multiplying kj, by the interpenetration, that is:

(1)

£ B kn(z1 — zew) it 21— 2ew >0
inter 0 i 21— 2w <0

where 21 and z.,, are the absolute vertical position of the upper mass of the pantograph
and the interaction point on the contact wire, respectively.

3. Initial configuration problem

The initial configuration or ‘shape-finding’ problem, consists of finding the position
of each node along with the undeformed length of each element in the mesh which fulfil
both the static equilibrium equations and the constraints imposed by the stringing
process. Due to the large displacements undergone by the cabling this is a non-linear
problem. Despite the approach and the solution procedure are thoroughly explained
in [17], some insights are given here.
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4. Dynamic interaction problem

Following the previous reference, the static equilibrium problem is defined by
means of the non-linear equation:

Fint (q7 lief) + Fg (lief) =0 (2)

along with the appropriate essential boundary conditions. The internal forces F;,;
depend on the nodal coordinates q as well as the reference lengths of the elements
12, ;, while the gravitational forces F; only depend on the latter. For a given element’s
length, 17, ;, Eq. (2) can be solved by using for example the Newton-Raphson method,
in order to obtain the static equilibrium position of the system.

However, the final static equilibrium position of the cabling must fulfill certain
constraints apart from the force equilibrium. Certain elements such as those modelling
the messenger wire, contact wire and stitch wire, are pre-stressed with a tension of

value T'. In a given element e, this constraint can be described as:

CI(q7 lT@f) = (flentz)Q + (fienty)Q + (fientz)Q - TQ =0 (3)

where ( fntj) is the j component of the internal nodal force vector. Other constraints
such as the contact wire height, and the horizontal position of droppers, stitch wires,
steady arms and mast supports, are imposed by means of the constraint equation:

crr(@Q =¢—P=0 (4)

where g; for i = z, y, z is the nodal coordinate enforced to have a value of P.
Putting equilibrium equations (2) and constraints c(q, 17, ;) together results in the
non-linear system of algebraic equations:

which can be solved by the Newton-Raphson method, obtaining the nodal absolute
positions q and the initial length of each element 17, ,, which fulfill the restrictions
imposed for the catenary stringing.

4. Dynamic interaction problem

The dynamic interaction problem needs to be solved many times during the op-
timisation procedure, so that is crucial to have an efficient strategy in terms of com-
putational cost to deal with this issue. The fast solution method presented in [18] is
employed in this work. As pointed out in [18], apart from alleviating computational
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cost, the solution given by this method is just as accurate as that obtained with a
classical FEM approach. In what follows, we summarise the main features of this
method.

The pantograph-catenary dynamic interaction is governed by small displacements,
therefore the linear system of differential equations:

Mii+ Cu+ Ku=F (6)

is suitable for modelling the whole behaviour of the system [18]. The stiffness ma-
trix K is obtained from linearisation of dynamic equation at the static equilibrium
position resulting from solving Eq (5). M and C, are the mass and damping ma-
trices of the whole system respectively. All these three matrices contain both the
pantograph and the catenary contributions. F is the vector of applied external forces,
and u denotes the displacements of the pantograph-catenary with respect to its static
equilibrium configuration. The proportional Rayleigh damping model stated in [4],
with the constants o = 0.0125 and 3 = 10~%, is considered in Eq. (6) for all the
catenaries studied. This ordinary differential equation can be solved by using any
time integration scheme such as the commonly used Newmark method.

In order to obtain the displacements of the actual time step ¢, given the solution
in the previous time step, u*~!, the algebraic system of equations:

Ku' = Ff, (u'™") + Fg, (') + Fi., (0) (7)
must be solved. Matrix K is obtained by applying the Newmark time discretisation to
Eq. (6), (see [18]). F}, is the vector of known forces, which depends on information
of the previous time step. Additionally, we have moved to the right-hand side of
the system the force F¥, necessary to compensate the slackened droppers and the
interaction force F? , . between the pan head and the contact wire. Note that Eq. (7)
is a nonlinear system since the following nonlinearities are considered: i) dropper
slackening, which means that droppers only work in tension and, ii) contact loss
between the pantograph and the contact wire, leading to a null interaction force.

As said above, in order to speed up the calculations, the approach proposed in [18]
is fully adopted. This method is based on two fundamental ideas. The first idea was
originally proposed in [21] and successfully used in [22]. It consists of moving the
nonlinear correction forces of the slackened droppers, FY, . and also the nonlinear
terms involving the interaction force, F?, , . to the right-hand side of the system as
shown in Eq. (7). In this way, the matrix K does not change in time and can be
precomputed and factorised only once in the algorithm.

The second idea of the method relies on the superposition principle. The dis-
placements u? at each time step can be computed as the sum of the displacements
produced by the three terms present on the right-hand side of Eq. (7), that is,

t _ .t t t
u = ug, + Ugp + Winter (8)
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5. Optimisation problem

To obtain the so-called known term, u},, (which is dependent on information from
the previous time step, that is, it accounts for the initial conditions), it is necessary
to solve the global size system:

Ku}, = F}, 9)

However, the other two contributions to the total displacement at time step ¢ can
be written as:

N::dr
t E ekt et
Uy, = iUy iJdr (10)
i=1
t gyt
Winter = uinterfinter

where ;u’! is the catenary displacement vector produced by a unitary compressive
force applied on the ends of the slackened dropper i, and N!, is the total number of
slackened droppers time step ¢. ujf, . are the displacements produced by a unitary
force applied upwards on the contact wire at the corresponding interaction point at
time step t.

All these displacements produced by unitary forces can be pre-computed and
stored. Therefore, at each time step, slackened droppers and loss of contact are
checked and a small-sized nonlinear problem is solved iteratively, in which the values
of the slackened droppers’ correction forces, ; f},, and the interaction force, ff .., are
the unknowns.

To sum up, the unilateral constraints of the system are iteratively dealt with in a
nonlinear system composed of only N!, + 1 equations. This makes the approach
highly efficient, requiring a low computational cost to simulate the pantograph-—
catenary dynamic interaction with no further simplification hypothesis other than
those assumed in the classic FEM approach. The only disadvantage that should be
mentioned is the need for enough available RAM memory to avoid swapping data on
the hard disk, which would slowdown the calculations. Even so, it is not a big deal
because 2.5 GB is a large enough memory to store the pre-computed variables for the
cases discussed here.

5. Optimisation problem

As pointed out in the introduction, the main goal of this paper is to seek the best
catenary geometry in terms of current collection quality. Among other parameters,
the quotient between standard deviation and mean interaction force o (finter) / fmter
is thought to be a representative statistical parameter to characterise the quality of
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the interaction [8]. The standard [23] sets this parameter below 0.3, which guarantees
less than a 1% probability of contact loss. This standard also establishes that the
maximum mean contact force applied to the contact wire must fulfill the relationship:

Finter < 0.009702 + 70 (11)

for an alternating current catenary, where 200 < v < 320 km/h. In this work, the
interaction force is low-pass filtered at 20 Hz. Although is well known that the high
frequency content has an influence on the dynamic performance of the system [10,21,
24], we decided to stick to standard EN50367 [23] and apply the filtering in order to
obtain comparable results to those of [4].

The interaction force is a magnitude that varies in time and depends on many
factors such as train speed, catenary geometry, material properties and so on. In this
work, the train speed, the mean contact force, the pantograph model and the wire ten-
sions remain constant, while the geometrical parameters related to droppers (length
or spacing) are considered as the optimisation variables for minimising o (finter)-

Generally, denoting as p the set of parameters with respect to which it is desired
to optimise the catenary, the optimisation problem reads:

ml;n o (ffnter(p))
s.t. (12)
pt < p; <p"* i=1,..,N,

where p™™ and p*®® are the lower and upper bounds of each parameter, respectively.

To evaluate the objective function it is necessary to solve both the initial config-
uration problem (5) and the dynamic interaction problem (6). Obtaining the proper
mean contact force value given by Eq. (11) means the dynamic simulation must be
repeated and the uplift force, F},, modified according to the ratio between the pre-
scribed value and the mean contact force obtained in the current simulation. With
only two or three re-runs the target value was achieved in all cases with acceptable
accuracy. As pointed out above, the problem (12) is set for a single train speed v,
which simplifies the calculations but means that the optimal geometry obtained needs
to be checked for other train speeds.

