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Abstract. We survey known results concerning how the conjugacy classes contained in a normal

subgroup and their sizes exert an influence on the normal structure of a finite group. The approach

is mainly presented in the framework of graphs associated to the conjugacy classes, which have been

introduced and developed in the past few years. We will see how the properties of these graphs, along

with some extensions of the classic Landau’s Theorem on conjugacy classes for normal subgroups,

have been used in order to classify groups and normal subgroups satisfying certain conjugacy class

numerical conditions.

1. Introduction

We will assume that every group is finite. The study of the structural properties of a group

when taking into account the information related to its conjugacy classes is a classical field in Finite

Group Theory, which has been widely developed in the last two decades. We will pay attention to

the conjugacy classes contained in normal subgroups, so this will be an expository paper in which

we outline the major results related to the influence of these classes on the structure of the normal

subgroup. We provide references to the literature for their proofs.

Let N be a normal subgroup of a group G. For each element x ∈ N , the G-conjugacy class of

x, denoted by xG, is the set of elements of N which are conjugate to x in G. We will denote by
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ConG(N) = {xG, x ∈ N} the set of G-classes of elements of N , and by csG(N) = {|xG|, x ∈ N}
the set of their sizes. Each element in ConG(N) is the join of conjugacy classes of N , and it easily

follows that its size is a multiple of a single N -class size. Recent results have put forward that

csG(N) continues to maintain a strong influence on the structure of N , in spite of the fact that there

may exist primes dividing the G-class sizes which, however, do not divide |N |. As a starting point,

the problem concerning those groups having a normal subgroup N such that |csG(N)| = 2 has been

deeply studied. In [22], the nilpotency of N was shown under the additional hypothesis that N

contains some Sylow subgroup of G. This result was completely extended in [3] by eliminating the

latter hypothesis. Precisely, it was proved that if csG(N) = {1,m}, for some integer m, then N is

either abelian or the direct product of a p-group by a central subgroup of G.

Regarding groups having normal subgroups with three class sizes, the normal structure under

certain arithmetical conditions on these sizes was described in [1]. Concretely, it was demonstrated

that if csG(N) = {1,m, n} with (m,n) = 1, then N is either a quasi-Frobenius group with abelian

kernel and complement or, up to central factors in G, is a p-group for some prime p. The solvability

of N without assuming additional hypotheses was finally reached in [2], by employing new techniques

based on the study of class sizes in normal sections. Nevertheless, a complete classification of the

structure of N in the case in which csG(N) = {1,m, n} where m divides n still remains open. We

refer the reader to the surveys [4] and [5] for more specific details on this study. There is much more

research work about the influence of the class sizes on the structure of the group (see for instance

[10] or [17]) but our goal is not to give here an exhaustive list of them.

This paper is divided into three sections. In section 2, we look at several graphs constructed

from the sets of conjugacy classes. We highlight that two interesting surveys dealing with conjugacy

class graphs have already been published (See [13, 26, Section 5]). However, the aim of the different

approach that we present here is to compare the results in regard to ordinary conjugacy classes with

those on conjugacy classes contained in a normal subgroup. Essentially, we analyze the common

divisor graph associated to ordinary conjugacy classes of a group G and the corresponding graph

associated to G-classes contained in a normal subgroup. As we will see, the properties firstly obtained

for the ordinary graph are not inherited by the graph of G-classes, which is certainly a subgraph.

Likewise, we examine the diameter and the connectivity of both graphs as well as the relation to

the structure of the groups and normal subgroups. In section 3, we present several results relating

the structure of groups and normal subgroups to the simplest structures that these graphs may

have: when the graphs consists of exactly one, two ore three vertices. These properties are used to

obtain the structure of the normal subgroup when the graph of G-classes has no triangles. Finally,

in section 4, we show an application of the graph of G-classes and two extensions of the well-known

Landau’s Theorem [25] for G-classes and for G-classes of elements of prime power order contained

in a normal subgroup.
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2. Graphs associated to conjugacy classes of normal subgroups in finite groups

