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Abstract

This  thesis  is devoted to the study and application of constraint-based metabolic 
models. The objective was  to find simple ways to handle the difficulties  that arise in 
practice due to uncertainty (knowledge is  incomplete, there is  a lack of measurable 
variables, and those available are imprecise). With this  purpose, tools have been de-
veloped to model, analyse, estimate and predict the metabolic behaviour of  cells.

The document is structured in three parts. First, related literature is  revised and sum-
marised. This results in a unified perspective of several methodologies that use 
constraint-based representations of the cell metabolism. Three outstanding methods 
are discussed in detail, network-based pathways analysis (NPA), metabolic flux analy-
sis (MFA), and flux balance analysis (FBA). Four types  of metabolic pathways are also 
compared to clarify the subtle differences among them.

The second part is devoted to interval methods  for constraint-based models. The first 
contribution is  an interval approach to traditional MFA, particularly useful to estimate 
the metabolic fluxes under data scarcity (FS-MFA). These estimates  provide insight on 
the internal state of cells, which determines  the behaviour they exhibit at given condi-
tions. The second contribution is a procedure for monitoring the metabolic fluxes dur-
ing a cultivation process that uses FS-MFA to handle uncertainty.

The third part of the document addresses the use of possibility theory. The main con-
tribution is  a possibilistic framework to (a) evaluate model and measurements consis-
tency, and (b) perform flux estimations (Poss-MFA). It combines flexibility on the as-
sumptions and computational efficiency. Poss-MFA is  also applied to monitoring 
fluxes and metabolite concentrations during a cultivation, information of great use for 
fault-detection and control of industrial processes. Afterwards, the FBA problem is 
addressed. A possibilistic approach is derived to get predictions under the assumption 
that cells have evolved to be optimal (Poss-FBA). It captures alternate optima and 
grades sub-optimality, thus relaxing the original assumption. The last contribution is  a 
procedure to validate constraint-based models  when data are scarce. This  procedure 
mitigates validation problems with small metabolic networks.

This  thesis highlights the importance of accounting for uncertainty when modelling 
living cells  and promotes  a constraint-based perspective: if we cannot exactly model 
how cells operate, use the knowledge available to distinguish what is possible from 
what is not. Following this idea, methods are proposed that start by representing the 
available knowledge and its uncertainty, and then exploit this  representation to 
generate reliable new information.



Resumen

Esta tesis  se ha centrado en el estudio y aplicación de modelos del metabolismo celu-
lar basados en restricciones. El objetivo era encontrar formas sencillas  de afrontar los 
problemas que surgen en la práctica como consecuencia de la incertidumbre (los  or-
ganismos modelados no son bien conocidos, faltan variables  medibles y las disponibles 
son imprecisas). Con este propósito se han desarrollado herramientas para modelar, 
analizar, estimar y predecir el comportamiento metabólico de células vivas. 

El documento se ha estructurado en tres partes. Primero, se revisó y resumió la litera-
tura relacionada con el tema. Como resultado se ofrece una perspectiva unificada de 
metodologías  que emplean modelos basados en restricciones  para representar el me-
tabolismo celular. Tres metodologías se discuten detalladamente: network-based pathways 
analysis (NPA), metabolic flux analysis (MFA), y flux balance analysis (FBA). También se 
comparan cuatro definiciones de rutas metabólicas para aclarar sus diferencias.

La segunda parte se dedicó al estudio de métodos intervalares  para modelos basados 
en restricciones. La primera contribución es una aproximación intervalar al MFA tra-
dicional particularmente útil al estimar flujos  metabólicos en escenarios de escasez de 
datos (FS-MFA). Esta estimación informa sobre el estado interno de las células, el cual 
determina el comportamiento que éstas exhiben. La segunda contribución es  un pro-
cedimiento para monitorizar los flujos metabólicos  durante un proceso de cultivo en 
escenarios de escasez de datos.

La tercera parte del documento aborda el uso de teoría de posibilidad. La principal 
contribución es un marco posibilístico para (a) evaluar la consistencia de un conjunto 
de medidas experimentales, y (b) estimar flujos metabólicos (Poss-MFA). Esta aproxi-
mación combina flexibilidad en las  hipótesis  y eficiencia computacional. Poss-MFA se 
aplica después  en la monitorización de flujos y concentración de metabolitos externos, 
información de utilidad para la detección de fallos y el control de procesos  industria-
les. A continuación, se propone un enfoque posibilístico para FBA que permite obte-
ner predicciones asumiendo que las  células  han evolucionado para mostrar un com-
portamiento óptimo (Poss-FBA). El método propuesto es  capaz de capturar múltiples 
óptimos y gradar la optimalidad de distintas predicciones, relajando así la hipótesis 
original. La última contribución es un procedimiento para validar modelos cuando los 
datos disponibles son escasos. Este procedimiento mitiga los  problemas de validación 
con redes metabólicas de pequeño tamaño.

En resumen, esta tesis subraya la importancia de considerar incertidumbre al modelar 
células vivas y promueve un enfoque basado en restricciones. Siguiendo esta idea, se 
han propuesto métodos que comienzan representando el conocimiento disponible y 
su incertidumbre para luego explotar dicha representación y generar nueva informa-
ción de forma fiable.



Resum

Esta tesi s’ha centrat en l’estudi i aplicació de models del metabolisme cel∙lular basats 
en restriccions. L’objectiu era trobar formes senzilles  d’afrontar els  problemes  que 
sorgixen en la pràctica com a conseqüència de la incertesa (els organismes modelats 
no són ben coneguts, falten variables mesurables i les disponibles són imprecisas). 
Amb este propòsit s’han desenrotllat ferramentes per a modelar, analitzar, estimar i 
predir el comportament metabòlic de cèl∙lules vives.

El document s’ha estructurat en tres parts. Primer es va revisar i resumir la literatura 
relacionada amb el tema. Com resultat s’oferix una perspectiva unificada de 
metodologies que fan ús de models  basats en restriccions per a representar el 
metabolisme cel∙lular. Tres  metodologies  es  discutixen en detall: network-based pathways 
analysis (NPA), metabolic flux analysis (MFA), i flux balance analysis (FBA). També es 
comparen quatre definicions de rutes metabòliques per a aclarir les seues diferències.

La segona part es  va dedicar a l’estudi de mètodes intervalares per a models  basats  en 
restriccions. La primera contribució és  una aproximació intervalar al MFA tradicional 
particularment útil per estimar els  fluxos metabòlics en escenaris d’escassetat de dades 
(FS-MFA). Esta estimació informa sobre l’estat intern de la cèl∙lules, el qual determina 
el comportament que estes exhibixen. La segona contribució és un procediment per a 
monitoritzar els fluxos metabòlics durant un procés de cultiu en escenaris d’escassetat 
de dades.

La tercera part del document aborda l’ús de teoria de possibilitat. La principal 
contribució és  un marc posibilístic per a (a) avaluar la consistència d’un conjunt de 
mesures experimentals, i (b) estimar els fluxos metabòlics (Poss-MFA). Esta 
aproximació combina flexibilitat en les  hipòtesis i eficiència computacional. Poss-MFA 
s’aplica després en la monitorització dels  fluxos i les  concentracións dels metabòlits 
externs, informació d’utilitat per a la detecció de problemes  i el control de processos 
industrials. A continuació, es  proposa un enfocament posibilístic per a FBA que 
permet obtindre prediccions  assumint que les cèl∙lules  han evolucionat per a mostrar 
un comportament òptim (Poss-FBA). El mètode proposat és capaç de capturar 
múltiples  òptims  i avaluar l’optimitat de distintes  prediccions, relaxant així la hipòtesi 
original. L’última contribució és un procediment per a validar models  quan les  dades 
disponibles són escassos. Este procediment mitiga els problemes de validació amb 
xarxes metabòliques de dimensió reduïda.

En resum, esta tesi subratlla la importància de considerar la incertesa al modelar 
cèl∙lules  vives, i promou un enfocament basat en restriccions. Seguint esta idea, s’han 
proposat mètodes que comencen representant el coneixement disponible i la seua 
incertesa, per a després explotar aquesta representació i generar nova informació de 
forma fiable.
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[T]he point of making models is to be able to 
bring a measure of order to our experience and 
observations, as well as to make specific predictions 
about certain aspects of  the world we experience

(Casti, 1992)

 
Justification, Objectives and Contributions

Living organisms are complex. Even the simplest living cell is  composed of an in-
credibly large number of multifunctional elements, which interact selectively and non-
linearly to produce the observed behaviour. This  confers  a crucial role to mathematical 
models in biology, they can mimic these interactions to help us  understand how cells 
operate and predict their behaviour.

Models  are thus  a tool to improve our knowledge. They organise disparate informa-
tion into a coherent whole; they enable studying properties that emerge from the 
whole cell and are not properties  of individual parts. The modelling process  itself re-
sults  in hypothesis  to be experimentally tested, thereby iteratively producing refined 
models and insight about cellular mechanisms. Mathematical models have also several 
applications  in industries that involve biological processes, such as biomedicine, food 
industry or biotechnology. Models are used, for instance, to perform simulations, op-
timise variables, design experiments, and implement on-line quality control. Models 
are also a promising tool for metabolic engineering, allowing for directed manipula-
tion of  the gene content of  an organism to obtain the desired behaviour.

Although other processes operate within cells, such us regulation and signalling, this 
thesis is focused on models  of the cellular metabolism. The metabolism can be viewed as 
a chemical “factory” that converts  available raw materials into energy as well as build-
ing blocks needed to produce biological structures, maintain cells alive, and carry out 
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various  cellular functions. This process  can be represented with a metabolic network 
that encodes  a set of biochemical reactions  taking place within the cell. The nodes 
represent the involved metabolites  and the edges represent the reaction rates  or meta-
bolic fluxes. Internal fluxes  correspond to reactions occurring within cells  and exchange 
fluxes to exchanges between the cells and their environment (uptake of substrates and 
formation of products). The set of flux values defines  the metabolic state of cells  or its 
phenotype, i.e., the behaviour they exhibit at a given time.

However, these networks of metabolic reactions are difficult to model. Considering all 
the mechanisms operating in metabolism will lead to detailed, quantitative predictions 
on cellular dynamics. Yet, lack of knowledge on the intracellular reactions  and its pa-
rameters complicates this approach. As an alternative, classical Stoichiometric Models 
disregard the dynamics  of the (fast) intracellular reaction and assumes  that most in-
ternal metabolites  rapidly reach their steady-state. This way, the state of the cells is 
represented without any information on the kinetics of  the reactions. 

Constraint-based Models appear as an extension of stoichiometric models. Along with the 
stoichiometric mass  balances at steady-state, cells  are subject to other constraints that 
limit their behaviour, such us thermodynamics or enzyme capacities. Imposing these 
constraints  that operate at given circumstances it is possible to determine which func-
tional states can and cannot be achieved by a cell. The imposition of constraints leads 
to a space of cellular phenotypes  that, to the best of our knowledge, are feasible. 
Constraint-based models are thus conservative, but they do not require a particular 
type or amount of data to be useful. They are also scalable; new and better knowl-
edge can be easily incorporated, just adding constraints, to improve the models.

Several methodologies employing constraint-based models  can be found in literature. 
There are methods  to analyse properties of the modelled organisms (e.g., identify op-
timal pathways), to simulate genetic modifications (e.g., gene deletions), and to estimate 
or predict the state exhibit by cells  at given conditions. This  thesis  is  devoted to study 
and improve these methodologies.

Objectives

The principal objectives pursued in this work are the following:

a) Survey methods that use constraint-based models to analyse, estimate or predict the 
metabolic behaviour of  cells.

Several methods employ mathematical representations of cells  that can be considered 
a constraint-based model, even if this  is not always  explicit. For this reason, it is  wor-
thy to do some efforts to present these methodologies with a unified perspective. This 
may allow to develop general solutions for related problems.



b) Identify the limitations of  the studied methodologies.