Generally, two main groups of solvers are suitable for solving an optimisation
problem: those based on the gradient and the so-called metaheuristic methods, among
which GAs are found. The latter group of solvers was chosen in this work because
a gradient-based method would require computing the derivatives of the objective
function with respect to the optimisation variables p, which could be cumbersome
for this dynamic problem with high nonlinearities. On the other hand, GAs try to
reproduce the stochastic process of natural selection, obtaining the global optimum
even for nonlinear or discontinuous objective functions, which makes them a very
attractive option.
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6. Numerical results

The GA used in the present study is the one included in MATLAB® software.
For a problem of N, optimisation variables (for example N, dropper lengths), the
population size n is chosen (i.e. n different combinations of dropper lengths). The
variables are taken as discrete in order to make a finite size space of variables.

Parents Children

E—— Elite

/

[ T~
[ Crossover

. —_— Mutation

Figure 4: Scheme of the next generation creation process.

An initial population evolves towards better solutions from generation to genera-
tion following the principles of natural selection, crossover and mutation (see Fig.4).
A stochastic uniform process of selection was selected. The three best-scored parents
were considered as elite and were moved directly to the next generation. A crossover
fraction of 0.8 has been set, which means that 80% of children came from a random
combination of parent parameters. The rest of the children were randomly obtained
by mutation of the parameters of a single parent.

The algorithm runs until a certain stop criterion is accomplished. Specifically,
the calculations stop when the average cumulative change in value of the objective
function over a certain number of generations is less than a prescribed tolerance.

During the optimisation procedure, some combination of parameters p could pro-
duce non-desirable catenaries from a practical point of view. In these cases, individ-
uals that fulfill one of the following conditions are excluded from the population:

e Contact losses were not allowed, whereby the interaction force must be positive
at any time t. If a contact loss is detected the individual is not valid any more.

e All the droppers must be in tension in the static equilibrium configuration. If
certain dropper d is slackened in the static equilibrium position, this catenary
is no longer admissible.

It is important to emphasise that any other restriction, such as the steady arm
uplift, could be incorporated into the previous list without any further consideration.
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6. Numerical results

The numerical results presented in this work have been obtained from two different
catenary models, which are depicted in Fig. 5. The first catenary is thoroughly
described in the Benchmark [4] (B), along with the pantograph model associated
with it. Unlike this model, the second catenary (SW), has stitch wires at the support
locations. The geometric and material properties of this catenary model and the
pantograph paired with it are listed in the appendix. The Benchmark catenary has a
pre-sag of 1/1000 the span length, i.e. 55 mm. The contact wire of the SW catenary
remains horizontally without any static sag. Both models are composed of 20 spans
and are used as reference catenaries for comparison purposes with the optimised
configurations.

(b)

Figure 5: (a) Benchmark catenary and (b) SW catenary models.

All the dynamic simulations are carried out with a time step of 1 ms and the
Newmark time integration constants are set as v = 0.5 and g = 0.25. The contact or
interaction force is measured on the 10 central spans in order to avoid boundary effects.
In order to meet the standards guidelines [25], which are also followed in [4], this force
is low-pass filtered at 20 Hz. A velocity of v = 300 km /h is considered to be the design
train speed for both catenaries, which implies a mean contact interaction force fmter =
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157.3 N as given by Eq. (11). After performing a dynamic interaction simulation, the
reference Benchmark catenary presents a og = 40 N, while the standard deviation of
the interaction force for the reference SW catenary is ogy = 22.3 N.

In what follows, Subsection 6.1 contains a test of the optimisation algorithm car-
ried out by optimising the pre-sag. Subsections 6.2 and 6.3 are devoted to find the best
topologies of the Benchmark and the SW catenaries, respectively, that is, the contact
wire height and the dropper spacing which provide the best dynamic behaviour for
current collection quality purposes. Finally, in Subsection 6.4 the optimised catenaries
are analysed in terms of their static and dynamic behaviour.

6.1. Pre-sag optimisation

The so-called pre-sag is the contact wire sag in the static equilibrium configuration.
Pre-sag is established in order to mitigate the difference in stiffness between the centre
of the span and the supports. Several dynamic problems with different pre-sag have
been solved for both catenaries. As shown in Fig. 6, the amount of pre-sag strongly
influences the standard deviation of the interaction force ¢ in the 10 central spans.
For a given train speed, large values of pre-sag and also negative sags adversely affect
the current collection quality for both the Benchmark (squares) and the SW (circles)
catenaries.

50

—B- Benchmark catenary
r |—=e—SW catenary

U(fintcr) (N)

20 : : : : :
004 002 0 002 004 006

pre-sag (m)

Figure 6: Pre-sag optimisation for a train speed v = 300 km/h.

In order to test the GA, an optimisation of the pre-sag at v = 300 km/h is carried
out. In this academic example, there is only one optimisation variable, therefore only
8 generations with a population of 15 individuals are enough for the GA to find the
global minimum. Optimal pre-sag is highlighted for both catenaries in Fig. 6 by a
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Figure 7: Evolution of the (a) optimal pre-sag and (b) minimum and reference contact
force o, with respect to the train speed.

cross, in which good agreement with the expected values is observed. This optimal
value matches with the reference SW model, which has no initial sag. However, the
pre-sag Benchmark catenary is far from the optimal values at the speed of 300 km/h.

The optimal pre-sag is thought to be strongly affected by train speed. To investi-
gate this relation, some optimisations are carried out at velocities ranging from 200 to
320 km/h. The optimal pre-sag (left) and the minimum o obtained (right) are shown
in Fig. 7. Looking for a smoother interaction force, it is clear that the SW catenary
behaves better than the Benchmark catenary for all the studied velocities, since the
optimal pre-sag is close to 0 for all the studied velocities. The Benchmark catenary
gets closer to its optimal behaviour at velocities lower than 270 km/h, for which the
optimal pre-sag approximates to the Benchmark catenary static sag.

For both catenary models the interaction force shows higher variability, as evi-
denced by the clear increasing tendency of o, as the train speed increases. On the
other hand, the optimal pre-sag shows different tendencies for each catenary type.
While the optimal behaviour of the SW catenary is achieved with hardly any initial
sag, for the Benchmark catenary, the lower the velocity the more beneficial pre-sag
seems to be. According to the results, for this type of catenary a pre-sag between
1/1000 and 1/2000 of span length is optimal at velocities below 270 km/h.

The optimal ¢ can also be compared with respect to the ones obtained at the
same train speed for both reference catenaries (see the curves with cross markers in
Fig. 7b). This comparison reveals that for the SW catenary the greatest reduction in
o is only 5% at v = 210 km/h. This result confirms that with the presence of pre-
sag there is no observable improvement in current collection quality for this catenary
with stitch wires. Conversely, the Benchmark catenary shows a wide margin of greater
improvement for high train speeds. As an example, at v = 320 km/h, a 31.05% of
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o could be reduced with an appropriate sag. Despite these results, it seems to be
reasonable to seek some more appealing variables for which the dynamic behaviour
of the catenary system could be optimised.

6.2. Benchmark catenary optimisation

The first optimisation carried out for the Benchmark catenary considers Ah,, for
i =1,..., N, as optimisation parameters. If the height of the connection point between
the steady arm and the contact wire is set as a reference, Ah,, denotes the height of
the contact wire at dropper point ¢ measured from this reference, as seen in Fig. 8.
The desired catenary configuration is obtained by solving the initial configuration
problem (5), in which the optimisation variable, that is, the desired contact wire
height, is imposed as a constraint equation (4) (see [17]).

Reference
height

Figure 8: Graphical description of the optimisation variables: Ah., and d;.

Since every span must be equal and their symmetry has to be preserved, the
number of variables of the problem amounts to N, = 5. The five variables range
from Ahg;i" = —0.02 m to AhZ}*® = 0.06 m at intervals of 1 mm. This problem
is labelled as B1, and the result shown in the first row of Table 1 is obtained after
120 generations with a population of 100 individuals. A span of the Bl optimised
catenary is depicted in Fig. 9, in which a non-uniform contact wire height is seen.
It is important to highlight that with only changes in dropper lengths, the optimal
configuration obtained produces a og; = 17.71 N, that is, more than 56% less than
that of the reference catenary with 55 mm of pre-sag.

As mentioned above, the Benchmark catenary has droppers equally spaced within
a span. The second optimisation problem, labelled B2, is intended to find the optimal
dropper spacing for the design speed, while keeping the pre-sag or the reference model.
In this case, the distance d; between the left steady arm of the span and the dropper
1 are chosen as optimisation variables. As in this catenary there is an odd number
of droppers per span, the central dropper cannot be moved to preserve the catenary
symmetry, therefore N, = 4. In order to avoid overlapping and trying to find a
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Figure 9: Optimised geometry obtained from the B1 problem.