In 1990, E. A. Bertram, M. Herzog and A. Mann defined in [12] the graph Γ(G) associated to the

sizes of the ordinary conjugacy classes of G as follows: the vertices of Γ(G) are represented by the

non-central conjugacy classes of G and two vertices C and D are connected by an edge if |C| and
|D| have a common prime divisor. Let n(Γ(G)) be the number of connected components of Γ(G)

and let d(Γ(G)) be its diameter. They proved that n(Γ(G)) is at most 2 and that when the graph is

connected, then d(Γ(G)) ≤ 4. Furthermore, they characterize the disconnected case by proving that

quasi-Frobenius groups with abelian kernel and complements are the only groups whose graphs have

two connected components. Let us recall that a group G is said to be quasi-Frobenius if G/Z(G) is

a Frobenius group. In this case, the inverse image in G of the kernel and complement of G/Z(G) are

called the kernel and complement of G, respectively. Later, in [18], C. Chillag, Herzog and Mann

obtained the best bound of the diameter of this graph, which is 3.

If we look at the conjugacy classes contained in a normal subgroup N of G, then the graph ΓG(N),

which is a subgraph of Γ(G), appears.

Definition 2.1. Let G be a finite group and let N be a normal subgroup in G. We define the graph

ΓG(N) in the following way: the set of vertices is the set of non-central elements of ConG(N), and

two vertices xG and yG are joined by an edge if and only if |xG| and |yG| have a common prime

divisor.

As we pointed out in the introduccion, the fact that the number of connected components and

the diameter of Γ(G) are bounded does not directly imply that the corresponding parameters for

ΓG(N) must be bounded too. There is no relation between Γ(N) and ΓG(N) either. For instance,

Γ(N) can be disconnected while ΓG(N) is not. An example (based on the semilinear affine group

Γ(pn) for appropiate p and n) can be found in [6]. Likewise, the diameters of ΓG(N) and Γ(N) are

not related either. For instance, let P be an extraspecial group of order p3 with p ̸= 2. If G = P ×S3

and N = P ×A3, we have that Γ(N) is a complete graph (all non-trivial N -classes have size p) while

ΓG(N) has diameter 2, since csG(N) = {2, p, 2p}. In spite of these facts, n(ΓG(N)) and d(ΓG(N))

are actually bounded. The authors determine the best bounds for both parameters and describe the

structure of N when ΓG(N) is disconnected.

Theorem 2.2. [6, Theorem A] Let G be a finite group and let N be a normal subgroup of G. Then

n(ΓG(N)) ≤ 2.

Theorem 2.3. [6, Theorem B] Let G be a finite group and let N be a normal subgroup of G.

(1) If n(ΓG(N)) = 1, then d(ΓG(N)) ≤ 3.

(2) If n(ΓG(N)) = 2, then each connected component is a complete graph.
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Theorem 2.4. [6, Theorem E] Let G be a finite group and N ⊴ G. If ΓG(N) has two connected

components then, either N is quasi-Frobenius with abelian kernel and complement or N = P × A

where P is a p-group and A ⩽ Z(G).

As it has been said at the begining of this section, a characterization of the structure of G for

the disconnected case of Γ(G) was obtained in [12]. Nonetheless, the converse of Theorem 2.4 is

false. It is known that the special linear group H = SL(2, 5) acts Frobeniusly on K ∼= Z11 × Z11.

We consider P ∈ Syl5(H) and NH(P ) acting Frobeniusly on K. We define the semidirect product

N := KP , which is trivially a normal subgroup of G := KNH(P ). Thus, N is a Frobenius group

with abelian kernel and complement and N decomposes into the following disjoint union

N = {1} ∪ (K \ {1}) ∪ (
∪
k∈K

P k \ {1}),

and K \ {1} is partitioned into N -classes of cardinality 5, whereas the elements of
∪

k∈K(P k \ {1})
are grouped into N -classes of cardinality 121. Therefore, the set of N classes is {1, 5, 121}. As G is

a Frobenius group with kernel K and complement NH(P ), it follows that K is decomposed exactly

into the trivial class and G-classes of size |NH(P )| = 20. That is to say, the N -classes contained

in K \ {1} are grouped 4 by 4 to form G-classes. On the other hand, the four N -conjugacy classes

contained in
∪

k∈K P k \{1} of size 121, are grouped in pairs and become two G-classes of size 121×2.

