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“There is also a mysterious yet real phenomenon that we can experience: a reality which is a
sign of another reality . . . as we reach the top of the ladder in our examination of something,
either analytical or sentimental, our human nature tells us there is something else beyond.
This step also defines the concept of ‘sign’. . . . It is the vanishing point which lies in every
human experience, i.e., a point that does not close, but leads further”

Luigi Giussani
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Abstract
The main topic of this thesis is updating preconditioners for solving large sparse
linear systems Ax = b by using Krylov iterative methods. Two interesting types of
problems are considered. In the first one is studied the iterative solution of non-
singular, non-symmetric linear systems where the coefficient matrix A has a skew-
symmetric part of low-rank or can be well approximated with a skew-symmetric
low-rank matrix. Systems like this arise from the discretization of PDEs with cer-
tain Neumann boundary conditions, the discretization of integral equations as well
as path following methods, for example, the Bratu problem and the Love’s integral
equation. The second type of linear systems considered are least squares (LS) prob-
lems that are solved by considering the solution of the equivalent normal equations
system. More precisely, we consider the solution of modified and rank deficient LS
problems. By modified LS problem, it is understood that the set of linear relations
is updated with some new information, a new variable is added or, contrarily, some
information or variable is removed from the set. Rank deficient LS problems are
characterized by a coefficient matrix that has not full rank, which makes difficult the
computation of an incomplete factorization of the normal equations. LS problems
arise in many large-scale applications of the science and engineering as for instance
neural networks, linear programming, exploration seismology or image processing.

Usually, incomplete LU or incomplete Cholesky factorization are used as precondi-
tioners for iterative methods. The main contribution of this thesis is the development
of a technique for updating preconditioners by bordering. It consists in the compu-
tation of an approximate decomposition for an equivalent augmented linear system,
that is used as preconditioner for the original problem.

The theoretical study and the results of the numerical experiments presented in this
thesis show the performance of the preconditioner technique proposed and its com-
petitiveness compared with other methods available in the literature for computing
preconditioners for the problems studied.
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Resumen
El tema principal de esta tesis es el desarrollo de técnicas de actualización de pre-
condicionadores para resolver sistemas lineales de gran tamaño y dispersos Ax = b

mediante el uso de métodos iterativos de Krylov. Se consideran dos tipos intere-
santes de problemas. En el primero se estudia la solución iterativa de sistemas li-
neales no singulares y antisimétricos, donde la matriz de coeficientes A tiene parte
antisimétrica de rango bajo o puede aproximarse bien con una matriz antisimétrica
de rango bajo. Sistemas como este surgen de la discretización de PDEs con ciertas
condiciones de frontera de Neumann, la discretización de ecuaciones integrales y
métodos de puntos interiores, por ejemplo, el problema de Bratu y la ecuación in-
tegral de Love. El segundo tipo de sistemas lineales considerados son problemas
de mínimos cuadrados (LS) que se resuelven considerando la solución del sistema
equivalente de ecuaciones normales. Concretamente, consideramos la solución de
problemas LS modificados y de rango incompleto. Por problema LS modificado se
entiende que el conjunto de ecuaciones lineales se actualiza con alguna información
nueva, se agrega una nueva variable o, por el contrario, se elimina alguna informa-
ción o variable del conjunto. En los problemas LS de rango deficiente, la matriz de
coeficientes no tiene rango completo, lo que dificulta el cálculo de una factorización
incompleta de las ecuaciones normales. Los problemas LS surgen en muchas aplica-
ciones a gran escala de la ciencia y la ingeniería como, por ejemplo, redes neuronales,
programación lineal, sismología de exploración o procesamiento de imágenes.

Los precondicionadores directos para métodos iterativos usados habitualmente son
las factorizaciones incompletas LU, o de Cholesky cuando la matriz es simétrica
definida positiva. La principal contribución de esta tesis es el desarrollo de técni-
cas de actualización de precondicionadores. Básicamente, el método consiste en el
cálculo de una descomposición incompleta para un sistema lineal aumentado equi-
valente, que se utiliza como precondicionador para el problema original.

El estudio teórico y los resultados numéricos presentados en esta tesis muestran el
rendimiento de la técnica de precondicionamiento propuesta y su competitividad en
comparación con otros métodos disponibles en la literatura para calcular precondi-
cionadores para los problemas estudiados.
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Resum
El tema principal d’esta tesi és actualitzar precondicionadors per a resoldre sistemes
lineals grans i buits Ax = b per mitjà de l’ús de mètodes iteratius de Krylov. Es
consideren dos tipus interessants de problemes. En el primer s’estudia la solució
iterativa de sistemes lineals no singulars i antisimètrics, on la matriu de coeficients
A té una part antisimètrica de baix rang, o bé pot aproximar-se amb una matriu an-
tisimètrica de baix rang. Sistemes com este sorgixen de la discretització de PDEs
amb certes condicions de frontera de Neumann, la discretització d’equacions inte-
grals i mètodes de punts interiors, per exemple, el problema de Bratu i l’equació
integral de Love. El segon tipus de sistemes lineals considerats, són problemes
de mínims quadrats (LS) que es resolen considerant la solució del sistema equiv-
alent d’equacions normals. Concretament, considerem la solució de problemes de
LS modificats i de rang incomplet. Per problema LS modificat, s’entén que el con-
junt d’equacions lineals s’actualitza amb alguna informació nova, s’agrega una nova
variable o, al contrari, s’elimina alguna informació o variable del conjunt. En els
problemes LS de rang deficient, la matriu de coeficients no té rang complet, la qual
cosa dificultata el calcul d’una factorització incompleta de les equacions normals. Els
problemes LS sorgixen en moltes aplicacions a gran escala de la ciència i l’enginyeria
com, per exemple, xarxes neuronals, programació lineal, sismologia d’exploració o
processament d’imatges.

Els precondicionadors directes per a mètodes iteratius utilitzats més a sovint són
les factoritzacions incompletes tipus ILU, o la factorització incompleta de Cholesky
quan la matriu és simètrica definida positiva. La principal contribució d’esta tesi és
el desenvolupament de tècniques d’actualització de precondicionadors. Bàsicament,
el mètode consistix en el càlcul d’una descomposició incompleta per a un sistema
lineal augmentat equivalent, que s’utilitza com a precondicionador pel problema
original.

L’estudi teòric i els resultats numèrics presentats en esta tesi mostren el rendiment
de la tècnica de precondicionament proposta i la seua competitivitat en comparació
amb altres mètodes disponibles en la literatura per a calcular precondicionadors per
als problemes considerats.
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Chapter 1

Introduction

The aim of this thesis is to study techniques for updating preconditioners for itera-
tive methods based on Krylov subspaces, to solve systems of linear equations arising
in many different areas of science and engineering. The problems of interest have
large coefficient matrices, generally sparse, ill-conditioned and even rank deficient,
that suppose a challenge and an opportunity for the study and proposal of new
techniques. The efficient solution of linear systems using iterative methods requires
the use of preconditioning techniques. The purpose of the preconditioning is to im-
prove the spectral properties of the system matrix so that the solution is obtained
with a lower computational cost. Preconditioners can be roughly classified into di-
rect preconditioners, that calculate an approximation of the coefficient matrix, and
approximate inverse preconditioners that explicitly compute an approximation of its
inverse. Among the first ones, are incomplete LU and Cholesky factorizations (ILU,
IC). In this line, we will introduce a technique for updating a previously computed
ILU-type preconditioner using a bordering method. Furthermore, we will show that
for the problems considered in this work our proposal is competitive compared with
other preconditioning methods that appear in the literature.

The contents of this thesis are structured as follows. In this chapter we present the
general and specific objectives of this work. Then, we review some basic concepts
and the notation used throughout the text. We also present a basic introduction
to the theory of Krylov subspace methods and preconditioning. We describe the
problems considered as well as an overview of existing techniques to solve them.
The main objectives of our work are also stated. In Chapter 2, the basic framework
for updating a preconditioner is described. The technique will be developed for each
problem in subsequent chapters. The main problems studied are:

1



Chapter 1. Introduction

• Almost symmetric problems: in Chapter 3 we study the iterative solution of
nonsingular, nonsymmetric linear systems where the coefficient matrix has
skew-symmetric part that is low-rank, or can be well approximated by a skew-
symmetric low-rank matrix. In general, any problem whose skew-symmetric
part has a small number of dominant singular values can be described in this
way.

• Least squares (LS) problems: the resolution of LS problems can be carried out
by preconditioned iterative methods applied to the normal equations. In Chap-
ter 4, we focus on least squares problems where the set of linear relations is up-
dated with some new information, a new variable is added or, contrarily, some
information or variable is removed from the original set. We call this kind of
problems modified LS problems. In Chapter 5, we study the resolution of least
squares problems when the coefficient matrix is rank deficient.

1.1 Objectives

This section includes descriptions of the general and specific objectives of this thesis.
There are four primary objectives of this study:

1. Develop preconditioners for iteratively solving linear systems.

2. Update a preconditioner previously computed in order to obtain a new pre-
conditioner to accelerate the convergence of a Krylov iterative method to solve
linear system, giving details of its computation and application.

3. Apply the update preconditioning technique for solving almost symmetric li-
near systems Ax = b, where the coefficient matrix A nonsymmetric and has
a skew-symmetric part that can be well approximated by a skew-symmetric
low-rank matrix and for solving LS problems.

4. Compare the performance of the preconditioner proposed with others already
available in the repositories, when solving almost symmetric linear systems
and LS problems.

To accomplished these main objectives some specific ones are considered:

1. Study the preconditioners already available for solving almost symmetric li-
near systems and LS problems.

2 Universitat Politècnica de València



1.1. Objectives

2. State and prove some results concerning to the approximation properties of
the preconditioner proposed and the spectral properties of the preconditioning
technique.

3. Verify the spectral properties of the proposed preconditioner by analysing ap-
plied problems.

4. Solve almost symmetric linear systems arising from the discretization of PDEs
with certain Neumann boundary conditions, the discretization of integral equa-
tions as well as path following methods, as for instance, the Bratu problem,
Love’s integral equations and problems from the University of Florida sparse
matrix collection [35].

5. Compare the performance of the preconditioner proposed when solving al-
most symmetric linear systems with another strategies that has been proposed
to solve this kind of problems, mainly with the Schur complement method
(SCM) developed in [37].

6. Solve LS problems when the set of linear relations is updated with some new
information, new variables are added or, contrarily, some information or va-
riables are removed from the set.

7. Study the numerical performance of the preconditioner proposed when sol-
ving modified LS problems arising in different areas of scientific computing.
The performance of the technique is compared with other preconditioning
strategies, as reusing a previously preconditioner computed for the normal
equations of the unmodified matrix, computing a new almost Cholesky pre-
conditioner for the modified matrix from scratch and without preconditioner.

8. Solve LS problems when the coefficient matrix is rank deficient arising in many
large-scale applications of the science and engineering.

9. Compare the preconditioning technique proposed with the non updated one,
by analysing the convergence criteria for the iterative method used, the choice
of a needed parameter of regularization and the performance of the precondi-
tioners, when solving rank deficient LS problems.

Summarizing, the main objective of this thesis is to develop a technique for updating
preconditioners for solving large-scale and sparse linear systems of the form Ax = b

by using iterative Krylov methods. Furthermore, we are interested in the numerical
results that demonstrate the performance of the proposed technique and its competi-
tiveness in comparison with other methods available in the literature, to solve a wide

Universitat Politècnica de València 3



Chapter 1. Introduction

collection of problems, which are frequently presented in different fields of science
and engineering.

1.2 Preliminaries and Basic Concepts

We are interested in solving linear systems

Ax = b (1.1)

where them×nmatrixA is large, sparse and real, and x, b arem-dimensional vectors.

Linear systems are among the most important and common problems encountered
in scientific computing and engineering. The structure and properties of the coeffi-
cient matrix determine the method of choice to solve the linear system. Considering
a square matrix A = (aij) we recall the following definitions:

• Symmetric matrix: AT = A, where the super index T represents the transpose.

• Skew-symmetric matrix: AT = −A.

• Normal matrix: ATA = AAT .

• Orthogonal matrix: ATA = I .

• Diagonal matrix: aij = 0 if i 6= j. We denote a diagonal matrix as A =

diag(a11, . . . , ann).

• Tridiagonal matrix: aij = 0 for any pair of i, j with |j − i| > 1. We denote it by
A = tridiag(ai,i−1, aii, ai,i+1).

• Upper/Lower triangular matrix: aij = 0 for i > j/aij = 0 for i < j.

• Permutation matrix: a square matrix obtained from the same size identity ma-
trix by a permutation of rows.

• Upper Hessenberg matrix: aij = 0 for i, j with i > j + 1. Lower Hessenberg
matrix can be defined similarly.

• Nonnegative matrix: aij ≥ 0, ∀i, j.

Some of these concepts can be extended to non-square matrices easily as is the case
of Hessenberg and nonnegative matrices.
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An inner product on a complex vector space X is an assignment that for any two
vectors x, y ∈ X there is a real number (x, y) satisfying the following properties:

1. (ax+ by, z) = a(x, z) + b(y, z), ∀x, y ∈ X and ∀a, b ∈ C.

2. (x, x) ≥ 0, ∀x ∈ X, and (x, x) = 0 if, and only if x = 0.

3. (x, y) = (y, x), ∀x, y ∈ X.

In the case of X = Cn it is defined the Euclidean inner product as

(x, y) =

n∑
i=1

xiȳi = yHx .

The concept of vector and matrix norms are a powerful tool in numerical analsysis.
A vector norm on a vector space X is a real-valued function || · || which satisfies the
following three conditions:

1. ||x|| ≥ 0, ∀x ∈ X, and ||x|| = 0 if and only if x = 0.

2. ||αx|| = |α|||x||, ∀x ∈ X, ∀α ∈ C.

3. ||x+ y|| ≤ ||x||+ ||y||, ∀x, y ∈ X.

When X = Cn the Euclidean norm of a vector is defined by

||x||2 = (x, x)1/2 =

(
n∑
i=1

|xi|2
)1/2

. (1.2)

As a consequence, an orthogonal matrix preserves the Euclidean norm metric, i.e.,
||Qx||2 = ||x||2,∀x. Other important vector norms are particular cases of the Holder
norms defined by

||x||p =

(
n∑
i=1

|xi|p
)1/p

.

In particular, the values p = 1, p = 2 and p = ∞ define three important norms in
numerical linear algebra. Note that by taking limits one has

||x||∞ = max
i=1,...,n

|xi|.

The concept of norm can be extended to matrices. Given a matrix A ∈ Rm×n, it is
defined the set of norms

||A||p,q = max
x∈Rn,x 6=0

||Ax||p
||x||q

(1.3)
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induced by the two vector norms || · ||p and || · ||q . Note that the || · ||p,q satisfies the
usual three properties of matrix norms:

1. ||A|| ≥ 0, ∀A ∈ Rm×n, and ||A|| = 0 if and only if A = O.

2. ||αA|| = |α|||A||, ∀A ∈ Rm×n, ∀α ∈ R.

3. ||A+B|| ≤ ||A||+ ||B||, ∀A,B ∈ Rm×n.

The case q = p is of particular interest and the associated norm is denoted by || · ||p
and called a p-norm. The most important cases correspond with p = 1, 2,∞. A very
important property of a p-norm is that

||AB||p ≤ ||A||p||B||p.

Another very common matrix norm used in the literature is the Frobenious norm,
which is not an induced norm. It is a generalization of the euclidean norm for matri-
ces, defined as

||A||F =

 n∑
j=1

m∑
i=1

|aij |2
1/2

. (1.4)

One can establisth the following relations between matrix norms that imply that all
the norms are equivalent,

||A||2 ≤||A||F ≤
√

min{m,n}||A||2
1√
n
||A||∞ ≤||A||2 ≤

√
m||A||∞

1√
m
||A||1 ≤||A||2 ≤

√
n||A||1.

(1.5)

There are also some interesting relations between the norms defined above and some
other concepts related to a matrix A, as for instance the eigenvalues, singular values
(square of the eigenvalues of ATA) and trace of the matrix ATA. Some of these are
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presented in Equation (1.6)

||A||1 = max
j=1,...,n

m∑
i=1

|aij |

||A||∞ = max
i=1,...,m

n∑
j=1

|aij |

||A||2 =
[
ρ(ATA)

]1/2
= σmax(A)

||A||F =
[
tr(ATA)

]1/2
,

(1.6)

where tr denotes the trace, ρ indicates the spectral radius, that is, the maximum of the
absolute eigenvalues, and σmax is the largest singular value of a matrix, respectively.

Finally, a matrix A is positive definite if (Ax, x) > 0, ∀x ∈ Rn and x 6= 0. In addition, if
A is symmetric, then it is said thatA is symmetric positive definite (SPD). The condition
number of a nonsingular matrix is defined as cond(A) = ||A−1||2 · ||A||2, or equiva-
lently, cond(A) = σmax(A)/σmin(A), where σmax(A) and σmin(A) are the maximum
and minimum singular values of A, respectively. For moderate values of the condi-
tion number a matrix is said to be well-conditioned. If the condition number is very
large, then the matrix is ill-conditioned. In practice, computations with such a ma-
trix, as the computation of its inverse or the solution of a linear system of equations,
are prone to large numerical errors.

1.3 Overview on Iterative Methods

In this section, we present a basic introduction into the theory of Krylov subspace
methods. It is common that problems arising from the discretization of partial dif-
ferential equations lead to large sparse systems of linear equations. For large-scale
problems obtaining a solution with direct methods may be difficult due to well
known reasons, as for instance, memory constraints. In theses cases an alternative
is the use of iterative methods, that generate a sequence of approximate solutions.
The main idea behind iterative methods for the solution of a linear system Ax = b is,
from a given vector xk, derive a better approximation xk+1 of the solution at a low
computational cost. In all this section, the main references considered are [10, 20, 43,
73]. Also [5, 8, 45, 74, 87, 92, 93].
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1.3.1 Basic Iterative Methods

Given a linear system Ax = b, where A is a nonsingular matrix, the expression A =

M − N with M invertible, defines an splitting of A. Therefore, the linear system is
equivalent to Mx = Nx+ b, i.e.,

x = M−1Nx+M−1b.

This equation allows for the definition of the fixed point iteration

xk+1 = M−1Nxk +M−1b, k ≥ 0, (1.7)

with x0 any arbitrary initial vector. The convergence of basic iterative methods has
been well studied by many authors. Basically, the convergence to the solution x∗ =

A−1b is guaranteed if the spectral radius of the iteration matrix is less than one, i.e.,
ρ(M−1N) < 1 [43, Th 10.1.1].

Different methods correspond to different choices of the splitting of the matrix A.
Writting the matrix as A = D−E − F , where D, −E and −F are the diagonal, strict
lower and upper parts of A, respectively, the more popular basic iterative methods
are defined as follows:

• Jacobi’s method: M = D andN = E+F . HereM−1N = D−1(E+F ) is known
as Jacobi’s matrix.

• Gauss-Seidel’s method: M = D − E and N = F (backward Gauss-Seidel’s
with M = D − F and N = E).

• The relaxation method:

M =
D

ω
− E, N =

1− ω
ω

D + F,

where ω 6= 0 is known as the relaxation parameter.

The use of these methods have been superseded by Krylov iterative methods.
In any case, they still have a rol in many scientific computing areas as precon-
ditioners, mainly due to its simplicity.
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1.3.2 Krylov Subspace Methods

A Krylov method is an special case of projection methods. The main goal of projec-
tion methods is to extract an approximate solution of Ax = b from a m-dimensional
subspace Km of Rn, by imposing m constraints. Specifically, the residual vector
b − Ax is constrained to be orthogonal to m linearly independent vectors. This de-
fines another m-dimensional subspace Lm called the subspace of constraints. This
scheme is common to many different mathematical methods and it is known as the
Petrov-Galerkin conditions.

There are two classes of projection techniques:

• Orthogonal: Lm = Km. In this case the Petrov-Galerkin conditions are often
called the Galerkin conditions.

• Oblique: Lm 6= Km. A typical choice is Lm = AKm.

In general, a projection method onto the subspace Km and orthogonal to Lm is a
process summarized as follows:

Find x̃ ∈ Km, such that b−Ax̃ ⊥ Lm. (1.8)

If an initial guess x0 is known, then the approximate problem should be redefined as

Find x̃ ∈ x0 +Km, such that b−Ax̃ ⊥ Lm. (1.9)

Note that if x̃ is written in the form x̃ = x0 + δ, with δ ∈ Km, then the condition
in Equation (1.9) is equivalent to r0 − Aδ ⊥ Lm, where r0 = b − Ax0 is the initial
residual. Therefore, the projection method is defined as

Find x̃ = x0 + δ, δ ∈ Km, such that (r0 −Aδ,w) = 0, ∀w ∈ Lm. (1.10)

The orthogonal condition is graphically presented in Figure 1.1. This is a basic pro-
jection step. Most standard techniques use a succession of such projections.