Table 1: Optimisation results of the Benchmark catenary.

Problem  Variable 0(finter) o reduction

Optimal values (m)

identifier type (N) (%)
B1 Ah, -0.008 -0.002 0.003 -0.012 -0.016 17.71 56.52
B2 d 3.72 9.36 15.96 22.68 34.16 16.13
Ah, -0.002 0.001 -0.018
B3 18.44 54.73
d 9.8 15.8
Reference values (m)
0 0.024 0.041 0.052 0.055
B Ref. Ahe 40.73 -
d 4.5 10.25 16 21.75 27.5

dropper distribution as uniform as possible, the proposed range for each variable
is shown in Table 2. These domains, which notably reduce the design space, are
discretised into increments of 1 c¢m in length.

Table 2: Variable limits used in the B2 optimisation problem.

i 1 2 3 4
d™n (m) 01 7.4 132 189
dmer (m) 7.3 131 188 274
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The GA stopped after 75 generations, which are composed of 80 individuals, giving
the results shown in Table 1. A graphical representation of the optimised B2 catenary
geometry is given in Fig. 10. In this case ogo = 34.16 N, which represents a 16.13%
of reduction when compared to the reference Benchmark catenary. Although this
reduction is not as large as the one obtained in the B1 optimisation, dropper spacing
undoubtedly arises as an important factor in improving current collection quality.

0 10 20 30 40 50
z (m)

Figure 10: Optimised geometry obtained in the B2 problem.

The question remains as to whether some droppers could be eliminated without
major effects on the dynamic behaviour. In order to check this scenario, we chose
a Benchmark catenary with only five droppers per span. The B3 optimisation is
carried out for this new catenary with fewer droppers, consisting of optimising both
contact wire height, and dropper spacing. Thus, there are five optimisation variables
altogether, three heights and two dropper locations. The size of the population is set
to 100 individuals and the limits for each variable are listed in Table 3.

Table 3: Variable limits used in the B3 optimisation problem.

Min. 0.1 13.1 -0.02 -0.02 -0.02
Max. 13 274 0.06 0.06 0.06

After 70 generations the optimisation problem is solved, giving the optimal vari-
ables that appear in Table 1. With four fewer droppers per span, the optimised B3
catenary depicted in Fig. 11, offers almost the same good behaviour as the B1 topol-
ogy in terms of o. For this problem, the optimal solution presents ocp3 = 18.44 N,
which is almost a 55% lower than that obtained with the reference catenary.
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Figure 11: Optimised geometry obtained in the B3 problem.

6.3. Stitch wired catenary optimisation

In this section, the topology of the catenary with stitch wires is optimised. This
catenary model has seven droppers per span and the contact wire holds horizontally.
In the first place, dropper lengths optimisation is carried out, in which Ah,,, for i =
1, ..., Np, are considered as optimisation variables. Again, as every span must be equal
and symmetric, the number of variables in this problem is N, = 4. The range of
variation allowed in this case for the four variables is Ahgfi" = —0.02 m to A" =
0.02 m. This problem is labelled as SW1, and the optimum is obtained after 90
generations with a population size of 80.

The result of the SW1 problem is given in Table 5 and Fig. 12. The SW1 catenary
undergoes a smoother interaction force, as it is clear from ogy1 = 14.14 N, than the
reference SW catenary, with which a 36.6% greater o is obtained. Comparing the
SW1 configuration with the B1 optimised catenary (see Fig. 9), the main difference
is observed in the height of the central point, being much lower for the Benchmark
catenary type.

The second optimisation concerns the search for the optimal dropper spacing in
terms of current collection quality. For this case there are only three optimisation
variables d;, since the dropper located at midspan cannot be moved to preserve the
symmetry of this catenary, because again it has an odd number of droppers in each
span. This problem is labelled as SW2 and the allowed ranges for each variable are
shown in Table 4.

With a population of 60 individuals, after 54 generations the GA found the opti-
mum, which can be seen in Table 5. In Fig. 13 a span of the optimised SW2 catenary
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Figure 12: Optimised geometry obtained in the SW1 problem.

Table 4: Variable limits used in the SW2 optimisation problem.

i 1 2 3
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Figure 13: Optimised geometry obtained in the SW2 problem.

is plotted. The standard deviation of the interaction force is very similar to that
achieved by the SW1 configuration. Specifically, o (finter) = 14.05 N.

The location of the three droppers near the midspan indicates the possibility of
removing two of them, so that the SW3 optimisation problem is carried out on an SW
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Table 5: Optimisation results of the SW catenary.

Problem  Variable 0(finter) o reduction

Optimal values (m)

identifier type (N) (%)
SW1 Ah, 0.002 0.004 -0.009 -0.001 14.14 36.60
SW2 d 5.36 16.83 29.21 14.05 37.00
SW3 Ahe 0.0020.004 0 12.42 44.31
d 6.04 18.27
Reference values (m)
SW Ref. Ahe 0 22.30 -
d 6 15.48 24.18 32.5

catenary with only five droppers per span. Like the B3 problem, in this case there
are five optimisation variables composed of two dropper locations and three punctual
heights along the contact wire. Their ranges are listed in Table 6. Since there are 5
variables to optimise, a population of 100 individuals is set.

Table 6: Variable limits used in the SW3 optimisation problem.

d; (m) Ah,, (m)

1 2 1 2 3
Min. 2 10 -0.02 -0.02 -0.02
Max. 9 30 0.02 0.02 0.02

1

The GA have only taken 85 generations to find the optimal solution shown in
Table 5. In this catenary topology the three central droppers are almost equally
spaced, as can be seen in Fig. 14. The dispersion of the interaction force is the
lowest of the three optimised SW catenaries, with ogys = 12.42 N. This represents a
reduction of 44.31% with respect to the value obtained for the reference SW catenary.

6.4. Analysis of the optimised catenaries

It is interesting to analyse some static and dynamic characteristics of the optimised
catenary configurations obtained in the previous sections. Specifically, the stiffness
of the catenary along with the internal force of the droppers in the static equilibrium
position are explored and the dynamic behaviour of the optimised catenaries, even at
train speeds different to the design speed, is also investigated.
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6. Numerical results

Figure 14: Optimised geometry obtained in SW3 problem.

6.4.1. Static characteristics of the optimised catenaries

The stiffness, ks, at a certain point in the catenary is defined as the relationship
between the vertical uplift and the upward force applied thereon. Figures 15 and 16
show this magnitude calculated in a central span subjected to a load F' = 100 N (left)
or F' =200 N (right) for the Benchmark and the Stitch Wired catenaries, respectively.
Particularly for the former, a noticeable difference in stiffness is observed when the
value of the applied force changes. This is due to the unilateral nonlinearity exhibited
by the droppers, which tend to slacken making the catenary to be more flexible.

Comparing the optimised catenary configurations with respect to their reference
configurations, although in the SW optimised catenaries there is a reduction in the
variability of the stiffness along the span, it seems more drastic in the case of B1 and
B3 optimised configurations. This means a smaller difference between the maximum
kR and the minimum k7}%* stiffness values. In order to quantify this effect, the
stiffness variability coefficient is defined as:

nzar _ rrtnn

k;?z.am _|_ k;?z.ln ( )
This coefficient is calculated for all the eight catenaries, as shown in Table 7. For
catenary B1, this reduction largely exceeds the 50%. In contrast, the optimised B2
catenary despite showing more variability in stiffness, was demonstrated to be better
in current collection quality. What emerges from these results is the benefit, although

limited, of having a more uniform catenary stiffness distribution.
Another aspect that requires to be analysed is the internal force of droppers, fq,
in the static equilibrium configuration. In Fig. 17 these forces are represented for the
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Figure 16: Vertical stiffness of the SW catenaries.

as shown in Fig. 18.
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Table 7: Stiffness variation coefficient a of the optimised catenaries.

Cat. Label F =100 N Reduction (%) F =200N Reduction (%)

B Ref. 0.431 — 0.432 —
B1 0.197 54.31 0.143 66.90
B2 0.486 -12.71 0.490 -13.43
B3 0.223 48.28 0.171 60.42

SW Ref. 0.135 — 0.135 —
SW1 0.109 19.26 0.109 19.26
SW2 0.118 12.59 0.118 12.59
SW3 0.104 22.96 0.104 22.96

B Ref. B1
200 150
150
—~ ~— 100
Z 100 g
<3 3
50 50
0 0
1234567389 12345617289
Dropper No. Dropper No.
B2 B3
200
150
150
% 100 EN 100
“3 =
50 50
0 0
12345672829 1 2 3 4 5
Dropper No. Dropper No.