The second objective is  to identify the limitations  that may arise when applying the 
standard methodologies  to analyse, estimate or predict the metabolic behaviour of 
cells. In particular, the interest herein is on those difficulties  that arise in scenarios of 
data scarcity, common in industry and research laboratories. In practice, uncertainty 
is often widely present: (i) there are no detailed models of the organism of interest, (ii) 
first-principles knowledge is  incomplete, (iii) there is a lack of measurable variables, or 
(iv) the available measurements are imprecise.

c) Propose new methods to overcome the limitations found. 

Once limitations  have been identified, the next objective is to propose solutions  for 
them, having the practical applicability in mind. These solutions should be kept sim-
ple and be justified theoretically.

d) Apply these methods in different real case studies. 

All the contributions proposed in the preceding step should be tested experimentally 
when presented. Real data from different organisms  will be used to show that the pro-
posed methods  are able to analyse, estimate or predict the metabolic behaviour of 
cells. Advantages over standard approaches should be illustrated.

Thesis outline

The first chapter reviews different kinds of mathematical models built to represent 
living cells  in two fields: Bioprocess Engineering and Systems Biology. Chapter II is 
devoted to constraint-based models; there, the methodologies that are the context for 
the contributions of this  thesis  are presented with a unified perspective. Three meth-
odologies are discussed in detail: Network-based Pathways  Analysis  (NPA), Metabolic 
Flux Analysis (MFA), and Flux Balance Analysis  (FBA). Chapter III compares  differ-
ent proposals of Network-based pathways to clarify the intricate relationship among 
them.

The second part of the document is devoted to develop interval methods for 
constraint-based models. First, we address  the MFA problem, the exercise of estimat-
ing the metabolic fluxes shown by cells by combination of a model and experimental 
measurements. Traditional MFA requires a large number of accurate measurements 
to be of use, but these are often not available. In chapter IV we propose an interval 
variant of MFA well suited for scenarios  of data scarcity, the so-called flux-spectrum 
(FS-MFA). Representing fluxes  with intervals  allows accounting for uncertainty both 
in measurements  and estimates; so the estimates are more reliable even if data is 
scarce (they are only as precise as allowed by the uncertainty). This  enables using 
MFA in two common situations: when there is a lack of measurable fluxes, and when 
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the measurements are highly imprecise. FS-MFA uses  a linear programming formula-
tion, so it is also simple and computational efficient. Using the same approach, chap-
ter V discusses  how to translate a given flux state into a pattern of pathway activities. 
Chapter VI describes  a procedure for monitoring the metabolic fluxes  during a culti-
vation process. The procedure employs  FS-MFA to handle uncertainty and be of use 
in scenarios of data scarcity. It can be used to analyse collected data or to monitor a 
running process, mitigating the common absence of reliable on-line sensors in indus-
try. Experimental data from cultivations of CHO cells  and C. glutamicum illustrate the 
benefits of  these proposals against traditional MFA approaches.

The third part of the document is  devoted to the use of possibility theory in the con-
text of constraint-based models. In chapter VII we introduce a possibilistic framework 
to (a) evaluate model and measurements consistency and (b) perform MFA flux esti-
mations. The approach, called Poss-MFA, follows the original philosophy of 
constraint-based models, in the sense that it does  not attempt necessarily to predict 
the actual fluxes with precision, but rather to distinguish “most possible” from “im-
possible” flux states. Poss-MFA gives  possibility distributions as  estimates that are 
more informative than point-wise ones  when multiple values are reasonably possible. 
Besides, Poss-MFA considers measurements uncertainty and model imprecision in a 
flexible way (e.g., non-symmetric error), and is reliable in scenarios of data scarcity. 
The combination of flexibility of the assumptions  and computational efficiency is  a 
distinctive advantage of Poss-MFA over other approaches which either may rely on 
stronger assumptions (chi-squared distributions of errors, absence of irreversibility), or 
be only data-based (so they do not incorporate a model), or provide only point-wise 
estimates, or be computationally intensive (multi-variate integration in a general 
Bayesian estimation problem). In chapter VIII the possibilistic framework is  adapted 
to account for extracellular dynamics. Poss-MFA is extended for monitoring time-
varying fluxes  and metabolite concentrations during a cultivation process. Then we 
approach dynamic FBA, a methodology to get predictions during a cultivation based 
on the assumption that cells have evolved to be optimal. A possibilistic variant, called 
Poss-FBA, allows to account for alternate optima and sub-optimality. These extensions 
are illustrated with real data from CHO cells  and Escherichia coli. Finally, chapter IX 
presents  a systematic, yet simple, procedure that employs  Poss-MFA to validate 
constraint-based models when experimental data is  scarce. The procedure has been 
applied with a model of P. pastoris, a yeast used in industry for the expression of re-
combinant proteins.

The last part of  the thesis draws some general conclusions.



Contributions

The main contributions of  this work are the following:

• A unified perspective of methodologies that employ constraint-
based models of the cell metabolism. These methodologies  have different 
purposes, use different mathematical tools, and rely on different assumptions; 
but they all exploit the properties of similar representations. Embracing these 
methodologies  within the same framework makes it easy to extrapolate solu-
tions from ones to others and develop common improvements. 

• An interval method to estimate the metabolic fluxes under data 
scarcity (FS-MFA). The method is  a simple and powerful improvement of 
traditional MFA. It is  particularly useful to handle uncertainty: interval esti-
mates are only as  precise as allowed by the available knowledge. The benefits of 
FS-MFA have been illustrated with two real case studies.

• A procedure for monitoring the metabolic fluxes during a cultivation 
process. The procedure employs  FS-MFA to handle uncertainty and lack of 
measurements. It has been tested with data from a cultivation of  CHO cells.

• A comparison of four definitions of network-based metabolic path-
ways. This clarifies  the relationship among four types of pathways, which sub-
tle differences had been a source of  misunderstanding in the literature.

• A possibilistic framework to (a) evaluate measurements consistency 
and (b) perform flux estimations (Poss-MFA). The combination of flexi-
bility of the assumptions and computational efficiency is a distinctive advantage 
of Poss-MFA over other approaches. These advantages have been illustrated 
with several examples and a real case study.

• A method based on Poss-MFA for monitoring the metabolic fluxes 
and the metabolite concentrations during a cultivation process. The 
method can be also useful to fault detection in industrial processes. This 
method has been tested with data from a cultivation of  CHO cells.

• A possibilistic method to get dynamic FBA predictions of fluxes and 
metabolite concentrations (Poss-FBA). The use of possibility theory al-
lows to account for alternate optima and sub-optimality. The method has  been 
illustrated with a simple model of  E. coli and real data.

• A simple procedure to validate constraint-based models in scenarios 
where experimental data is scarce. The procedure mitigates the frequent 
lack of  validation of  small and medium metabolic networks (models).
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Summarising, this thesis has been devoted to constraint-based models and the meth-
odologies using them. We were interested in mitigating the difficulties  that arise in 
practice due to uncertainty (model incompleteness, lack of measurable variables, and 
measurement errors). With this  purpose in mind, we have developed interval and pos-
sibilistic methods that employ constraint-based models to analyse, estimate or predict 
the metabolic behaviour of cells. All these methods  are able to represent our knowl-
edge accounting for uncertainty, and then exploit this knowledge to generate reliable 
new information.
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Part I: state of the art 





I
Mathematical models of cells

In this  chapter we review the kind of mathematical models built to represent living 
cells in two fields, Bioprocess  Engineering and Systems Biology. Both perspectives are 
addressed, and their goals  and characteristics discussed. Then we show a non-
exhaustive list of the most outstanding modelling methodologies  in both domains and 
give criteria to classify them.

The last part of the chapter is devoted to a large family of models, called kinetic 
models. These are addressed here as opposite to the constraint-based models that will 
receive attention in chapter II.
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1.1  Introduction

A model is a simplified or idealised representation of reality capable of representing 
an actual phenomenon; if it uses  mathematical language it is  called a mathematical 
model. Models are simplifications, because refer only to certain, user-defined aspects 
of reality. Bailey (1998) emphasises  this relationship between models  and its  intended 
application by quoting Casti (1992): 

«Basically, the point of making models is to be able to bring a measure of order to our ex-
perience and observations, as well as to make specific predictions about certain aspects of 
the world we experience»

A model has  to be constructed with a specific purpose, which determines  what factors 
are relevant and what factors  can be de-emphasised. Thereby, we restrict the model 
scope to represent only certain aspects  of reality—those we are interested in—under 
certain conditions, and with a certain degree of detail. There are three reasons to 
proceed in this way: (1) to limit the need of experimental knowledge and quantitative 
data, (2) to reduce the model complexity, and (3) keep it amenable to formal analysis.

At this  respect, cells  and biological systems  are somehow paradoxical. Although it is 
obvious that even the simplest living cell has a very complex molecular composition, 
the number of distinct behaviours that they display is  much fewer. A large number of 
sets  of multifunctional elements interact selectively and non-linearly to produce co-
herent rather than complex behaviours (Kitano, 2002). 

Bellgardt and Schügerl give two possible reasons  to this phenomenon, at least in the 
context of  the cell metabolism (Schügerl, 2000): 

«One reason is that the functional blocks of metabolism operate together—coordinated by a 
network of metabolic regulation and of exchange of mass, charge and energy—to ensure 
the survival and reproduction of the organism. Another reason is the tremendous number of 
cells in the population in the bioreactor that hides individual variations in their  growth and 
leads to a smoothed average behavior»

This  important principle of simplicity from complexity differentiates the biological 
processes from others complex systems (Kitano, 2002; Palsson, 2000).

Moreover, this fact is  connected with the two modelling strategies that one can follow 
to build models of cells. If we want to understand how the cell works, we have to deal 
with all this  complexity: a network of multifunctional elements  highly interconnected. 
However, if we are only interested in the global behaviour of cell populations, we can 
disregard most of its complexity and build simple representations capable of repre-
senting this  behaviour. The first approach is the one typically followed in Systems Bi-
ology, whereas Bioprocess  Engineering follows  the second one. Anyway, this coexis-
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tence just strengthens  our initial words  about models: models  have purposes, which 
determine what factors  are relevant and what factors  can be de-emphasised, and thus 
different applications require different models.

Along this chapter the wide field of mathematical modelling of cells  and cell popula-
tions will be briefly reviewed from these two perspectives, Bioprocess Engineering and 
Systems Biology. Different modelling methodologies  will be classified, and kinetic 
models will be discussed in more deep. To complete this review, the next chapter will 
be devoted to constraint-based models.

1.2  Models for Bioprocess Engineering

Bioprocess Engineering concerns the improvement of industrial processes involving 
living organisms, usually cell populations. These processes are typically animal cell 
and microorganism cultures, and are employed for the production of enzymes, pro-
teins, value-added chemicals, etc. In recent times, there has  been a great emphasis  on 
the use of biotechnological approaches, i.e., in the use of genetically modified micro-
organisms. Some applications, such as the production of pharmaceutical products or 
the production of chemicals avoiding the use of fossil fuels, are becoming increasingly 
important.

All these biological (biotechnological) processes are typically carried on vessels, or 
bioreactors, to keep cells under controlled conditions. Manipulating these conditions 
one can force cells to display the desired behaviour. Cells are typically maintained at 
appropriate environmental conditions  (e.g., temperature, gas mixture or pH) and 
grown adding the required nutrients. 

Notice that mathematical modelling concerns not only biological, but also physical 
aspects, since physical factors that affect the environment of the bioreactor may be 
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considered (e.g., air distribution efficiency, oxygen mass  transfer rates, degree of mix-
ing). These factors are affected by the bioreactor design (e.g., geometry, mixing 
equipment) and by physical properties (e.g., liquid viscosity, interfacial tension).

Applications of models in Bioprocess Engineering

In order to achieve its main goal—improve the process performance—mathematical 
models are used with different purposes in Bioprocess Engineering: 

• Predict by simulation the process evolution at different conditions. This is  probably the 
most important purpose, since it underlies the others.