A Krylov subspace method is a projection method for which the subspace Km is the
Krylov subspace

Km(A, r0) = Span{r0, Ar0, A2r0, . . . , A
m−1r0}, (1.11)
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FIGURE 1.1: Representation of the orthogonal condition.

where r0 is the initial residual and m is the dimension. For an initial solution x0,
approximations to the solution x are computed in every step by iterates xm of the
form:

xm ∈ x0 +Km(A, r0) , with m > 1.

Let the vectors v1, v2, . . . , vm be a basis of Km, and Vm = [v1, v2, . . . , vm]. Then, an
expression for the m-iterate is given by

rm = r0 −AVmym, with ym ∈ Rm and xm = x0 + Vmym. (1.12)

To construct the matrix Vm two methods are proposed in the literature: Arnoldi’s
method and Lanczos’s method.

Arnoldi’s method [3] is an orthogonal projection method for general non-symmetric
matrices. The method computes an orthogonal basis of the Krylov subspace Km.
Assuming that v1 = r0/β with β = ||r0||2, then one has that V TmAVm = Hm where
Hm is an upper Hessenberg matrix, and V Tm r0 = βe1. Therefore, the approximate
solution is given by

xm = x0 + VmH
−1
m (βe1).

A variation of this approach, that uses the modified Gram-Schmidt method in the
Arnoldi procedure, is the Full Orthogonalization Method (FOM). Moreover, for large
problems there exists restarted and truncated variants of the FOM method.

The second method to find the basis of the Krylov subspace is the Lanczos’s method
[53]. It is an special case of Arnoldi’s method for symmetric matrices in which the
Hessenberg matrix Hm becomes symmetric and tridiagonal. Thus, the computation
of the Arnoldi vectors can be done with a three-term recurrence formula.
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Another class of Krylov subspace methods are based on a bi-orthogonalization al-
gorithm [54, 75]. The Lanczos biorthogonalization algorithm is an extension to non-
symmetric matrices of the symmetric Lanczos algorithm. The algorithm builds a
pair of biorthogonal bases.

In the rest of this subsection we present the most important Krylov subspace algo-
rithms, some of them used in this thesis.

1.3.3 Iterative Methods for General Matrices

Conjugate Gradient

The Conjugate Gradient method (CG) was originally proposed by Hestenes and
Stiefel in [50]. It is one of the most important iterative techniques for solving sparse
linear systems when the matrix A is SPD. It is the result of an orthogonal projection
technique onto the Krylov subspace Km(r0, A). Algorithm 1 shows the method.

Algorithm 1 Conjugate Gradient
1. Compute r0 = b−Ax0, p0 := r0.
2. For j = 0, 1, 2, . . . , until convergence Do:
3. αj := (rj , rj)/(Apj , pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. βj := (rj+1, rj+1)/(rj , rj)
7. pj+1 := rj+1 + βjpj
8. EndDo

The CG method minimizes ||x − xk||A, where ||x||A = (Ax, x)1/2, over Km(A, r0).
It requires only short-term recurrences, one matrix-vector product and a few vector
updates. Anyway, for general matrices, as for instance, rectangular, nonsymmetric
or indefinite matrices, the algorithm may not converge because the orthogonality
condition can not be accomplished. A simple solution is to apply the CG algorithm
to the normal equations ATA. In this case, to solve the system Ax = b, one considers
the equivalent system:

ATAx = AT b. (1.13)

This procedure is called Conjugate Gradient Normal Residual (CGNR) [20, 41]. In
the context of LS problems it is also known as Conjugate Gradient for Least Squares
(CGLS). It applies the CG to the normal equations without explicitly forming them.
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Another alternative to overcome the indefiniteness is to set x = ATu and solve the
equation for u, AATu = b, by applying the CG. This technique yields to the Conju-
gate Gradient Normal Equation method (CGNE) or CRAIG’s method [20]. Once the
solution u is computed, x could be obtained by multiplying u by AT .

When the matrix is symmetric but indefinite, an option to the CG method is the Min-
imal Residual method (MINRES) [29, 66, 92].

Biconjugate Gradient Methods

These methods are based on Lanczos biorthogonalization and are good options when
solving nonsymmetric linear systems. The Biconjugate Gradient method (BCG) [39]
computes two mutually orthogonal sequences at the price of no longer satisfying an
optimality condition. Unlike the CG method applied to the normal equations, BCG
does not require the explicit computation of the matrix ATA, but only matrix-vector
multiplications with AT . Its main drawback is that the convergence behaviour may
be quite irregular in practice, and may even breakdown. The Conjugate Gradient
Squared (CGS) [81] algorithm avoids using the transpose of A in the BCG, so there
are not matrix-vector products with the transpose of A. Both methods tipically show
very large variations of the residual vectors and, as result, the residual norms com-
puted are inaccurate. The BICGSTAB method [91] was developed to remedy these
troubles. In practice shows a more regular convergence pattern than the CGS method
with lower overall computational cost.

Generalized Minimum Residual Method

One of the most popular methods for nonsymmetric linear systems is the General-
ized Minimum Residual method (GMRES) [76], wich is an extension of the MINRES.
It is an oblique projection method with L = AKm, where Km is the m-th Krylov sub-
space with v1 = r0/||r0||2. It minimizes the residual norm ||b−Axk||2 over all vectors
in x0 +Km. The basic GMRES is presented in Algorithm 2.

The full GMRES algorithm is guaranteed to converge in at most n steps, but in prac-
tice this could lead to high computational and memory costs to build the Krylov
subspace basis vectors. To rectify this inconvenience, there exist restarted and trun-
cated variants of GMRES. The restarted GMRES, GMRES(r), restarts the algorithm
after r steps. A disadvantage of GMRES(r) is that it can stagnate when the matrix is
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Algorithm 2 Generalized Minimum Residual, GMRES
1. Compute r0 = b−Ax0, β := ||r0||2, v1 := r0/β.
2. For j = 0, 1, 2, . . . ,m Do:
3. Compute wj = Avj
4. For i = 0, 1, 2, . . . , j Do:
5. hij := (wj , vi)
6. wj := wj − hijvi
7. EndDo
8. hj+1,j = ||wj ||. If hj+1,j = 0 set m := j and go to 11
9. vj+1 = wj/hj+1,j

10. EndDo
11. Define the (m+ 1)×m Hessemberg matrix H̃m = {hij}1≤i≤m+1,1≤j≤m.
12. Compute ym the minimizer of ||βe1 − H̃my||2 and xm = x0 + Vmym.

not positive definite. The use of preconditioners can be useful to increase the con-
vergence rate and avoid the stagnation.

The literature is rich and there are many other variants of the methods described
above. Which method to use for a particular problem will depend on the properties
and structure of the coefficient matrix [10].

1.3.4 Iterative Methods for Least Squares Problems

The Least Squares (LS) problem is formulated as

min
x
‖b−Ax‖2, (1.14)

where A ∈ Rm×n (m ≥ n) and b ∈ Rm. When the matrix A is large and sparse
iterative methods may be an interesting alternative to direct methods. The iterative
solution of LS problems can be done with the CGLS method presented above. Al-
ternatively, one can use the Least Squares QR method (LSQR) presented in [67, 68],
wich is based on the Golub–Kahan bidiagonalization [42]. LSQR has the property of
reducing the norm of the residual ||rk||2 monotonically. Mathematically, the CGLS
and LSQR methods generate the same sequence of approximations since they apply
implicitly the CG to the normal equations (1.15).

ATAx = AT b. (1.15)

Universitat Politècnica de València 13



Chapter 1. Introduction

Algorithm 3 Least Square Minimal Residual algorithm, LSMR
1. Initialize

β1u1 = b α1v1 = ATu1 ᾱ1 = α1 ζ̄1 = α1β1

ρ0 = ρ̄0 = c̄0 = 1 s̄0 = 0 h1 = v1 h̄0 = x0 =
−→
0

2. For k = 1, 2, 3, . . . , until convergence repeat steps 3-6:
3. Continue the bidiagonalization

βk+1uk+1 = Avk − αkuk
αk+1vk+1 = ATuk+1 − βk+1vk

4. Construct and apply rotation Qk,k+1

ρk = (ᾱ2
k + β2

k+1)1/2

ck = ᾱk/ρk sk = βk+1/ρk

θk+1 = skαk+1 ᾱk+1 = ckαk+1

5. Construct and apply rotation Q̄k,k+1

θ̄k = s̄k−1ρk ρ̄k = ((c̄k−1ρk)2 + θ2k+1)1/2

c̄k = c̄k−1ρk/ρ̄k s̄k = θk+1/ρ̄k

ζk = c̄k ζ̄k ζ̄k+1 = −s̄k ζ̄k

6. Update h, h̄ and x
h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

xk = xk−1 + (ζ/(ρkρ̄k))h̄k

hk+1 = vk+1 − (θk+1/ρk)hk

Another method is the Least Squares Minimal Residual (LSMR) presented in [38].
LSMR is also based on the Golub-Kahan bidiagonalization of A. But in contrast to
the LSQR, LSMR is equivalent to MINRES applied to the normal equations and,
in this case, the quantities ||AT rk||2 are monotonically decreasing. In practice, the
norm of the residual also decreases monotonically, and it is never very far behind
the corresponding value for LSQR. Hence, it is safer to use LSMR in situations where
the solver must be terminated early. The Algorithm 3 summarizes the main steps of
the LSMR method. For more details of the method see [38].

In this thesis, the methods GMRES, BICGSTAB, CG, CGNR and LSMR are mainly
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used. To better understand some modifications introduced later on regarding the
application of the preconditioner for the LSMR method, the pseudo-codes of the
CG, GMRES and LSMR methods are provided.

1.4 Preconditioning

In this subsection we describe the most important general purpose preconditioners,
particularly those based on incomplete LU (ILU) and incomplete Cholesky (IC) type
factorizations. See [8, 13, 20, 73, 77, 92] for more details.

1.4.1 Generalities

It is well known that for most problems the convergence of an iterative method can
be slow, or even can fail to converge. In this situation, the application of a precon-
ditioner is mandatory. Preconditioning is any technique that modifies the original
linear system Ax = b in such a way that an approximate solution can be obtained at
a lower computational cost. Commonly, the preconditioned linear system is written
as

M−1Ax = M−1b,

where M is called the preconditioner matrix. Normally, the matrix M or its inverse
is stored explicitly, but there are also matrix-free methods. In the context of Krylov
subspace methods, the goal of precondiditioning is to find a matrix M such that
M−1A has better spectral properties than A, i.e., an smaller condition number and
with eigenvalues clustered away from zero. Note that M = A would be the ideal
choice but it is not practical for the obvious reasons. But the idea behind is that we
should try to stay as close to A as possible. Other two important requirements for
a preconditioner are that it should be cheap to compute and have limited memory
requirements.

The preconditioner can be applied in three different ways:

• Left preconditioning. The iterative method is applied to M−1Ax = M−1b.

• Right preconditioning. It applies the iterative method to AM−1y = b, with
x = M−1y. An advantage for the right preconditioning approach is that in
exact arithmetic, the residuals for right preconditioned system are identical to
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the true residuals (the right-hand side is not affect), and thus, the convergence
behaviour can be monitored accurately.

• Two-side preconditioning. For a preconditioner M with M = M1M2, the
iterative method is applied to M−11 AM−12 z = M−11 b, with x = M−12 z. This
form of preconditioning is intended for factorized preconditioners.

Algorithms 4 to 7 show the preconditioned versions of the Krylov subspace methods
that will be used later.

Right preconditioned GMRES. See Algorithm 4, essentially only the steps 3 and 12
change with respect to the non-preconditioned GMRES Algorithm 2.

Algorithm 4 Right preconditioned GMRES
1. Compute r0 = b−Ax0, β := ||r0||2, v1 := r0/β.
2. For j = 0, 1, 2, . . . ,m Do:
3. Compute wj = AM−1vj
4. For i = 0, 1, 2, . . . , j Do:
5. hij := (wj , vi)
6. wj := wj − hijvi
7. EndDo
8. hj+1,j = ||wj ||. If hj+1,j = 0 set m := j and go to 11
9. vj+1 = wj/hj+1,j

10. EndDo
11. Define the (m+ 1)×m Hessemberg matrix H̃m = {hij}1≤i≤m+1,1≤j≤m.
12. Compute ym the minimizer of ||βe1 − H̃my||2 and xm = x0 +M−1Vmym.

Left and two-side preconditioned CG. Algorithms 5 and 6 show the left and two-side
preconditioned conjugate gradient, respectively. It is assumed that M is SPD.

Algorithm 5 Left preconditioned CG

1. Compute r0 = b−Ax0, z0 = M−1r0, p0 := z0.
2. For j = 0, 1, 2, . . . , until convergence Do:
3. αj := (rj , zj)/(Apj , pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj , zj)
8. pj+1 := zj+1 + βjpj
9. EndDo

16 Universitat Politècnica de València



1.4. Preconditioning

Algorithm 6 Two-side preconditioned CG

1. Compute r0 = b−Ax0, r̂0 = M−11 r0, p0 := M−12 r̂0.
2. For j = 0, 1, 2, . . . , until convergence Do:
3. αj := (r̂j , r̂j)/(Apj , pj)
4. xj+1 := xj + αjpj
5. r̂j+1 := r̂j − αjM−11 Apj
6. βj := (r̂j+1, r̂j+1)/(r̂j , r̂j)
7. pj+1 := M−12 r̂j+1 + βjpj
8. EndDo

The sequence of approximate solutions obtained by the preconditioned CG algo-
rithm are identical in both cases, so the choice of the preconditioning technique de-
pends on the form of the preconditioner available. Right preconditioning can also
be used. Note that the system solved with left preconditioning is no longer sym-
metric in general. Thus, to preserve symmetry the usual Euclidean inner product
is replaced by the M -inner product, (x, y)M ≡ (Mx, y) = (x,My). This is mathe-
matically equivalent to the right preconditioned CG algorithm with the M−1-inner
product.

Left preconditioned LSMR. The two-side preconditioned LSMR version is obtained
from Algorithm 3 changing the matrix-vector products with A and AT by AM−11 v

and M−T2 ATu, respectively. But, we are specially interested on the left precondi-
tioned version since, as we will show later, the kind of preconditioner updates de-
veloped can not be applied in factorized form. Following the idea in [4] where the
authors derived a left preconditioned LSQR algorithm, we implemented the left pre-
conditioned version of the LSMR presented in Algorithm 7. The changes introduced
correspond to the initialization steps and the bidiagonalization stage.
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Algorithm 7 Left preconditioned LSMR
1. Initialize

β1u1 = b p̃ = ATu1 v1 = M−1p̃ α1 = (v1, p̃)
1/2

v1 = v1/α1 ᾱ1 = α1 ζ̄1 = α1β1 ρ0 = ρ̄0 = c̄0 = 1

s̄0 = 0 h1 = v1 h̄0 = x0 =
−→
0

2. For k = 1, 2, 3, . . . , until convergence repeat steps 3-6:
3. Continue the bidiagonalization

βk+1uk+1 = Avk − αkuk
p̃ = ATuk+1 − βk+1p̃, vi+1 = M−1p̃, αi+1 = (vi+1, p̃)

1/2, p̃ = p̃/αi+1,

vi+1 = vi+1/αi+1

4. Construct and apply rotation Qk,k+1 (as Algorithm 3).
5. Construct and apply rotation Q̄k,k+1 (as Algorithm 3).
6. Update h, h̄ and x (as Algorithm 3).

1.4.2 Jacobi, GS and SOR preconditioners

In section (1.7) the basic iterative methods where reviewed. As mentioned, nowa-
days these methods are mainly used as preconditioners for multigrid and Krylov
subspace iterative methods. Considering the splitting of A, A = D−E − F , the pre-
conditioner matrix M for the Jacobi, Gauss-Seidel and SOR methods, respectively, is
given by

MJA = D, MGS = D − E, MSOR =
D

ω
− E.

1.4.3 Incomplete LU and Cholesky preconditioners

Incomplete triangular factorizations are widely used as preconditioners. They can
be obtained by approximately decomposing A into LU factors [43, 59, 73], where
L and U are lower and upper triangular matrices, respectively. They are referred
to as ILU-type preconditioners. In the case of symmetric positive definite systems,
an incomplete Cholesky factorization LLT (IC) is computed. There are many pow-
erful variants available of the ILU factorization, such as ILUT [11, 72], ILUS [31],
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MILU[73] and Balanced Incomplete Factorization (BIF) [21, 22] among others. For
SPD linear systems, there are efficient implementations as, for instance, the ICCG
method proposed in [62, 63].

Zero fill-in implementations, as ILU(0) and IC(0), are of low computational cost and
simple to implement. These algorithms take the nonzero pattern to be exactly the
same as the one of the original matrix. Therefore, the preconditioner at worst, needs
as much storage as the original matrix.

It is important to note that incomplete factorization methods may fail in attempting
to solve strongly nonsymmetric or indefinite linear systems. Failure may occur due
to the appearance of small or negative pivots. Besides breakdowns, small pivots may
cause the triangular solves to be unstable, see [16, 30].

1.4.4 Convergence Criteria

Iterative methods must be stopped when certain convergence criteria is fullfilled.
The choice of an adequate criteria depends of the method applied and the type of
problem to be solved. As a standar, with initial guess set to zero, the iterative method
is stopped whenever one or both of these conditions are met:

• A maximum number of iterations maxit have been performed.

• The relative residual is less than a given threshold, i.e., ||rk||2||r0||2 = ||b−Axk||2
||b||2 ≤ tol.

Generally, in this thesis the values maxit = 2000 and tol = 10−8 are considered for
all the iterative methods tested.

1.5 Background and objectives of the thesis

In this subsection we present a description of the problems studied, almost symmet-
ric linear systems and least squares problems, emphasizing their importance. State-
of-the-art techniques used to solve them that can be found in the literature are also
reported. In addition, the main objectives of this thesis are outlined.
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1.5.1 Almost Symmetric Problems

The first kind of problems considered is the iterative solution of nonsingular, non-
symmetric linear systems where the coefficient matrix A ∈ Rn×n is large, sparse and
has a skew-symmetric part of low-rank or can be well approximated with a skew-
symmetric low-rank matrix. Consider A = H +K, where:

• H is the symmetric part of A, i.e., H = (A+AT )/2 and

• K is the skew-symmetric part of A, i.e., K = (A−AT )/2.

We say that a matrix is almost symmetric when its skew-symmetric part can be writ-
ten as K = FCFT + E, where F ∈ Rn×s is a full-rank rectangular matrix, C ∈ Rs×s

is a nonsingular skew-symmetric matrix with s even, s � n and E ∈ Rn×n with
‖ E ‖� 1.

Systems like this arise from the discretization of PDEs with certain Neumann bound-
ary conditions, the discretization of integral equations [37] as well as path following
methods [12]. In general, any problem whose skew-symmetric part K has a small
number of dominant singular values can be described in this way.

This kind of linear systems arise in many real applications as, for example, path
following problems and the solution of integral equations.
Problem 1.1. The Bratu problem. It consists of finding the solution u(x, y) of the nonlin-
ear boundary problem

−∆u− λ exp(u) = 0 in Ω, with u = 0 on ∂Ω (1.16)

as a function of the parameter λ, where ∆ denotes the Laplacian, Ω the unit square and ∂Ω its
boundary. By discretizing in a t×t grid and choosing the same finite difference discretization
and parameters as in [12], it is obtained a matrix of order n = t2 that is symmetric plus a
rank-2 skew-symmetric modification, i.e., the skew-symmetric part K of the matrix obtained
exactly has rank s = 2.
Problem 1.2. Love’s integral equation. It arises in electrostatics, see [6, 57], and it is
given by

f(y) +
1

π

1∫
−1

c

(x− y)2 + c2
f(x)dx = g(y), |y| ≤ 1 0 ≤ c ∈ R. (1.17)
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Love’s equation is a particular case of Fredholm integral equations of the second kind [9, 70]

f(y) + λ

1∫
−1

k(x− y)f(x)dx = g(y), |y| ≤ 1, (1.18)

where λ ∈ R, g and k are smooth functions, and f is the unknown. The kernels k depend on
the difference x − y. To solve this particular type of integral equations different techniques
are used. For example, direct methods for solving Toeplitz linear systems of equations [49,
p. 60], or by applying the GMRES iterative method [88, p. 266].

Back to Love’s integral equation, with g(y) =
√

1 + y and c = 0.1, the discretization by a
Nyström method based on the composite trapezoidal rule with equidistant nodes xk = yk =

(k− 1)/(n− 1), 1 ≤ k ≤ n gives rise to a n×n linear system of equations whose coefficient
matrixA has an skew-symmetric part with rank s = 4 exactly. A challenge that presents this
problem is that A is completely dense, thus, excessively large values of n should be avoided.