Figure 17: Dropper forces in static equilibrium configuration for Benchmark cate-
naries.

6.4.2. Dynamic behaviour of the optimised catenaries

Although the current collection quality has been quantified by means of the stan-
dard deviation of the interaction force, it is also interesting to see its time evolution.
This is what is represented in Fig. 19 and Fig. 20 for the two central spans of the
Benchmark and SW catenary models and their respective optimised catenaries, when
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Figure 18: Dropper forces in static equilibrium configuration for SW catenaries.

the vehicle operates at the design speed. No low-pass filter has been applied to the
contact force in Fig. 19, while the contact force represented in Fig. 20 has been low-
pass filtered at 20 Hz. The central support is highlighted by the vertical dashed line
in both figures.

For B1 and B3 catenaries, one can find lower local maxima near the supports.
Additionally, higher local minima are observed near the midspan. For the SW cate-
naries it is more difficult to extract information from Fig. 19. However, the three
important peaks present in the reference model are not generated in the optimised
configurations.

Another important parameter that needs attention is the steady arm uplift. This
magnitude must be controlled in order to avoid interferences with the registration
arm. The vertical displacement of the central steady arm during train passage, is
displayed in Fig. 21 for all the catenaries at v = 300 km /h.

The B1 and B3 catenaries exhibit a higher steady arm uplift. It should be noted
that these optimised catenaries have a much lower stiffness on the supports region.
Although this increased uplift is not a desired effect, the maximum displacement does
not exceed the values recommended by the standards (between 100 and 120 mm).
No notable differences are observed for the other optimised catenaries with respect to
their reference cases.

As pointed out in Section 5, catenary optimisations are carried out only for a single
train speed, which means that the optimised catenaries must be tested at other train
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Figure 19: Interaction force at v = 300 km /h.

velocities. Fig. 22 shows the standard deviation ¢ of the interaction force for B1, B2
and B3 optimised configurations at different speeds. These results are also compared
to those obtained from the reference catenary for the same range of velocities.

Fig. 22 reveals that B1 and B3 catenaries behave similarly with respect to changes
in train speed. Their interaction force not only is much less oscillatory than that of
the reference catenary at the design speed, but also great improvements are achieved
when the train travels at velocities greater than 240 km/h. However, at velocities
below 240 km/h, these catenary configurations exhibit a quite similar performance
than that of the Benchmark reference topology. On the other hand, the B2 catenary
barely improves its current collection quality for the design train speed. Furthermore,
at all the other studied velocities any difference is found if it is compared with the
reference scenario, which makes it the least promising option.

Moving to the optimised SW catenary configurations, Fig. 23 shows their dynamic
behaviour in terms of o, for the same range of train speeds. In this case, although
the three optimised catenaries achieve a good improvement at the design speed, the
catenary with optimised contact wire height (SW1) shows a highly oscillatory inter-
action force at velocities below 280 km/h. However, the SW2 and SW3 catenaries
manifest a better behaviour at low train speeds, although not as good as the reference
SW catenary. Unlike the SW1 catenary, these two options seem to be more stable
versus velocity changes, being the SW3 the most suitable solution according to this
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Figure 21: Central steady arm uplift at v = 300 km /h.
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Figure 22: Optimised Benchmark catenaries behaviour at different train speeds.

criterion. In addition, the SW3 catenary presents the lowest interaction force o at
the design train speed.
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Figure 23: Behaviour of the optimised SW catenaries at different train speeds.
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7. Conclusions

This paper describes an attempt to find optimised catenary configurations in terms
of current collection quality for a given train speed, which does not guarantee bet-
ter behaviour at other velocities. This optimisation consists in finding the catenary
geometry which leads to the minimal standard deviation of the pantograph—catenary
interaction force. The optimisations have been carried out by means of a GA in which
contact wire height (by changes in dropper lengths), dropper spacing, or even both,
are set as optimisation variables.

Several optimisations have been performed for two different catenary types: with
and without stitch wires. The results of the optimisations show that current collection
quality can be improved by setting the appropriate contact wire height, that moderate
benefits can be obtained by varying dropper spacing and that even the removal of
certain droppers can be also an appealing option to be considered.

Most of the optimised catenaries show a more uniform stiffness than their respec-
tive reference catenary geometries. The largest reduction in stiffness variation along
the span is achieved in catenaries B1 and B3. Indeed, these two optimised configu-
rations show higher uplifts of their steady arms, which, although they do not exceed
the recommended limits, should be controlled to avoid mechanical interferences with
registration arms.

Regarding the dynamic behaviour at different train speeds, the optimised catenar-
ies do not worsen the current collection quality up to velocities far from the design
one, specially for the Benchmark catenary type. Nevertheless, the optimised cate-
naries with less number of droppers seem to be the most consistent options in both
Benchmark and Stitch wired catenary models. They exhibit a great behaviour not
only at the design speed, but also they are the least sensitive to changes in velocity,
if compared with the other optimised catenaries.

In conclusion, the results show that not only pre-sag can be a beneficial factor in
current, collection, but that catenary designers should also consider other geometric
parameters such as contact wire height profile or dropper spacing within the span,
because they can lead to great reductions in interaction force fluctuations. Besides,
GAs emerge as a suitable tool that can be used to good effect in designing better
catenaries.
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A. Input data of the SW catenary model

The geometric input parameters needed to define the SW catenary model are
shown in Table 8.

Table 8: Geometric data of the SW catenary model.

Input parameter Value
Span length 65 m
Pre-sag 0 m
Encumbrance 1.3m
Messenger wire stagger 0m

Messenger wire clamp  0.21 kg
Stitch wire length 18 m

Contact wire stagger +0.2 m
Contact wire clamp 0.21 kg
Steady arm length 1.156m

The dropper spacing of this catenary is depicted in Table 9.

Table 9: Dropper spacing along the span.

1 2 3 4 ) 6 7

Longitudinal position of

6 1548 24.18 32.5 40.82 49.52 59
droppers (m)

Table 10 gives the material properties of the different cables which form the SW
catenary.

Finally, the values of the lumped parameters defining the model of the pantograph
associated to the SW catenary are displayed in Table 11.
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Table 10: Material properties of the SW catenary components.

Mass/unit Axial stiffness Bending stiffness Tension
length (kg/m) EA (MN) EI(Nm?) (kN)
Messenger wire 0.864 1.042 136.09 15.75
Contact wire 1.374 1.65 238.70 31.5
Stitch wire 0.091 0.11 - 3.5
Droppers 0.091 0.11 - -
Steady arm 1 1.1 - -

Table 11: Lumped parameters of the pantograph model for the SW catenary.

d.o.f. m (kg) ¢ (Ns/m) k (N/m)

1 6.6 0 7000

2 5.8 0 14100

3 5.8 70 80
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Abstract

The simulation of the pantograph—catenary dynamic interaction is at present
mainly based on deterministic approaches. However, any errors made during the
catenary stringing process are sources of variability that can affect the dynamic per-
formance of the system. In this paper we analyse the influence of dropper length,
dropper spacing and support height errors on the current collection quality by ap-
plying a classic Monte Carlo method to obtain the probability density functions of
several output quantities. The effects of installation errors are also studied for a range
of train speeds. Finally, the pre-sag that, on average, produces the best behaviour
of the system is identified, allowing for the uncertainty in the catenary installation.
The results obtained show the need to consider variability in pantograph—catenary
dynamic simulations.

Key words

Stochastic simulation; Railway catenary; Pantograph—catenary interaction; Uncer-
tainty propagation; Monte Carlo simulations
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1. Introduction

1. Introduction

Current collection in high-speed trains is achieved by means of a sliding contact
between the pantograph and a conductive wire. The former is mounted on the loco-
motive, whilst the overhead line, the catenary, is a cable structure suspended above
the track. According to the standards, the interaction force generated by this sliding
contact can be used to determine the quality and stability of current supply. Ideally,
this force should have low force peaks to prevent component damage and wear, but
at the same time it should be far enough from null values to avoid the undesirable
consequences of arcing.