Thus, csG(N) = {1, 20, 242} and so ΓG(N) is a connected graph.

We also remark that the case in which N is a p-group in Theorem 2.4 actually occurs. For instance,

let G be the group of the SmallGroups library ([11]) of GAP ([21]) with number 324#8 (the m-th

group of order n in the SmallGroups library is identified by n#m). One can check that G has an

abelian normal subgroup N ∼= Z3 × Z3 with csG(N) = {1, 2, 3}, so ΓG(N) is disconnected.

Concerning ordinary classes, L. S. Kazarin characterizes in [23] the structure of a group G having

two “isolated classes”. We recall that a group G is said to have isolated classes if there exist

elements x, y ∈ G such that every element of G has a conjugacy class size coprime to either |xG| or
|yG|. Particularly, Kazarin determined the structure of those groups G with d(Γ(G)) = 3. It should

be noted that similar results have also been studied for other graphs. In [19], S. Dolfi defines the

dual graph of Γ(G) whose vertices are the primes which occur as divisors of the class sizes of G,

and two vertices p and q are joined by an edge if there exists a conjugacy class in G whose size is a

multiple of pq. In [16], Dolfi and C. Casolo describe all finite groups G for which the dual graph of

Γ(G) is connected and has diameter three. The corresponding dual graph of ΓG(N) was defined in

[6], but the problem of determining the normal structure when its diameter is exactly three is still

open.

Regarding ΓG(N), the structure of the normal subgroup N is determined in [8] when its diameter

is as large as possible, that is, it is equal to 3. From now on, if G is a finite group, π(G) denotes
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the set of primes dividing |G|, and analogously, if X is a set, then π(X) denotes the set of primes

dividing |X|. The following is the above mentioned result.

Theorem 2.5. [8, Theorem 1.1] Let G be a finite group and N ⊴ G. Suppose that xG and yG are

two non-central G-conjugacy classes of N such that any G-conjugacy class of N has size coprime

with |xG| or |yG|. Let πx = π(xG), πy = π(yG) and π = πx ∪ πy. Then N = Oπ′(N)×Oπ(N)

with x, y ∈ Oπ(N), which is either a quasi-Frobenius group with abelian kernel and complement or

Oπ(N) = P ×A with A ≤ Z(N) and P is a p-group for a prime p.

Notice that under the hypotheses of Theorem 2.5, there exist only two possibilities: d(ΓG(N)) ≤ 2

or d(ΓG(N)) = 3. In the former case, ΓG(N) is disconnected, and the structure of N is already

determined in Theorem 2.4. Nonetheless, this result is shightly improved in [8, Corollary 1.2]. In

the second case, ΓG(N) is connected, since otherwise, each connected component is a complete graph

(Theorem 2.3).

3. Normal subgroups with few conjugacy classes

The simplest cases for the graph ΓG(N) occur when it consists of one, two or three vertices. We

point out that the structure of those normal subgroups which are union of exactly three or four

G-conjugacy classes had already appeared in [30] and [29], respectively.

Theorem 3.1. [30, Main theorem] Let G be a finite group and let H be a normal subgroup of G

which is a union of three conjugacy classes of G. Then H is an elementary abelian p-group for some

odd prime p, a metabelian p-group, or an extension of an elementary abelian group with a certain

cyclic group.

The following discusses the case which N is union of exactly four G-classes.

Theorem 3.2. [29, Main theorem] Let G be a finite group and let H be a normal subgroup of G

which is a union of four conjugacy classes of G. Then either H is the alternating group A5 or a

metabelian p-group or a group of order paqb which is abelian or Frobenius.