Different strategies have been proposed to solve (1.1) when the skew-symmetric part
K has exactly rank s� n, i.e., E = 0, as for example the problems described above.
In [12] the authors present a progressive GMRES (PGMRES) method which shows
that an orthogonal Krylov subspace basis can be generated with a short recurrence
formula. This proposal incorporates two advantages over full GMRES: first, it only
demands storage of three Arnoldi vectors, rather than the whole set; second, we can
orthogonalize the new Arnoldi vector against the previous Krylov subspace. Unfor-
tunately, as pointed out in [37], although the method is mathematically equivalent
to full GMRES, in practice it may suffer from instabilities due to the loss of orthog-
onality of the generated Krylov subspace basis and the residual could stagnate long
before convergence. In the same last paper, the authors propose a Schur complement
method (SCM), that also permits the application of short-term recurrences formulas.
The method obtains an approximate solution by applying the MINRES method s+ 1

times. The authors also suggest that it can be applied as a preconditioner for GM-
RES for the more general case when E 6= 0, problem that is considered in our work.
Another method recently proposed is the Induced Dimension Reduction method,
IDR(s), [80, 82]. The IDR(s) method is a new family of short-recurrence methods
for large nonsymmetric systems of linear equations. In [82] the authors show that
IDR(s) is competitive compared to most BICG based methods, and even outperforms
BiCGSTAB when s > 1.

In this context, one of the objetives of the thesis is to develope an efficient precondi-
tioning technique for preconditioning almost symmetric linear systems. The general
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framework of the technique is discused in Chapter 2. It is based on the work pre-
sented in [24]. Basically, it is a low-rank update of an incomplete LU factorization of
the symmetric part of the system matrix H by a bordering method.

Finally, it is worth to note that to obtain low-rank approximations of the skew-
symmetric part of a matrix, the Sparse Column Row approximation (SCR) algorithm
will be used [19]. The SCR algorithm will be described and analyzed in Chapter 3.
In the same chapter, the approximation and spectral properties of the preconditioner
are studied. Moreover, the results of the numerical experiments for the problems
described above will be presented.

1.5.2 Modified and Rank Deficient Least Squares Problems

As described in subsection 1.3.4, the LS problem is formulated as

min
x
‖b−Ax‖2,

where A ∈ Rm×n (m ≥ n) is large and sparse and b ∈ Rm. Currently, the most used
iterative method are the CGLS, LSQR and LSRM methods. As it is well known, to im-
prove the convergence of any iterative method a preconditioner is normally needed.
There are different preconditioners that can be used, like Incomplete QR [56]. But in
this thesis we focus on Incomplete Cholesky (IC) preconditioners. These precondi-
tioners have been successfully employed in different applications and allow for the
computation of robust preconditioners for full-rank overdetermined least squares
problems [17, 23].

Alternatively, the solution of the LS problem can be obtained from the equivalent
(m+ n)× (m+ n) augmented linear system(

Im A

AT 0

)(
r

x

)
=

(
b

0

)
. (1.19)

Note that since r + Ax = b and AT r = 0, one has ATAx = ATx, see [20, 40, 44, 55,
92].

In this thesis, we concentrate on two particular types of LS problems, modified LS and
rank deficient LS.
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Modified Least Squares Problems

We consider the iterative solution of LS problems when the set of linear relations is
updated with some new information, new variables are added or, contrarily, some
information or variables are removed from the set.

For example, let us denote a set of k new relations as

Bx = c.

Then, the new m+ k system of linear equations is[
A

B

]
x =

[
b

c

]
,

whose normal equations are

(ATA+BTB)x = AT b+BT c.

We propose a preconditioning method for the updated normal equations which com-
putes a low-rank update of a previously computed preconditioner. As mentioned,
the general framework of the method will be presented in the Chapter 2. Moreover,
in Chapter 4, the method is analyzed in detail and numerical results for a wide vari-
ety of problems are presented.

The problem of updating a preconditioner arises in some applications from statistics
and optimization, where it is necessary to solve a sequence of modified least squares
problems. An example can be found in [27], where an efficient and stable method for
adding and deleting equations to a regression model is required. In signal process-
ing applications near real-time solutions are required. Thus, methods that allow to
modify LS problems with few operations and little storage requirements are needed,
see [1]. The same problem is present if some information is added to or deleted from
the data set. On some occasions it may be convenient to add or to remove some
variables. Such situations are usually referred to as updating or downdating least
squares problems. This is an interested problem and there are many researchers that
have discussed it, see [48, 65, 69]. Chapter 3 of the reference text [20] is devoted
to analyzing how to deal with these modifications when the least squares problem
is solved by a direct method, including full and rank revealing QR decomposition,
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Cholesky factorization and singular value decomposition. More recently other algo-
rithms to update Cholesky factorizations have been proposed, see [32, 33, 34]. More
efforts seem to be addressed to updating the QR factorization, see [2, 46, 64].

Recently in [44], the authors review the performance of a broad range of precondi-
tioners, as for example, Jacobi preconditioning, IC factorizations and stationary inner
iterations used with Krylov subspace methods. The iterative methods used are the
LSQR and LSMR methods. In addition, iterative methods are compared with direct
solvers applied to both, the normal equations and the augmented system (1.19).

Rank Deficient Least Squares Problems

Rank deficient least squares (RDLS) arise in many large-scale applications of the sci-
ence and engineering as neural networks, linear programming, exploration seismol-
ogy or image processing, to name a few.

If the matrix A is rank deficient then, the matrix C is a semidefinite positive matrix
and the Cholesky factorization suffers breakdown because negative or zero pivots
are encountered. Thus, rank deficient LS problems are in general much more harder
to solve.

Basically, there are two types of approaches for solving this case. The first one con-
sists of computing an incomplete factorization of a regularized matrix which can be
used as a preconditioner for the original LS problem. The second type is solving a
mathematically equivalent augmented linear system of order m+ n, see [20, 44, 78],
which is essentially a regularized version of Equation (1.19). The technique that we
propose belongs to the first type. The details of the our proposal and the results are
presented in Chapter 5.

The main idea is applying the general framework described in Chapter 2 to update
an incomplete factorization computed for the regularized problem[

A

α1/2I

]
.

The regularized normal equations are given by

Cα = ATA+ αI,
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whereα is known as Tikhonov regularization parameter. Ifα is choosen large enough
the computation of an IC for the matrix Cα can be done easily. On the other hand,
since the final purpose is to use this incomplete factorization as a preconditioner
for the original (unregularized) linear system, the parameter α should be chosen as
small as possible. Both requirements make difficult the choice of the appropriate α.
In practice, the factorization is restarted more than once, increasing α on each restart
until breakdown is avoided.

An extended review of a variety of preconditioners can be found in [78], for instance,
diagonal preconditioning, limited memory incomplete Cholesky factorization devel-
oped for the HSL mathemathical software library [52], the Multilevel Incomplete QR
(MIQR) factorization [56], the Robust Incomplete Factorization [17], the BA-GMRES
for solving least squares problems [76] and incomplete Cholesky based on BIF pre-
conditioner [23].

Some recent contributions to solve rank deficient least squares problems are pre-
sented in [78]. The authors used sparse direct solvers to compute the factors for the
regularized normal equations and augmented linear system (1.19). The packages
HSL_MA87 and HSL_MA97 from the HSL Mathematical Software Library [52] are
used. Alternatively, incomplete factorizations are computed using the HSL_MI35

orHSL_MI28 packages. Both, direct solvers and incomplete factorizations are used
as preconditioners for the LSMR method. The main conclusions of the paper are
that direct solvers are more efficient as preconditioners for moderate size problems.
But for large-scale problems, it may be impossible to compute and store in mem-
ory the factors. In this case, incomplete IC factorizations must be used since they
provide robust and sparse preconditioners. Moreover, fine tuning of the Tikhonov
regularization parameter is a paramount to obtain good preconditioners. One of the
objectives of the method proposed in this thesis is to simplify the choice of this pa-
rameter by updating the incomplete factorization computed for the regularized LS
problem.
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Chapter 2

General Updated Preconditioner
Method

In this chapter the general framework developed for updating preconditioners is
presented. The kind of linear systems considered are those that can be written in the
general form

(A11 −A12A
−1
22 A21)x = b, (2.1)

where A11 is a n × n nonsingular matrix, and the order k of the matrix A22 is con-
siderably smaller than n, i.e., k � n. The matrices A12 and A21 are the comple-
mentary rectangular matrices. The strategy is based on the computation of an ap-
proximate decomposition of the coefficient matrix of an equivalent augmented linear
system. Some important results regarding the inverses of matrices, such as the Sher-
man–Morrison formula, and the concept of Schur complement are also reviewed.

2.1 Sherman-Morrison and Woodbury formulas

The Sherman-Morrison formula gives an expression for the inverse of a rank-1 mo-
dification of a nonsingular matrix.
Proposition 2.1. Let A be a nonsingular n× n matrix, u and v be n-column vectors, then
A+ uvT is nonsingular if and only if 1 + vTA−1u 6= 0. In that case, its inverse is given by

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, (2.2)

where uvT is the outer product of u and v.
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A proof of the previous statement can be found, for instance, in [79]. The Sherman-
Morrison-Woodbury formula, or matrix inversion formula, is a generalization of the
previous one to a rank-k update of the original matrix.
Proposition 2.2. Let A be a nonsingular n× n matrix, U and V be n× k matrices, and C
be a k × k nonsingular matrix. Then,

(
A+ UCV T

)−1
= A−1 −A−1U

(
C−1 + V TA−1U

)−1
V TA−1, (2.3)

provided that the matrix C−1 + V TA−1U is nonsingular.

Proposition 2.3 can be proved using block matrix inversion as it is shown in Subsec-
tion 2.2. We will see that this formula is very useful in certain numerical computa-
tions, specially when an approximation of the inverse of the matrix A + UCV T is
desired, provided that an incomplete factorization of A is available. The inverse of
such a matrix is closely related to the Schur complement of a 2 × 2 block matrix, as
it is shown in the next section. Using this relation, it is proposed a preconditioning
method for the linear system (2.1).

2.2 Schur Complement

The Schur complement is a rich instrument in numerous fields of numerical analysis,
statistics and matrix analysis, see [47, 95]. Let us consider a square matrix A of order
(n+ k) partitioned in 2× 2 block as

A =

[
A11 A12

A21 A22

]
, (2.4)

where A11 and A22 are square matrices of dimensions n× n and k × k, respectively.
A12 and A21 are rectangular matrices of the corresponding complementary dimen-
sions.
Definition 2.1. If A11 is nonsingular, the Schur complement of A with respect to A11 (or
Schur complement of A11 in A) is defined as

A/A11 := A22 −A21A
−1
11 A12. (2.5)

Similarly, if A22 is nonsingular, the Schur complement of A with respect to A22 is defined as

A/A22 := A11 −A12A
−1
22 A21. (2.6)
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The Schur complement arises naturally in solving a system of linear equations such
as

A11x+A12y = a

A21x+A22y = b,
(2.7)

where x, y, a and b are vectors of the corresponding dimensions. Assuming that A11

is nonsingular, multiplying the top equation by A21A
−1
11 and then subtracting from

the bottom equation one obtains:

(A22 −A21A
−1
11 A12)y = b−A21A

−1
11 a,

then, if A22 − A21A
−1
11 A12 (the Schur complement of A11 in A) is nonsingular, y is

obtained from the last equation and x from x = A−111 (a−A12y).

An expression for the inverse of A in terms of A−111 and the inverse of the Schur
complement of A11 in A is given by

[
A11 A12

A21 A22

]−1
=

[
A−111 +A−111 A12(A22 −A21A

−1
11 A12)−1A21A

−1
11 −A−111 A12(A22 −A21A

−1
11 A12)−1

−(A22 −A21A
−1
11 A12)−1A21A

−1
11 (A22 −A21A

−1
11 A12)−1

]
. (2.8)

[
A11 A12

A21 A22

]−1
=

[
A−111 +A−111 A12(A22 −A21A

−1
11 A12)−1A21A

−1
11 −A−111 A12(A22 −A21A

−1
11 A12)−1

−(A22 −A21A
−1
11 A12)−1A21A

−1
11 (A22 −A21A

−1
11 A12)−1

]
.

Similarly, assuming that A22 and the Schur complement of A22 in A are both nonsin-
gular, an equivalent expression for the inverse of A can be obtained,

[
A11 A12

A21 A22

]−1
=

[
(A11 −A12A

−1
22 A21)−1 (A11 −A12A

−1
22 A21)−1A12A

−1
22

−A−122 +A−122 A21(A11 −A12A
−1
22 A21)−1 A−122 +A−122 A21(A11 −A12A

−1
22 A21)−1A12A

−1
22

]
. (2.9)

From Equations (2.2) and (2.9) one clearly observes that

(A11 −A12A
−1
22 A21)−1 = A−111 +A−111 A12(A22 −A21A

−1
11 A12)−1A21A

−1
11 , (2.10)

that corresponds to the Woodbury formula presented in Section 2.1. Thus, by ap-
proximating the inverse in Equation (2.9) a preconditioner for the linear system (2.1)
can be obtained.

In the case of A being a symmetric and positive definite matrix, the following result
holds [95].
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Proposition 2.3. Let A be an square matrix partitioned as in (2.4). Then A is an SPD
matrix if and only if the Schur complements of A11 and A22 in A are SPD.

2.3 Preconditioner Computation and Application

As mentioned, our goal is to compute a preconditioner for solving iteratively the
linear system (2.1). Therefore, the inverse of the matrix A11 − A12A

−1
22 A21 must be

approximated in some way. The two main problems that are studied in this thesis
can be written in this form:

• linear systems which are a modification of a nonsingular matrix,

• linear systems for which the coefficient matrix can be easily decomposed in
this form.

Observe that the solution of (2.1) can be obtained from the solution of the equivalent
augmented linear system[

A11 A12

A21 A22

][
x

−A−122 A21x

]
=

[
b

0

]
. (2.11)

From (2.2) and (2.9), the following relations between the linear operators (2.1) and
(2.11) and their inverses can be established.

A11 −A12A
−1
22 A21 =

[
I O

] [ A11 A12

A21 A22

][
I

−A−122 A21

]
, (2.12)

and

(A11 −A12A
−1
22 A21)−1 =

[
I O

] [ A11 A12

A21 A22

]−1 [
I

O

]
. (2.13)

The preconditioner computation consists of obtaining an incomplete LU factoriza-
tion for the augmented matrix in (2.11) that is used to approximate the inverse linear
operator in (2.13) by direct preconditioning, i.e., solving the corresponding upper
and lower triangular systems.

Assuming that we have calculated an incomplete LU factorization of A11 ≈ L11U11,
a preconditioner M is obtained by computing an incomplete block LDU factorization
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of the augmented matrix in (2.11). That is

M =

[
L11 0

A21U
−1
11 I

][
I 0

0 S

][
U11 L−111 A12

0 I

]
, (2.14)

where S = A22 − A21U
−1
11 L

−1
11 A12 is a k × k matrix that corresponds to the Schur

complement of A with respect to A11. Therefore, we avoid the explicit computation
of the matrix A11 − A12A

−1
22 A21 and a preconditioner from scratch. In this way, the

method can be viewed as a technique to update a preconditioner previously com-
puted. Algorithm 8 summarizes the preconditioner computation method.

Algorithm 8 Preconditioner update computation
Input: Matrices A11, A12, A21, A22.
Output: Triangular factors L11, U11, LS , US .
1. Compute incomplete factorization L11U11 ≈ A11.
2. Compute the blocks T1 := A21U

−1
11 and T2 := L−111 A12.

3. Compute S = A22 − T1T2.
4. Compute LSUS ≈ S.

To maintain sparsity in these factors, some dropping strategy can be used when com-
puting the matrices T1 and T2 in step 2. Additionally, an incomplete factorization of
the Schur complement, i.e., S ≈ LSUS , could be computed instead of computing an
exact factorization. Note however that, if k is small enough, the matrix S can be fac-
torized exactly with low computational cost. Furthermore, if the augmented matrix
is symmetric, an IC factorization of A11 is preferred, hence U11 = LT11, and T1 = TT2 .

The preconditioning step for a Krylov subspace iterative method typically consists
of obtaining the preconditioned vector r̄ = M−1r where M−1 is the preconditioner
and r is the residual. M−1 should be a good sparse approximation of the inverse of
the coefficient matrix of the linear system to be solved, this case (2.1). Thus, the pre-
conditioning strategy proposed computes the preconditioned residual by applying
Equation (2.13) with an incomplete factorization of the augmented matrix. That is,
the preconditioned residual r̄ is given by

r̄ =
[
I O

] [ A11 A12

A21 A22

]−1 [
I

O

]
r,
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and it is computed from the solution of

M

[
r̄

r̄′

]
=

[
r

0

]
. (2.15)

The preconditioning is done in three steps as Algorithm 9 shows. Step 2 in the algo-
rithm represents the extra cost in the application of the preconditioner with respect
to the case of non-updating the incomplete factorization of A11. If T1, T2, LS and
US are kept sparse and k � n, this overhead is small and can be amortized even
for moderate reductions on the number of iterations, see [24]. From now on, this
technique will be referred to as Updated Preconditioner Method (UPD).

Algorithm 9 Preconditioner update application
Input: Matrices L11, U11, T1, T2, LS , US and residual vector r.
Output: Preconditioned vector r̄
1. Solve the linear system L11r̃ = r.
2. Update r̃ ← r̃ − T2(LSUS)−1T1r̃.
3. Solve the linear system U11r̄ = r̃.

To summarize, the preconditioning strategy proposed relies on computing a good
approximation of the block A11 in the augmented matrix (2.11), which is updated in
order to obtain a preconditioner to accelerate the convergence of a Krylov iterative
method to solve the linear system (2.1).

Depending on the structure of the linear system to be solved, some variations can
be introduced in the updated preconditioner method. Its application for different
applications will be described in the following chapters.

2.4 Equivalent Augmented System

We also considered another approach that consists of solving the whole equivalent
augmented system (2.11) [

A11 A12

A21 A22

] [
y
]

=

[
b

0

]
, (2.16)
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by applying a Krylov subspace method. In this case, the preconditioner is the block
LDU factorization given in Equation (2.14),

M =

[
L11 0

A21U
−1
11 I

][
I 0

0 S

][
U11 L−111 A12

0 I

]
.

After obtaining a solution for the augmented linear system, the solution for the origi-
nal one is recovered by selecting the first n components of the vector y. Note that any
solution of (2.16) is a solution of (2.11), and vice versa. One of the main drawbacks
of this approach is that an approximate solution is sought in a Krylov subspace of
higher dimension that can be costly, specially when solving non-symmetric linear
systems with the GMRES method.

There are many authors that have studied the problem of solving block structured
linear systems, specifically by proposing methods for computing block incomplete
factorization preconditioners [7, 28, 83, 90, 94]. A particular case is the one studied in
[26], where block approximate inverse preconditioners to solve sparse nonsymmetric
linear systems with iterative Krylov subspace methods are studied. In general, block
incomplete factorizations seems to be more robust than standard (point) ones with
respect to breakdowns, and often result in improved rates of convergence for difficult
problems. Nevertheless, instabilities can happen in the block case as well [14]. Thus,
numerical results with both, point and block ILU preconditioners for the augmented
linear system, will be presented in order to compare their performance.
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Chapter 3

Preconditioners for Almost
Symmetric Linear Systems

In this chapter the update preconditioning technique described in Chapter 2 is ap-
plied for solving non-symmetric linear systems Ax = b, where the coefficient matrix
A has a skew-symmetric part that can be well approximated by a skew-symmetric
low-rank matrix. The method consists of updating a preconditioner obtained from
the symmetric part of A. We present some results concerning to the approximation
properties of the preconditioner and the spectral properties of the preconditioning
technique. The results of the numerical experiments performed show that our strat-
egy is competitive compared with other methods used in the bibliography to solve
the same problem. The main results of this chapter has been submitted to Journal of
Computational and Applied Mathematics [25].

3.1 Introduction

We are interested on the iterative solution of nonsingular, non-symmetric linear sys-
tems

Ax = b (3.1)

where the matrixA ∈ Rn×n is large, sparse and its skew-symmetric part has low rank
or can be approximated by a skew-symmetric low-rank matrix. ConsiderA = H+K

where H and K are the symmetric and skew-symmetric parts of A, respectively.
It is supposed that the skew-symmetric part can be written as K = FCFT + E
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where F ∈ Rn×s is a full-rank rectangular matrix, C ∈ Rs×s is a nonsingular skew-
symmetric matrix with s even, s� n and ‖ E ‖� 1. Systems like this arise from the
discretization of PDEs with certain Neumann boundary conditions, the discretiza-
tion of integral equations [37] as well as path following methods.

Different strategies have been proposed to solve this kind of problems when E = 0,
see Subsection 1.5.1. Among them, of particular interest is the SCM method pre-
sented in [37]. The method permits the application of short-term formulas and ob-
tains an approximate solution by applying the MINRES method s+ 1 times. The au-
thors also suggest that it can be applied as a preconditioner for GMRES for the more
general case E 6= 0. Thus, it will be compared with our proposal in this chapter.
Also, the Progresive GMREs (PGMRES) [12] and the Induced Dimension Reduction
IDR(s) method [80, 82] can be applied to solve this type of problems.