The simulation of the pantograph—catenary dynamic interaction has become an im-
portant tool for catenary designers in recent years (see [1] and the references therein).
Simulations are helpful when different geometries, configurations and materials need
to be tested or even optimized [2,3], with no need for a prototype or expensive in-line
tests. However, these simulations usually provide deterministic results, such as opti-
mized geometries or sensitivity studies [4], in which magnitudes like the interaction
force or the uplift at a certain point of the catenary do not allow for the variability
present in the system.

There are countless sources of variability in the pantograph—catenary dynamic in-
teraction; for example, during catenary stringing some human errors are unavoidably
made, leading to a final catenary configuration that differs from the original design.
These discrepancies can have severe effects on the dynamic performance of the sys-
tem, although they are not usually considered in the current software. To the authors’
knowledge, very few studies can be found in the literature on the uncertainties of the
catenary system. In [5] a diagnosis procedure is proposed to identify catenary de-
fects, such as those produced by creep phenomena, wear in cables and dropper length
deviations, whose impact on the catenary dynamic performance are studied in [6].
Guideline values for certain installation error rates based on real measured data were
proposed in [7], while variability in pantograph—catenary dynamic simulations regard-
ing wear, aerodynamic effects and geometry irregularities is introduced in [8], in which
the need for further studies on the field is suggested.

This paper proposes an approach to deal with the variability introduced by instal-
lation errors. Dropper lengths, dropper spacing and support height errors are taken
into account due to their important role in determining contact wire height [9]. The
procedure is based on the application of the well-known classic version of Monte Carlo
Simulations (MCS) for the propagation of uncertainty [10] and consists of evaluating
the model in a sufficiently large number of simulations with a random sampling of
the input quantities as described by their probability density functions (PDFs). A
large number of trials are achievable by combining both a highly efficient simulation
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strategy [11] and parallel computing, so that the effects of mounting errors on the
system dynamics are fully characterized in a statistical sense.

The paper is organized as follows: after this brief introduction to the subject,
the catenary system and its modelling are described in Section 2. The pantograph—
catenary dynamic interaction problem is formulated in Section 3. We use an efficient
solution method [11], which provides considerable computational cost savings (a brief
description of this method is also presented for the sake of completeness). The installa-
tion errors considered and their measurable effects are defined in Section 4. Section 5
is devoted to briefly explaining the Monte Carlo simulation strategy, in which the
number of simulated trials is a key factor; this issue is addressed in detail in Sec-
tion 5.1. Finally, different numerical examples and results are discussed in detail and
the conclusions are given in Section 6.

2. Catenary description and modelling

The railway catenary is a cable structure through which the power is supplied to
the locomotive via a sliding contact with the pantograph. As shown in Fig. 1, the
cabling is regularly supported by poles and brackets. In order to keep the contact
wire at the desired height it is hung on droppers from the messenger wire. With
the help of steady arms, the contact wire is staggered to ensure uniform wear on the
pantograph collector strips. Some catenary topologies also include stitch wires near
the supports to smooth out stiffness variations.

Stitch wire

Support

Messenger
wire

e ) Dropper

Steady arm Contact
wire 9

Figure 1: Real catenary with its main components.
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3. Dynamic interaction problem

Although mathematical models and simulations of the pantograph—catenary dy-
namic interaction were introduced some decades ago, it was not until the appearance
of demanding high-speed requirements that an effort was made to improve these mod-
els and simulations (see for example [12,13]). From the huge variety of studies in the
recent literature, the benchmark [1] and the references therein stand out from the
rest.

To model the catenary we here use the Finite Element model presented in [14],
which is based on the Absolute Nodal Coordinate Formulation (ANCF) [15]. All the
calculations and examples given in this paper are focused on the Benchmark catenary
model, which is depicted in Fig. 2. Its geometric inputs and material properties are
fully described in [1].

e

Figure 2: FE model of the benchmark catenary.

Although more complex pantograph models can be found in the literature [16],
we use here a simple lumped-parameter model which only introduces three vertical
degrees of freedom. Both pantograph and catenary models interact with each other
by means of a penalty method with a high penalty stiffness, k, = 50 kN/m, as
recommended in [17]. Fig. 3 contains a sketch of both models.

3. Dynamic interaction problem

The static configuration problem consists of calculating the nodal coordinates, q,
which fulfil the nonlinear static equilibrium equations (1), that is, the internal forces
must balance the gravitational forces:

Fint(q) + Fy =0 (1)
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Figure 3: (a) Pantograph and (b) interaction model schemes.

Nevertheless, in a cabling structure such as the railway catenary, the usual problem
to be dealt with is the so-called ‘form-finding’ problem, in which not only the nodal
coordinates q are unknown, but also the finite element lengths, 1, £, must be found
to fulfil both equilibrium equations and any constraints imposed during the stringing
process. Following the procedure proposed in [18] we get:

Fint(q,17.p) + Fy(l7.;) =0 9
' N (2)
C(q, lref) =0

The constraint equations ¢ impose contact and messenger wire tensions, contact wire
height and position of droppers and support elements.

Once the initial configuration is found, dynamic equations can be linearised with
respect to this configuration due to the small displacements undergone by the cables.
Therefore, if u denotes for the nodal displacements vector,

Mii+ Cu+ Ku=F (3)

models the global pantograph—catenary dynamic interaction problem, in which M
and K are the mass and stiffness matrices respectively. In this paper, a proportional
Rayleigh damping (a,- = 0.0125 and 3, = 10™*) is considered to build C [1]. Vector F
contains the external uplift force, F3,,, applied to the bottom mass of the pantograph
model (see Fig. 3a). This dynamic problem is subject to two sources of severe non-
linearities, that is, the unilateral behaviour of droppers and the contact loss between
the pantograph and the contact cable.

Although the nonlinear problem stated in Eq. (3) can be solved by the commonly
used Newmark method [19], its direct application would require an excessive com-
putational cost for directly using MCS. In order to speed-up the calculations and
make the approach viable, in this work we use the Offline/Online strategy proposed
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in [11]. The solution given by this method is just as accurate as that obtained with
the classical direct integration approach. The method is based on two main concepts:

e All sources of nonlinearity are shifted to the right hand side of Eq. (3). These
are the interaction force and the compensating force terms coming from the
slackened droppers. The idea was first proposed in [13] and exploited in [20].
This fact gives a constant system matrix which is only factorized once in the
whole procedure.

e With dynamic responses under unitary forces precomputed in the Offline stage
and the application of the superposition principle, the only unknowns are now
the value of the correction forces of slackened droppers and the interaction force
value at each time step. Thus, one has only to deal with a very small nonlinear
system of equations which is iteratively solved during the so called Online stage.

The only disadvantage of this method against the traditional direct integration
technique is the need for enough available RAM memory to avoid swapping data onto
the hard disk, which would slowdown the calculations. For further implementation
details the reader is again referred to [11].

4. Description of the catenary installation
errors and their effects

During the catenary installation, technicians can make small mistakes which lead
to a different static configuration from the original design. Regarding their role in
achieving the desired contact wire height, of the many possible errors we consider
here the three deviations from the nominal values given in Fig. 4. Namely:

1) Deviations in dropper length.
2) Deviations in dropper spacing.
3) Deviations in support height.

In order to quantify these, due to the lack of experimental measurements, we
assume they are independent and follow a normal statistical distribution without any
loss of generality. The mean is set as yu; = 0, for ¢ = 1,2, 3, because each error
is defined as the deviation from its design value. The remainder of this section is
devoted to providing further details on how each error is considered in the model plus
a definition of the measurable magnitudes which can be affected by these errors.

191



Paper D

C

Figure 4: Scheme of installation errors.

4.1. Dropper length error

The accuracy of dropper measurements during manufacture is reported to be
within about 1 cm [9]. We assume that each dropper length error is a normally
distributed variable with standard deviation o; = 6.6 mm, which is in accordance
with the value given in [21]. Following the 3¢ rule, 99.87% of the length deviations
found in droppers will be within +2 cm.

Figure 5: Catenary configuration when including dropper length error (solid line).
Nominal configuration (dotted line).

From the computational point of view, in order to model this error we first solve
the form-finding problem (2) to obtain the nominal contact wire height. Once the
nominal lengths of the dropper elements, lfe o are obtained, they are modified by
adding to them a value randomly sampled from the normal distribution defined for
this type of installation error. The nonlinear static equilibrium problem (1) is then
solved with the new dropper lengths to obtain the actual catenary configuration.