From now on, we will only consider non-central conjugacy classes and Theorem 3.1 and Theorem

3.2 will be extended. For any group G, it is elementary that the case in which Γ(G) has exactly one

vertex cannot happen. However, when considering G-classes inside a normal subgroup, this situation

changes.

Theorem 3.3. [9, Theorem 3.1] If G is a group and N is a normal subgroup of G such that ΓG(N)

has only one vertex, then N is a p-group for some prime p and N/(N ∩ Z(G)) is an elementary

abelian p-group.
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The structure of G when Γ(G) has vertices but no edges was obtained in [12]. In this case, by

taking into account that n(Γ(G)) ≤ 2, this graph consists of exactly two vertices and it was proved

that G is isomorphic to S3. This situation does not happen when dealing with ΓG(N). Just take for

instance G = S3 and N = A3. Actually, a more general structure for N arises.

Theorem 3.4. [9, Theorem 4.1.2] Let N be a normal subgroup of a group G such that ΓG(N) has

two vertices and no edge. Then N is a 2-group or a Frobenius group with p-elementary abelian kernel

K, and complement H, which is cyclic of order q, for two different primes p and q. In particular,

|N | = pnq with n ≥ 1.

The case where the graph consists of exacty two vertices and one edge does not occur for the

ordinary graph. In fact, in [20] it was given a complete list of all groups G such that Γ(G) has

no triangles, and none of such graphs has exactly two vertices and one edge. Later on, we will

present this classification. However, for normal subgroups and G-classes the following properties

were obtained.

Theorem 3.5. [9, Lemma 4.2.2] Let N be a normal subgroup of a group G such that ΓG(N) has

exactly two vertices and one edge. Then one of the following possibilities holds:

(1) N is a p-group for a prime p.

(2) N = P × Q with P/(Z(G) ∩ P ) an elementary abelian p-group with p an odd prime, and

Q ⊆ Z(G) ∩N and Q ∼= Z2.

(3) N is a Frobenius group with p-elementary abelian kernel K and complement H ∼= Zq for

some distinct primes p and q. In particular, |N | = paq for some a ≥ 1 and the G-classes of

N have cardinality 1, (pa − 1) and pa(q − 1).

On the other hand, it is proved in [20] that Γ(G) is disconnected with three vertices if and only

if G ∼= D10 or G ∼= A4 (Theorem 3.9). Such a situation for ΓG(N) is contemplated in the following.

Theorem 3.6. [9, Theorem 5.1.1] Let N be a normal subgroup of a group G. If ΓG(N) has three

vertices and one edge, then N is a {p, q}-group for two primes p and q. Furthermore, either

1) N is a p-group, or

2) N is a quasi-Frobenius group with abelian kernel and complement. In this case, |N∩ Z(G)| =
1 or 2.

The case of exactly three vertices connected in a line do not occur for the ordinary graph. This

follows again by using the classification of [20]. For ΓG(N), however, the following result is proved.

Theorem 3.7. [9, Theorem 5.3.1] Let N be a normal subgroup of a group G. If ΓG(N) has three

vertices in a line, then Z(G) ∩N = 1 and one of the following cases is satisfied:

(1) N is a 2-group of exponent at most 4.
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(2) N = P ×Q, where P and Q are elementary abelian p and q-groups.

(3) N is a Frobenius group with complement isomorphic to Zq, Zq2 or Q8. In the former case,

the kernel of N is a p-group with exponent ≤ p2 and in the last two cases, the kernel of N is

p-elementary abelian.

In all cases, |N | is divisible by at most two primes.

The structure of G when Γ(G) consists of exactly one triangle was obtained in [9]. It was proved

that in this case, G ∼= Q8 or G ∼= D8. In addition, the authors gave an extension for ΓG(N).

Theorem 3.8. [9, Theorem C] Let N be a normal subgroup of a finite group G. If ΓG(N) has

exactly one triangle, then one of the following possibilities holds:

(1) N is a p-group for some prime p.