• Develop model-based monitoring systems. Mathematical models can be used in con-
junction with on-line measurements to estimate process  variables that cannot 
be directly measured. This topic is  covered in (Bastin, 1990; Komives, 2003), 
and a recent example is given in (Veloso, 2009).

• Fault detection or on-line quality control. A monitoring system can be improved to 
detect deviations from the expected behaviour; these deviations can be diag-
nosed and remedies attempted. For example, multivariate statistical procedures 
based on PCA and PLS are often applied to monitor the progress  of batch 
processes and detect batch-to-batch variations  (Nomikos, 1995; Wold, 1987; 
Wold, 1998). 

• Improve the process through experiment design. Many processes  in bioreactors are a se-
quence of phases  which differ in the environmental conditions and the feed in-
flow of substrates. Simulations can be used to choose a preliminary list of 
promising profiles, which can then be tested experimentally. See, for example, 
the model-based design of cultivation processes proposed in (Galvanauskas, 
1998).

• Process optimisation. The aim of process optimisation is to find values for the ad-
justment of the manipulable parameters (e.g., environmental conditions, feed-
ing rates) in such way that the benefit and cost ratio—defined by means of a 
quantitative function—reaches a maximum. Model-based optimisation pro-
vides an alternative to the trial-and-error methods that prevail in industry, and 
leads to better performance within shorter development time intervals. Optimi-
sation strategies for bioprocesses  can be classified in categories: one-time opti-
misation (Banga, 2003; 2008b), run-to-run optimisation (Camacho, 2007) and 
on-line optimisation (Visser, 2000).

• On-line process control. The problem of how to achieve a desired performance, in 
a reproducible manner, and reject the actual process disturbances. This implies: 
online monitoring the process  and introduce an automatic feedback control 
(Bastin, 1990). Traditionally, a feeding profile was defined a priori for the sub-
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strate inflows, but a control law can be defined to automatically manipulate the 
inflow to avoid the effect of disturbances and guide the process evolution as de-
sired, e.g., maintaining a stable biomass  growth rate (Picó-Marco, 2004; 2006; 
Lee, 1999). A review about control of  bioreactors is given in (Rani, 1999).

Main characteristics of models in Bioprocess Engineering

The models  used in Bioprocess Engineering share some characteristics, which can be 
summarised as follows: 

• Models consider non-biological factors.

• Models are quantitative and dynamic.

• Models are kept simple (and complexity arise from bottom-up).

The last two requirements are why Bioprocess Engineering has historically worked 
with unstructured models. On the one hand, the available experimental data was  in-
sufficient to develop (validate) dynamic models  considering the intracellular behaviour 
(Palsson, 2000). In fact, the kinetic parameters of many intracellular reactions  are still 
unknown, although the information is  growing (Buchhold, 2002; Mashego, 2007). On 
the other hand, a mechanistic description of intracellular processes  may result in a 
complex model, incompatible with most theoretical frameworks used in bioprocess 
engineering. Moreover, since simple models where successful, it was reasonably to in-
corporate complexity using a bottom-up approach.

For a long time simple, unstructured models  have proved to be efficient for solving 
many problems. For example, in the major part of a batch experiment, all cell com-
ponents  eventually grow at the same rate (the so-called balanced growth condition), 
and the use of an unstructured model is adequate (Nielsen, 1992). Another example is 
given by feed-back control strategies, which are often based on simple, unstructured 
models. In this  case, the control algorithm and the real measurements compensate the 
inaccuracy of  the model which is managed as a disturbance.

1.3  Models for Systems Biology

In recent years a new discipline has emerged in the biology field that emphasises  the 
importance of studying the cell metabolism under a system-level approach: the so-
called Systems  Biology1 (Palsson, 2000; Kitano, 2002; Ideker, 2003; Klipp, 2005). It is 
commonly accepted that the appearance of high-throughput technologies, such as 
genomics transcriptomics, metabolomics  or proteomics, is the cause of this transfor-
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mation of biology. These techniques are providing a considerable amount of data, 
which implies a transition from a data-poor to a data-rich environment. It has been 
suggested that further biological discovery will be limited, not by the availability of 
biological data, but by the lack of available tools to analyse and interpret the data 
(Palsson, 2000). This explains why the main goal of Systems Biology is  transform 
system-level data into system-level understanding. To accomplish its goal, Systems Bi-
ology combines experimental and theoretical approaches  and assigns a central role to 
mathematical modelling (Kitano, 2002; Ideker, 2003; Stelling, 2004; Klipp, 2005).

Cells, tissues, organs, organisms  and ecological webs  are examples of biological sys-
tems which can be approached with Systems  Biology. However, herein we reduce our 
scope to cells, and mainly to the cell metabolism. Considering the mechanisms operat-
ing in metabolism will lead to detailed, quantitative predictions  on cellular dynamics 
(Stelling, 2004). However, the complexity of cells and the lack of knowledge on these 
mechanisms and its associated parameters  has  limited the success of this  approach 
(Palsson, 2000). In fact, even though biological information is growing rapidly, we still 
do not have enough information to describe the cellular metabolism in mathematical 
detail for a single cell (Palsson, 2006; Bailey, 2001). Thus, the mathematical models of 
cells used in Systems Biology range from global, yet coarse, views of cellular systems 
to very detailed descriptions with a more limited scope.

Applications of models in Systems Biology

A non-exhaustive list of the applications of mathematical models  in the context of 
Systems Biology includes:

• Organize disparate information into a coherent whole. Probably the goal of Systems Bi-
ology: combining in a rational manner the information about each component 
involved in a biological system. 

• Get insight on the modelled phenomena. Generate experimentally testable hypotheses 
on underlying mechanisms as well as predictions of cellular behavior, thereby 
iteratively producing refined models and insight about the system (Stelling, 
2004). This was called simulation-based analysis by Kitano (2002). 

• Explore questions not amenable to experimental inquiry. An illustrative example is given 
by Bailey (1998), «Now there is not need of dissect a genome […] since the entire palette of 
genes is accessible on the internet. Suddenly, and now inescapably, comes the question: what do 
these genes do, acting together?».

• Study systemic properties. Those properties of the modelled system that emerge 
from the whole system and are not properties  of individual parts. Examples are 
pathway redundancy in networks, or the coexistence of modules—units per-
forming a particular function—in cellular systems.
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• Understand the essential qualitative features. A mathematical model may be imprecise 
to provide quantitative predictions, however, its  predictions  can be valuable as  a 
source of  qualitative knowledge. See (Bailey, 1998) for a suggestive example.

• Discover strategies for metabolic engineering. Reliable models  linking genotype and 
phenotype would allow for directed manipulation of the gene content of an 
organism to obtain a desired phenotype. This  ability would provide a basis for 
the rational selection of drugs targets  and metabolic engineering interventions 
to get strains with desired properties (Price, 2003). 

Main characteristics of models in System Biology

The most important characteristics  of models of cells and cell populations used in 
Systems Biology can be summarised as follows: 

• Modelling is focused on the internal cell behaviour.

• Models are often complex. 

• Models can be dynamic or static, quantitative or qualitative.

Most models in Systems  Biology consider intracellular phenomena, to get insight into 
the operating mechanisms, or to exploit our knowledge about these mechanisms. The 
extracellular behaviour of cells, how they interact with its  environment, is of course 
accounted for, but typically as consequence (outcome) of  the internal processes. 

Considering the intracellular processes  often leads to complex models. This does  not 
means that all aspects of the system need to be known, but due to the intrinsic com-

Table 1.1. Comparison between models in Bioprocess Engineering and Systems Biology.

Bioprocess Engineering models Systems Biology models

Main goal Improve industrial processes Aid in basic science research

Modelled aspects Biological and engineering Purely biological

Characteristics Quantitative Quantitative or qualitative

(Typical) Dynamic Dynamic or static

As simple as possible Understandable

Empirical Highly knowledge based

Often unstructured Structured
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plexity of cells, even a simple representation of its  internal mechanisms  results in 
complex models (e.g., with a considerable number of elements, non-linear relations, 
time-varying parameters, etc.).

Finally, the multiple objectives of Systems Biology imply that different kinds  of mod-
els, dynamic or static, quantitative or not, may be of  use.

1.4  Classification of models of cells

In this section we describe different ways of classifying models, both in Bioprocess 
Engineering and Systems Biology. On the one hand, the purpose of the model de-
termines  which kind of model is  desirable. On the other, very often the available 
knowledge (or data), constraints the kind of models  that can be built. A non-
exhaustive list of  modelling approaches is given in Table 1.2 and Figure 1.2.

Data-driven or knowledge-based. A model is  said to be data-driven when it is  based on re-
lationships between data. Some typical data-driven models are neural networks, fuzzy 
logic models and multivariate statistical models (e.g., those based on principal compo-
nents analysis). On the contrary, a model is  knowledge-based if its mathematical 
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structure is  derived (or inspired) from first principles  knowledge about the modelled 
phenomena. Notice, however, that many knowledge-based models  use some data, e.g., 
to fit parameters. In fact, the term data-driven is often reserved to purely data-driven 
models. Most models of cells  and cell population systems  are knowledge-based. This 
seems reasonably since there is a huge amount of  qualitative knowledge available.

Parametric or non parametric. A model is  called parametric if includes parameters requir-
ing to be fitted with experimental data. Otherwise, the model is called non paramet-
ric. This classification is closely related with the previous one: a data-driven model is 
always  parametric, but knowledge-based models can be parametric or non paramet-
ric.

Dynamic or static. A dynamic model represents  changes  of variables  over time, while a 
static model does  not. A static model describes  the steady-state of the process  at spe-
cific time instants that correspond to particular environmental conditions. A dynamic 
model represents the temporal evolution of the variables  in the system, usually by 
means of  ordinary (or partial) differential equations.

Structured or unstructured. The term unstructured designates models derived without an 
explicit consideration of processes  operating inside the cells  (Fredrickson, 1970). Basi-
cally, the cell is  regarded as a black-box, or a catalyst for the conversion of substrates 
into products. Instead, a structured model accounts for (some) processes  that operate 
inside the cells. A structured model may inform about the physiological state of the 
cells, its composition or its regulatory adaptation to the environmental changes; thus, 
structured models range from crude representations to highly detailed ones.1

Structured models  typically arise: (a) As a way of improving the predictive capacity of 
an unstructured model (limited if the biological activity is characterised simply by the 
total biomass). This  bottom-up approach—followed by Bioprocess  Engineer-
ing—leads to low-complexity, compartmental models. (b) With the solely purpose of 
modelling the processes  operating within cells. This  top-down strategy—followed by 
Systems Biology—leads to highly detailed representations of  the cell.

Segregated or non segregated. The majority of models of cell populations consider a ho-
mogeneous population. However, there are important phenomena which cannot be 
described under this  assumption (Schügerl, 2000): alterations and disturbances in 
physiology and cell metabolism, morphological differentiation of the cells, mutations 
in the genome, spatial segregation, aggregation of cells  or growth of more than one 
species, etc. To address  this  situation, simple, segregated models discriminating several 
classes  of cells  can be found in literature (Schüegerl, 2000; Henson, 2003). More 
complex models  consider a continuous variation in cells  properties  by means of par-
tial differential equations.
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Table 1.2. Knowledge based types of  models for cells and cell populations.

Types Methodology Other characteristics Ref.
Dynamic 
Unstructured

Macroscopic models BE Predictive
Parametric

(Bastin, 1990)

Compatible macroscopic models BE Predictive
Parametric
Derived from a structure

(Provost, 2006)
(Teixeira, 2007)

Dynamic flux balance models
(Constraint-based models)

Both Predictive
Parametric
Assumes optimality

(Mahadevan, 2003)

Dynamic 
Structured

Compartmental models BE Predictive
Parametric

(Schügerl, 2000)

Kinetic models Both Predictive
Parametric

(Gombert, 2000)

Cybernetic models Both Predictive
Parametric
Assumes optimality

(Ramakrishna, 1996)

Whole-cell models SB Predictive
Parametric
Considers regulation, etc.