Changes in the contact wire profile can be seen in Fig. 5, which shows an example
of two spans of the Benchmark catenary with and without dropper length deviations.
If we define the span slope, ss, as the difference in height per unit length between
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4. Description of the catenary installation errors and their effects

two consecutive steady arms, it is also slightly affected, mainly by deviations in the
length of the droppers near the supports.

4.2. Dropper spacing error

In a 55 m long span all the droppers are likely to be clamped to the wires at
a short distance away from the point planned in the design. In the absence of ex-
perimental measurements and available information in the literature, we assume a
normal distributed error with standard deviation o = 20 mm. Again, following the
30 criterion, a deviation of within 60 mm with respect to their nominal position
will be found in 99.87% of cases.

During installation, the dropper is initially cut to the nominal length lfa £+ which
guarantees the contact wire will be at the desired height. However, when the dropper
is being clamped to the wires, if it is incorrectly placed, the contact wire height will
not be as planned. In order to simulate the realistic features of this error, the following
steps are performed:

1. Solve the form-finding problem (2) for the nominal dropper spacing in order to
obtain the nominal dropper lengths lfa 1 (dashed line in Fig. 6).

2. Solve a new form-finding problem (2) for a catenary with random deviations A
in dropper spacing (dotted line in Fig. 6). For this obtained configuration, the
obtained dropper lengths lfe 2 differ from the nominal ones, lfe £1-

3. Restore the nominal lengths lfe s to the dropper elements and solve a static
equilibrium problem (1) to obtain the final catenary configuration (solid line in
Fig. 6), which has both nominal dropper lengths and a random dropper spacing
error.

4.3. Support height error

The last error to be considered is the height at which cantilevers are fixed to
the posts. These heights were measured in [21] and show a standard deviation of
o3 = 2 cm. Sticking to the 30 rule, 99.87% of the installed catenaries will not have a
maximum deviation greater than 6 cm.

To model a catenary with this installation error, the form-finding problem (2) for
the nominal catenary must first be solved, followed by the nonlinear static equilibrium
problem (1). In the latter, the Dirichlet conditions in z direction of the support nodes
of the messenger wire and the end nodes of the steady arms (3a and 3b in Fig. 4)
are randomly changed to allow for the support heights error. The random change
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Figure 6: Representation of the catenary configurations obtained after each of the
three steps followed to simulate the dropper spacing error.

in height can be either the same or different for both connections of each cantilever,
depending on whether they are considered as a single installation error or as two
independent deviations.

Figure 7: Catenary configuration with deviations in support heights (solid line).
Nominal configuration (dashed line).

4.4. Measurable effects of installation errors

The installation errors described above affect both the catenary’s static config-
uration and its dynamic behaviour and therefore modify the current collection per-
formance. However, measurable magnitudes need to be defined to quantify these
effects. In this study we focus on the following parameters, recommended by many
standards [22,23] and due to their important role in maintenance procedures:
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e Coefficient of variation of the interaction force: defined as the ratio between its
standard deviation o (Finter), and its mean p(Fipter), namely:
v = g (Enter (t)) (4)
N(Finter (t))
The interaction force is low-pass filtered to 20 Hz and measured in the ten
central spans of a catenary with twenty spans.

e Percentage of time in which contact loss occurs: t.;.
e Maximum uplift registered in steady arms: Az"%*.

e Maximum value of the 20 Hz filtered interaction force: F]/ /.

max
s .

e Maximum absolute value of the span slope: s

e Maximum absolute value of the span slope difference between two consecutive
spans: Asmhe®

s .

The most important magnitude to be evaluated is the ratio v, by which the current
collection quality is mainly characterized. The lower the v the more uniform the
contact force. However, it is also important to avoid both contact losses and excessive
wear on the components, so that t, and FJ'7" must also be checked. In order to
prevent collisions between the pantograph and registration arms, Az™%* is usually
restricted to 10 or 12 cm. The static parameters sJ*** and As7*** can also be regarded

as interesting output quantities due to they are limited by many standards.

5. Monte Carlo simulations

The aim of this work was to study the consequences of the errors made during the
catenary installation. The widely accepted Monte Carlo (MC) technique was adopted
to deal with this uncertainty propagation problem [24]. The MC method has certain
advantages, such as taking the nonlinearities of the model into account and not impos-
ing any restrictions on the output probability distributions. However, as thousands
of dynamic simulations are required this method entails a high computational cost,
to alleviate which we resorted to the efficient integration algorithm proposed in [11].

As can be seen in the diagram shown in Fig. 8, the starting point is the characteri-
zation of the statistical distributions X; of the input variables (in this case installation
errors). As mentioned in Section 4, they are assumed to be independent Gaussian
distributed variables, and are therefore defined by their null mean and standard devi-
ation o;. Vectors x,., 7 =1, ..., N, are randomly sampled from the probability density
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Figure 8: Uncertainty propagation flow diagram.

functions and serve as input values for the evaluation of the pantograph—catenary
dynamic interaction model.

The key issue in this procedure is how to determine the number of trials, NV, so that
the obtained distributions of the output variables Y;, are statistically representative.
If we assume that N is chosen to provide enough accuracy in the results, one can
build the probability density function (PDF) of each output variable, which can be
numerically defined by its statistical moments or coverage intervals.

5.1. Searching for the required number of trials

If v is chosen as the output quantity of interest (due to being seen as a good
indicator of current collection performance), we need to obtain the value of N which
provides enough accuracy in estimating both its real mean p(v) and its real standard
deviation o(v). In what follows, these two statistics will be referred to as ‘target
quantities’.

One simple strategy to asses and control the desired accuracy consists of perform-
ing M sets of N simulations, that is, M sets of N catenaries with installation errors,
and then measuring the dispersion of the target quantity obtained from each of the
M sets. This technique is exemplified in Fig. 9, in which ten sets are considered,
M =10, for three different trial sizes (N = 500, 1000, 2000). The M - N simulations
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5. Monte Carlo simulations

were performed with a catenary allowing for both dropper length and support height
errors, which are the most influential as will be seen later.

Fig. 9 shows the estimated mean 7 (left) and standard deviation S(v) (right) ob-
tained from each set. Fig. 9 shows that no matter how many trials are performed, the
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Figure 9: Mean 7 (left), and standard deviation S(v) (right), for ten sets with
different number of trials.

mean value of v barely varies from one set to another, while the standard deviation
changes considerably among the different sets, even for the largest ones, (N = 2000).
However, these results are only able to confirm whether IV provides the target quanti-
ties with a given accuracy when a huge amount of sets M are computed at a prohibitive
computational cost.

In order to solve this issue we explore two different approaches. The first strategy
is based on the theoretical calculation of the confidence interval of the target quan-
tities. Regarding the unknown population mean p(v), the central limit theorem [25]
establishes that the mean of a sufficiently large sample, 7, follows a normal distribu-

tion with mean u(v) and standard deviation % If o denotes the significance level,

the 100(1 — a))% confidence interval of p(v) is:

D_Za/Q%S/L(V)SD_FZa/Z% (5)

where 2,5 is the value with an occurrence probability lower than «/2 in a normal
standard distribution and N is the sample size. We define d as the assumable differ-
ence between the sample mean and the unknown population mean, d = |7 — u(v)],
therefore from Eq. (5) we have:

N=zp=pm— (6)
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Although this equation needs the exact value of o(v), which is unknown, we can
estimate it from a large enough population (N = 5000). For the catenaries studied
the value of o(v) is around 0.265. Thus, if a 3% relative error is assumable in the
mean estimation, the absolute difference between the estimated and real mean is
approximately d = 0.008. After applying Eq. (6) with a significance level of o = 0.01,
in 99% of cases u(v) can be estimated by only four simulations with an error of less
than 3%.