This chapter is organized as follows. In Section 3.2 the proposed preconditioning
technique is described. Section 3.3 is devoted to analyze the approximations proper-
ties of the preconditioned matrix. In Section 3.4 the technique used to approximate
the skew-symmetric part is described. The results of the numerical experiments for
some real and artificial problems are presented in Section 3.5. Finally, some conclu-
sions are given in Section 3.6.

3.2 Updated preconditioner method

To obtain a preconditioner for the system (3.1), an approximate LU factorization of
the augmented matrix

A =

[
H + E F

FT −C−1

]
(3.2)

is computed. This matrix is a particular case of the matrix in (2.4), withA11 = H+E,
A12 = F , A21 = FT , A22 = −C−1. This preconditioner can be viewed as a low-rank
update of an incomplete LU factorization of the symmetric part H .

The preconditioner M is obtained by computing an incomplete LU of the matrix A
in (3.2). Assuming that we have calculated an incomplete LU factorization of the
symmetric part H , Ĥ = LHDHL

T
H , one has

M =

[
LH 0

FTL−TH D−1H I

][
DH 0

0 R

][
LTH D−1H L−1H F

0 I

]
(3.3)
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with R = −(C−1 + FTL−TH D−1H L−1H F ). The computation of the preconditioner is
done following the steps presented in Algorithm 8. In this particular case,

Algorithm 10 Preconditioner update computation
Input: Matrices H , F , C.
Output: Triangular factors LH , DH , LR, UR, T .
1. Compute incomplete factorization LHDHL

T
H ≈ H .

2. Compute block T by solving LHT = F .
3. Compute R = −(C−1 + TTD−1H T ).
4. Compute LRUR = R.

Step 2 in Algorithm 10, may involve a sparsification of the matrix T after its compu-
tation to reduce the amount of fill-in introduced. Note that the factorization in step
4 is done exactly when s � n. Otherwise, an incomplete factorization of R may be
necessary to control the amount of fill-in.

The application of the preconditioner is done by solving the triangular systems of
the LU factorization of M, Equation (3.3). Thus, the preconditioning step is done by
solving linear systems of the form

M

[
r̄

r̄′

]
=

[
r

0

]
.

Algorithm 11 details the steps to obtain the preconditioned residual vector r̄.

Algorithm 11 Preconditioner update application
Input: Matrices LH , DH , T , LR, UR and residual vector r.
Output: Preconditioned vector r̄
1. Solve the linear system LHDH r̃ = r.
2. Update r̃ ← r̃ − TT (LRUR)−1T r̃.
3. Solve the linear system LTH r̄ = r̃.

The computation and application of the preconditioner is inexpensive, that is, with
low computational cost, provided that s� n. Note that step 2 includes the solution
of a s× s linear system which can be done with a direct method.

Universitat Politècnica de València 37



Chapter 3. Preconditioners for Almost Symmetric Linear Systems

3.3 Approximation properties of the updated precondi-

tioner

In this section we study the approximation properties of the proposed updated pre-
conditioner. We recall that A = H + K where H and K are the symmetric and
skew-symmetric parts of A, respectively, and K = FCFT + E where F ∈ Rn×s is a
full-rank rectangular matrix, C ∈ Rs×s is a nonsingular skew-symmetric matrix with
s even, s� n and ‖ E ‖� 1. We denote HE = H + E.

The proposed preconditioning strategy relies on computing a good approximation of
the augmented matrix in Equation (3.2) which is used to accelerate the convergence
of a Krylov iterative method. Solving (3.1) with a preconditioned Krylov method
involves the computation of matrix-vector products withA and an approximation of
its inverse operatorA−1 in the preconditioning step. We have the following relations
between the linear operators A and A,

A =
[
I O

] [ HE F

FT −C−1

][
I

CFT

]
=
[
I O

]
A

[
I

CFT

]
(3.4)

and their inverses,

A−1 =
[
I O

] [ HE F

FT −C−1

]−1 [
I

O

]
=
[
I O

]
A−1

[
I

O

]
, (3.5)

provided that HE is nonsingular. Note that if H is a well conditioned matrix and
‖ E ‖� 1, this condition can be easily satisfied (see Theorem 2.3.4 in [43]). Next
result relates the condition numbers of the matrices A and A.
Theorem 3.1. Let A be the matrix given by Equation (3.2) associated to the linear system
(3.1). Assume that FCFT is a reduced unitary diagonalization of the matrix K −E. Then,

cond (A) ≤ cond (A)
√

1 + σ2
1(C), (3.6)

where σ1(C) is the maximum singular value of C.
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Proof. Considering the Equations (3.4) and (3.5), one has

cond (A) = ‖A‖2‖A−1‖2 =

∥∥∥∥∥[ I O
]
A

[
I

CFT

]∥∥∥∥∥
2

∥∥∥∥∥[ I O
]
A−1

[
I

O

]∥∥∥∥∥
2

≤ cond (A)

∥∥∥∥∥
[

I

CFT

]∥∥∥∥∥
2

.

Since FCFT is a reduced unitary diagonalization of K − E, then FTF = Is and
C ∈ Rs×s is a block diagonal matrix of the form[

0 λi

−λi 0

]
,

where λi with i = 1, ..., s/2 are the absolute values of the complex eigenvalues of C.
Under these conditions the nonzero eigenvalues of the matrices FCTCFT and CTC
are equal and positive since CTC = diag(λ21, λ

2
1, . . . , λ

2
s/2λ

2
s/2). Therefore,

∥∥∥∥∥
[

I

CFT

]∥∥∥∥∥
2

2

= ρ(I + FCTCFT ) = ρ(I + CTC) = 1 + σ2
1(C).

This proposition suggests that one can expect a faster convergence of the iterative
method used to solve the linear system (3.1) if the condition number of the matrix A

is improved with a proper preconditioner.

To study the quality of the updated preconditioner, first we evaluate the approxi-
mation error norm. A comparison with the non-updated preconditioner is also pre-
sented. These preconditioners are given by

M = LDU =

[
Ĥ F̂

F̂T −C−1

]
and M0 =

[
Ĥ O

O −C−1

]
. (3.7)

The expression for M is obtained multiplying the LDU factors in Equation (3.3). As-
suming that in step 2 of the computation of the preconditioner a sparsification of
the matrix T has been done, which is denoted by T̂ , one has that the matrix F is
approximated by F̂ = LH T̂ . Moreover, we assume that R is factorized exactly.
Theorem 3.2. Let Ĥ = LHDHL

T
H be an incomplete LDU factorization of H . Let M and

M0 be the matrices given in (3.7). Let ε =‖ Ĥ − H ‖2F , δ =‖ LH ‖2F , γ =‖ E ‖2F and
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c =‖ T̂ − T ‖2F . Then
‖M−A ‖F≤

√
ε+ γ + 2δc. (3.8)

Moreover, if c ≤ ‖F‖
2
F

δ then

‖M−A ‖F≤‖M0 −A ‖F . (3.9)

Proof. From (3.7) we have

M−A =

[
Ĥ −HE F̂ − F
F̂T − FT O

]
=

[
Ĥ −HE LH(T̂ − T )

(T̂ − T )TLTH O

]
.

Then

‖M−A ‖2F = ‖ Ĥ −HE ‖2F +2 ‖ LH(T̂ − T ) ‖2F
≤ ‖ Ĥ −H ‖2F + ‖ E ‖2F +2(‖ LH ‖2F ‖ T̂ − T ‖2F )

= ε+ γ + 2δc .

If c ≤ ‖F‖
2
F

δ , then

‖M−A ‖2F≤‖ Ĥ −HE ‖2F +2δc ≤‖ Ĥ −HE ‖2F +2 ‖ F ‖2F=‖M0 −A ‖2F

As it could be expected, the above theorem shows that the approximation degree of
M depends on Ĥ and F̂ being a good approximation of H and F , respectively, and
‖ E ‖� 1. Moreover, we have proved that if these approximations are good enough,
the updated preconditioner M is closer to the matrix A than the initial one, M0.
Theorem 3.3. Let the assumptions of Theorem 3.2 hold, then the preconditioned matrix
M−1A can be written as

M−1A = I−M−1EA, (3.10)

where
‖M−1EA ‖F≤‖M−1 ‖F

√
ε+ γ + 2δc (3.11)

Proof. Let EA = M−A, hence

‖M−1EA ‖2F=‖M−1(M−A) ‖2F≤‖M−1 ‖2F ‖M−A ‖2F≤‖M−1 ‖2F (ε+ γ + 2δc)
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Corollary 3.4. Let the assumptions of Theorem 3.3 hold. Then, the eigenvalues of the pre-
conditioned matrix M−1A are clustered at 1 in the right half complex plane provided that
‖M−1 ‖F

√
ε+ γ + 2δc < 1.

Proof. Defining ρ =‖M−1 ‖F
√
ε+ γ + 2δc, it inmediatelly follows from the bound

in Equation (3.11) and Equation (3.10) that there is a cluster of eigenvalues of M−1A
at 1 in the right half complex plane with radius equal to ρ < 1.

Corollary 3.4 basically means that the quality of the preconditioner depends on the
accuracy of the approximations computed for the symmetric and skew-symmetric
parts of A. With a clustered spectrum one can expect a faster convergence of an
iterative method although we recall that other aspects may influence the behaviour
of Krylov-based iterative methods.

Next, we consider the case in which the symmetric part of A is indeed positive defi-
nite. The following result characterizes the spectrum of M−1A.
Theorem 3.5. Let A and M be the matrices given by

A =

[
HE F

FT −C−1

]
and M =

[
Ĥ F̂

F̂T −C−1

]
.

Assume that H is SPD, F and F̂ have full rank s, and the error matrix EF = F − F̂ has
rank p, p ≤ s. Then, the eigenvalues of M−1A are either one or real positive and bounded
by

λmin(Ĥ−1H) ≤ λ ≤ λmax(Ĥ−1H) , (3.12)

or complex bounded by

|λ| ≤ 1 +
‖ C ‖2‖ EF ‖2√
1 + σ2

min(F̂CT )
(3.13)

where σmin represents the smallest singular value.

Proof. The technique to prove the result is standard and similar to the one that can
be found in [18]. The eigenvalues and eigenvectors of M−1A are solutions of the
following generalized eigenvalue problem Aw = λMw written as[

HE F

FT −C−1

][
x

y

]
= λ

[
Ĥ F − EF

(F − EF )T −C−1

][
x

y

]
,
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where the eigenvector w is partitioned according to the block structure of the matrix
A.

One has equivalently that,

HEx+ Fy = λĤx+ λFy − λEF y ,
FTx = λFTx− λETF x+ (1− λ)C−1y .

(3.14)

We distinguish the following cases:

1. x = 0. From the second equation in (3.14) it follows that 0 = (1−λ)C−1y. Then
λ = 1 and therefore EF y = 0 from the first equation. Since y ∈ kerEF that has

dimension s − p, we obtain that there are s − p eigenvectors

[
0

y

]
associated

to the unit eigenvalue.

2. x 6= 0. We consider three cases:

(a) FTx = 0. Since F has rank s it follows that there are n − s linearly in-
dependent vectors satisfying this condition. From the second equation
we have λETF x = (1 − λ)C−1y. Although x is real, the eigenpair can be
complex. Thus, the conjugate transpose is λ̄xTEF = (1 − λ̄)yHC−T . By
multiplying the first equation by xT and substituting one has

xTHEx = λxT Ĥx− λ

λ̄
(1− λ̄)yHC−T y,

or equivalently, since HE = H + E

xTHx+ xTEx = λxT Ĥx− λ

λ̄
(1− λ̄)yHC−T y .

We recall that E and C are skew-symmetric matrices. Therefore, in the
equation above the terms xTEx and yHC−T nullify. Then

xTHx = λxT Ĥx .

Since H and Ĥ are SPD matrices the eigenpairs are real, and by Courant-
Fischer Minimax Theorem (see [43]) it follows that the eigenvalues are
bounded by

λmin(Ĥ−1H) ≤ λ ≤ λmax(Ĥ−1H) .
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(b) FTx 6= 0 and ETF x = 0. In this case s − p linearly independent vectors
satisfy these conditions. The second equation reduces to

(1− λ)FTx = (1− λ)C−1y

and it is satisfied for eigenvalues equal to 1 or when y = CFTx. In this
last case, by substituting in the first equation one has

HEx+ FCFTx = λĤx+ λFCFTx− λEFCFTx .

Multiplying by xT we obtain

xT (HE + FCFT )x = λxT (Ĥ + FCFT )x .

Since FCFT is skew-symmetric, then reasoning similar as in 2.(a) these
eigenvalues are bounded by

λmin(Ĥ−1H) ≤ λ ≤ λmax(Ĥ−1H) .

(c) FTx 6= 0 and ETF x 6= 0. Multiplying the first equation by xH and the
second by yH one has

xHHEx+ xHFy = λxHĤx+ λxH F̂ y ,

yHFTx = λyH F̂Tx+ (1− λ)yHC−1y .
(3.15)

Adding both equations we obtain

xHHEx+ 2Re(xHFy)− yHC−1y = λ(xHĤx+ 2Re(xH F̂ y)− yHC−1y) .

As in case 2.(a), since E and C are skew-symmetric matrices, the equation
above simplifies to

xHHx+ 2Re(xHFy) = λ(xHĤx+ 2Re(xH F̂ y)) .

We consider two possibilities: if xHĤx+ 2Re(xH F̂ y) = 0, the eigenvalue
λ can be complex. In this case from the second equation in (3.14) one has
(FTx−C−1y) = λ(F̂Tx−C−1y), equivalent to (CFTx−y) = λ(CF̂Tx−y).
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Note that CF̂Tx−y 6= 0 since we are considering ETF x 6= 0. It follows that

|λ| = ‖ CF
Tx− y ‖2

‖ CF̂Tx− y ‖2
=
‖
[
CFT −I

]
w‖2

‖
[
CF̂T −I

]
w ‖2

≤ 1 +
‖
[
CETF O

]
w ‖2

‖
[
CF̂T −I

]
w ‖2

≤ 1 +
‖ C ‖2‖ EF ‖2‖ w ‖2
‖
[
CF̂T −I

]
w ‖2

= 1 +
‖ C ‖2‖ EF ‖2

‖
[
CF̂T −I

]
w
‖w‖2 ‖2

≤ 1 +
‖ C ‖2‖ EF ‖2√
1 + σ2

min(F̂CT )

where σmin(F̂CT ) represents the smallest singular value of a matrix F̂CT .

On the other hand, if xHĤx+ 2Re(xH F̂ y) 6= 0 then λ ∈ R. By subtracting
the transpose of the second equation from the first one in (3.15), we obtain
the same equation and the corresponding bound as in 2.(a). Note that 2p

is the maximum number of complex eigenvalues.

To illustrate the bounds deduced in this section we consider the matrixADD20 from
the University of Florida sparse matrix collection [35]. This matrix has order 2, 395

with 13, 151 nonzero elements and condition number cond(A) = 1.7637 × 104. We
approximate its skew-symmetric part with a matrix of rank s = 42, giving an error
matrix with norm ‖E‖2 = 9.88 × 10−5. An incomplete Cholesky factorization of
H with dropping parameter equal to 10−4 was computed. The matrix T was also
sparsified with a dropping threshold of 10−3 with respect to its maximum absolute
value. The results were obtained using MATLAB version 2016a.

First, we studied the bound (3.6) of Theorem 3.1. We computed for this matrix
cond (A)

√
1 + σ2

1(C) = 1.0149 × 108, that is greater than cond(A), satisfying the
bound.

Concerning Theorem 3.2, the values of the parameters involved in the statement
were ε = 3.0834 × 10−6, γ = 2.1762 × 10−7, δ = 335.6455, c = 2.6701 × 10−9 and
‖F‖2F
δ = 4.8627×10−9. The quantities involved in Equations (3.8) and (3.9) are shown

in Table 3.1 that clearly satisfy the inequalities.

The bound in Theorem 3.3 is also satisfied since it was obtained 3.0313 and 227.8091

for the left and right side values in inequality (3.11), respectively.
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‖M−A ‖F
√
ε+ γ + 2δc ‖M0 −A ‖F

1.8× 10−3 2.3× 10−3 2.6× 10−3

TABLE 3.1: Bounds for Theorem 3.2

Finally, with respect Theorem 3.5, the bounds computed according to the Equations
(3.12) and (3.13) are λmin(Ĥ−1H) = 0.8599 and λmax(Ĥ−1H) = 1.1311 for the real
eigenvalues, and |λ| ≤ 1.0208 for the complex ones. These bounds are satisfied since
the minimum and maximum real eigenvalues of M−1A are 0.9384 and 1.1309, re-
spectively. Moreover, the norm of the largest complex eigenvalue was 1.0101. Figure
3.1 illustrates the spectrum of the preconditioned matrix M−1A. It is observed that
the eigenvalues are clustered at one in the right half complex plane.

To end this part, in Figure 3.2 we can observe that the spectrum of the preconditioned
matrix M−1A satisfies the bounds deduced in this section, independently of the
threshold parameters chosen for the incomplete Cholesky factorization of H , and
for the auxiliary matrix T .

FIGURE 3.1: Spectrum of M−1A to illustrate the bounds of Theorem
3.5. The bounds for the real eigenvalues are indicated with a red

parenthesis.

3.4 Low-rank approximation of the skew-symmetric part

If the skew-symmetric part of a matrix is not low-rank, a crucial step is to obtain a
good low-rank representation for it. There are different techniques that can be used.
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(A) Dropping IC of H with 10−4 and T with 10−1 (B) Dropping IC of H with 10−4 and T with 10−5

(C) Dropping IC of H with 10−3 and T with 10−1 (D) Dropping IC of H with 10−3 and T with 10−5

FIGURE 3.2: Spectrum of M−1A for different dropping parameters
of T and the IC factorization of H . The bounds for the real eigenval-

ues are indicated with a red parenthesis.

Among them, as it was mentioned in Subsection 1.5.1, we use the Sparse Column
Row aproximation (SCR) method presented in [19] that is well suited for this task.
Its Matlab’s implementation code was downloaded from [84]. With this method we
are able obtain an approximation of the skew-symmetric part K of the form FCFT ,
where F consists of columns of K and C is a s × s skew-symmetric matrix with s

even.

In general, a low-rank approximation of a matrixK is commonly written in the form

K ≈ FCG,

where the matrices F and G have full rank s, the order of the approximation, and C
is a nonsingular matrix.

A widely used low-rank approximation is the singular value decomposition (SVD),
which is known to be optimal in the sense of achieving the minimum error Frobenius
norm. There are stable direct methods for its computation, see [51, 61].

Another strategy is to consider truncated pivoted QR approximations. For example
in [86], the author proposes four algorithms to compute this type of approximations
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to a sparse matrix, based on the Gram–Schmidt algorithm and the Householder tri-
angularization. Two of these methods are studied in detail in [19], the sparse pivoted
QR (SPQR) and sparse column row (SCR) approximations, described below.

In general, a QR factorization has the form KP = QR, where K is the matrix to be
approximated, P is a permutation matrix, Q is an orthogonal matrix and R is an up-
per triangular matrix. A rank-s approximation to K can be obtained by partitioning
the QR factorization. Let B = KP , writing

B =
(
B

(s)
1 B

(s)
2

)
=
(
Q

(s)
1 Q

(s)
2

)(R(s)
11 R

(s)
12

0 R
(s)
22

)
,

where B(s)
1 has s columns. It is obtained the approximation

B ≈ B̃ = Q
(s)
1

(
R

(s)
11 R

(s)
12

)
.

Observe that, since Q(s)
2 is orthogonal, the error in the approximation is

εc = ||B − B̃|| = ||R(s)
22 ||. (3.16)

To compute the decomposition, a column of K can be successively brought at a time
and use it to compute an additional column of Q and row of R. The process of
selecting columns is called column pivoting, and the classical choice of a column is
the one that corresponds to the column of R(s−1)

22 of largest norm. A problem arises
using the Gram-Schmidt algorithm, sinceQ is in general not sparse even whenK has
this property. Therefore, if s is very large it could be difficult to store Q. A possible
solution is, observing thatQ = BR−1, the action ofQ on a vector can be calculated by
operations involving the matricesB andR without computing explicitely the matrix
Q. The quasi-Gram-Schmidt method proposed in [19] takes advantage of this idea
to compute a pivoted, Q-less PQR factorization, called sparse pivoted QR (SPQR)
factorization. The matrix

(B
(s)
1 R

(s)−1

11 )
(
R

(s)
11 R

(s)
12

)
is the SPQR approximation. The algorithm avoids the storage for Q, and also it
replaces dense products involving Q with sparse products involving columns of K.
A problem of the algorithm may be a progressive loss of orthogonality in the matrix
BR−1. However, an analysis of the quasi-Gram-Schmidt algorithm shows that the
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loss of orthogonality is not significative [85].