(Tomita, 2001)

Static 
Structured

Lumped metabolic networks Both Non-predictive
Non-parametric

(Nielsen, 1992)

(genome)-scale networksa Both Non-predictive
Non-parametric

(Chassagnole, 2002)
(Forster, 2003)

Interaction-based models SB Non-predictive
Non-parametric

(Stelling, 2004)

Constraint-based models SB Non-predictive (Gombert, 2000

Flux balance modelsb SB Predictive
Assumes optimality

(Price, 2003)

a Here we refer just to networks;  the most common genome-scale models are classified as  a particular 
type of (large) constraint-based models. b We consider “Flux balance models” as a subclass of “Con-
straint based models” that incorporate an assumption of  optimal cell behavior.



Kinetic and constraint-based models. Beside these classifications, most models  of cells, and 
particularly models  of the cell metabolism, can be enclosed within two categories: ki-
netic model and stoichiometric (structured, or constraint-based) models. 

Kinetic models are dynamic models accounting for the kinetics of intracellular cellu-
lar processes (e.g., enzyme-catalysed reactions, protein-protein interactions, or protein-
DNA bindings). These models are typically formulated by means of ordinary differen-
tial equations. These models include reaction rates  and other kinetic parameters that 
must be fitted using (dynamic) experimental measurements  of inner processes, infor-
mation that is  often lacking. To avoid the need of kinetic data, constraint-based mod-
els can be build under the assumption that (most) intracellular processes are at steady-
state. Notice that constraint-based models  disregard intracellular dynamics, but are 
not necessarily static because extracellular dynamics (typically slower) can still be ac-
counted for.

Both approaches will be discussed hereinafter. The rest of this  chapter is devoted to 
kinetic models, and constraint-based models, which are those used along this thesis, 
will be reviewed in more deep in chapter II.

1.5  Kinetic models

The rest of this  chapter will review different kinetic models of cells, starting form the 
simplest ones, and going on towards increasing levels of  complexity.

Unstructured, kinetic models

Unstructured, kinetic models, often called macroscopic models, are the simplest ones: 
those that do not consider the internal structure of cells. The only biological variable 
considered in these models  is  the cell mass concentration or biomass, which is re-
garded as a black-box that converts substrates  into products. Generally, biomass  is 
linked with the extracellular species—substrates and products—by means of macro-
reactions. Each macro-reaction has  an elementary kinetic expression, such as Monod 
or Haldane, which describe the influence of substrates  and product concentration or 
other variables, such as pH or temperature (Bastin, 1990; Dunn, 2000). Dynamical 
mass balances  are then established from these macro-reactions identifying appropriate 
kinetic parameters from the available experimental data. This overall view represents 
an oversimplification of the reality. However, unstructured models have been success-
fully applied for long time in the field of  bioprocess engineering.
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The main characteristics of  most unstructured, kinetic models are the following:

• They are knowledge-based.1

• They have parameters to be fitted with experimental data.

• They are dynamic.

• They are non-segregated.

The main advantage of unstructured models  is  its  simplicity. This simplicity implies 
that unstructured models  can be built without a huge amount of data and knowledge, 
because the number of variables of the model is kept at a minimum. Moreover, al-
though experimental data is  necessary, it can easily be obtained because only extracel-
lular variables  are included in the model (i.e., there is  not need for intracellular meas-
urements). These measurements  can be acquired with a low sample rate to capture 
the dynamic behaviour, and then be used to fit the parameters of the model and to 
validate its predictions. This simplicity is  also useful in those applications, such as 
process control and monitoring, where measurements are needed on-line. 

Macroscopic models can be validated to guarantee that they emulate the actual proc-
ess with accuracy under certain conditions; the environmental ones, which are under 
control, but also the intracellular state of  cells, which is assumed to be constant. 

Unstructured models fail whenever they are used inappropriately to describe situa-
tions where cells regulation, composition or morphology are important variables, i.e., 
when the characterisation of biological activity only by means of the total biomass is 
not sufficient. That may happen, for example, when a gene is induced or repressed, or 
when a genetically modified microorganism losses  the modification. Another draw-
back of unstructured models is  that they are not easily scalable. Although it is  possible 
to incorporate complexity to an unstructured model adding new empirical parame-
ters, this approach may result in a non understandable model. Proceeding in this 
manner we are disregarding our knowledge about the cell, which can be useful not 
only to keep the model understandable, but also to suggest extensions, and to build a 
structure where new experimental data can be incorporated as it become available.

Two examples will be reviewed for the shake of illustration. For details  about unstruc-
tured models, consult the references (Schüegerl, 2000; Bastin, 1990; Dunn, 2000).

Example: one macro-reaction. Several cell processes can be described with simple 
macro-reactions linking product, substrates  and microbial growth. Consider, for in-

stance, one macro-reaction: substrate (s) x⎯→⎯ biomass  (x) + product (p). Mass bal-
ances can be derived, resulting in the following ordinary differential equations:
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dx
dt

= µ ⋅ x −D ⋅ x

ds
dt

= vs ⋅ x +D ⋅ si − s( )
dp
dt

= vp ⋅ x −D ⋅ p

(1a)

where x, s and p denote concentrations, si the substrate concentration in the inflow, 
and D the dilution rate (i.e., inflow per volume). 

To complete the model, kinetic expressions should be given, such as:

µ =
µmaxs
k2 + s

, vs = Yxs ⋅µ +ms, vp = Yxp ⋅µ +mp (1b)

where the specific rates  of product formation and substrate utilisation are considered 
proportional to growth rate, and the growth rate is  particular function of the substrate 
concentration (a so-called Monod kinetics).

This  is a simple model, yet useful in many contexts. It includes the most fundamental 
observations  concerning growth processes: (i) that the rate of cell mass  production is 
proportional to biomass concentration; (ii) that there is an upper limit for growth rate 
on each substrate; and (iii) that the cells need substrate to survive. The model can be 
extended to include other phenomena, such as growth inhibition by the product, and 
similar macro-reaction schemes can be also stated (Bastin, 1990).

Example: S. cerevisiae model. A classic unstructured model of S. cerevisiae is the 
one developed by Sonnleitner and Käppeli (Sonnleitner, 1986). It is based on experi-
mental observations and the hypothesis of a limitation in the oxidative capacity to ex-
plain the shift to ethanol formation observed in S. cerevisiae. The model also describes 
the decrease in the oxidative capacity with decreasing oxygen concentration—the so-
called Pasteur effect. The model fits steady-state experiments very well, but it gives a 
poor description of transient operating conditions. To overcome this  and other limita-
tions several extensions of  the model have been proposed (Nielsen, 1992).

Structured, kinetic models

Structured, kinetic models  are the natural extension of unstructured models. Typi-
cally, the cell is  structured into several intracellular compounds which are connected  
to each other and to the environment by fluxes, on the basis of the knowledge of fun-
damental biochemistry (Nielsen, 1992). The kinetic model is  then built of balances of 
intracellular compounds represented with ordinary differential equations, which in-
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clude reaction rates and other parameters. This formulation leads  to quantitative pre-
dictions of  the temporal evolution of  the intracellular metabolites.

Structured, kinetic models are potentially more powerful than unstructured ones: (1) 
they may provide a realistic description of inner cell processes, (2) give more accurate 
predictions, and (3) be valid in a wider range of conditions. Nevertheless, these advan-
tages do not come without cost: their development is a demanding task that requires 
better knowledge and more experimental data.

The degree of detail of structured, kinetic models  varies within a wide range. In prin-
ciple, the genome-scale reaction network that represents  the whole-cell metabolism 
may be used as  basis  for a kinetic model (if available). However, major difficulties arise 
when trying to build a kinetic model based on a detailed reaction network (Gerdtzen, 
2004): 

(i) Changes in environmental conditions may cause cellular changes  at many lev-
els: transcription, translation and metabolic reactions.

(ii) Intracellular reactions are very complex and there are pathways for which de-
tailed reactions have not yet been elucidated.

(iii) There is a lack of  knowledge on kinetic mechanisms.

(iv) It is  difficult to obtain experimentally the kinetic parameters  for all intracellular 
reaction, due to the lack of available measurements  (particularly at a sampling 
rate sufficient to capture intracellular dynamics).

The last one is probably the most critical: it implies  that, even if it were possible to 
identify the kinetic mechanism for each intracellular reaction, the model will involve 
an extremely large number of equations for which many kinetic parameters are still 
unknown. The parameters  estimation requires  a special care to avoid a lack of identi-
ficability: the model complexity may lead to a parameter estimation that fits  the ex-
perimental data very well, but that, in fact, is  not capturing a physically valid behav-
iour (Dunn, 2000). In general, the experimental verification of model becomes  in-
creasingly difficult as the model complexity is increased (Schügerl, 2000). 

To avoid this difficulties, smaller networks can be formulated by grouping many intra-
cellular reactions into a reduced number of global reactions, or by including only the 
reactions which constitute the central metabolism. In this way, the highly detailed 
networks can be the basis for reasonably small kinetic models.

To close this section several examples of structured, kinetic models  that can be found 
in the literature will be briefly described. Most of these examples  came from the con-
text of Bioprocess  Engineering, but some of them were developed in the context of 
Systems Biology; more of  these last ones can be found in (Klipp, 2005).
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Example: simple structured kinetic model. Consider the toy metabolic reac-
tion network taken from (Provost, 2004) and depicted in Figure 1.4. There are two 
extracellular substrates (s1 and s2) and only one extracellular product (p1). The cell is 
structured in 6 metabolites (e), one of them accumulated. The following mass bal-
ances can be stated:

dx
dt

= µ ⋅ x +D ⋅ (xi − x) (2a)

de
dt

= Ne ⋅v ⋅ x +D ⋅ (ei − e) (2b)

dc
dt

= N ⋅v − µ ⋅c (2c)

where e denotes the vector of extracellular metabolites concentrations (both sub-
strates and products), ei the inflow concentrations, c is  the vector of intracellular me-
tabolites, and Ne and N are stoichiometric matrices linking metabolites and fluxes.

In this  particular example, considering that there is no inflow through the system 
boundaries (D=0) and taking into account the reactions  in the network, the mass  bal-
ances are the following:

dx
dt

= µ ⋅ x = 1 1 1 1 −1 0 0 −2( ) ⋅v ⋅ x (3a)

de
dt

=

−1 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅v ⋅ x (3b)
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Figure 1.3. Kinetic models with increasing complexity.
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dc
dt

=

1 0 0 −1 0 0 0 −1
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 −1 0 0 0
0 0 0 1 1 1 −1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⋅v − µ ⋅c (3c)

Note: the expression for the growth rate (µ) is based on the formation of  all internal 
metabolites, however, many other approaches can be found in literature.

Two-compartmental Model. The simplest approach to improve an unstructured 
model consists in dividing the cell into two compartments. A two-compartmental 
model to represent the diauxic growth of  Klebsiella terrigena on the substrates glucose 
and maltose is described in (Schügerl, 2000). The first substrate is the preferred one 
and inhibits and represses the uptake of  the second one. The enzymes of  the maltose 
are represented with a compartment and another compartment stands for the remain-
ing metabolism. The model fits with experimental data after identify its parameters 
(Schügerl, 2000).

Multi-compartment Model. By combination of the compartmental model con-
cept with an intracellular ATP balance, Villadsen and Nielsen (1992) derived a kinetic 
model for S. cerevisiae. The model includes the shift to ethanol formation observed in 
the metabolism of S. cerevisiae during an aerobic glucose-limited chemostat, consider-
ing six macro reactions and three compartments. It was applied for simulation of a 
diauxic batch experiment and showed a good agreement with experimental meas-
urements. Unfortunately, the large number of parameters  needs  a big amount of ex-
perimental data to be estimated, and, even with intracellular measurements, it is  diffi-
cult to quantify the biomass compartments due to its difficult interpretation.