Regarding S(v), the common approach to obtain the required number of trials
N to guarantee a given accuracy of the estimated standard deviation is restricted to
normally distributed samples. In our case, as the PDF of v is unknown, this normality
assumption cannot be made. In this situation, different authors (see for example [26])
propose diverse strategies which only require a finite population kurtosis y(v). Among
these proposals, a general and simple central limit approach [27] states that the sample
variance S(v)? is asymptotically normally distributed with an expected value o(v)?

and a standard deviation o(v)? % This leads to the following nominal 100(1 —

«)% confidence interval for o(v)?*:

2 2
S(V) S O’(I/)Q S S(V) (7)
1 — Za/2 \/ 7(3\)7_1 1+Zo¢/2 7(3\)7_1
In order to fulfil the last relation for an assumable relative error e = ‘W in
the variance, the number of trials considered in the MC method should be:
(v) —1
N = 22/27 (8)

The results of applying Eq. (8) are given in Table 1 for different significance levels «
and assumed relative errors e. In this case a population with 10000 trials was simu-
lated to estimate y(v). The results reveal that this criterion is much more restrictive

Table 1: Number of trials N, required to fulfil the variance coverage interval for
different relative errors e and significance levels «.

o @005 0.02 0.01

0.05 2331 3634 4663
0.02 14571 22715 29146
0.01 58282 90861 116582

than that applied for the mean, since 12954 simulations are now needed to obtain
S(v)? with a 3% error and 99% confidence level.
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In order to validate the previous results, a second approach is used to quantify
the accuracy of S(v)? which consists of following a classical bootstrapping strat-
egy [28] in which no assumption of normality is required. This resampling technique
is based on random sampling with replacement and can estimate the sampling dis-
tribution of almost any statistic (mean, variance, etc.) [29]. Starting from a large
enough sample (of size N) of v, one can perform N resamples [v],v3, ..., v}], each
one also of size N, taken from the original sample by using sampling with replace-
ment. For each of these bootstrap samples we compute the desired statistic, in this
case [S(v*)3, S(v*)3, ..., S(v*)3%], in order to obtain the histogram which provides an
estimate of its PDF.

N = 1000
L [N = 5000
N = 10000

3 3.2 3.4 3.6 3.8 4 4.2 4.4
S(v*)? %1078

Figure 10: Bootstrap distributions of estimated variance S(v*)?, for samples of size
N = 1000, 5000 and 10000.

The principle of bootstrapping assumes that for large enough N, the bootstrap
PDF of S(v*)? tends to its real PDF. We start from three original initial samples of
nu with sizes N = 1000, 5000 and 10000. From these samples the histograms shown
in Fig. 10 are built by the bootstrapping method. The 99% coverage intervals of these
distributions are given in Table 2, in which it can be seen that they become narrower
with larger sample sizes. According to the results, the maximum relative error in the
estimation is also displayed in the last column of Table 2 with a 99% certainty level.

In view of the results, if 7 is the quantity of interest, using N = 50 trials, only
about 0.002 of difference between © and the real u(v) (less than 1% of relative error) is
expected in 99% of the cases. Thus, we will use N = 50 trials to perform MCS when
looking for . However, if one is interested in the PDF of v, N = 10000 trials could be
employed in MCS to guarantee a certain accuracy in the obtained S(v)2. In this case,
the relative error between S(v)? and o(v)? is limited by 3.94% at a 99% confidence
level. If this result is compared with that obtained from the analytic expression (8),
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Table 2: 99% coverage interval and maximum error for the S(v) bootstrap distribu-
tion.

S(V*)2
N 99% Cov. int. Cmag
1000  3.238-1073 - 4.077-10~2 11.55
5000 3.524-1073 - 3.912.1073  5.39
10000 3.543-1073 - 3.827-1073  3.94

with V = 10000 and o = 0.01, Eq. (8) gives a relative error of 3.41% which is in good
agreement with the bootstrap estimated uncertainty for S(v)2.

6. Discussion of the numerical results

As stated in Section 2, this work analyses the Benchmark catenary model [1],
although the proposed procedure can be applied to any catenary topology. The model
is composed of 20 spans but the results are taken only from the 10 central spans to
avoid boundary effects. Following the recommendations in [17], the interaction force
is low-pass filtered at 20 Hz, so that the results are comparable to those obtained
in [1].

The measurable output magnitudes for the Benchmark catenary are displayed in
Table 3 and will be considered as reference values for comparison with those obtained
for the actual installed catenaries with their corresponding installation errors.

Table 3: Measurable effects on the nominal Benchmark catenary when the train
travels at 300 km/h .

v tea(%)  AZ™ (mm) FPAT (N)  sT9 (%) AsT (%)

inter

0.2589 0 50.22 256.24 0 0

The first examples are carried out at a train speed of v = 300 km/h and an uplift
force Fy;, = 168.47 N is applied to the bottom mass of the pantograph model to fulfil
the maximum mean contact force given in [23]:

1(Finter) = 70 4 0.00097v2 (9)

Whereas Section 6.1 gives a complete statistical quantification of the effects of in-
stallation errors on the static and dynamic features of the system, Section 6.2 only
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focuses on the mean values of these measurable effects. The next section is devoted
to determining the influence of error variability when the train travels at different
speeds. The influence of installation errors on the optimal initial sag of the contact
wire (pre-sag) is also analysed.

6.1. Statistical quantification of the effects produced
by installation errors

This section characterizes the effects of installation errors by computing their full
PDFs; each source of uncertainty is first considered in isolation and then the most
influential errors are analysed jointly.

The first error considered is that related to dropper lengths. The PDFs of the
output parameters are given in Fig. 11, after performing 10000 MC simulations. At
first glance, a general deterioration of the system performance is clearly seen, since
the mean of each variable is higher than the nominal deterministic values (solid lines
in Fig. 11).

025 026 027 0.28 50 525 55 575
v Az™ (mm)

250 260 270 280 290 0 01 02 03 0 0.2 0.4 0.6
F"l(l.t (N) s:fLH.L (%D) ASZWI (%0)

inter
Figure 11: PDFs of output quantities for dropper length error.

The PDFs of Az™e®  Fmar = s and As]*®® present slightly positive skewness,

while the opposite effect is found in the case of v. This installation error hardly

201



Paper D

produces non-desirable contact losses between pantograph and catenary. If a contact
loss is considered when the contact force before filtering is null in a single time-step
(1 ms in this case), they only appear in 38 of the 10000 simulations performed, and
in any case exceed 7 ms throughout a simulation.

If only deviations in dropper spacing are considered, the PDFs of the measurable
effects plotted in Fig. 12 are obtained. In this case neither contact losses nor span
slope changes can be noted. the PDFs of v and Az™®* are around the value obtained
with the nominal catenary. Its most important feature is its negligible influence on
all the measured output quantities. On the basis of these results, we can conclude
that this error barely affects the system dynamics and therefore will be disregarded
hereinafter.

i

0.256  0.258 0.26 0.262 49 495 50 505 51 515 254 256 258 260 262
v Azmar (%) Frer (N)

Figure 12: PDFs of output quantities for dropper spacing error.

The last error to be simulated concerns the height at which supports are placed.
Considering that the same error affects both steady arm and messenger wire connec-
tions (3a and 3b in Fig. 4) gives rise to the results shown in Fig. 13. Just as when
considering dropper spacing error, the pantograph does not detach from the contact
wire in any case, although this error has the biggest impact on the maximum span
slope. The maximum registration arm uplift has also increased more than the val-
ues obtained from the simulated dropper length error, although v is less influenced by
support height errors than dropper length errors. In fact, almost half of the simulated
trials have a beneficial effect on this magnitude.

In order to split the effects of height errors on messenger wire and steady arm
connections to the bracket, we applied MCS allowing only for errors in the height of
the placement of the links between steady arms and supports (3b error in Fig. 4). The
results obtained show almost no dispersion, indicating that relative errors between
the height of steady arm and messenger wire connections to the cantilever have a
negligible effect on the considered output magnitudes. The hypothesis that the same
error affects both steady arm and messenger wire connections is thus confirmed.

Once each installation error has been analysed in isolation, we focus on the effects
of the two most relevant errors occurring simultaneously, as can happen in practice.
The results obtained are shown in Fig. 14, in which dropper spacing deviations are not
considered due to their negligible influence on the measured magnitudes. In view of
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Figure 13: PDFs of output quantities for support height error.

the PDFs obtained, v deteriorates when both errors are simulated together. However,
compared to the standalone results, there is only a slight tendency to worsen the
behaviour of the system in the other magnitudes. It can also be seen that variability
in v and F]'2% is mainly dominated by dropper length error, whilst variability in
Azmer gmat and AsT'* is dominated by errors in support height.

Focusing in greater detail on the coefficient of variation of the interaction force, v,
the 95% coverage interval, [¢min Cmaz)], 18 plotted in Fig. 15. In this figure the hori-
zontal line represents the value of v obtained with the nominal Benchmark catenary.
The small variation of ¥ when dropper spacing error is considered can be clearly seen.
The simulation of the support height error presents a wider 95% coverage interval,
which is also centred to the nominal value. When dropper length error is allowed
for, v is more variable and most of the simulated trials show a higher value for this
magnitude than the nominal one. This behaviour leads us to conclude that the drop-
per length error is the most harmful error, and that great care should be given to
this factor during installation. The worst scenario is found when dropper length and
support height errors are simulated together; this synergy produces the widest 95%
coverage interval and also the highest increase in the mean of v. Indeed, almost all
the trials in the interval show worse current collection performance than the nominal
catenary.