Based on SPQR, a sparse column row approximation can be derived by applying
SPQR to the columns and rows of K, respectively. Specifically, first the quasi-Gram-
Schmidt algorithm is applied to the columns of K to get a representative set of
columns F of K, and an upper triangular matrix R that corresponds to R(s)

11 . Let the
error in the corresponding reduced rank decomposition be εc, see Equation (3.16).
Secondly, repeat the application of the algorithm to KT to obtain a set G of rows and
another upper triangular matrix S, with approximation error εr. In [86] the authors
show that the matrix C that minimizes ||K − FCG||2, is

C = R−1R−T (FTKGT )S−1S−T , with ||K − FCG||2 ≤ ε2c + ε2r.

Thus, the sparse column row approximation (SCR) approximation is given by

K ≈ FR−1R−T (FTKGT )S−1S−TG. (3.17)

As shown in [19], SPQR requires less time to be computed than SVD, especially, for
large values of s, the rank of the approximation matrix. Regarding storage, SVD
requires 2ns floating-point words, whereas SPQR requires only s2 words.

For all these reasons, the SCR method will be used in this thesis to obtain a low-rank
approximation of the skew-symmetric part K of a matrix. But, in this case it suffices
to compute an SPQR approximation of K. Following the nomenclature adopted in
the description of the SCR method, we get that G = FT and S = R. Then

K = FCFT , with C = −R−1R−T (FTKF )R−1R−T . (3.18)

Note that the matrix C is skew-symmetric. In fact,

CT = −R−1R−T (FTKTF )R−1R−T = −R−1R−TFT (−K)FR−1R−T = −C.

We show several examples of the quality of the approximation that can be obtained
with the SCR method. A MATLAB version of the SCR algorithm has been used for
the experiments. Consider the non-symmetric matrix CIRCUIT_1 from [35]. This
is a square matrix of order 2624, whose skew-symmetric part K has 26400 nonzero
elements.
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FIGURE 3.3: Singular values of K for the matrix CIRCUIT_1

Figure 3.3 shows a plot of the 100 biggest singular values of K. Observe that, since
there is a big jump between the 10th and the 11th, a rank-10 approximation may
be adequate. The approximation computed with the SCR algorithm has the same
10 biggest singular values than K, and the error of the approximation corresponds
exactly to the 11th one, which is 2.4336 × 10−4. Furthermore, the time spent for the
computation is less than one hundred of a second, and only 30 nonzero elements are
stored in memory, which is quite sparse compared with the matrix K as depicted in
Figure 3.4.

For the matrix ADD20 a rank-42 was computed. The corresponding approximation
error observed is 9.9 × 10−5 and requires only 49 nonzero elements, see Figure 3.5.
As a conclusion, there are two interesting observations of the SCR method to be
made. The error of a rank-s approximation is the s + 1 singular value of the matrix
considered, and the approximation obtained is quite sparse.

Finally, we mention that in [36] the authors present an algorithm for computing a
low-rank approximation to a sparse matrix based on a truncated LU factorization
with column and row permutations (LU_CRTP). In this method, the selection of
columns and rows at each step of the block factorization uses tournament pivoting
based on QR. The authors claim that LU_CRTP provides a good balance between
accuracy and speed. We have applied this method to the matrix CIRCUIT_1 as well.
While the error and memory storage results obtained are similar to thouse reported
with the SCR method, the execution time observed is much larger. Thus, we dis-
carded its use in this work.
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FIGURE 3.4: Nonzero patterns of K (left) and its approximation
(right). Matrix CIRCUIT_1

FIGURE 3.5: Rank-42 approximation of K for ADD20 using SCR

3.5 Numerical Experiments

In this section we compare the Updated Preconditioner Method, referred to as UPD,
with the SCM method used as preconditioner and also an incomplete LU factor-
ization of the symmetric part H . The iterative methods used are the full GMRES,
restarted GMRES(m) and BiCGSTAB. The experiments have been performed with
MATLAB version 2016a. In some case, the SCM method will be tested as a com-
plete method. The iterative methods were run until the relative initial residual was
reduced to 10−8, allowing a maximum number of 2000 iterations. The incomplete
factorization of the symmetric part H was computed with MATLAB’s function ilu()

that implements an ILU factorization with threshold [72]. We present the results ob-
tained for different problems that appear in the bibliography and also using some
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matrices obtained from the University of Florida sparse matrix collection. Concern-
ing the SCM preconditioner, it requires s + 1 applications of MINRES, which could
be prohibitive to apply at each iteration of GMRES applied to the preconditioned
system. Thus, as the authors suggest in [37], since s of these applications are needed
to solve a linear system with multiple right-hand sides, the solution of this system is
computed once and reused at each GMRES iteration.

Furthermore, we present the numerical results by considering the solution of the
equivalent augmented system, which is solved with four different techniques, the
GMRES and BiCGSTAB methods, both preconditioned with a point ILU computed
for the augmented matrix and the block ILU described in Section 2.4.

3.5.1 A class of simple examples

The first example was used in [37] to show the performance of SCM method. Con-
sider the block-diagonal matrix

A =

Λ−

Λ+

Z

 ,
where Λ− = diag(λ1, . . . , λp), Λ+ = diag(λp+1, . . . , λn−s) with λ1, . . . , λp uniformly
spaced in [−β,−α] and λp+1, . . . , λn−s uniformly spaced in [α, β] for some positive
constants α < β, p� n and s even such that 2 ≤ s� n. Z = tridiag(−γ, 1, γ) ∈ Rs×s

with γ > 0. The matrix A is indefinite with eigenvalues

• λ1, . . . , λp ∈ [−β,−α],

• λp+1, . . . , λn−s ∈ [α, β],

• s complex eigenvalues of Z.

In this case A = H +K with

H =

Λ−

Λ+

I

 , K = FCFT =

O O

Z − I

 .
For this first problem E = 0, that is, the skew-symmetric part is not approximated.
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We study how to solve the system (3.1) with b equal to 1/
√
n in all its components,

n = 105, α = 1/8, β = 1, γ = 1. Figure 3.6 compares the CPU time of the different
methods tested.

FIGURE 3.6: CPU solution time for the first example with the dif-
ferent methods tested for different values of the rank of the skew-

symmetric part of A, s.

For all the values of the rank s it can be observed that using BiCGSTAB precondi-
tioned with the updated preconditioned method performs the best. In the case of
full GMRES, it starts to be competitive compared with SCM for values of s greater
than 40. Note that the solution time of the SCM increases linearly with the rank of
the skew-symmetric part, while its remains almost constant for the other methods.

The sequence of problems was also solved by considering the augmented system.
Figure 3.7 shows the results for both, the full GMRES and BiCGSTAB methods, pre-
conditioned with the point ILU and the block ILU for different ranks. It can be ob-
served that the total solution time is similar for both preconditioners, and that the
full GMRES converges slightly faster than BiCGSTAB.

Every preconditioner used in this example has a density around twice the number
on nonzero elements of the initial coefficient matrix.
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FIGURE 3.7: CPU solution time for the first example with different
methods for the augmented systems and different values of the rank

of the skew-symmetric part of A, s.

In the next example we modify the previous one in order to obtain a class of problems
for which the skew-symmetric part of the coefficient matrix is approximated by a
low-rank matrix, that is, A = H + FCFT + E with E 6= 0 and ‖ E ‖� 1. The
problem is defined with the following matrices,

A =

Ψ

Γ

Ω

 , FCFT =

O O
1
2 (Ω− ΩT )

 , E =

O 1
2 (Γ− ΓT )

O


where Ψ is of size n/2 from the discretization of the 2D Poisson operator, Γ =

tridiag(−γ,−4, γ) and Ω = tridiag(−ω,−4, ω) are tridiagonal matrices of dimension
n/2− s and s� n, respectively. We consider n = 250000, γ = 0.01, ω = 10 and s an
even number with values from 10 to 50 representing the rank of the matrix FCFT .
For these matrices the error matrix has 2−norm equal to 0.02. We note that the norm
of the skew symmetric part of these matrices are in the interval [19.1899, 19.6824].
Under these conditions the skew-symmetric part of A has rank equal to n2/2 and it
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is approximated by a matrix of rank s. The matrix A is indefinite with eigenvalues
lying in the intervals (0, 8] and [−4 − 20i,−4 + 20i], which is justified by the Ger-
shgorin circle theorem, see [89]. Figure 3.8 shows the eigenvalue distribution for a
matrix generated with n = 50 and s = 20.

FIGURE 3.8: Eigenvalues for the matrix with n=50 and s=20

In Tables 3.2 and 3.3, respectively, we present the number of iterations (Iter) and time
in seconds (Time) needed to solve the system Ax = b with b a random vector. The
restarted GMRES(100) and BiCGSTAB preconditioned with the SCM as presented
in [19] were used. We also considered the restarted GMRES(100) and BiCGSTAB
methods preconditioned with an ILU factorization computed for H with drop tol-
erance 10−2, and with the updated preconditioner. Note that in this case, the SCM
will not be used as a complete method, since when it was tested, it was not able to
solve the problem to the tolerance 10−8, in all cases it reached an error of the order
of 10−4, and regarding CPU time, over the reported for the GMRES preconditioned
with SCM. The augmented system, referred to AS in the tables, was also solved with
the GMRES(100) and BiCGSTAB, preconditioned with a point ILU with drop toler-
ance 10−2 and a block ILU (BILU). It is observed that the updated preconditioner
and AS techniques show similar performance with respect number of iterations and
CPU time. Moreover, both converge faster than the other ones. The density of all the
preconditioners were in the interval [1.56, 1.92].

As for the first class of examples, similar conclusions hold for the second one. There
is a big improvement on the overall computational cost when solving the problems
with the updated preconditioner technique, mainly for the BiCGSTAB method. The
total solution time spent by the SCM as preconditioner increases considerably with
the rank of the approximation. The BiCGSTAB with the SCM as preconditioner did
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Iter
s 10 20 30 40 50

GMRES(100) Prec. ILU 221 254 260 299 401
GMRES(100) UPD 196 196 196 197 197
GMRES(100) SCM 206 206 206 207 207
BiCGSTAB Prec. ILU 272 936 1732 † †
BiCGSTAB UPD 108 107 102 103 104
BiCGSTAB SCM † † † † †
GMRES(100) AS ILU 196 196 196 197 197
GMRES(100) AS BILU 196 196 196 197 197
BiCGSTAB AS ILU 108 107 104 104 104
BiCGSTAB AS BILU 108 107 104 104 104

TABLE 3.2: Number of iterations for the second problem with differ-
ent values of s. A † means no convergence in 2000 iterations.

Time (s)
s 10 20 30 40 50

GMRES(100) Prec. ILU 31.5 36.9 35.9 47.2 59.9
GMRES(100) UPD 30.2 29.8 29.8 30.3 29.8
GMRES(100) SCM 33.4 35.9 35.7 40.3 41.7
BiCGSTAB Prec. ILU 12.7 38.7 69.3 † †
BiCGSTAB UPD 6.7 6.7 6.4 6.3 6.5
BiCGSTAB SCM † † † † †
GMRES(100) AS ILU 28.9 29.2 29.4 29.5 29.3
GMRES(100) AS BILU 28.9 29.4 28.9 30.1 30.3
BiCGSTAB AS ILU 6.9 6.9 6.3 6.3 6.4
BiCGSTAB AS BILU 6.8 6.8 6.2 6.3 6.3

TABLE 3.3: CPU time for the second problem with different values
of s. A † means no convergence in 2000 iterations.

not converge for any case. It is also important to emphasize that applying the itera-
tive method to the augmented linear system also gives good results, specially with
the BiCGSTAB method.

3.5.2 The Bratu problem and Love’s equation

The next example corresponds to the 2-dimensional Bratu problem. To review the
problem, it consists of finding the solution u(x, y) of the nonlinear boundary problem

−∆u− λ exp(u) = 0 in Ω, with u = 0 on ∂Ω (3.19)
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depending on the parameter λ, ∆ is the Laplacian, Ω the unit square and ∂Ω its
boundary. We discretize this problem using the five-point finite differences as in [37,
12], in a grid of 500 × 500 points. After this, we obtain a system with coefficient
matrix of order n = 2.5 × 105 with skew-symmetric part of exactly rank equal to
2. Table 3.4 shows the results for the tested methods. Incomplete LU factorization
with threshold parameter equals to 5× 10−1 were used, giving preconditioners with
density around twice the number of nonzero elements of the original problem. The
non-preconditioned BiCGSTAB and restarted GMRES(m) methods were also tested.
Note that we solve the Bratu problem presented in [37].

Method Time (s) Iter
GMRES(100) †
BiCGSTAB 26.6 827
GMRES(100) Prec. ILU 45.1 123
GMRES(100) UPD 46.3 131
BiCGSTAB Prec. ILU 13.1 194
BiCGSTAB UPD 11.3 156
SCM 38.2 255
GMRES(100) AS ILU ‡
GMRES(100) AS BILU 50.7 125
BiCGSTAB AS ILU ‡
BiCGSTAB AS BILU 59.7 166

TABLE 3.4: CPU solution time and iterations for the Bratu problem.
† means no convergence in 2000 iterations. † means that ILU was not

possible to compute.

It can be observed that BiGSTAB preconditioning with our technique has the edge
over the SCM method and also works better than the ILU preconditioner computed
for H . Compared with the preconditioned GMRES(100), both preconditioners per-
formed similarly. In the case of the augmented system, it was not possible to com-
pute a point ILU factorization for threshold parameter in the range 10−8 to 10−1. It
was possible, however, solving the augmented system with the block ILU precondi-
tioner, but performance was poor.

Regarding the Love’s equation, described in Subsection 1.5.1,

f(y) +
1

π

1∫
−1

c

(x− y)2 + c2
f(x)dx = g(y), |y| ≤ 1 0 ≤ c ∈ R.

choosing, g(y) =
√

1 + y and c = 0.1, discretizing the last equation by a Nyström
method based on the composite trapezoidal rule with equidistant nodes xk = yk =
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(k−1)/(n−1), 1 ≤ k ≤ n. This gives a linear system of equations with a n×nmatrix
whose skew-symmetric part is of exactly rank s = 4. Since the coefficient matrix
is dense, we considered a moderated value n = 2049. The results are presented in
Table 3.5. It can be observed that the number of iterations needed to converge is
similar for all the preconditioners, but the CPU time with SCM was the largest one.
Incomplete LU factorization with threshold parameter equals to 10−1 were used,
giving preconditioners with density around twice the number of nonzero elements
of the original problem. We note that in both problems, Bratu and Love, the SCM
was used as a complete method, as presented in [19].

Method Time (s) Iter
GMRES Prec. ILU 0.04 5
GMRES UPD 0.03 4
BiCGSTAB Prec. ILU 0.04 2.5
BiCGSTAB UPD 0.04 2.5
SCM 0.51 55
GMRES(100) AS ILU ‡
GMRES(100) AS BILU †
BiCGSTAB AS ILU ‡
BiCGSTAB AS BILU †

TABLE 3.5: CPU solution time and iterations for the Love’s equation.
† means no convergence in 2000 iterations. † means that ILU was not

possible to compute.

3.5.3 Problems from the University of Florida sparse matrix collec-
tion

Table 3.6 shows the matrices used in this subsection. These matrices arise from dif-
ferent applications. In this table n and nnz indicate the size and number of nonzeros
of the matrices, respectively. The rank of the matrix FCFT that approximates the
skew-symmetric part is indicated with s, the norm of the skes-symmetric part and
the norm of the error matrix E is indicated in the last two columns, ‖K‖2 and ‖E‖2
respectively. It can be observed that the SCRA method gives good low-rank approx-
imations to the skew-symmetric part of the matrices sudied. ‖E‖2 = 0 means that
the skew-symmetric part has low rank. The full and restarted GMRES methods were
used. In this problems, as suggested in [19], the SCM will be use as preconditioner
for the GMRES and BiCGSTAB. Tables 3.7, 3.8 and 3.9 show the results of the exper-
iments.
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FIGURE 3.9: Iteration and CPU time with GMRES ILU H, GM-
RES UPD and GMRES SCM for the matrix ADDER_TRANS_01,

s = 2, 4, 6, 8
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Matrix name Application n nnz s ‖K‖2 ‖E‖2
IPROB Linear programming 3001 9000 4 66128 0
PESA Directed weighted graph 11738 79566 2 16958 0
BIG Directed weighted graph 13209 91465 2 19565 0
08BLOCKS Combinatorial 300 592 16 189.9112 2× 10−14

ADDER_TRANS_01 Circuit simulation 1814 14579 8 3.5266 0.0314
ADD20 Circuit simulation 2395 13151 42 5× 10−4 1× 10−4

CIRCUIT_1 Circuit simulation 2624 35823 10 1.4212 0.0907
ASIC_100K Circuit simulation 99340 940,621 6 138.8046 0.7091
HCIRCUIT Circuit simulation 105676 513072 58 19.4064 0.0472
SCIRCUIT Circuit simulation 170998 958936 126 14.8593 0.0026

TABLE 3.6: Set of tested matrices from the University of Florida
sparse matrix collection

We can observe that for these matrices the UPD technique obtains the best results
in terms of CPU time. The number of iterations is comparable to the SCM pre-
conditioner, but this method spends more CPU time to obtain the solution because
the preconditioner application is more expensive. Comparing with the incomplete
LU factorization of H , when the skew-symmetric part K is significative, the up-
dated preconditioner technique shows a better performance, specially when using
the restarted GMRES. Specially significative is the improvement observed for the
matrices in Table 3.9.

Finally, Figure 3.9 shows the results for the matrix ADDER_TRANS_01 for different
values of the rank of the approximation s. Note that the updated preconditioner
behaves better when the approximation of the skew-symmetric part is more precise,
as it could be expected.

Regarding the augmented system, good results were observed for all the matrices
tested, specially when the system was preconditioned with de block ILU (BILU).

3.6 Conclusions

We have presented a method for preconditioning non-symmetric matrices whose
skew-symmetric can be well approximated by a low-rank matrix. The method can
be viewed as an update of a preconditioner computed for the symmetric part of the
system matrix. Some approximation properties of the preconditioner and the eigen-
value distribution of the preconditioned matrix have been presented. The method
has been compared with others that appear in the literature for this kind of matrices.
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IPROB PESA BIG
m= 10 m = 200 m = 200

ρ/Iter/Time(s) ρ/Iter/Time(s) ρ/Iter/Time(s)
GMRES Prec. ILU 2.15/22/0.2 1.16/295/3.8 1.15/295/3.8
GMRES UPD 2.15/21/0.2 1.16/244/2.8 1.16/270/3.2
GMRES SCM 2.15/27/0.7 1.16/263/3.4 1.15/265/5.4
GMRES(m) Prec. ILU 2.15/30/0.2 1.16/698/5.5 1.15/1928/17.3
GMRES(m) UPD 2.15/30/0.1 1.16/398/3.4 1.16/832/7.5
GMRES(m) SCM 2.15/28/0.8 1.16/378/3.8 1.15/761/9.1
BiCGSTAB Prec. ILU † 1.16/1353/2.7 †
BiCGSTAB UPD † 1.16/1372/2.7 †
BiCGSTAB SCM † 1.16/1256/2.9 †
GMRES AS ILU † 1.16/263/2.8 1.15/275/3.3
GMRES AS BILU 1.36/23/0.2 1.16/263/3.1 1.15/275/3.7
GMRES(m) AS ILU † 1.16/433/3.6 1.15/988/9.1
GMRES(m) AS BILU 1.36/67/0.2 1.16/433/4.1 1.15/991/9.3
BiCGSTAB AS ILU † 1.16/1320/2.7 †
BiCGSTAB AS BILU † 1.16/1082/2.6 †

TABLE 3.7: Results for the matrices IPROB, PESA, BIG

From the numerical results conducted it has been observed that the proposed pre-
conditioner is competive in terms of solution time and number of iterations spent.
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08BLOCKS ADDER_TRANS_01 ADD20 CIRCUIT_1
ρ/Iter/Time(s) ρ/Iter/Time(s) ρ/Iter/Time(s) ρ/Iter/Time(s)

GMRES Prec. ILU 2.30/18/0.01 0.58/16/0.12 0.89/10/0.01 0.42/15/0.03
GMRES UPD 2.35/13/0.01 1.40/12/0.04 0.92/9/0.01 0.78/9/0.01
GMRES SCM 2.30/12/0.02 0.58/11/0.14 0.89/9/0.11 0.42/9/0.12
BiCGSTAB Prec. ILU 2.30/19.5/0.01 0.58/13.5/0.05 0.89/5.5/0.01 0.42/15/0.02
BiCGSTAB UPD 2.35/10/0.01 1.40/7.5/0.03 0.92/5/0.01 0.78/6.5/0.01
BiCGSTAB SCM 2.30/13.5/0.03 0.58/8.5/0.17 0.89/5/0.38 0.42/7.5/0.18
GMRES AS ILU 1.18/26/0.01 0.39/12/0.04 0.90/10/0.01 0.33/10/0.01
GMRES AS BILU 1.58/13/0.01 0.74/12/0.02 0.91/9/0.01 0.60/8/0.01
BiCGSTAB AS ILU 1.18/10/0.01 0.39/10/0.04 0.90/5.5/0.01 0.33/7/0.01
BiCGSTAB AS BILU 1.18/10/0.01 0.74/7.5/0.02 0.91/5/0.01 0.60/5/0.01

TABLE 3.8: Results for the matrices 08BLOCKS,
ADDER_TRANS_01, ADD20 and CIRCUIT_1

ASIC_100K HCIRCUIT SCIRCUIT
m = 20 m = 50 m=200

ρ/Iter/Time(s) ρ/Iter/Time(s) ρ/Iter/Time(s)
GMRES(m) Prec. ILU 0.87/120/2.1 0.86/368/8.4 1.09/1171/148.2
GMRES(m) UPD 0.87/38/0.8 0.89/80/1.6 1.12/568/61.4
GMRES(m) SCM 0.87/39/10.1 0.86/91/21.3 1.09/705/149.7
BiCGSTAB Prec. ILU 0.87/42.5/1.1 0.86/919.5/11.9 †
BiCGSTAB UPD 0.87/44.5/1.1 0.89/86.5/1.2 1.12/854/30.7
BiCGSTAB SCM 0.87/46.5/2.7 0.86/133.5/20.2 †
GMRES(m) AS ILU 0.48/31/0.9 0.83/143/3.0 1.09/561/70.5
GMRES(m) AS BILU 0.81/42/1.1 0.86/83/1.6 1.11/560/69.5
BiCGSTAB AS ILU 0.48/28.5/1.0 0.83/388.5/5.1 1.09/743/27.5
BiCGSTAB AS BILU 0.81/82/2.3 0.86/97.5/1.3 1.11/807.5/27.8

TABLE 3.9: Results for the matrices ASIC_100K, HCIRCUIT and
SCIRCUIT

Universitat Politècnica de València 61





Chapter 4

Updating Preconditioners for
Modified Least Squares
Problems

In this chapter we analyze how to update incomplete Cholesky preconditioners to
solve least squares problems using iterative methods when the set of linear rela-
tions is updated with some new information, a new variable is added or, contrarily,
some information or variable is removed from the set. The proposed method com-
putes a low-rank update of the preconditioner using a bordering method which is
inexpensive compared with the cost of computing a new preconditioner. Moreover
the numerical experiments presented show that this strategy gives, in many cases,
a better preconditioner than other choices, including the computation of a new pre-
conditioner from scratch or reusing an existing one. The main results of this chapter
has been published in [60].