Biochemically Structured Model. Lei et al. (2001) developed a biochemically 
structured, kinetic model for the aerobic growth of S. cerevisiae on glucose and ethanol. 
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Figure 1.4. Simple reaction network extracted from (Provost, 2004).
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The model defines two compartments  showing some similarities  with the Nielsen and 
Villedsen model (1992). It provides a new interpretation of the shift in yeast metabo-
lism based on the pyruvate and acetaldehyde branch points. 

The model considers the following 12 reactions:

sglu → spyr + 0.33 ⋅NADH

spyr → CO2 +1.67 ⋅NADH

spyr → 0.67 ⋅sacetald + 0.33 ⋅CO2

sacetald + 0.5 ⋅NADH→ setOH

Xa → XAcdh

Xa → degrad.

NADH + 0.5 ⋅O2 → ATP

sacetald → sacetate + 0.5 ⋅NADH

sacetald + 0.5 ⋅NADH→ setOH

sacetate → CO2 + 2 ⋅NADH

sglu → 0.91⋅Xa + 0.08 ⋅CO2 + 0.12 ⋅NADH

sacetate → 0.78 ⋅Xa + 0.22 ⋅CO2 + 0.4 ⋅NADH

XAcdh → degrad.

The 12 reactions rates are formulated with Michaelis-Menten kinetics, and extended 
based on physiological knowledge. For the shake of brevity, only three of them are 
shown here:

v1 = k1l ⋅
sglu

K1l +sglu
⋅ xa + k1h ⋅

sglu
K1h +sglu

⋅ xa + k1e ⋅
sglu

K1e +sglu ⋅ K1i ⋅ sactald +1( ) ⋅ sactald ⋅ xa (4a)

v3 = k3 ⋅
spyr
4

K3 +spyr
4 ⋅ xa (4b)

v9 = k9 ⋅
sglu

K9 +sglu
+ k9e ⋅

setOH
K9e +setOH

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

1
K9i ⋅ sglu +1

⋅ xa + k9c ⋅
sglu

K9 +sglu
⋅ xa (4c)

At this point, the mass balances can be formulated as follows:

dx
dt

= µ ⋅ x,       where  x = xa + xacdh (5a)

d
dt

sglu
spyr
sacetald
sacetate
setOH

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

−1 0 0 0 0 0 −1 0 0 0 0
0.98 −1 −1 0 0 0 0 0 0 0 0
0 0 0.5 −1 0 −1 0 0 0 0 0
0 0 0 1.36 −1 0 0 −1 0 0 0
0 0 0 0 0 1.04 0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⋅v ⋅ x −

sglu - s f
spyr
sacetald
sacetate
setOH

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅D (5b)
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d
dt

O2

CO2

xa
xAcdh

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0 0 0 0 0 0 0.732 0.619 −1 −1 0
0 0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0.732 0.619 −1 −1 0
0 0 0 0 0 0 0 0 1 0 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅v − µ ⋅

0
0
xa
xAcdh

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(5c)

This  illustrates  the difficulties that arise when a kinetic model gains  in details: kinetic 
expressions are complex and fitting its parameters require more data than is often 
available.1 For this particular work, Lei et al. developed a five-step procedure for pa-
rameters fitting (2001). The model was then validated on different experimental data. 
During a batch process, the model describes the glucose and ethanol profiles, and a 
reasonable prediction for pyruvate and acetate. However, the dynamic fed-batch ex-
periments showed the limitations of  the model. 

Dynamic Model of S. Cerevisiae. In (Rizzi, 1997) an extensive kinetic model of 
glycolysis in S. Cerevisiae was  introduced. The model is based on material balance 
equations of the key metabolites  in the extracellular environment, the cytoplasm and 
the mitochondria. The model includes 22 compounds  (for extracellular variables, in-
tracellular metabolites and co-metabolites), 23 reactions and 23 kinetic reaction rates. 
It was verified by in vivo diagnosis of intracellular enzymes, and it was proved that its 
predictions fit reasonably well with experimental measurements.

Dynamic Model of Escherichia coli. In (Chassagnole, 2002) a detailed, dynamic 
model of the central carbon metabolism of E. coli was described. This  was  the first 
dynamic model linking the sugar transport system with the reactions of glycolysis and 
the pentose-phosphate pathway. It includes  18 compounds (for extracellular com-
pounds and intracellular metabolites), 29 reactions  and 29 kinetic reaction rates. Ex-
perimental measurements  of intracellular metabolites  at transient conditions were 
used to validate the structure of  the model and to estimate the kinetic parameters.

Other structured, kinetic models

To close this  chapter, we discuss  two particular classes  of structured, kinetic models: 
cybernetic models and whole-cell models.

Cybernetic models consider metabolic regulation as mediated through the control of 
enzyme synthesis  and enzyme activity (Kompala, 1986). It is well-known that when 
faced with environmental changes, cells have more than one possible response in their 
metabolic machinery. The cybernetic approach assumes  that metabolic systems have 
evolved optimal goal oriented strategies  as a result of evolutionary pressures. Hence, 
cells switch their metabolism in response to changes in their environment in a manner 
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consistent with its  optimal strategies. The outcome of these strategies modifies the 
intrinsic process  kinetics. Interestingly, this assumption reduces  the need of kinetic pa-
rameters. The applications of the cybernetic approach include models  of diauxic 
growth of microorganisms (Kompala, 1986), the sequential and the simultaneous 
utilisation of substitutable substrates (Ramakrishna, 1996) and the growth of mam-
malian cell cultures (Guardia, 2000). It has  been also used to aid in metabolic engi-
neering tasks (Varner, 1999).

Whole-cell models  are the first attempts to construct comprehensive, kinetic models of 
a complete cell (Tomita, 2001). The canonical whole-cell model consisted of a “vir-
tual cell” with 127 essential genes selected from the genome set of Mycoplasma geni-
talium (Tomita, 1999). Ishii et al. illustrate the integrative nature of the whole-cell 
modelling approach when they explain the features of this first model (Ishii, 2004): 
«This virtual cell could transport extracellular glucose across the cell membrane, me-
tabolize it through the glycolytic pathway and produce ATP molecules. These ATP 
molecules could in turn be utilized for the biosynthesis  of phospholipids or the main-
tenance of the transcription/translation system». In contrast with other large-scale 
representations, the whole-cell modelling approach is focused on modelling the dy-
namic behaviour of cells. This  is  a very ambitious task because a great amount of 
quantitative data is  needed—concentrations  of metabolites and enzymes, flux rate, 
kinetic terms, etc. The development of high-throughput technologies  to measure in-
tracellular variables is one of  the keys for the success of  whole-cell models.

1.6  Conclusions

This  chapter has been devoted to review the classes of models of cells and cell popu-
lations that are typically used in the fields of Bioprocess  Engineering and System Bi-
ology. We have seen that there is  a wide range of models, different in purpose and 
characteristics.

However, it seems that the models  used in both domains  are becoming more similar 
because models used in Bioprocess Engineering are gaining in detail to improve its 
predictive capacity—thanks to new measurement techniques that enable validation. 
At the same time, quantitative predictive models receive more attention form biolo-
gists due to the emergence of  Systems Biology. 

It is expected that the increasing availability of biological data, in conjunction with 
the currently available qualitative knowledge, may result in new (and better) models in 
future years. This will be particularly significant for basic science research, but bio-
process industries will be also fuelled by these advances.
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II
Constraint-based models of the cell 

metabolism

Different methodologies use models of the cell metabolism that share two characteris-
tics: (i) are derived from a metabolic network and (ii) assume steady-state for the intra-
cellular metabolites. These methodologies  have different purpose, employ different 
mathematical tools, and rely on different assumptions; but they all exploit the proper-
ties of  a constraint-based description of  cells.

In this chapter, we show that all these methodologies  can be presented with a unified 
perspective under the label of constraint-based models. Next, three outstanding 
methodologies  that use these kind of models are described: Network-based Pathways 
Analysis, Metabolic Flux Analysis, and Flux Balance Analysis. 

Constraint-based modelling, and these three methodologies in particular, are the con-
text for the contributions of  this thesis that will described in subsequent chapters.

Part of  the contents of  this chapter appeared in the following journal article:

• Llaneras F, Picó J (2008). Stoichiometric Modelling of  Cell Metabolism. Journal 
of  Bioscience and Bioengineering, 105:1.
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2.1  Introduction

An observed cellular behaviour may be explained by considering the constitutive ele-
ments  of cells. However, to define the cell capabilities and predict its behaviour, the 
interactions between elements need to be considered. This  confers  a crucial role to 
networks  because they embed these interactions, and thus  they are responsible for ob-
servable cellular behaviour (Palsson, 2006). Examples of networks used in biology in-
clude regulatory and signaling networks; however, in terms of its biochemistry, kinet-
ics, and thermodynamics, metabolism is the best characterized cellular network.

In this  chapter, the terms Stoichiometric modelling and Constraint-based modelling are used to 
encompass methodologies  based on representations of the cell metabolism that share 
two characteristics, the use of a metabolic network and the pseudo steady-state as-
sumption (Figure 2.1):

• Stoichiometric models are derived from a metabolic network of the organism 
being modelled. The reaction stoichiometry embedded in these networks is  the 
starting point, but the models are not limited to stoichiometry. A constraint-
based perspective will be used to highlight this fact.

• Stoichiometric models  disregard the dynamic intracellular behaviour, based on 
an assumption of steady state for (some) internal metabolites  (Stephanopoulos, 
1998).1

This  way, stoichiometric or constraint-based modelling provides structurally detailed 
models, at the cost of disregarding the intracellular kinetics. Notice that two different 
notions of model will coexist hereinafter. We consider constraint-based representations 
as  models, because they are mathematical descriptions  of cell capabilities, even if they 
are unable to predict the behaviour shown at particular conditions. To  avoid confu-
sion regarding this, a model with predictive capacity is  always explicitly named as  a 
predictive model hereinafter.

The rest of the chapter is organised as follows. In sections 2.2 and 2.3 the classical 
principles  of stoichiometric modelling are summarised. In section 2.4 we review this 
principles  from a constraint-based perspective. The methodologies within the frame-
work are briefly classified in section 2.5. Sections  2.6 to 2.8 are devoted to three 
methodologies  of particular interest for the rest of this thesis: metabolic flux analysis, 
flux balance analysis, and network-based pathway analysis. Finally, the main conclu-
sions are outlined.
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Figure 2.1. Principles of the stoichiometric modeling framework. Given a metabolic network, the 

mass balance around each intracellular metabolite can be mathematically represented with an ordinary 
differential equation. If we do not consider intracellular dynamics, the mass balances can be described 
by a homogeneous system of linear equations: the so-called general equation. Other constraints can be 

also incorporated to further restrict the space of  feasible flux states of  cells.

2.2  Preliminaries: metabolic networks

Providing a comprehensive discussion of the importance of the metabolism is  out of 
the scope of this  chapter, but the following lines from Palsson (2006) will serve the 
purpose of  motivation.

«Intermediate metabolism can be viewed as a chemical ‘engine’ that converts avail-
able raw materials into energy as well as building block needed to produce biological 
structures, maintain cells, and carry out various cellular functions. 

This chemical engine is highly dynamic, obeys the laws of physics and chemistry, 
and is thus limited by various physicochemical constraints. It also has an elaborate 
regulatory structure that allows it to respond to a variety of  external perturbations. 

Metabolism comprises two types of chemical transformations: catabolic pathways 
that break down various substrates into common metabolites and anabolic pathways 
that collectively synthesize amino acids, fatty acids, nucleic acids, and other needed 
building blocks. 

During these processes, an intricate exchange of various chemical groups and reduc-
tionoxidation potentials takes place through a set of carrier molecules [e.g., ATP, 
NADH]. These carrier molecules and the properties that they transfer thus tie the 
metabolic network tightly together».
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Traditionally, the metabolism was divided into individual metabolic pathways, which 
are indeed a central paradigm in biology. A metabolic pathway is a series of chemical 
reactions occurring within a cell, catalyzed by enzymes, resulting in either the forma-
tion of a metabolic product to be used or stored by the cell, or the initiation of an-
other metabolic pathway. These pathways were defined on the basis of their step-by-
step discovery, but this procedure is being substituted by a systemic approach.