(2) N = P ×Q, with P p-elementary abelian and Q q-elementary abelian for some primes p and

q, and Z(G) ∩N = 1.

(3) N = P × Q, with P a p-group for a prime p ̸= 3, and Q ⊆ Z(G) ∩ N , Q ∼= Z3 and

P/(Z(G) ∩ P ) has exponent p.

(4) N = PQ, where P is a Sylow p-subgroup, p ̸= 2 and Q is a Sylow 2-subgroup of N . In

addition, P has exponent p, |Z(G) ∩N | = 2 and Q/(Z(G) ∩N) is 2-elementary abelian.

(5) Either N is a Frobenius group with complement Zq, Zq2 or Q8 for a prime q, or there are

two primes p and q such that N/Op(N) is a Frobenius group of order pq and Op(N) has

exponent p. In this case, Z(G) ∩N = 1.

(6) N ∼= A5 and G = (N × K)⟨x⟩ for some K ≤ G and x ∈ G, with x2 ∈ N × K and

G/K ∼= N⟨x⟩ ∼= S5.

As an application of the above results, a theorem for graphs without triangles was achieved. As

we mentioned above, in [20] it was given a complete list of those groups G whose graph Γ(G) has

no triangles, which is the following.

Theorem 3.9. [20, Main theorem] Let G be a non-abelian finite group. Then Γ(G) is a graph

without triangles if and only if G is isomorphic to one of the following solvable groups:

• the symmetric group S3;

• the dihedral groups D10 and D12;

• the alternating group A4;

• the group T12 of order 12 given by T12 = ⟨a, b : a6 = 1, b2 = a3, ba = a−1b⟩;
• the group T of order 21 given by T = ⟨a, b : a3 = b7 = 1, ba = ab2⟩.

It turns out that the property that Γ(G) has no triangles is equivalent to the one that Γ(G) is a

disjoint union of two connected trees.
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The structure of N when ΓG(N) has no triangles is determined in [9] by appealing to certain

classification theorems concerning CP-groups, that is, groups having all elements of prime-power

order. The authors first needed to prove the solvability of N .

Theorem 3.10. [9, Theorem 6.1] Let N be a normal subgroup of a group G such that ΓG(N) has

no triangles. Then N is solvable.

Theorem 3.11. [9, Theorem A] Let N be a non-central normal subgroup of a finite group G such

that ΓG(N) has no triangles. Then N is a {p, q}-group and satisfies one of these properties

(1) N is a p-group.

(2) N = P ×Q with P a p-group and Q ⊆ Z(G) ∩N , Q ∼= Z2.

(3) N = P × Q with P a p-group and Q a q-group both elementary abelian with p and q odd

primes. In this case Z(G) ∩N = 1.

(4) N is a quasi-Frobenius group with abelian kernel and complement and Z(G) ∩N ∼= Z2.

(5) N is a Frobenius group with complement isomorphic to Zq, Zq2 or Q8. In the first case, the

kernel of N is a p-group with exponent less or equal than p2 and in the last two cases, the

kernel of N is p-elementary abelian.

Examples for each one of the cases of this section can be found in [9].

4. Landau’s theorem on conjugacy classes for normal subgroups

Landau’s theorem on conjugacy classes asserts that there are only finitely many finite groups,

up to isomorphism, with exactly k conjugacy classes for any positive integer k. No upper bound

in terms of k for the order of such groups was provided in the original theorem. M. Newman [28]

demonstrated that |G| ≤ k2
k−1

, or equivalently, that k goes to infinity with the order of G according

to the inequality

k ≥ log2(log2|G|)
2

.

Since then many results have appeared in the literature regarding logarithmic bounds for certain

classes of groups, for instance, nilpotent or “almost nilpotent” groups [15], or solvable groups [14],

as well as extensions of Landau’s result, such as [24] and [27], where only conjugacy classes of

prime-power order elements and of p-regular elements are taken into account.