4.1 Introduction

Iterative methods are used for solving large and sparse linear least squares (LS) prob-
lems because they often require much less storage than their direct counterparts. One
of the most used iterative methods for LS problems is CGLS [20]. CGLS is equivalent
to applying the Conjugate Gradient method (CG) to the normal equations. To im-
prove the convergence of the iterative method very often a preconditioner is needed.
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Among other choices like Incomplete QR factorizations preconditioners, we will fo-
cus on Incomplete Cholesky (IC) preconditioners. These preconditioners have been
successfully employed in different applications, see [72, 73], and allow for the com-
putation of robust preconditioners for full rank overdetermined least squares prob-
lems [17, 23].

The problem of updating a preconditioner arise in some applications from statistics
and optimization, where it is necessary to solve a sequence of modified least squares
problems. An example can be found in [27], where an efficient and stable method for
adding and deleting equations to a regression model is required. In signal process-
ing applications near real-time solutions are required. Thus, methods that allow to
modify LS problems with few operations and little storage requirements are needed,
see [1]. The same problem is present if some information is added to or deleted from
the data set. On some occasions it may be convenient to add or to remove some
variables. Such situations are usually referred to as updating or downdating least
squares problems. Chapter 3 of the reference text [20] is devoted to analyzing how
to deal with these modifications when the least squares problem is solved by a direct
method, including full and rank revealing QR decomposition, Cholesky factoriza-
tion and singular value decomposition. More recently other algorithms to update
Cholesky factorizations have been proposed, see [32, 33, 34]. More efforts seem to be
addressed to updating the QR factorization, see [2, 46, 64].

In this chapter we present a method to modify an existing incomplete factorization
with low computational cost. We note that when some columns are removed from
an overdetermined system, obtaining a preconditioner for the modified LS problem
can be done without additional cost by taking a block from the existing one. A sim-
ilar situation occurs when some columns are added to an overdetermined system,
or when new relations are added to an underdetermined one. In both cases the old
preconditioner is the top left block of the new one. Thus, it is a preconditioner com-
pletion problem. The final result is equivalent to computing a new preconditioner
from scratch.

The cases in which we are interested correspond to LS modified problems whose
normal equations have a coefficient matrix that does not change in size but their
entries do. These problems can be formulated as a low-rank update of the original
normal equations and we propose updating the preconditioner following the the
general framework described in Chapter 2. The goal is computing the update with
smaller cost than obtaining a new preconditioner from scratch, but with comparable
performance.
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4.2. Preconditioner update computation and application

The chapter is organized as follows. In Section 4.2 we describe the preconditioning
updating technique for this problem. In Section 4.3 we consider adding or deleting
equations to overdetermined least squares problems. The opposite case, that is when
the system is underdetermined, is analyzed in Section 4.4. We will see that there is
a duality between both groups of problems. In Section 4.5 we present the results of
the numerical experiments that show that the proposed strategy is effective.

4.2 Preconditioner update computation and application

Suppose that the least squares solution of the overdetermined linear system

Ax = b, (4.1)

where A is a large and sparse m× n matrix, m > n, has been computed using a pre-
conditioned iterative method. We assume that A has full rank, n, that is, its columns
are linearly independent. As it is well known, the LS solution is given by the vector
x that minimizes ‖ b − Ax ‖2, and can be obtained by solving the normal equations
corresponding to (4.1) given by

ATAx = AT b. (4.2)

We are interested in computing the least squares solution of a new linear system
obtained after the original system has been modified by adding or removing k equa-
tions. As it is shown in the next section, the normal equations for the modified linear
system can be written in these cases as

(ATA±BTB)x = c, (4.3)

where B is a k × n matrix.

Observe that the solution of (4.3) can be obtained from the solution of the equivalent
linear system [

ATA BT

B ∓I

][
x

±Bx

]
=

[
c

0

]
. (4.4)

Note that the augmented matrix in the last system is a particular case of the matrix
in (2.4), defined in Chapter 2, with A11 = ATA, A12 = BT , A21 = B, A22 = ∓I .
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One has the following relations between the linear operators in (4.3) and (4.4),

ATA±BTB =
[
I O

] [ ATA BT

B ∓I

][
I

±B

]
(4.5)

and their inverses

(ATA±BTB)−1 =
[
I O

] [ ATA BT

B ∓I

]−1 [
I

O

]
. (4.6)

The preconditioner update technique consists in computing an incomplete factoriza-
tion for the augmented matrix in (4.4) that is used to approximate the inverse linear
operator in (4.6) by direct preconditioning, i.e., solving the corresponding upper and
lower triangular systems. Therefore we avoid the computation of a new precondi-
tioner for the updated matrix ATA±BTB from scratch.

To be precise, let ATA ≈ RTR be an IC factorization of ATA, where R is an upper
triangular matrix. Then one gets a block LDLT (almost Cholesky) factorization of
the augmented matrix in (4.5) given by[

ATA BT

B ∓I

]
=

[
RT 0

RT12 I

][
I 0

0 ∓S

][
R R12

0 I

]
, (4.7)

where R12 = R−TBT is a n × k matrix and S = I ± RT12R12 is a k × k matrix. To
maintain sparsity in these factors some dropping strategy can be used when com-
puting R12 and an incomplete factorization of the Schur complement S ≈ RTSRS as
well, but if k is small enough this block can be factorized exactly. The computation
of the preconditioner is done following the steps presented in Algorithm 8 in Chap-
ter 2. Note that although the (approximate) inverse operator in the form of (4.6) is
symmetric and positive definite, it is not stored nor can it be applied in factorized
form. Therefore, only left or right preconditioning can be used when applying the
conjugate gradient method to the normal equations (or the mathematically equiva-
lent CGLS method). The preconditioning strategy proposed computes the precon-
ditioned residual by applying Equation (4.6) with an incomplete factorization of the
augmented matrix. That is, the preconditioned residual s is given by

s =
[
I O

] [ ATA BT

B ∓I

]−1 [
I

O

]
r,
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and it is computed from the solution of[
RT 0

RT12 I

][
I 0

0 ∓S

][
R R12

0 I

][
s

s′

]
=

[
r

0

]
. (4.8)

The preconditioning is done in three steps as Algorithm 12 shows. Observe that this
is a particular case of the Algorithm 9 presented in Chapter 2.

Algorithm 12 Preconditioner update application
Input: Matrices R, R12, RS and residual vector r.
Output: Preconditioned vector s
1. Solve the linear system RT r̃ = r.
2. Update r̃ ← r̃ ∓R12(RTSRS)−1RT12r̃.
3. Solve the linear system Rs = r̃.

Step 2 in Algorithm 12 represents the extra cost in the application of the precondi-
tioner with respect to the case of non-updating an existing one. If R12 and RS are
kept sparse and the number of added or removed equations is small compared with
the problem size, this overhead is small and can be amortized even for moderate
reductions on the number of iterations, see [24]. The method in the rest of this chap-
ter will be referenced as UPD, it essentially remains the same method presented in
Chapter 2.

4.3 Updating preconditioners: Overdetermined case

In this section we consider all possible modifications of the overdetermined linear
system (4.1). We analyze and propose strategies to get a preconditioner for the new
normal equations when adding or/and removing equations, as well as when adding
or/and removing some unknowns. As it is shown below some of theses cases lead
to trivial computation of the preconditioner.

4.3.1 Adding equations to an overdetermined system

It may happen that some new relations among the unknowns are considered. If these
relations are given as the system of k linear equations

Bx = c,
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then we have the m+ k system of linear equations[
A

B

]
x =

[
b

c

]
.

If A has full rank, the new coefficient matrix [ AB ] has also full rank, and the corre-
sponding normal equations are

(ATA+BTB)x = AT b+BT c. (4.9)

That is, the new normal equations are the result of a low-rank update of the initial
ones. If we put f = AT b + BT c, the preconditioner update technique proposed in
Section 4.2 can be applied to the augmented linear system[

ATA BT

B −I

][
x

y

]
=

[
f

0

]
.

4.3.2 Removing equations from an overdetermined system

This is just the opposite case. Suppose that instead of adding new information, some
linear equations are removed from the initial linear system Ax = b. After a suitable
row permutation, the new system can be written as[

A1

B

]
x =

[
b1

b2

]
, (4.10)

where A1 ∈ R(m−k)×n, m−k > n and B ∈ Rk×n, and it is assumed that rank
[
A1

B

]
=

n. Assume the information corresponding to the bottom block must be removed.
The normal equations corresponding to (4.10) are

(AT1 A1 +BTB)x = AT1 b1 +BT b2. (4.11)

Observe that the row permutation is irrelevant when forming the normal equa-
tions. In fact if M is a matrix and P is a permutation matrix, (PM)T (PM) =

MT (PTP )M = MTM .
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After deleting the bottom block, one gets the linear system A1x = b1, whose normal
equations, AT1 A1x = AT1 b1, can be related to (4.11) by

(
ATA−BTB

)
x = AT1 b1.

This system is again the result of a rank k modification of the initial normal equa-
tions, and it has the same solution as component x in the solution of the augmented
linear system [

ATA BT

B I

][
x

y

]
=

[
AT1 b1

0

]
,

which allows for the application of the preconditioner update strategy described in
Section 4.2, provided that A1 has full rank. Otherwise, the singularity of AT1 A1 may
produce poor preconditioners or even a breakdown during the computation of the
preconditioner. Since the new coefficient matrix has less rows than the original one,
it may happen that the remaining set of equations has rank less than n. In this case
the square matrix

[
ATA BT

B I

]
is singular. To prove it, let rankA1 = r < n. Then,

rankAT1 A1 = r < n, and let B ∈ Rk×n of rank k. Let us do a symmetric permutation,
[O I
I O ], to the matrix so that the permuted matrix is

[
I B
BT ATA

]
. After eliminating

the left bottom block by Gaussian elimination obtaining
[
I B
0 AT

1 A1

]
, which has rank

k + r < k + n. Of course, computing a new preconditioner from scratch in this case
can be difficult for the same reasons. This is illustrated with an example with the
matrix ASH219 in the numerical experiments section, see figures 4.4, 4.5 and 4.6.

4.3.3 Adding and removing equations from an overdetermined sys-
tem

Now suppose that both things occur simultaneously, that is, some equations are
added and some others are deleted. To fix the notation, starting with the linear sys-
tem Ax = b written as [

A1

B

]
x =

[
b1

b2

]
, (4.12)

one wants to solve the linear system obtained after removing the bottom equations
Bx = b2, and then adding some new equations Cx = c, such that the new linear
system is [

A1

C

]
x =

[
b1

c

]
. (4.13)
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The normal equations for systems (4.12) and (4.13) are

(AT1 A1 +BTB)x = AT1 b1 +BT b2 (4.14)

and
(AT1 A1 + CTC)x = AT1 b1 + CT c, (4.15)

respectively. If we consider the augmented system ATA CT BT

C −I 0

B 0 I


 x

y

z

 =

 AT1 b1 + CT c

0

0

 (4.16)

we obtain

ATAx+ CT y +BT z = AT1 b1 + CT c

Cx− y = 0

Bx+ z = 0.

Hence, y = Cx and z = −Bx and substituting in the first equation we obtain

(ATA+ CTC −BTB)x = (AT1 A1 + CTC)x = AT1 b1 + CT c.

Therefore, problem (4.15) is a low-rank update of the initial problem (4.14) and the
proposed strategy can be used provided that

[
A1

C

]
has full rank. Note that the new

coefficient matrix can have full rank even when A1 has not, depending on C. Ob-
serve also that the coefficient matrix in (4.16) is nonsingular if and only if the matrix[
A1

C

]
has full rank since the Schur complement of the (1, 1) block is AT1 A1 + CTC.

4.3.4 Adding columns to an overdetermined system

Assume now that a set of columns are added to the system (4.1). The natural choice
is to put them at the end of the matrix as long as the solution can be easily reordered.
An example can be if we decided to increase the degree of a fitting polynomial to a
set of data, or one considers that some previously discarded variable is relevant to
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the phenomenon studied. Then the augmented system is

[
A B

] [ x

y

]
= b,

and the corresponding normal equations are[
ATA ATB

BTA BTB

][
x

y

]
=

[
AT b

AT b

]
. (4.17)

Updating an already computed preconditioner forATA is straightforward, provided
the new coefficient matrix in Equation (4.17) has still full rank. Observe that this
matrix has full rank if and only if the coefficient matrix in the last linear system is
positive definite. Then to update the preconditioner is as easy as to apply the stan-
dard method to complete the preconditioner by bordering. Thus, we do not consider
this case in this thesis since it is equivalent to compute a new preconditioner from
scratch but taking into account that a subblock is already at disposal, and therefore,
with a lower cost.

4.3.5 Removing columns from an overdetermined system

Now we analyze the case of removing some columns of the coefficient matrix in
(4.1). A suitable column permutation allows to move these columns to the right of
the matrix, so that we can write the system as

[
A C

] [ x

z

]
= b,

C being the block of columns to be removed. The normal equations of the original
system are [

ATA ATC

CTA CTC

][
x

z

]
=

[
AT b

CT b

]
. (4.18)

The (1, 1) block of the coefficient matrix in the previous Equation (4.18) is the coef-
ficient matrix of the normal equations we want to solve and the corresponding part
of the incomplete Cholesky preconditioner computed for this matrix, is the precon-
ditioner needed. This case is trivial and it is not considered in this work.
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4.3.6 Adding and removing columns from an overdetermined sys-
tem

Suppose now that in the system

[
A C

] [ x

z

]
= b,

the last columns, block C, are removed and a new set of unknowns y and their cor-
responding block B are added to obtain the system

[
A B

] [ x

y

]
= b.

Of course the update can be computed only if the matrix
[
A B

]
has full column

rank and in this case the preconditioner for the new system can be computed in
two steps. First one must select the (1, 1) block in the IC preconditioner computed

for

[
ATA ATC

CTA CTC

]
and then compute the part corresponding to the new block as

proposed in subsection 4.3.4. As before, this case is not considered in this work.

4.4 Updating preconditioners: Underdetermined case

Consider now the LS problem

min‖x‖2 subject to Ax = b, (4.19)

where A ∈ Rm×n, is a large and sparse full rank matrix with m < n. Problem (4.19)
is solved using the second kind normal equations

AAT z = b, y = AT z. (4.20)

Since y = AT (AAT )−1b, y belongs to the row subspace of A which is orthogonal to
the Kernel of A. Thus, y is the solution of (4.19).

As in the overdetermined case, it is assumed that an incomplete Cholesky factoriza-
tion of the symmetric positive definite matrix AAT has been computed. Then, new
unknowns or columns are added to the linear system or some of them are deleted,
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or both. In the following, we will see that the preconditioner can be updated under
the same conditions and with similar techniques as for the cases studied in Section
4.3.

4.4.1 Adding equations

Suppose that some new equations are added to the problem (4.19) obtaining a LS
problem given by

min‖x‖2 subject to

[
A

B

]
x =

[
b

c

]
(4.21)

where B ∈ Rp×n, with m + p < n. Clearly the coefficient matrix in (4.21) has full
rank and the new normal equations of second kind are[

AAT ABT

BAT BBT

]
z =

[
b

c

]
. (4.22)

Observe from (4.22) that we have a preconditioner completion problem similar to
(4.17), and therefore the same strategy proposed in subsection 4.3.4 can be used and
the same considerations hold.

4.4.2 Removing equations

To analyze this case we can consider, without lost of generality, that the last block of
equations in [

A

C

]
x =

[
b

d

]
(4.23)

is removed. Therefore, the normal equations for (4.23) are[
AAT ACT

CAT CCT

]
z =

[
b

d

]
. (4.24)

Observe that the coefficient matrix in (4.24) is similar to the one in (4.18), hence,
one must simply take the (1, 1) block to obtain a preconditioner for solving the LS
problem (4.20). Then, it is a trivial case.
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4.4.3 Adding and removing equations

If we want to remove some equations and add some new ones, let us consider first
that the equations to be removed have been permuted to the last positions. Then, the
problem consists in removing equations Cx = d in the Equation (4.23) and adding
the new equations Bx = c to get a system as the one presented in Equation (4.21).

The corresponding normal equations of the second kind are (4.24) and (4.22), respec-
tively and thus, the new preconditioner is obtained by taking off the (1, 1) block in
(4.24) first and then completing the computation of the preconditioner.

4.4.4 Adding columns

Now we consider the problem of adding unknowns to (4.19), so that the new LS
problem is

min‖x‖2 subject to
[
A B

]
x = b. (4.25)

The normal equations of the second kind in this case are

(AAT +BBT )z = b, (4.26)

that corresponds to a low-rank update similar to the one described in subsection
4.3.1 since the augmented linear system[

AAT BT

B −I

][
z

y

]
=

[
b

0

]

provides the solution for (4.26). Therefore, the updating strategy proposed in Section
4.2 can be applied.

4.4.5 Removing columns

Assume that the linear system Ax = b is splitted as[
A1 B

]
x = b,
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where B represents the block of columns to be removed. The corresponding normal
equations of the second kind are

(A1A
T
1 +BBT )z = b.

To solve the new normal equations A1A
T
1 z = b, one can consider the augmented

system [
AAT B

BT I

][
z

w

]
=

[
b

0

]
.

This is similar to the situation in subsection 4.3.2. Then, the proposed strategy to
update the preconditioner can be applied.

4.4.6 Adding and removing columns

The last problem that we study in this section corresponds to the case of removing
the last set of columns in the underdetermined linear system Ax = b given by

[
A1 B

] [ x1

x2

]
= b (4.27)

and adding a new block C to get a new underdetermined problem given by

[
A1 C

] [ x1

x3

]
= b. (4.28)

The normal equations of the second kind for (4.28) are

(A1A
T
1 + CCT )z = b,

that can be written as
(AAT −BBT + CCT )z = b.

The solution of these equations, z, can be obtained from the solution of the aug-
mented system  AAT B C

BT I 0

CT 0 −I


 z

v

w

 =

 b

0

0

 .
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Observe that the coefficient matrix of this system is similar to the one in (4.16). Then,
the same comments and strategies used in subsection 4.3.3 apply to this case.