With the arrival of genomics and proteomics  and the increment in available quantita-
tive data, the set of metabolic reactions (and pathways) involved in the whole cell me-
tabolism are now assembled in networks (Palsson, 2006; Cornish-Bowden, 2000). 
Many metabolic networks are highly detailed to provide a comprehensive representa-
tion of the metabolism of a particular organism. However, smaller networks are also 
formulated, sometimes grouping sets of reactions or considering only parts of the me-
tabolism, such as the central metabolism.

Metabolic networks and the stoichiometric matrix

The metabolism of living cells can be represented with a metabolic network under the 
form of a directed hyper-graph that encodes a set of elementary biochemical reac-
tions taking place within the cell. In this hyper-graph the nodes represent the involved 
metabolites  and the edges represent the metabolic fluxes or reaction rates. Two 
groups of fluxes can be defined: exchange fluxes and internal fluxes. Exchange fluxes 
represent an exchange with the environment outside the cells (uptake of substrates  or 
formation of products). Internal fluxes  represent metabolic reactions occurring within 
cells. A simple example is given in Figure 2.2.

The stoichiometric information embedded in a metabolic network with m metabolites 
and n reactions can be represented by a stoichiometric m×n matrix N, in which rows 
correspond to metabolites and columns to reactions.
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Figure 2.2. A toy metabolic network. Nodes  represent internal metabolites,  edges the metabolic fluxes 

v, and arrows the reversibility of the reactions. Fluxes  v4, v5 and v6 correspond to exchanges with the 

environment.
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2.3  Classical principles of stoichiometric modelling

Let us  consider a cells population in an aqueous medium1 and establish a set of mass 
balances to obtain a dynamic model (Bastin, 1990). The medium volume variation is 
given by: dV dt = Fin − Fout , where Fin and Fout are the inflow/outflow rates. 

The growth rate of  biomass (cells) can then be represented as follows:

dx
dt

= µ ⋅ x −D ⋅ x + Fx (1)

where x denotes  the biomass concentration, µ its  specific growth, D the dilution rate 
(Fin/V), and Fx the biomass inflow rate which typically has  value zero (because typi-
cally there is no biomass xin in the inflow Fin, and Fx = Fin ⋅ xin V ).

Mass balances around the extracellular metabolites can be established as follows:

de
dt

= ve ⋅ x −D ⋅e + Fe (2)

where e is the vector formed with the concentration of the extracellular metabolites 
(substrates  and products), ve the vector of specific, extracellular fluxes (uptakes  and 
product formations), and Fe the net inflow/outflow of  the extracellular metabolites.

Intracellular behavior

Given a metabolic network of the modelled cells, and extracting its  stoichiometric 
matrix, the mass balances around the intracellular metabolites can be also represented 
by a set of  ordinary differential equations (Provost, 2004),

d c ⋅ x( )
dt

= N ⋅v ⋅ x −D ⋅c ⋅ x + c ⋅Fx (3)

where c = (c1, c2, ..., cm)T is  the vector of intracellular metabolites concentrations, and 
v = (v1, v2, …, vn)T the vector of specific fluxes through each reaction, and N is the 
stoichiometric matrix linking fluxes and internal metabolites.
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To obtain a more operative expression we expand the derivatives,

d c ⋅ x( )
dt

=
dc
dt

⋅ x + c ⋅ dx
dt

(4)

By substituting (1) and (3) in (4), the mass balance equation around intracellular me-
tabolites can be rewritten as follows:

dc
dt

= N ⋅v − µ ⋅c (5)

This  is the dynamic mass balance equation, which describes the evolution over time of the 
concentration of each metabolite. This equation implies that to model the dynamic 
evolution of intracellular metabolites  we need information about stoichiometry (N), 
biomass growth (µ), and intracellular reaction fluxes (v). 

Steady-state assumption

Unfortunately, the mechanisms  of intracellular reactions are complex and still not 
very well understood. This, together with the lack of intracellular dynamic measure-
ments, makes it difficult to build structured, kinetic models  (Bailey, 1998; Palsson, 
2000). This  is  why stoichiometric models disregard the dynamics of the intracellular 
reactions in (5) and assumes  that (most) internal metabolites are at steady-state 
(Stephanopoulos, 1998). 

This  assumption is  supported by the observation that intracellular dynamics are much 
faster than extracellular dynamics. Therefore, it is sensible to disregard its transient 
behaviour and consider that they rapidly reach the steady state.1 The dilution term 
µ∙c is  also disregarded because it is  generally much smaller than the fluxes affecting 
the same metabolite (Stephanopoulos, 1998).

Under these assumptions, the mass balances (5) can be described by a homogeneous 
system of  linear equations, the so-called general equation:

N ⋅v = 0 (6)

In this  way each stoichiometrically feasible steady-state is  represented by a flux vector 
v. Notice, however, that this  equation does not predict the actual state of cells. If N 
has full row rank, there are m independent equations. As  n is typically larger than m, 
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the system is  underdetermined with n-m degrees of freedom. There is a whole space 
of  feasible flux vectors, or flux states, that cells can shown.

The existence of multiple solutions makes  sense, since cells  show different behaviours 
depending on the environmental conditions, such as the availability of substrates or 
the temperature. Equation (6) must be seen as a representation of feasible states, or 
capabilities, of  the metabolic network being modelled.

Equation (6) is the base of many tools to investigate the metabolism of living cells, 
some of which will be discussed in subsequent sections. First, let us discuss how addi-
tional constraints can be imposed to get richer representations of  the cell metabolism.

2.4  Constraint-based modelling perspective

Constraint-based modelling is  based on the fact that cells are subject to constraints 
that limit their behaviour (Palsson, 2006). In principle, if all constraints operating un-
der a given set of circumstances were known, the actual state of a metabolic network 
could be elucidated; but most likely we will not be able to reach this state of knowl-
edge soon (Palsson, 2000; Kitano, 2002). Nevertheless, imposing the known con-
straints, it is possible to determine which functional states  can and cannot be achieved 
by a cell. The imposition of constraints  leads to a space of feasible flux states, as  it 
happens with the general equation (6), where every feasible flux vector lives  (Wiback, 
2004). Since a metabolic phenotype can be defined in terms of fluxes, this  space rep-
resents, or at least contains, all the feasible phenotypes of  cells (Edwards, 2002).

Now the general equation (6) can be seen as a set of stoichiometric constraints. In this 
way, the classical stoichiometric models  can be seen as a particular kind of constraint-
based models that only consider stoichiometric information.

Different types of constraints

Constraints can be divided in two main types: non adjustable (invariant) and adjust-
able ones (Table 2.1). The former are time-invariant restrictions of possible cell be-
haviour, whereas  the latter depend on environmental conditions, may change through 
evolution, and may vary from one individual cell to another. Examples of non adjust-
able constraints are those imposed by thermodynamics (e.g, irreversibility of fluxes) 
and enzyme or transport capacities (e.g, maximum flux values). Enzyme kinetics, 
regulation, and experimental measurements are examples of  adjustable constraints. 

To study the invariant properties of a network, only invariant constraints  can be used, 
because they are those that are always satisfied (i.e, they limit the cell capabilities). If 
adjustable constraints are used, the elucidated cell states will be only valid under the 
particular set of  circumstances in which these constraints operate.
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Space of feasible flux states

The general equation (6) provides a set of stoichiometric constraints  that link some 
fluxes with others, thus restricting the space of feasible flux vectors to a hyper-plane, a 
subspace of Rn (Figure 2.3). An a second step, certain reactions are often considered 
irreversible, that is, able to operate only in one direction. 

In this way, taking into account intracellular mass  balances (6) and irreversibility con-
straints, a space of feasible steady state flux vectors b, the so-called flux space, can be 
defined as follows:

P = v ∈Rn : N ⋅v = 0
D ⋅v ≥ 0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

(7)

where D is a diagonal nxn-matrix with Dii = 1 if  the flux i is irreversible, otherwise 0.

It is  also very common to impose maximum flux values, derived from enzyme or 
transport capacities. In this way, one can add constraints of  the form:

vm < v < vM (8)

If this  data is available for every flux in the network, the flux space becomes a 
bounded space.1 In mathematical terms, the convex polyhedral cone P is transformed 
into a bounded convex polyhedral cone (Figure 2.3).

Equations (6-8) represent most common non-adjustable constraints. These constraint 
define a space wherein every feasible flux vector always lives. They form a constraint-
based model that describes  in mathematical terms the capabilities of the metabolism 
under study. Other common non-adjustable thermodynamic constraint (Henry, 2006; 
Kümmel, 2006; Feist, 2007; Hoppe, 2007; Soh, 2010).

Table 2.1. Most common types of  constraint.

Constraints Type Mathematical formulation

Systemic stoichiometry Non-adjustable N ⋅v = 0
Irreversibility of  fluxes Non-adjustable v ≥ 0
Enzyme/transporters capacities Non-adjustable vm ≤ v ≤ vM

Measured fluxes Adjustable v = w or wm ≤ v ≤ wM

Regulatory constraints Adjustable vo = 0, if vi ≠ 0

Kinetic constants Adjustable v = k ⋅Cm ,     (Cm is a concentration)
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Adding adjustable constraints

Adjustable constraints can also be incorporated to further restrict the space of feasible 
flux state or even to predict the actual fluxes. For example, regulatory constraints have 
been successfully imposed using Boolean logic operators  (Covert, 2001; 2003), corre-
lated reactions  (Schilling, 2002), and control-effective fluxes (Stelling, 2002). There are 
also many methodologies  that incorporate experimentally measured flux values  as  ad-
justable constraints. Details will be given below and in subsequent chapters.

2.5  Classification of constraint-based methodologies

There are several methods and techniques that exploit a constraint-based model.  
There is, however, a wide range of methodologies, they have particular purposes (e.g, 
analyse redundancy), employ a different mathematical frameworks  (e.g, linear alge-
bra), and are supported by particular assumptions (e.g, optimal behaviour).

A simple way to classify these methodologies is dividing them in two categories: those 
focused on analysing the entire flux space, and those that look for particular flux states 
within this space (see Figure 2.4).

Methodologies to systemic analysis

There are several approaches  to study the modelled metabolism by means of the 
analysis of the flux space defined with (6-8). The objective of this  approaches  is eluci-
dating systemic and emergent properties of the organism under investigation, those 
which do not derive from the elements that constitute the metabolic network, but 
which emerge from the interactions between those elements.

Convex 

polyhedral cone
Subspace of R

n Bounded convex 

polyhedral cone

+ +

Stoichiometry Irreversibility Capacity

v1

v2

v3

N v = 0 v v
Mv 0

Figure 2.3. Space of  feasible steady-state flux vectors by non-adjustable constraints.
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Pathway analysis with linear algebra

The equation (6) defines a homogeneous  linear system of equalities, and therefore it 
can be analyzed using tools from linear algebra. For instance, the space of the solu-
tions of (6) is defined by the null space (or kernel) of N. This is  the space of stoichio-
metrically feasible (steady-state) flux vectors v.

The null space can be described by a n×(n-m) matrix,

K(N) (9)

The columns  of K are linear independent vectors that span the null space. These vec-
tors form a basis of the space (6), and the dimension of K represents the degrees of 
freedom of  this space.

Since the kernel is a basis of (6), every solution v in (6) can be expressed as a linear 
combination of  these column vectors: 

v = K ⋅ λ (10)

Note that if K exists, there are infinitely representations  of K, because its columns can 
be linearly combined with each other.

Different analytical tools based on the null space K have been successfully applied in 
recent years. For instance, biochemically meaningful basis vectors  have been used to 
get insight into pathway structures in a metabolic network (Schilling 1999). The null 
space has  been also useful in the context of Metabolic Control Analysis  (Reder, 1988; 
Heinrich, 1996).

However, the use of linear algebra to analyze the underlying metabolic networks  has 
two main limitations: (i) inequalities  cannot be used to represent well-known con-
straints, such as  reactions irreversibility, and (ii) the obtained basis are not unique, and 
therefore they are not an invariant property. Ideas and tools from convex analysis has 
been used to overcome these limitations.