When dealing with classes contained in a normal subgroup N , a natural question is whether

there exist finitely many groups having a normal subgroup which is the union of a fixed number

of G-classes. The answer is negative if the index |G : N | is not fixed. Indeed, if we take N to be

a p-elementary abelian group of order ps and G is the holomorph group of N , then since Aut(N)

acts transitively on N \ {1}, it follows that N consists only of two G-classes, {1} and N \ {1}.
Nevertheless, Aut(N) ∼= GL(s, p) and so |G : N | = |GL(s, p)| may increase as much as we wish. On

the contrary, if the index |G : N | is fixed, then the answer to the question is affirmative and upper

http://dx.doi.org/10.22108/ijgt.2017.21216

http://dx.doi.org/10.22108/ijgt.2017.21216


Int. J. Group Theory 7 no. 1 (2018) 23-36 A. Beltrán, M. José Felipe and C. Melchor 31

bounds for |G| and |N | depending on the number of non-central G-classes lying in N (instead of all

G-classes) can be provided. Precisely, the authors prove in [7] the following extension of Landau’s

theorem.

Theorem 4.1. [7, Theorem A] Let s, n ∈ N such that s, n ≥ 1. There exists at most a finite number

of isomorphism classes of finite groups G which contain a normal subgroup N such that |G : N | = n

and N has exactly s non-central G-classes. Moreover,

|G| < n2s+1(s+ 1)

s−1∏
i=0

(s+ 1− i)2
s−1−i

and

|N | < n2s(s+ 1)

s−1∏
i=0

(s+ 1− i)2
s−1−i

.

When n = 1, the previous formula is an improvement of Newman’s bound in terms of the number

of non-central classes in a group. As an application of Theorem 4.1, the authors classified groups and

normal subgroups with certain number of non-central G-classes by using GAP. In order to expedite

this classification, they employed properties of the graph ΓG(N). They explicitly classified those

groups G having a normal subgroup N with one or two non-central G-conjugacy classes of coprime

sizes for some concrete indices. The reason why they did not deal with the case of two non-central G-

classes with non-coprime size is because it cannot be ensured that Z(G)∩N = 1. Thus, the bound of

Theorem 4.1 cannot be improved and this is too large to be used in an efficient algorithm. However,

when the sizes are coprime this equality always holds, and the bound of |N | can be improved. The

considered indices allow to classify groups by means of the library SmallGroups of GAP.

To improve the algorithm efficiency in order to find normal subgroups with only one non-central

G-class, the bound of Theorem 4.1 was improved and those normal subgroups that do not satisfy

the conditions of Theorem 3.3 were discarded.

Theorem 4.2. [7, Theorem 3.1] Let N be a normal subgroup of a group G with |G : N | = n. If N

has exactly one non-central G-conjugacy class, then |G| < n(n+ 1)2.

In Table 1, we indicate the index, the bound for |G| of Theorem 4.2 and the number of groups

with a normal subgroup containing a single non-central conjugacy class of G.

In Table 2, we show the complete classification for the indices that appear in Table 1. It is re-

markable that for index 5 there is no group satisfying the desired conditions.

In order to get normal subgroups with two non-central G-classes of coprime sizes the authors

used [9, Lemma 4.1.1], which asserts that in this clase Z(G) ∩ N = 1. Also, Theorem 3.4 is used

to improve the efficiency of the algorithm. Moreover, they gave the following improvement of the

bounds of Theorem 4.1.
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Table 1. Number of groups with normal subgroups having one non-central G-class.

|G : N | = n |G| ≤ n(n+ 1)2 Number of groups

2 18 3

3 48 2

4 100 21

5 180 0

6 294 16

7 448 1

Table 2. Groups having normal subgroups with one non-central G-class for certain indices.

|G : N | = n G

2 6#1 8#3 8#4

3 12#3 24#3

4 12#1 12#4 16#3 16#4 16#6 16#7

16#8 16#9 16#11 16#12 16#13 20#3

32#27 32#28 32#29 32#30 32#31 32#32

32#33 32#34 32#35

6 18#1 18#3 18#4 24#12 24#13 24#4

24#6 24#8 24#10 24#11 42#1 48#28

48#29 48#32 48#33 54#8

7 56#11

Theorem 4.3. [7, Theorem 3.2] Let N be a normal subgroup of a group G with |G : N | = n.