4.5 Numerical experiments

In this section we study the numerical performance of the preconditioner update
method proposed (UPD). We present results obtained with matrices arising in dif-
ferent areas of scientific computing. The performance of the method is compared
with other preconditioning strategies. The first one is reusing the initial precondi-
tioner computed for the normal equations of the unmodified matrix. The second
strategy corresponds to the computation of a new almost Cholesky preconditioner
for the updated matrix from scratch. In addition, non-preconditioned iterations are
also reported.

We present results for the modifications described in sections 4.3 and 4.4 that corre-
spond to adding and removing equations or columns.

Matrix name rows cols nnz Application
PHOTOGRAMMETRY2 4472 936 37056 Computer graphics/vision problem
TESTBIG 17613 31223 61639 Linear programming problem
CAT_EARS_4_4 19020 44448 132888 Combinatorial problem
DELTAX 68600 21961 247424 High fillin with exact partial pivoting
FOME13 48568 97840 285046 Linear programming problem
LP_KEN_18 105127 154699 358171 Linear programming problem
FLOWER_8_4 55081 125361 375266 Combinatorial problem
FXM3_16 41340 85575 392252 Linear programming problem
LP_OSA_30 4350 104375 604488 Linear programming problem
MESH_DEFORM 234023 9393 853829 Image mesh deformation problem
WATSON_1 201155 386992 1055093 Linear programming problem
TS-PALKO 22002 47235 1076903 Linear programming problem
LP_NUG30 52260 379350 1567800 Linear programming problem
LARGEREGFILE 2111154 801374 4944201 Circuit simulation problem
SLS 1748122 62729 6804304 Statistics
TP-6 142752 1014301 11537419 Linear programming problem

TABLE 4.1: Set of test matrices

The tested matrices are shown in Table 4.1. All the matrices can be downloaded
from the University of Florida Sparse Matrix Collection [35]. For each matrix we
provide its number of rows and columns, the number of its nonzero entries, nnz,
and the application field. The matrices with more rows than columns were used to
obtain the numerical results corresponding to the overdetermined case, while the
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rest, mainly matrices arising from linear programming problems, were used for the
undetermined one.

The preconditioned CGLS [20] or CGNR [73] and the preconditioned CGNE [73] for
the overdetermined problems, were used for a relative initial residual norm decrease
of 10−8, allowing a maximum number of 3, 000 iterations. The right hand side vec-
tor was computed as a random vector. The initial approximation to the solution x

was the vector of all zeros. The experiments where done with MATLAB version
2016a running on an Intel 5 CPU with 8 Gb of RAM in a Windows operating system.
We used MATLAB’s function ilu() to compute the incomplete factorizations since,
for some matrices, the computation of a Cholesky factorization with the MATLAB’s
function ichol() stopped with a breakdown. Moreover, we found that permuting the
coefficient matrix to block triangular form before computing the normal equations
improved the quality of the preconditioner. Thus, all the matrices were permuted
using the MATLAB’s function dmperm() that obtains the Dulmage-Mendelsohn
decomposition [71]. Symmetric diagonal scaling was applied to the matrices. The
dropping parameter for managing the fill-in of the preconditioners was set to 0.1 ex-
cept for the matrices DELTAX and MESH_DEFORM for which a value of 0.01 was
used. We avoided fine tuning of the drop tolerance and with these values we com-
puted very sparse preconditioners.

Tables 4.2 and 4.3 report the results for the cases of adding and removing equations
or columns, depending of the problem. In these tables, k represents the rank of the
update, i.e., the number of equations added or removed. This parameter is given in
absolute number and also in percentage compared with the largest dimension of the
matrix. We tested several values, but in the Tables we only report three results for
each matrix that correspond to small, medium and large modifications up to a max-
imum of five percent. The relative density of the preconditioner with respect to the
updated matrix is indicated in the column ρ. For simplicity the minimum and max-
imum density values observed for the preconditioners considered are shown. Nor-
mally, the minimum value corresponds to the non-updated preconditioner while the
maximum was achieved for either, the recomputed or the UPD. The number of itera-
tions and CPU solution time, measured in seconds, are indicated with Iter and Time,
respectively. We recall that the application of the UPD and the recomputed pre-
conditioners have, with respect to the two other strategies, an extra cost due to the
computation of the UPD or the computation of the full preconditioner from scratch,
respectively. Therefore, in the tables the value Time reports the total CPU time corre-
sponding to the preconditioner computation and the iterative solution spent by these
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two strategies. As recommended in MATLAB’s documentation, CPU times reported
are the mean value of 10 successive runs of the experiment performed after 3 initial
runs that were discarded. The maximum standard deviation observed relative to the
mean value was 3 percent, and frequently less than 1 percent.

We start analyzing the results for the case of adding equations or columns that are
shown in Table 4.2. The equations added were obtained by selecting at random k

rows of the original matrix, and ordering in reverse order their column entries to
avoid duplicated rows. In the case of adding columns, the modification was ob-
tained similarly but with the rows of the matrix. The preconditioner density is very
small for most of the preconditioners and always below one. It is important to note
that in our algorithm, to compute an update with moderate fill-in, element dropping
was applied in three different steps. First, a sparsification of the new block of rows
(equations) added to the matrix was done before computing the block columnR12 in
Equation (4.7). Then, the computation of the block R12 itself was done incompletely
by dropping small entries. Finally, an incomplete factorization was computed for the
Schur-complement block S, see Equation (4.7). The respective tolerances were 1.0,
1.0 and 0.1 for all the matrices. Although for small values of k exact factorization of
the Schur complement S could be done, we avoided fine tuning and performed in-
complete factorization with the same drop tolerance used for the normal equations.
We note that, with this aggressive dropping the total solution time was reduced, be-
cause the application of the preconditioner is cheaper, and also in some cases the
number of iterations needed to converge was reduced. We recall that adding fill-in
is not directly correlated with fewer number of iterations and, actually an increment
is possible as is reported for instance in [23] for incomplete Cholesky factorizations
for LS problems, see also [15].

From the number of iterations we see that the UPD performed better than the non-
updated one, and similar to the case of recomputing the preconditioner. Taking into
account the overall time, our strategy performed similarly to the best of the other
strategies in most of the cases, and it was the best in several cases. For example, Fig-
ure 4.1 shows the evolution of the number of iterations when the number of added
rows increases, for the matrix PHOTOGRAMMETRY2. In this case the proposed
strategy performed better than the others with almost constant number of iterations.

We present in Figures 4.2 and 4.3 the comparison of the different methods when
equations are added for the problem SLS and FOME13, respectively.

Analyzing the results in Table 4.3 we observe that, if instead of adding equations
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FIGURE 4.1: Effect of the number of equations added in the number
of iterations and time for the matrix PHOTOGRAMMETRY2.
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FIGURE 4.2: Effect of the number of equations added in the number
of iterations and in the total time to get the solution for the matrix

SLS.
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FIGURE 4.3: Effect of the number of equations added in the number
of iterations and in the total time to get the solution for the matrix

FOME13.
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FIGURE 4.4: Condition numbers of the normal equations, equivalent
bordered matrix and Schur complement matrix S for matrix ASH219

when removing rows from bottom.

(columns) the modification consists of removing a block of them, the situation changes
in favor of the proposed algorithm. In this case, when the number of equations re-
moved increases, sometimes the preconditioner can not be computed or it is very
poor. Therefore, the application of the recomputed preconditioner can even lead to
a divergence of the iterative solution method. Recall that, after removing equations,
it is not warranted that the new matrix keeps its full rank. This can explain the
big increment in the number of iterations needed to converge, and even the failure
to converge in some cases. Under these conditions the proposed updating strategy
performed nicely, and surprisingly it kept an almost constant performance indepen-
dently of the number of equations or columns removed.

To illustrate the comments above we did an experiment with the matrix ASH219, also
from the University of Florida Sparse Matrix Collection [35]. Its size is 219× 85 and
has full rank. Figure 4.4 illustrates the condition numbers of the normal equations,
of the bordered matrix and the Schur complement block S, when successive rows
are deleted from the end of the matrix. We observe that when a small number of
rows are deleted all condition numbers remain low and have the same order up
to some point where all them increase similarly. But eventually as more rows are
deleted the condition number of the normal equations rises quickly while the other
condition numbers remain almost constant. Figure 4.5 shows the decay evolution of
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FIGURE 4.5: Decay evolution of the smallest 9 singular values of the
normal equation matrix when removing rows from the bottom for

matrix ASH219.

FIGURE 4.6: Decay evolution of the smallest 9 singular values of the
augmented matrix when removing rows from the bottom for matrix

ASH219.
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the smallest singular values of the matrix when rows are deleted. It is observed that
the increment of the condition number is acompanied by a progressive increment
of the number of singular values that are clustered closer and closer to zero, while
the decay in the singular values for the augmented system is less pronounced as
Figure 4.6 shows. This may explain the degradation of the convergence degradation
of the iterative method and why the updating technique gives better results than
recomputing the preconditioner from scratch for some problems.

We note that as more rows (columns) are removed the matrix may loose its full rank,
we observed this situation for example in the case of the matrix FXM3_16. CGLS
then converges to the pseudo-inverse solution if the initial approximation x0 is in
the range of AT , as in our choice of x0 as the vector of all zeros [20, p. 291]. In
practice this convergence can be very slow, or even can stagnate. Also it may be
very difficult to compute the preconditioner due to breakdowns, as happen in some
cases when recomputing it from scratch. Using our strategy the preconditioner was
computed successfully in all cases and preconditioned CGLS converged quite fast.

Although for some matrices, for example TESTBIG and LP_OSA_30, the results are
comparable in terms of time, we recall that the reduction of the number of itera-
tions spent by the iterative method may have a bigger impact in the overall solution
time when increasing the problem size, as the matrices SLS and FOME13 shows, see
Figures 4.7 and 4.8.

Overall, we can conclude that the proposed algorithm is competitive and robust
since it was able to successfully solve all the problems. The number of iterations
and time spent was the best, or close to it, in the majority of cases. Another con-
clusion is that, in general, it is better to apply the UPD or recompute a new precon-
ditioner from scratch instead of reusing the original one. In any case, these three
strategies are better than non-preconditioned iterations. Computing a new precon-
ditioner from scratch may have two drawbacks. The first one is an increment on the
set-up time that usually only pays off in the case of adding equations when the size
of the update is quite large. The second one is that when removing equations, the
preconditioner computation may become unstable probably due to an increment of
the condition number of the coefficient matrix of the normal equations.
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FIGURE 4.7: Effect of the number of equations deleted in the number
of iterations and in the total time to get the solution for the matrix

SLS.
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FIGURE 4.8: Effect of the number of equations deleted in the number
of iterations and in the total time to get the solution for the matrix

FOME13.
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4.6 Conclusions

The main conclusion of this chapter is that adding equations, or removing them or
both, as well as adding or removing or simply changing some variables is feasible
when solving least squares problems with preconditioned iterative methods, pro-
vided that the resulting coefficient matrix has full rank.

In the most difficult cases, that is, when the coefficient matrix of the normal equa-
tions are modified by a low-rank matrix, we have introduced a technique, based
on bordering, that allows to update the preconditioner in an inexpensive way. This
technique has moderate memory and computational requirements, as demanded in
[1]. Moreover, it is effective and robust as our numerical experiments show.

In Chapter 5 we combine the proposed strategy with other regularization techniques
to compute the least squares solution of rank deficient linear systems.
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Matrix k ρ non-prec non-updated recomputed UPD
Iter/Time(s) Iter/Time(s) Iter/Time(s)∗ Iter/Time(s)∗

300/0.96 86/0.1 72/0.1 66/0.2 70/0.1
TESTBIG 600/1.92 [0.54,0.57] 89/0.1 73/0.1 69/0.2 67/0.1

1200/3.84 87/0.1 72/0.1 66/0.2 72/0.1
400/0.90 151/0.2 83/0.3 82/0.4 82/0.2

CAT_EARS_4_4 1100/2.47 [0.70,0.77] 158/0.2 87/0.3 87/0.3 86/0.3
2200/4.95 149/0.2 81/0.3 81/0.4 81/0.3
300/0.44 768/1.4 919/3.3 920/3.8 873/3.0

DELTAX 1200/1.75 [0.95,0.98] 787/1.6 914/3.1 829/3.6 788/2.8
3400/4.96 903/1.8 899/3.1 894/3.7 863/2.9
200/0.20 457/1.5 272/1.5 289/1.9 270/1.4

FOME13 1000/1.02 [0.74,0.78] 494/1.6 303/1.6 301/2.0 297/1.6
4000/4.08 527/1.8 309/1.8 304/2.0 306/1.7
500/0.32 511/2.6 167/1.4 167/1.4 152/1.2

LP_KEN_18 1000/0.65 [0.75,0.78] 509/2.6 154/1.3 155/1.4 154/1.2
5000/3.23 519/2.6 169/1.4 168/1.5 169/1.4
500/0.40 177/0.6 104/0.7 103/1.2 103/0.7

FLOWER_8_4 1000/0.80 [0.77,0.80] 190/0.7 94/0.7 99/1.2 93/0.7
6000/4.79 182/0.8 102/0.8 97/1.2 101/0.8
100/0.12 1995/4.9 616/2.9 605/2.4 608/2.4

FXM3_16 1000/1.17 [0.34,0.38] 2870/7.1 754/2.8 712/2.8 714/2.8
4000/4.68 † 781/3.1 802/3.1 794/3.1
500/0.48 132/0.4 66/0.2 55/0.2 60/0.2

LP_OSA_30 1000/0.96 [0.01,0.02] 134/0.4 67/0.2 57/0.2 57/0.2
5000/4.79 142/0.4 98/0.4 57/0.3 56/0.3
230/0.10 473/2.9 228/1.7 228/1.8 196/1.3

MESH_DEFORM 2300/0.98 [0.07,0.11] 474/2.9 230/1.7 229/1.8 200/1.3
9200/3.94 462/2.9 236/1.8 217/1.8 207/1.4
500/0.13 638/7.0 342/6.4 420/7.7 342/6.5

WATSON_1 5000/1.29 [0.45,0.48] 622/6.9 343/6.8 576/9.8 342/6.8
15000/3.88 627/7.1 333/6.7 612/11.1 332/6.6
500/1.06 48/0.3 48/0.3 47/0.3 44/0.3

TS-PALKO 1000/2.12 [0.02,0.03] 49/0.2 48/0.3 48/0.4 44/0.3
2000/4.23 48/0.2 48/0.3 48/0.4 44/0.3
500/0.13 13/0.3 13/0.3 13/0.4 13/0.3

LP_NUG30 5000/1.32 [0.13,0.15] 14/0.3 14/0.3 14/0.4 16/0.3
10000/2.64 16/0.3 16/0.3 16/0.4 16/0.3
5000/0.24 68/5.2 48/5.7 48/6.6 42/4.9

LARGEREGFILE 10000/0.47 [0.42,0.45] 68/5.0 49/5.3 50/5.5 44/5.3
50000/2.37 69/5.3 51/5.9 51/5.7 48/5.5
1750/0.10 149/12.1 118/9.7 118/9.8 114/9.1

SLS 17500/1.00 [0.01,0.02] 125/10.2 101/8.4 101/8.6 103/7.9
70000/4.00 124/10.3 100/8.4 100/8.6 101/7.9
1400/0.14 20/1.7 17/1.6 17/1.7 16/1.6

TP-6 14000/1.38 [0.02,0.03] 21/1.8 18/1.7 18/1.8 19/1.7
28000/2.76 21/1.8 18/1.7 18/1.7 19/1.8

TABLE 4.2: Effect of the rank of the update when adding equations
or columns. k is the rank of the update in absolute number and
percentage, ρ is the density range for all the preconditioners. ∗ indi-
cates total CPU time corresponding to the preconditioner computa-
tion and the iterative solution. A † means that the iterative method

was unable to converge.
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Matrix k ρ non-prec non-updated recomputed UPD
Iter/Time(s) Iter/Time(s) Iter/Time(s)∗ Iter/Time(s)∗

50/1.12 357/0.04 143/0.02 142/0.02 70/0.01
PHOTOGRAMMETRY2 100/2.24 [0.03,0.05] 461/0.05 182/0.03 191/0.03 70/0.01

200/4.47 859/0.11 495/0.07 497/0.12 70/0.01
300/0.96 142/0.1 112/0.1 101/0.2 56/0.1

TESTBIG 600/1.92 [0.55,0.59] 141/0.1 113/0.1 99/0.2 56/0.1
1200/3.84 149/0.1 112/0.1 104/0.2 57/0.1
400/0.9 146/0.2 78/0.2 78/0.9 87/0.3

CAT_EARS_4_4 1100/2.47 [0.78,0.84] 163/0.3 92/0.3 88/0.9 87/0.3
2200/4.95 369/0.5 213/0.5 144/0.9 109/0.4
200/0.20 460/1.5 276/1.5 272/1.9 230/1.3

FOME13 1000/1.02 [0.79] 512/1.8 306/1.6 296/2.0 239/1.4
4000/4.08 712/3.8 612/1.9 604/2.4 237/1.3
500/0.32 531/2.6 217/1.7 216/1.8 132/1.1

LP_KEN_18 1000/0.65 [0.77,0.81] 532/2.6 231/1.8 229/1.9 132/1.1
5000/3.23 573/2.7 227/1.7 216/1.8 134/1.1
500/0.40 175/0.7 102/0.7 101/1.2 107/0.8

FLOWER_8_4 1000/0.80 [0.80,0.86] 181/0.7 93/0.7 92/1.4 95/0.7
6000/4.79 315/1.2 186/1.3 144/1.7 104/0.8
100/0.12 2115/5.3 1200/4.7 668/3.1 462/1.9

FXM3_16 1000/1.17 [0.38,0.42] 2212/5.4 1974/7.2 2228/8.5 470/1.8
4000/4.68 2670/6.3 2067/7.4 1592/6.7 473/1.8
500/0.48 132/0.4 60/0.2 55/0.2 56/0.2

LP_OSA_30 1000/0.96 [0.01,0.02] 134/0.4 68/0.2 61/0.3 56/0.2
5000/4.79 142/0.4 111/0.4 68/0.3 56/0.2
230/0.10 482/2.9 261/1.9 230/1.9 198/1.3

MESH_DEFORM 2300/0.98 [0.09,0.19] 518/3.3 508/3.6 680/5.1 192/1.2
9200/3.94 1554/9.1 2464/17.1 † 197/1.4
500/0.13 1136/12.4 705/13.0 332/7.0 330/6.5

WATSON_1 5000/1.29 [0.48,0.56] † † 414/7.9 315/6.4
15000/3.88 † † 381/7.1 331/6.5

500/1.06 75/0.4 73/0.4 72/0.8 44/0.3
TS-PALKO 1000/2.12 [0.03,0.04] 842/3.7 831/3.8 744/3.7 44/0.3

2000/4.23 2665/10.6 2620/12.3 2346/11.8 44/0.3
500/0.13 20/0.3 32/0.4 18/0.7 17/0.3

LP_NUG30 5000/1.32 [0.13,0.15] 40/0.6 57/0.9 22/0.8 18/0.3
10000/2.64 62/1.1 91/1.3 27/1.0 19/0.3
5000/0.24 91/6.7 53/5.7 48/6.6 50/5.4

LARGEREGFILE 10000/0.47 [0.44,0.48] 93/6.7 53/5.7 47/6.2 56/6.2
50000/2.37 98/7.0 57/6.2 46/6.4 60/6.3

175/0.01 209/17.8 154/12.9 155/13.5 129/10.1
SLS 17500/1.00 473/38.5 260/21.7 252/21.9 129/10.0

70000/4.00 455/36.7 244/20.2 244/20.3 130/10.2
1400/0.14 191/15.3 182/16.0 137/12.3 18/1.7

TP-6 14000/1.38 [0.02,0.03] † † † 20/1.8
28000/2.76 † † † 21/1.9

TABLE 4.3: Effect of the rank of the update when removing equa-
tions or columns. k is the rank of the update in absolute number and
percentage, ρ is the density range for all the preconditioners. ∗ indi-
cates total CPU time corresponding to the preconditioner computa-
tion and the iterative solution. A † means that the iterative method

was unable to converge.
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Chapter 5

Preconditioners for rank
deficient least squares problems

We use the method presented in Chapter 2 for computing sparse preconditioners for
iteratively solving rank deficient least squares problems by using the LSMR method.
The main idea of the method proposed is to update an incomplete factorization com-
puted for a regularized problem to recover the solution of the original one. The nu-
merical experiments for a wide set of matrices arising from different science and en-
gineering applications show that the preconditioner proposed, in most cases, can be
successfully applied to accelerate the convergence of the iterative Krylov subspace
method.