Pathway analysis with convex analysis

Convex analysis  enables the analysis of linear systems of inequalities, thus making it 
possible to consider the irreversibility of the reactions, as  given in equation (7). Using 
convex analysis, different concepts  of network-based pathways  have been proposed, 
such as elementary modes and extreme pathways  (Papin, 2003; Papin, 2004). These 
pathways  characterise, to some extent, the flux space defined in (7), and are being 
used to elucidate systemic properties, such as pathway length, network redundancy, 
enzyme subsets, or knockouts. These tools  will be described in the next sections. 
Chapter III is devoted to compare some of  them.
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Methodologies to promote particular flux vectors

Several methodologies offset the under-determinacy of constraint-based models  to 
promote particular flux vectors  or metabolic states. This is achieved by adding adjust-
able constraints and making assumptions. This  approach is mainly used (i) to estimate 
the flux state at given conditions, or (ii) build models  capable of predicting the flux 
state that cells will exhibit at certain conditions.

Estimate the current flux state

A basic constraint-based model (6) can be coupled with in vivo experimental measure-
ments  of some fluxes to determine the complete flux state at the conditions  where 
measurements were obtained. This is  the approach used by metabolic flux analysis 
(Heijden, 1994; Stephanopoulos, 1998). Metabolic flux analysis has been extensively 
applied in recent years, and has been particularly successful in the fields  of microbial 
production and animal cell culture.

Predict fluxes at given conditions

A predictive model is  a mathematical representation of a system that predicts  the out-
puts of the system given its inputs. In our context, certain constraints can be seen as 
inputs, such as substrates  availabilities, and the flux vector as  output. Since we do not 
know all the operating constraints, the imposition of the input constraints  do not re-
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sults  in one unique prediction of the flux values; instead, a space of feasible steady 
state flux vectors  is obtained. To determine which of these flux vectors is the actual 
one, further assumptions  are needed. For instance, flux balance analysis gives point-
wise predictions  assuming that cells have evolved to be optimal respect to a (known) 
objective (Kauffman, 2003; Price, 2003).

In following sections three outstanding methodologies using constraint-based models 
will be presented: Elementary modes analysis (to discover pathways in a systematic way), 
Metabolic flux analysis (to estimate the fluxes exploiting the available measurements), 
and Flux balance analysis (to prediction fluxes assuming optimality).

2.6  Metabolic pathways analysis: identifying pathways

The purpose of network-based pathways analysis  is  twofold: first, identify a finite set 
of systemic pathways  in a metabolic network; second, use these pathways to elucidate 
systemic properties and the capabilities of  cell metabolism.

Generate the flux space

If we consider stoichiometry and reactions reversibility (7), the space of feasible flux 
vectors, or flux space P, is  a convex polyhedral cone. Interestingly, convex analysis 
shows that any convex polyhedral cone can be generated by non-negative combina-
tion of  a set of  generating vectors gk (Rockafellar, 1970):

P = v ∈Rn :v = wk ⋅gk =G ⋅w,
k
∑ wk ≥ 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(11)

Every feasible flux vector v in P can be represented as a non-negative combination of 
flux through these vectors g, which can be seen as pathways. In other words, all the 
flux states of a given metabolic network can be represented as  an aggregation of 
fluxes through certain systemic pathways.

At least four related concepts of pathways fulfilling (11) have been proposed: extreme 
currents, elementary modes, extreme pathways  and minimal generators. If one is  only 
interested in generating the flux space fulfilling (11), the more reasonably choice is  a 
minimal generating set, a smallest set of vectors  holding the property (Urbanczik, 
2005). Unfortunately this set is not unique in the general case. On the other hand, the 
set of elementary modes has  another property that makes them a more powerful tool 
for the analysis of  the underlying metabolism.
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Elementary modes

The elementary modes  are defined as the set of all the non-decomposable vectors in 
P. That is, all those vectors  e in P that cannot be decomposed as  a positive combina-
tion of  two simpler 1 vectors in P (Schuster, 1999). This definition implies that:

(i) The elementary modes  generate the flux space P, as in (11). Indeed, in chapter 
III we will show that they fulfil a more restrictive condition.

(ii) The set of elementary modes  is unique. They are a systemic (and time-
invariant) property of  the given metabolic network. 

(iii) Each e is non-decomposable. Each e represents  a (stoichiometrically and ther-
modynamically) feasible route to the conversion of substrates into products  and 
cannot be decomposed into simpler routes.

(iv) The elementary modes are all the routes consistent with property (iii). 
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The fact that the set of elementary modes  (EMS) comprises  all the simple pathways in 
the network—its functional states—makes it possible to investigate the infinite behav-
iours  that cells can show by simply inspecting them. This makes it easy to answer sev-
eral questions: which reactions are essential to produce a certain compound, which 
will be the capabilities of the network if a reaction is  knocked-out, etc. Answering 
these questions using the minimal generators or the extreme pathways may be difficult 
because one has to take into account the possible cancelations of  reversible fluxes.

More details  about pathway analysis will be given in chapter III, where four concepts 
of pathways are described and compared. The translation of a flux vector into a pat-
tern of  elementary modes activities will be addressed in chapter V.

Applications of network-based pathways analysis

Several applications of elementary modes and the closely related extreme pathways 
have been reported in the literature. Most of these applications are found in the con-
text of microbial production, for the study of the metabolisms of E. coli (Schmidt, 
1999), Haemophilus influenzae (Schilling, 2000; Papin, 2002), Helicobacter pylori (Price, 
2002), and Saccharomyces cerevisae (Schwartz, 2006). However, elementary modes have 
also been used in botany (Poolman, 2003; Steuer, 2007) and in medicine (Zhong, 
2002; Nolan, 2006).

2.7  Metabolic flux analysis: estimating fluxes

Generally speaking, metabolic flux analysis  (MFA) combines a set measured fluxes (of-
ten extracellular ones) with a constraint-based model to get an estimate of all the 
fluxes. This results in a metabolic flux vector v that represents the steady state at 
which each reaction in the network occurs (Figure 2.6). This  pattern of flux informs 
about the contribution of each reaction to the overall metabolic processes  of substrate 
utilisation and product formation.

Consider a metabolic network with m internal metabolites  and n reactions. Assuming 
that metabolites are at steady-state, mass balances can be formulated as follows:

N·v = 0 (12)

Now, we consider that some fluxes in v have been measured, v = (vu vm), keeping in 
mind that measurements are imprecise in practice, they can be represented as follows:

wm = vm + em (13)

where em represents measurement errors and wm the measured values.
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Hence, Traditional metabolic flux analysis  (Heijden, 1994) can be defined as the exer-
cise of determining the complete flux vector v that satisfies the balance equation (12) 
and is compatible with the measurements (13).

Traditional MFA: problem determinacy and redundancy

If we define a dim{vm}×n selection matrix Q having exactly one “1” in each row and 
all other elements equal to zero, the system (12-13) can be rewritten as follows:

N
Q

⎛

⎝⎜
⎞

⎠⎟
·v + 0

em

⎛

⎝
⎜

⎞

⎠
⎟ =

0
wm

⎛

⎝
⎜

⎞

⎠
⎟ (14a)

In practice vm (and em) is unknown due to noise, so one has to deal with the system:

N
Q

⎛

⎝⎜
⎞

⎠⎟
·v = 0

wm

⎛

⎝
⎜

⎞

⎠
⎟ (14b)

With a classical classification of  linear systems of  equations, system (14) could be:

• Underdetermined. If less than n-m independent fluxes are measured, system (12) 
has infinite solutions. At least one flux, but probably most of them, cannot be 
determined. 

• Determined. If exactly n-m independent fluxes are measured, system (14) has a 
unique solution. In this case, all fluxes can be uniquely determined.

• Overdetermined. If more than n-m independent fluxes are measured, system (14) 
probably has no solution—there are redundant measurements  which are incon-
sistent.
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Figure 2.6. Traditional metabolic flux analysis. (A) Measured fluxes are coupled with the stoichiomet-

ric constraints to determine the remaining fluxes. (B) The under-determinacy of the flux space is  offset 
by incorporating measurements (subindexes m denote measured fluxes, c determined ones).
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This  classification disregards  the fact that (14) can be simultaneously underdetermined 
and redundant. A better classification was given by Klamt (2002).

Consider a partition in (12) between measured (m) and unknown fluxes (u):

Nu ·vu = −Nm ·wm (15)

Then, determinacy and redundancy of  the MFA problem can be defined as follows.

System Determinacy and Calculability of Fluxes. System (15) is determined if rank(Nu) < u 
(u is  the number of non-measured fluxes), i.e., if there are enough linearly independ-
ent constraints to uniquely calculate all non-measured fluxes vu. If the system is un-
derdetermined, at least one flux in vu, and probably most of  them, are non calculable.

System Redundancy and Consistency of Measurements. System (15) is redundant if rank(Nu) < 
m, if some rows in Nu can be expressed as linear combinations of other rows. This 
can lead to an inconsistent system if the vector wm contains  such values  that no vu 
exists that exactly solves (15). Redundancies can be exploited to analyse measurements 
consistency and adjust the measured values of  the so-called balanceable fluxes.

Traditional MFA: calculation procedure

Traditional metabolic flux analysis  (TMFA) is  often performed with a two-step proce-
dure (Heijden, 1994). First, consistency is  analysed with a χ2-test to ensure that meas-
urements  are free of gross errors  (details below). Then, a weighted least squares  prob-
lem is solved to get an estimate of  v:

vmfa = AT ⋅F−1 ⋅A( )−1
AT ⋅F−1 ⋅r,        A = N

Q
⎛

⎝⎜
⎞

⎠⎟
,  r = 0

wm

⎛

⎝
⎜

⎞

⎠
⎟ (16)

where it is assumed that errors  em are distributed normally with a mean value of zero 
and a variance-covariance matrix F.

Notice, however, that an equivalent (weighted) least squares  problem can be formu-
lated as a quadratic optimisation subject to linear constraints:

vmfa = min
v

  em
T·F−1 ·em    s.t.  

N·v = 0
wm = vm + em

⎧
⎨
⎩

(17)

Notice that, ideally, TMFA should be performed only when the system is determined 
and redundant. If it is  not redundant, measurements  consistency cannot be evaluated 
and the point-wise estimate given by (16) or (17) will be unreliable. If the system is 
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underdetermined, the point-wise estimate given by (17) will be only one of multiple 
(infinite) possible values.

Evaluation of measurements consistency

Before applying TMFA, redundant measurements can be used to evaluate the consis-
tency between measurements  and model (Stephanopoulos, 1998). A redundant system 
will be consistent if  it fulfils the consistency condition:

R ⋅wm = 0, R = Nm −Nu ⋅Nu
# ⋅Nm (18)

where R is  the redundancy matrix and the operator (#) denotes the More-Penrose 
pseudo-inverse.

If inconsistency is detected, a χ2-test can be used to evaluate its  importance. The con-
sistency analysis is  based upon statistical hypothesis  testing to determine if redundan-
cies are satisfied to within expected experimental error. 

The test is performed calculating a consistency index h as follows: 

h = ε T ⋅W-1 ⋅ε
ε = −Rr ⋅vm
W = Rr ⋅Fr ⋅Rr

T

(19)

where Rr is the reduced redundancy matrix (obtained by removing dependent rows in 
R) and Fr is the variance-covariance matrix of  the measurements wm. 

If a given wm fails the consistency check (h>χ2), there is  a (confidence level)% chance 
that either wm contains gross errors or the stoichiometric matrix is incorrect.

Traditional MFA: calculation procedure by Klamt

It must be noticed that only some measured fluxes, the so-called balanceable, have an 
impact on the consistency analysis. These can be detected by inspection of R: exactly 
those wm,j for which the corresponding j-th column of R contains at least one nonzero 
value are balanceable (Klamt, 2002).