Table 4 summarises the most important results obtained for the PDF of v. The
relative distance between the maximum and minimum edges of the 95% coverage
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Figure 14: PDFs of output quantities accounting for both relevant installation errors,
namely dropper length and support height errors.
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Figure 15: 95% coverage interval of v for all the different studied scenarios.

interval,
A = Smaz T Cmin 0, (10)

Cmin
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is also included as a quantifier of the variability in v produced by each type of error.

Table 4: Summary of the statistical characterization of the PDF of v. Mean, standard
deviation, 95% coverage interval and A ratio for the four studied scenarios.

Error type v S(v) 95% coverage interval A (%)
Dropper length ~ 0.2649 4.711-10~3 0.2558 - 0.2741 7.15
Dropper spacing 0.2588 8.138-107* 0.2572 - 0.2604 1.24
Support height 0.2599  3.899-10~3 0.2524 - 0.2675 5.99
Error combination 0.2667 6.069-1073 0.2552 - 0.2790 9.32

6.2. Mean evaluation of the effects produced by
installation errors

As already mentioned in Section 5.1, if only the mean value of a certain output
magnitude is required instead of a full PDF description, only 50 MC simulations need
to be performed. With this number of simulations, the relative error expected in v
is less than 1%, with a guaranteed confidence level of 99%, although other output
magnitudes may not reach this degree of accuracy.

Table 5: Comparison of estimated mean values from a population of 50 individuals
and those obtained from a population of 10000 individuals.

v Az (mm)  EFer (N) 7% (%o)  AsT (%)

inter s
I 0.2667 54.76 273.21 0.665 1.065

i 0.2658 54.92 273.69 0.677 1.031

Rel. Err. (%)  0.34 0.29 0.18 1.80 3.19
w/o 43.94 22.29 37.53 2.77 2.67

The first row in Table 5 shows the mean values of the output magnitudes obtained
from the PDFs in Fig. 14, which can be assumed to be the real population mean of
each magnitude, since they are obtained from 10000 trials. The second row of the
table gives the mean values obtained from only 50 simulations. The relative error of
the latter estimation is given in the third row. It is clear that v, Az™** and F'{% can
be accurately estimated by this procedure, while estimating s7'** and As?*** would
need a larger number of trials by the MC method. This can be explained by the ratio
between the mean and the standard deviation of the PDF of each magnitude. The

greater this ratio, the more accurate o tends to be for a given number of trials.

205



Paper D

6.3. Influence of installation errors at different train
speeds

A nominal train velocity of 300 km/h was considered in the examples discussed so
far. However, any change in this parameter would affect the effects of the installation
errors in the system dynamics. To study this phenomenon, the MC method was
executed with 10000 trials, considering different train speeds, applying the appropriate
uplift force and keeping all the other parameters constant. The simulations allow for
both dropper length and support height errors.

The 95% coverage interval of v is given in Fig. 16 for v = 200, 250 and 300 km /h.
The uplift forces applied to the pantograph are F,, = 114.07, 138.33 and 168.47 N,
respectively, to fulfil the maximum mean contact force requirement of Eq. (9). The
horizontal lines denote the nominal v value at each speed. v clearly tends to decrease

0.28 - ]
().26 [ -
0.24 -
A

0A22 7 -

0.2+
0.18 - - -

200 250 300
v (km/h)

Figure 16: 95% coverage interval of v at different train speeds including both dropper
length and support height errors.

at lower train velocities. Regarding uncertainty, installation errors seem to be more
detrimental at high velocities (250 and 300 km/h) since the 95% coverage interval is
entirely located above its respective nominal v, despite being narrower. This deterio-
ration in current collection quality cannot be appreciated at v = 200 km/h, because
most of the simulated trials have a v value lower than the nominal.

These results indicate that careful attention should be paid to accuracy when
installing high-speed catenaries, since any errors tend to have an increasingly negative
effect.
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6.4. Optimal robust pre-sag

A certain amount of pre-sag is beneficial for current collection quality, especially
in the medium speed range [30]. Optimal pre-sag values for a given train velocity are
reported in [3], but only for deterministic simulations that ignored the variability of
installation errors. Here we obtained a robust optimal pre-sag value, allowing for the
uncertainty present in the installed catenaries.

Fig. 17 shows a comparison between 7 computed as the mean value of 50 samples
with random installation errors (circles), and v obtained from the nominal configura-
tion (squares) when different pre-sag values are assigned. The study was carried out
at three different speeds: 200, 250 and 300 km/h. The obtained optimal pre-sag is
highlighted for each case with thick crosses in Fig. 17.

—e—Nominal $ Deterministic optimum —e—Mean of 50 values with errors # Robust optimum
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Figure 17: Comparison, for catenaries with different initial sag, between the nominal
v and 7 computed from 50 trials with installation errors. v = 200 km/h (left),
v = 250 km/h (centre) and v = 300 km/h (right).

The first conclusion to be drawn from these results is the importance of consid-
ering the variability introduced by installation errors when seeking optimal catenary
configurations. In this scenario, the optimal robust pre-sag differs from that obtained
in the deterministic case.

Another interesting feature in Fig. 17 is that there are some catenary configura-
tions in which 7 < v, indicating that they behave better, on average, than in their
corresponding nominal configuration. This unexpected behaviour occurs at low speeds
(200 km/h) in all the cases studied and at medium speeds (250 km/h) in catenaries
with low pre-sag (< 30 mm).

In order to explain this phenomenon, we focus on two catenaries with opposing
behaviour: one with 40 mm of pre-sag at 300 km/h and another with 30 mm of pre-sag
at 200 km/h (points surrounded by dashed lines in Fig. 17). The Fourier transform
of the low-pass filtered interaction force for both the nominal cases (squares) and the
mean of fifty configurations with installation errors (circles) can be seen in Fig. 18.
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Figure 18: Frequency content of Fj,e,- for catenaries with 40 mm (top) and 30 mm
(bottom) of pre-sag, considering nominal and actual installed scenarios when panto-
graph moves at v = 300 km/h and v = 200 km/h respectively.

If = =10,...,20] Hz, we define h = [hq, ho, ..., hy, ] as the set of the harmonics of
the fundamental span-pass frequency, and h = Z—h is therefore the set containing the
remaining frequencies. In Fig. 18 most of the frequency content of Fj, e, is located
on h. The mean effect of installation errors seems to reduce the amplitudes of the
h frequencies in exchange for an increase in the frequency content of h due to the
elimination of periodicity in contact wire height.

In order to quantify these effects, we can decompose v into the contribution of
both h frequencies, vy, and the remaining frequencies, v;, so that V2 = V,2L + u}%.

Fig. 19 shows the difference 72 — 12 for both frequency set contributions: h and h.

The increase seen in v;, seems to be more or less constant with respect to train speed
and pre-sag, although the reduction of v}, is clearly greater at lower speeds, with the
maximum at v = 200 km/h.

To sum up, if the decrease in v}, overcomes the increase in v;, the catenary in
which allowance is made for installation errors, on average, behaves slightly better
than the nominal catenary. In the case studied, this happens at low train speeds and
low pre-sag values.
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Figure 19: Difference between 72 and 12 computed with the span-pass harmonics h
(left) or with the rest of the frequency content h (right).

7. Conclusions

This work proposes a method of simulating pantograph—catenary dynamic interac-
tion that takes into account the variability introduced by catenary installation errors.

Three different error types were considered: those related to dropper length, drop-
per spacing and support height. After their statistical characterization, the Monte
Carlo method was applied to propagate the uncertainty to the desired output quan-
tities. A statistical study was then performed to obtain the number of MC trials
required to control the accuracy of the PDF of the output quantities.

Allowing for these installation errors has a remarkable effect on the static and
dynamic features of catenary behaviour. Current collection quality is clearly worse
when dropper length and support height errors are simulated, whereas the spacing
error has only minor effects. The results of the simulations carried out in this work
indicate that the higher the speed, the more negative the effects of installation errors
on current collection performance.

Another important conclusion is related to the optimal amount of pre-sag; this
quantity not only varies with train speed but is also clearly affected when installation
errors are taken into account in the simulations.

To summarise, all the results of this study highlight the importance of consider-
ing the uncertainty due to catenary installation and its effect on catenary dynamic
behaviour.
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