Suppose that G has exactly two non-central conjugacy classes xG1 and xG2 in N and these two classes

have coprime sizes. Let n1 = |CG(x1)| and n2 = |CG(x2)| such that n1 < n2. Then

(i) n+ 1 ≤ n1 ≤ 3n− 1.

(ii) E[ nn1
n1−n ] + 1 ≤ n2 ≤ E[ 2n1n

n1−n ], where E[x] denotes the integer part of x.

(iii) |G| ≤ n(n+ 1)(n2 + n+ 1).

In Table 3 we indicate the index, the improved bound for |G| appearing in Theorem 4.3, and the

number of groups with a normal subgroup containing two non-central classes of G of coprime sizes.

The complete classification can be found in [7].
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Table 3. Groups with normal subgroups having two non-central G-classes with co-

prime sizes.

|G : N | = n |G| ≤ n(n+ 1)(n2 + n+ 1) Number of groups

2 42 3

3 156 2

4 420 7

5 930 2

6 1806 8

7 3192 1

8 5256 22

9 8190 5

10 12210 7

11 17556 2

13 33306 2

17 93942 1

As we pointed out before, L. Héthelyi and B. Külshammer [24] proved an extension of Landau’s

theorem for prime-power order elements. They did not give, however, any numerical expression for

the upper bound of the group order. Here is their result.

Theorem 4.4. [24, Theorem 1.1] For any positive integer k, there are only finitely many finite

groups, up to isomorphism, with exactly k conjugacy classes of elements of prime power order.

In [7], we provide an explicit function of the bound for solvable groups. If G is a finite group and

N ⊴ G, then kpp(G) denotes the number of conjugacy classes of prime-power order elements of G

and kppG(N) the number of G-classes of prime-power order elements of N .

Theorem 4.5. [7, Theorem 4.7] If G is a finite solvable group such that kpp(G) = k, then |G| ⩽ γ(k)

where γ is defined as follows: γ(1) = 1 and γ(k) = kγ(k − 1)2 for every k ⩾ 2. Consequently

|G| ⩽
k−1∏
i=0

(k − i)2
i
.

An extenssion of Landau’s result for prime-power order elements lying in a normal subgroup was

also given in [7]. However, one cannot restrict to just non-central G-classes of prime-power order

elements contained in a normal subgroup N of G. This happens because one can easily see that |N |
and |G| cannot be bounded in terms of the number of such classes although the index |G : N | is fixed.
For instance, suppose that N ⊴ G with |G : N | = n and that N has just one non-central G-class

(necessarily of prime-power order elements). Then N is a p-group for some prime p and we can take

an arbitrary abelian finite p′-group H and construct N0 = N ×H and G0 = G×H. It follows that
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N0 ⊴ G0 has index n too, and N0 contains exactly one non-central G0-class of prime-power order

elements. Nevertheless, |N0| and |G0| need not be bounded. Therefore, all G-classes, central and

non-central, must be considered. The bounds for |G| and |N | in terms of kppG(N) are given in the

following.

Corollary 4.6. [7, Theorem B] Let G be a finite solvable group and let N ⊴ G such that |G : N | = n

and kppG(N) = k. Then |N | ⩽
∏nk−1

i=0 (nk − i)2
i
and |G| ⩽ n

∏nk−1
i=0 (nk − i)2

i
.

These bounds allow to obtain, with the help of GAP, a classification of all groups such that kpp(G)

is 2, 3, 4 or 5. They are listed in Table 4.

Table 4. Classification of solvable groups with small kpp(G).

kpp(G) G

2 2#1

3 3#1 6#1

4 4#1 4#2 6#2 10#1

12#3

5 5#1 8#3 8#4 12#1

12#4 14#1 20#3 21#1

24#3 24#12 30#3 42#1
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