5.1 Introduction

Linear least squares (LS) problems arise in many large-scale applications of the sci-
ence and engineering as neural networks, linear programming, exploration seismol-
ogy or image processing, among others. The LS problem considered is formulated
as

min
x
‖b−Ax‖2, (5.1)

where A ∈ Rm×n, m ≥ n is large and sparse and b ∈ Rm. This problem can be
also formulated in the following mathematically equivalent n× n normal equations
system:

ATAx = AT b. (5.2)
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Two types of methods are usually used to solve these linear systems, direct and
iterative methods. Direct methods, in spite of their robustness, require the compu-
tation of an explicit factorization of the coefficient matrix of the linear system, that
implies large computational time and memory storage. In contrast, iterative Krylov
subspace methods may be preferred when the system matrix is large and sparse
because they often are less demanding in memory requirements than their direct
counterparts. In this case, Equation (5.2) is solved iteratively using conjugate gradi-
ent like methods, as the LSMR and CGLS methods, among others. Basically, these
methods implicitly apply the conjugate gradient or minimal residual method to the
normal equations. See Chapter 1 for a description of these methods and different
preconditioning techniques for LS problems.

The chapter is organized as follows. In Section 5.2, we describe the bordering tech-
nique used to update an existing preconditioner by using an equivalent augmented
system. In Section 5.3, we describe the test environment, and present the set of prob-
lems studied. Then, we report on the numerical experiments in Section 5.4, that
show that the proposed technique is robust and effective. Finally the conclusions are
presented.

5.2 Updated preconditioner method

When the matrix A in (5.1) is rank deficient, one of the approaches for solving the LS
problem, as mentioned above, is based on the computation of a Cholesky factoriza-
tion of the normal equations associated to the regularized matrix[

A

α1/2I

]
, (5.3)

which are given by
Cα = ATA+ αI. (5.4)

The shift α is known as Tikhonov regularization parameter. If α is choosen large
enough the computation of an IC for the matrix Cα can be done easily and without
breakdowns. On the other hand, since the final purpose is to use this incomplete
factorization as a preconditioner for the original (unregularized) linear system, the
parameter α should be chosen as small as possible. Both requirements make difficult
the choice of the appropriate α. In practice, one starts with a small value for α, if
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a breakdown occurs then α is increased successively until a successful incomplete
factorization is computed.

We propose a method that simplifies the choice of the regularization parameter and
at the same time allows for the use of very sparse preconditioners. It is similar to the
technique presented in Chapter 4 in which it is studied how to update a precondi-
tioner for LS problems when the linear system is modified by adding or removing
equations.

The idea is to compute a preconditioner for the regularized matrix Cα in (5.4), with α
large enough, and then update the preconditioner for the original problem. Consider
the matrix

Cα − βI (5.5)

which is an update of the shifted matrix Cα in (5.4). Clearly, the closer β is to α,
the closer this update is to the normal equations ATA. Our technique consists of
updating an incomplete Cholesky factorization obtained for Cα, and it relies on the
relations that one can stablish between the augmented matrix[

Cα β1/2I

β1/2I I

]
, (5.6)

and the matrix in (5.5). Observe that

Cα − βI=
[
I O

][ Cα β1/2I

β1/2I I

][
I

−β1/2I

]
, (5.7)

and

(Cα − βI)−1=
[
I O

][ Cα β1/2I

β1/2I I

]−1[
I

O

]
. (5.8)

Thus, an IC factorization computed for the augmented matrix can be used to approx-
imate the matrix Cα − βI and its inverse. Hence, it can be used as a preconditioner
for the original normal equations. Note that the modification introduced by the up-
dated in Equation (5.5), makes the choice of the shift α less restrictive. The only
condition needed now is to select a large enough value to avoid breakdown during
the computation of an IC factorization.
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5.2.1 Preconditioner computation

The preconditioner is obtained from the block Cholesky factorization of the aug-
mented matrix in (5.6) given by(

Cα β1/2I

β1/2I I

)
=

(
Lα 0

β1/2L−Tα LR

)(
LTα β1/2L−1α

0 LTR

)

where Lα is the Cholesky factor of Cα and LR is the Cholesky factor of the Schur
complement of Cα in the augmented matrix, R = I − βL−Tα L−1α . The preconditioner
is computed in four steps, summarized in Algorithm 13:

Algorithm 13 Preconditioner computation
Input: Matrix A, α, β.
Output: Matrices Lα and LR.
1. Compute and IC: LαLTα ≈ Cα = ATA+ αI .
2. Compute T = β1/2L−1α .
3. Compute R = I − TTT .
4. Compute an IC: LRLTR ≈ R.

To keep the preconditioner sparse, the amount of fill-in may be limited by dropping
small elements in steps 2 and 3.

5.2.2 Preconditioner application

The preconditioning step for a Krylov subspace iterative method involves the so-
lution of systems of the form Ms = r where M is the preconditioner and r is the
residual. Thus, the preconditioning strategy proposed computes the preconditioned
residual by applying Equation (5.8) with an incomplete factorization of the aug-
mented matrix. That is, the preconditioned residual s is given by

s =
[
I O

] [ Cα β1/2I

β1/2I I

]−1 [
I

O

]
r,

and it is computed from the solution of the block linear system(
Lα 0

β1/2L−Tα LR

)(
LTα β1/2L−1α

0 LTR

)(
s

s1

)
=

(
r

0

)
.
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The preconditioning step is done as shown in Algorithm 14. These three steps will

Algorithm 14 Preconditioner update application
Input: β, matrices Lα, LR and residual vector r.
Output: Preconditioned vector s
1. s← L−Tα (L−1α r).
2. sR ← L−TR (L−1R r̄).
3. s← s+ βL−Tα (L−1α sR).

be referenced as updated preconditioner method (UPD). Steps 2 and 3 represent the
extra cost in the application of the preconditioner with respect to the non-updated
case. We recall that the inverses of the triangular factors are applied by solving the
corresponding triangular systems. If Lα and LR are kept sparse, the additional cost
is small and can be amortized even for moderate reductions on the number of itera-
tions, see [24].

A final observation with respect to β is that, since rankA = k < n, theoretically one
should choose β 6= α. Otherwise, the square augmented matrix in (5.6) is singular.
To see this, let us do a symmetric permutation to the augmented matrix as follows[

O I

I O

][
Cα β1/2I

β1/2I I

][
O I

I O

]
=

[
I β1/2I

β1/2I Cα

]
.

After eliminating the left bottom block by Gaussian elimination we obtain[
I β1/2I

0 Cα − βI

]
=

[
I β1/2I

0 ATA+ (α− β)I

]
,

which has no full rank if β = α. In practice, as we will see in Section 5.4, a value of β
equals to α was fine for the problems reported.

5.3 Numerical environment

The experiments were done with MATLAB version 2016a running on an Intel 5 CPU
with 8 Gb of RAM in a Windows operating system. For the solution of each problem
we set a limit of 600 seconds and 50,000 iterations for the total CPU time and number
of iterations, respectively. As recommended in MATLAB documentation, CPU times
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Matrix m n nnz nullity Application

BAXTER 27441 30733 111576 3055 Linear programming
DBIR1 18804 45775 1077025 2 Linear programming
DBIR2 18906 45877 1158159 2 Linear programming
NSCT1 22901 37461 678739 1 Linear programming
NSCT2 23003 37563 697738 1 Linear programming

beaflw 492 500 53403 32 Economic
Pd_rhs 5804 4371 6323 3 Counter-example
162bit 3606 3476 37118 16 Combinatorial
176bit 7441 7150 82270 40 Combinatorial
192bit 13691 13093 154303 87 Combinatorial
208bit 24430 23191 299756 210 Combinatorial
wheel_601 902103 723605 2170814 600 Combinatorial
12month1 12471 872622 22624727 53 Bipartite graph
ND_actors 383640 127823 1470404 13061 Bipartite graph
IMDB 303617 896302 3782463 53101 Bipartite graph

Maragal_6 21251 10144 537694 92 Least squares
Maragal_7 46845 26525 1200537 659 Least squares
Maragal_8 33093 60845 1308415 14637 Least squares
mri1 65536 114637 589824 1019 graphics/vision
mri2 63240 104597 569160 14919 graphics/vision
tomographic1 142752 1014301 11537419 3700 graphics/vision

TABLE 5.1: Set of tested matrices

reported are the mean value of 10 successive runs of the experiment performed af-
ter 3 initial runs that were discarded. The maximum standard deviation observed
relative to the mean value for the different runs was insignificantly.

Table 5.1 shows the set of tested matrices from the Florida Sparse Matrix Collection
[35], arising in different areas of scientific computing. The matrices were cleaned by
removing the null rows and columns before solving the LS problem. The number of
rows and columns, number of nonzeros (nnz) and nullity of the matrix (estimated
null space rank) are reported.

If a matrix has less rows than columns, then it is transposed. Each tested matrix
was permuted using the MATLAB function dmperm() that obtains the Dulmage-
Mendelsohn decomposition [71]. This decomposition estimates an upper bound of
the structural rank of the matrices, that allows for the approximation of the nul-
lity. The values obtained for the nullity coincide with the ones reported in [78]. The
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columns of the matrix corresponding to the normal equations C = ATA were nor-
malised by their 2-norm. As result, the regularized normal equations matrix is

Cα = SPCPTST + αI.

An IC factorization LαLTα of Cα was computed with the MATLAB function ichol().
With respect to the Schur complementR in Algorithm 13, small elements were dropped
in step 2 before computing step 3, and finally an incomplete LU factorization using
the MATLAB function ilu() was computed in step 4. For the updated preconditioner,
a value of α = β = 1 was used for all the matrices, except for the matrices BAXTER
and BEAFLW for which a value of α = β = 10−3 was needed. We have found that in
practice, choosing α = β, has given the best results. The right-hand side b, in all the
cases, is the vector of all ones.

The LSMR method was used to solve the normal equations because the norm of the
residual decrease monotonically as mentioned in the Section 4.1. The MATLAB im-
pletation of LSMR, ALgorithm Algorithm 3, was downloaded from this repository
[58]. Since we do not have an explicit factorization of the normal equations, we do
not apply two side preconditioning as suggested by the authors. Therefore, follow-
ing the idea in [4] where the authors derived a left preconditioned LSQR algorithm,
we implemented a left preconditioned version of the LSMR presented in 7.

5.4 Numerical experiments

In this section we study the numerical performance of the preconditioner update
method proposed. The method has been compared with an IC factorization of the
regularized matrix Cα. Before analyzing the performance of the preconditioner, we
study the convergence criteria for the LSMR method and the choice of the Tikhonov
regularization parameter.

5.4.1 Study of the convergence criteria and choice of α

We have done an exhaustive study concerning the stopping criteria for the conver-
gence of the LSMR method. In recent implementations of the LSMR algorithm, dif-
ferent convergence criteria are proposed in the bibliography.
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FS: Fong and Saunders in [38] propose the following stopping rule

||AT rk||2
||A||2||rk||2

< ε. (5.9)

GS: Gould and Scott in [44] proposed a different criterion defined by

||AT rk||2||r0||2
||AT r0||2||rk||2

< ε, (5.10)

that reduces to
||AT rk||2||b||2
||AT b||2||rk||2

< ε,

when the initial solution guess is x0 = 0. It can be easily observed the following
relation between both criteria

||AT rk||2
||A||2||rk||2

=
||AT rk||2||b||2
||AT ||2||b||2||rk||2

≤ ||A
T rk||2||b||2

||AT b||2||rk||2
.

Thus, with the FS criterion an iterative method may converge in fewer iterations.

We remark that the convergence rule programmed by default in the LSMR depends
on the preconditioner M applied, since it evaluates the norm ||(AM−1)T r||2. To
remove this dependency in the sense of Gould and Scott, we modify the FS criterion
by computing instead the norm ||AT r||2. Moreover, as the authors did in [44], we
exclude the additional computational time needed to compute the corresponding
residuals from the total solution time.

To study the effect of the stopping criteria on the convergence of the LSMR method,
we consider for instance, the matrix DBIR1. The convergence tolerance was set to
ε = 10−6. For the Tikhonov parameter α, values in the interval [0.01, 2] were con-
sidered. We note that for very small values of α the MATLAB function ichol()

produces very dense preconditioners. Therefore, the IC factorization LαL
T
α of Cα

was obtained with the MATLAB function ilu() with drop tolerance 0.01. With this
function sparser factorizations were obtained with a considerable reduction of the
computational time.

Figure 5.1 shows the CPU time and the number of iterations that the LSMR method
takes to converge with both stopping rules and both preconditioners. One can ob-
serve that the best results are obtained for values of α in the interval [0.1, 1]. But,
with α = 1 sparser preconditioners were obtained.

98 Universitat Politècnica de València



5.4. Numerical experiments

FIGURE 5.1: DBIR1 matrix. Number of iterations and total solution
time, for the LSMR method with FS and GS criteria, and for the non-

updated (M) and updated (UPD) preconditioners, α in [0.01, 2].
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FIGURE 5.2: DBIR1 matrix. Evolution of the FS and GS criteria with
respect to the number of iterations; y axis represents the value of the

FS and GS criteria at each iteration.

In general, we found that the value α = 1 was a good choice for the majority of
the problems tested because no breakdowns were produced, and the performance
of the iterative method was reasonable. Therefore, the results presented below are
obtained with this value with some exceptions. We recall that one of the objectives
was to avoid the iterative process for selecting the value of α.

With respect to the convergence criteria it is observed that the LSMR method with
FS rule needs less number of iterations and computational time to converge for all
values of α.

Figure 5.2 shows the evolution of the FS and GS criteria for a fixed value of α = 1

during the iterative solution process. As mentioned before, the FS rule converges in
less iterations, specially with the non-updated preconditioner.

Finally, Figure 5.3 compares the evolution of ||rk||2 for the non-updated and updated
preconditioner and both convergence criteria. It can be observed that the UPD pre-
conditioner converges in less iterations than the non-updated one.
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5.4. Numerical experiments

FIGURE 5.3: DBIR1 matrix. Evolution of ||rk||2 for the non-updated
and updated preconditioner.
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Matrix UPD M
rho_UPD Time(s) ||r||2 Iter rho_M Time(s) ||r||2 Iter

BAXTER 0.53 42.1 74.99 2115 0.28 39.6 74.99 2114
DBIR1 0.04 1.7 88.44 294 0.02 107.2 88.44 22163
DBIR2 0.03 2.8 87.57 477 0.02 16.7 87.57 3434
NSCT1 0.07 1.2 93.80 261 0.04 2.0 93.80 554
NSCT2 0.07 3.0 88.59 701 0.04 25.1 88.59 6939
BEAFLW 1.37 6.1 4.53 4074 1.36 9.6 4.53 6504
PD_RHS 1.40 0.1 34.62 186 0.71 0.2 34.62 830
162BIT 0.20 0.2 0.62 389 0.10 0.2 0.62 397
176BIT 0.18 0.3 0.80 383 0.09 0.3 0.80 394
192BIT 0.18 0.6 1.28 360 0.09 0.6 1.28 373
208BIT 0.16 1.0 1.62 321 0.08 1.0 1.62 336
WHEEL_601 0.83 2.9 497.51 32 0.50 3.8 497.51 45
12MONTH1 0.01 24.3 679.32 154 0.01 30.9 679.32 182
ND_ACTORS 0.18 133.4 301.65 6491 0.09 140.5 301.65 7188
IMDB 1.64 113.7 497.65 1442 0.08 112.1 497.65 1427
MARAGAL_6 0.04 5.8 93.98 1637 0.02 5.6 93.98 1771
MARAGAL_7 0.05 5.2 133.13 496 0.03 4.5 133.13 492
MARAGAL_8 0.06 141.6 238.90 15724 0.04 129.5 238.90 15683
MRI1 0.22 16.4 26.74 2616 0.11 13.8 26.74 2537
MRI2 0.27 11.3 141.26 1692 0.15 9.7 141.26 1583
TOMOGRAPHIC1 0.01 10.7 42.18 1309 0.01 13.1 42.18 1983

TABLE 5.2: Results for LSMR with the non-updated (M) and with
the updated (UPD) preconditioners.

5.4.2 Results

The results that presented in this subsection are computed with the modified FS
stopping criterion and α = 1, except for the matrices BAXTER and BEAFLW for
which a value of α = β = 10−3 was needed.

Table 5.2 shows the results for the different matrices tested. In this table, Time(s),
||r||2 and Iter represent the total time (in seconds, including computation of the pre-
conditioner), residual norm (||b−Ax||2) and the number of iterations needed to con-
verge, respectively. M corresponds to the results obtained with the IC factorization of
Cα while UPD corresponds to the ones obtained with the proposed updated precon-
ditioning technique. The density of each preconditioner is also presented, rho_UPD
and rho_M. The iterative method was stopped when the stopping rule FS was re-
duced to 10−6. A maximum number of 50000 iterations was allowed. Lα was cal-
culated with drop tolerance equal to 0.1, except for the matrices MRI1 and MRI2
for which a value of 0.2 was used, and a value of 10−5 for matrices BAXTER and
BEAFLW.

The problems are classified into three blocks mainly taking into account the field of
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application. The best results for every problem, in total solution time and number of
iterations are emphasized with bold type.

The first block of matrices were not cleaned because it was not necessary deleting
null columns and rows. For this matrices the UPD preconditioner was able to reduce
the time spent with the IC preconditioner considerably. Specially significant are the
cases of the DBIR1 and NSCT2 matrices. For the second block we can observe that
the UPD method is also competitive, although, the improvement with respect to the
IC factorization is not so big as in the previous block of matrices. In the last block,
the results were not so clear, and there were cases for which the UPD preconditioner
performed better, and others where it was observed the opposite.

In conclusion, the results show that the updated preconditioner method is compet-
itive and robust for solving rank deficient least squares problems. The number of
iterations and time spent was the best, or close to it, for all the problems tested.

We recall that the preconditioners used were quite sparse, that is very important for
solving much larger problems.

5.5 Conclusions

We have presented a method for preconditioning rank deficient least squares prob-
lems that can be viewed as an update preconditioner technique for the regularized
normal equations. From the numerical results conducted it has been observed that
the proposed preconditioner is competitive in terms of solution time and number
of iterations spent. Furthermore, the method simplifies the choice of the Tikhonov
regularization parameter α, and a fixed value equals to 1 was usually used. With
this choice, we were able to compute very sparse preconditioners. Thus, we think
that the preconditioner proposed can be successfully applied to accelerate the con-
vergence rate of the LSMR method.
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General conclusions
We summarize the contributions and conclusions of this thesis and finish with some
suggestions for future research. We have focused on preconditioners for large sparse
systems of linear equations Ax = b. In Chapter 2, we proposed a precondition-
ing technique based on updating an already calculated preconditioner referred to as
Updated Preconditioner Method (UPD). The strategy is based on the computation
of an approximate factorization for an equivalent augmented linear system. This
technique has been used to solve non-symmetric linear systems and least squares
problems.

In Chapter 3, the method was used for preconditioning non-symmetric systems
whose skew-symmetric part is low-rank or can be well approximated by a low-rank
matrix. Some approximation properties of the preconditioner and the eigenvalue
distribution of the preconditioned matrix have been presented. It has been show
that the technique sparse column row approximation (SCRA) produces good low-
rank approximations of the skew-symmetric part. The updated method has been
compared with others that appear in the literature for this kind of matrices, partic-
ularly with the SCM method. We solved several artificial and application problems
arising from many areas of science and engineering. From the numerical results con-
ducted it has been observed that the proposed preconditioner was competitive in
terms of solution time and number of iterations.

In Chapter 4, the preconditioner UPD was adapted to be used as preconditioner for
solving modified least squares problems, that is, when new equations are added, or
removed or both, as well as adding or removing or simply changing some variables.
For this kind of problems the CGLS method was used, without preconditioning, pre-
conditioned with an ILU factorization of the normal equations or the original prob-
lem, preconditioned with a recomputed ILU factorization of the normal equations
of the modified problem and preconditioned with the update technique proposed.
From the numerical results, we can conclude that the preconditioner UPD is com-
petitive and robust since it was able to successfully solve all the problems. More-
over, the number of iterations and time spent was the best, or close to it, for most
of the problems tested. Another conclusion is that, in general, it is better to apply
the updated preconditioner or recompute a new preconditioner from scratch instead
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of reusing the original one. In any case, any preconditioning strategy is better than
non-preconditioning. Computing a new preconditioner from scratch may have two
drawbacks: the first one is an increment on the set-up time that usually only pays
off in the case of adding equations when the size of the update is quite large. The
second one is that when removing equations, the preconditioner computation may
become unstable probably due to an increment of the condition number of the coef-
ficient matrix of the normal equations. In general, the technique proposed allows to
update the preconditioner in an inexpensive way.

In Chapter 5 we deal with the least squares solution of rank deficient linear sys-
tems. To compute a preconditioner for these problems we combine the proposed
strategy with Tykhonov’s regularization. The LSMR method was preconditioned
the UPD preconditioner and compared with an IC factorization of the regularized
normal equations. UPD was competitive in terms of solution time and number of
iterations needed to converge. Furthermore, with the proposed method the iterative
process to estimate the right choice of the Tikhonov regularization parameter α was
avoided. Indeed, for most of the problems a fixed value α = 1 was used with good
results.

In general, the Updated Preconditioner Method proposed has been effective and
robust for solving the different problems considered in this thesis.
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