Interestingly, these balanceable measured fluxes can be adjusted (or balanced) if they 
are inconsistent. The adjusted values can be calculated as follows: 1
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vm
mfa = I − Fr ⋅Rr

T ⋅W-1 ⋅R
r

#( ) ⋅wm (20)

After adjusting the measured fluxes, the non-measured fluxes can be calculated with 
equation (15). If the problem is determined and not redundant the unique vu fulfilling 
(15) can be calculated using the inverse of Nu. However, to get a solution in case (15) 
is determined and redundant, the pseudo-inverse should be used instead:

vu
mfa = −N

u

# ⋅Nm ⋅vm
mfa (21)

If the system is  underdetermined, at least one non-measured flux, and probably most 
of them, are non uniquely determined and should not be calculated with (21). How-
ever, even in this case some fluxes may be calculable (Klamt, 2002).

Consider the general solution of  system (15):

vu = vu
p +Ku ⋅ λ (22)

where vp is a particular solution, for instance, the one given by (20-21), λ is  an arbi-
trary vector with n-m elements, and Ku is  the kernel of Nu. The product Ku·λ spans 
the space of  possible flux values and represents the underdeterminacy of  the system.

We can define as calculable fluxes the elements vu,j in vu which corresponding row in 
Ku is  a null row. These elements are uniquely determined independently of λ; any 
particular solution vp will assign the same value for those vu classified as  calculable. 
Therefore, their value can be taken from any solution, e.g., the one given by (10). 

In summary, the procedure to apply TMFA proposed by Klamt et al. (2002), with 
slight changes, can be structured as follows:

Step 1 Balance the measured fluxes

 1.1 	 Check if  the system is redundant: rank(Nu) < m

 1.2 	 If  the system is redundant

	 - Evaluate consistency to detect gross errors with (19)

	 - Detect and adjust the balanceable fluxes with (20)

 	 (thus obtaining a consistent set of  measurements)
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Step 2 Determine the non-measured fluxes

 2.1 	 Check if  the system is determined: rank(Nu) = u

 2.2 	 It the system is determined, all fluxes are calculable

	 If  it is underdetermined, find calculable fluxes with (22)

 2.3	 Get values of  the calculable fluxes from (21)

More details  about metabolic flux analysis  will be given in chapters  IV and VII. 
There, we propose alternative approaches to traditional MFA and illustrate their 
benefits with different cases of  study.

Applications of metabolic flux analysis

Metabolic flux analysis has been widely used to characterise canonical states of cells, 
such as  exponential batch growth or steady states  in the continuous mode. In particu-
lar, animal cell cultures have received considerable attention (Bonarius, 1996; Follstad, 
1999; Nyberg, 1999; Gambhir, 2003). Recently, there has been an increasing interest 
on the application of metabolic flux analysis  to plant cell culture (Schwender, 2004; 
Ratcliffe, 2006). It has also been applied to study transient processes in microorgan-
isms  (Herwig, 2002), to on-line monitoring intracellular fluxes  in mammalian cells 
(Henry, 2007), to determine the physiological state of a culture (Takiguchi, 1997), and 
to develop dynamic models  (Teixeira, 2007). There are some medical applications of 
metabolic flux analysis, such as the generation of hypothesis  for new therapeutical 
strategies (Calik, 2002), the optimisation of an extracorporeal bioartificial liver device 
(Sharma, 2005), and the investigation of metabolic responses  of the rat liver to burn-
injury-induced whole-body inflammation (Nolan, 2006). Metabolic flux analysis has 
been also combined with isotopic labelling experiments, allowing for a more reliable 
estimation of  fluxes (Wiechert, 2001; Schmidt, 1999; Shirai, 2006). 

2.8  Flux balance analysis: predicting fluxes

Flux balance analysis  (FBA) is  a methodology that uses optimisation to get predictions 
from a constraint-based model by invoking an assumption of optimal cell behaviour 
(Savinell, 1992; Varma, 1994; Edwards, 2002; Price, 2003; Palsson, 2006). Basically, 
one particular state among those that cells can show, accordingly to a constraint-based 
model, is  chosen based on the assumption that cells  have evolved to be optimal, i.e., 
that cells regulate its fluxes toward optimal flux states.

       Chapter II   |   61     



The procedure to build an FBA model can be summarised as follows (Figure 2.7): 

Step 1 Define the flux space with (6-8). These constraints  are the invariant 
structure of  the model, and represent the capabilities of  the cells.

N ⋅v = 0  and  D ⋅v ≥ 0

Step 2 Incorporate “input” constraints (adjustable ones), usually on a few up-
take fluxes, based on capacities or availability of  substrates.

 e.g., vu
m ≥ vu ≥ vu

M

Step 3 Assume that cells  have evolved to achieve an optimal behaviour owing 
to evolutionary pressure. Then invoke an optimal use of resources (e.g., 
maximum growth), expressed by means of  a (linear) cost index Z:

 Z = d ⋅v

Step 4 Solve the formulated (linear) programming problem to obtain the flux 
vector that makes the best use of its  resources to satisfy the stated ob-
jective function.

 vopt = max
v

 Z s.t. N ⋅v = 0 D ⋅v ≥ 0 v
u

m ≥ vu ≥ v u

M{ }

Notice that the aim of flux balance analysis  is  not to determine the flux vector that 
corresponds to a set of measurements (as  in MFA), but to construct a model able to 
predict the phenotype that cells will show at certain conditions  (those defined by the 
input constraints). Indeed, in most cases input constraints  do not correspond to real 
measurements. Flux balance analysis  is used to investigate hypothesis (e.g., test if a 
reduced uptake capacity can be the cause of an unexpected cell behaviour) and to 
evaluate a range of  possibilities (e.g, find the best combination of  substrates).

Metabolic objectives and optimization

It must be taken into account that FBA predictions, the optimal flux state, may not 
correspond to the actual fluxes exhibit by cells. To support the assumption of optimal 
behaviour, it must be hypothesised that: (i) cells, forced by evolutionary pressure, 
evolved to achieve an optimal behaviour with respect to certain objective, (ii) we know 
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which this objective is, and (iii) the objective can be expressed, at least approximately, 
in convenient mathematical terms.

Clearly, predictions of flux balance analysis are dependent on the objective function 
being used. To date, the most commonly used objective function has been the maxi-
misation of biomass, which leaded to predictions consistent with experimental data 
for different organisms, such as  Escherichia coli (Varma, 1994b; Edwards, 2001) or Heli-
cobacter pylori (Schilling, 2002). Other objective functions have been used, such as 
minimising ATP production, minimising nutrient uptake, or maximising metabolite 
production. Although linear functions are preferred (to keep the problem linear) non-
linear functions have been also used. For example, a quadratic function is used in 
(Segre, 2002), and the authors  suggest that genetically engineered knockout may un-
dergo a minimal redistribution with respect to the flux configuration of the wild type 
cell. Remarkably, Schuetz et al. have shown the capacity of FBA to predict intracellu-
lar fluxes using different objective function (2007), but they pointed out that this re-
quires to identify which are the relevant objectives  of cells at different environmental 
conditions (Schuster, 2008; Schuetz, 2007).

Flux balance analysis will be also discussed in chapter VIII, where we introduce a pos-
sibilistic approach to FBA that provides rich predictions, accounts  for sub-optimality, 
and considers (quasi) alternative optima solutions.
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Applications of flux balance analysis

E. coli has been the most well studied microorganism due to the considerable amount 
of available data (Edwards, 2001; Reed, 2003; Feist, 2007). Other FBA models have 
been developed, for instance, for Haemophilus influenzae (Edwards, 1999), H. pylori 
(Schilling, 2002), Saccharomyces cerevisae (Forster, 2003), Methanosarcina barkeri (Feist, 2006) 
and Synechocystis (Montagud, 2010). As a result of these efforts, many applications of 
flux balance analysis have been investigated, some of which are summarised in Table 
2.2 (Palsson, 2006; Edwards, 2002; Price, 2003). In recent years, the first medical ap-
plications  of flux balance analysis have been carried out. Thiele et al. (2005) used 
FBA to investigate the metabolic network of human mitochondria and to evaluate the 
effect of potential disease treatments. FBA has been also applied to optimise the me-
tabolism of cultured hepatocytes used in bioartificial liver devices (Sharma, 2005; No-
lan, 2006). And there is  a reasonable interest on the application of flux balance analy-
sis of  whole-plant models (Lange, 2006; Zhong, 2002).

Table 2.2. Applications and methods based on flux balance analysis.

Determine network properties Yield of  key cofactors and biosynthetic precursors

Redundancy studies Detect alternate equivalent optima

Analyze the flux variability of  a given optimal

Study the sensitivity of  the optimal properties

Interpret experimental data Analyze robustness against environmental perturbations

Qualitatively classify metabolic state based on observations

Objective studies predict optimal growth rates

Elucidate which are the cell objectives (objective functions)

Simulated modifications Study gene deletions/additions

Predict the behavior of  knockouts (MOMA)

Gradual inhibition or enhancement of  gene function

Accounting for regulation Increase predictive power
Potential applications Identify and prioritize candidate drug targets

Direct strategies to engineer strains

Evaluate the state of  knowledge about the metabolism

Design experimental programs

Analyze enzyme deficiencies

Evaluate genome annotations
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2.9  Conclusions

Along this  chapter classical stoichiometric models  and the more powerful constraint-
based models have been presented. We have also reviewed different methodologies 
that make use of these models. Particular attention has been paid to three outstanding 
methodologies  that are the context for the contributions  of this  thesis: metabolic flux 
analysis, flux balance analysis, and metabolic pathways.

Metabolic flux analysis (MFA) uses  experimentally measured data to estimate the 
metabolic state of cells at given conditions. It has been commonly used to study the 
exponential growth phase and steady states  in continuous fermentation processes. 
There is  also interest in the use of MFA for monitoring time-varying fluxes, particu-
larly in industrial environments (Herwig, 2002; Henry, 2007; Takiguchi, 1997). 

In chapter IV and VII, we introduce interval and possibilistic methods to perform MFA. These 
methods provide richer estimates, consider measurements uncertainty, and cope with scenarios of 
data scarcity. The estimation of  fluxes over time will be discussed in chapters V and VIII.

Flux balance analysis  (FBA) is  a methodology to get predictions from a constraint-
based model, so far, the only one applied in the genome-scale (Price, 2003). It is also 
of  utility with simpler networks (Schuetz, 2007).1

A possibilistic approach to FBA will be discussed in chapter VIII. This approach provides rich 
predictions, accounts for sub-optimality, and considers (quasi) alternative optima.

Network-based pathways, such as  elementary modes  or extreme pathways, are tools to 
elucidate systemic properties and capabilities of cells. Despite being recent proposals,   
they have been used to improve our understanding of biological processes, guide 
metabolic engineering, and aid in the development of  reduced models.

In chapter III, three definitions of network-based pathways will be compared. In chapter V, the 
translation of a flux state into a pattern of pathway activities will be addressed. Elementary 
modes will be also of use in the procedure to validate constraint-based models described in chap-
ter IX.

In summary, constraint-based modelling is  now a very active field—its applications  
increases steadily—and it is  expected that this  situation will continue. The results 
show that there is much valuable information that can be extracted for the recon-
structed networks, even if intracellular kinetics  are still unknown. Moreover, there is 
key advantage in the fact that the paradigm is scalable: new and better knowledge and 
data can be incorporated as  additional constraints, thus improving the models in an 
iterative way. 
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III
Network-based metabolic pathways: a 

comparison

There is a great interest in systematically identifying the relevant pathways  in a meta-
bolic network, but, unsurprisingly, there is not a unique set of pathways  to be tagged 
as  relevant. At least four related concepts  have been proposed: extreme currents, ele-
mentary modes, extreme pathways and minimal generators. 

In this chapter, we will describe and compare these concepts. Basically, there are two 
properties that these sets of pathways  can hold: they can generate the flux space—if 
every feasible flux vector can be represented as a non-negative combination of path-
ways activities—or they can comprise all the non-decomposable pathways in the net-
work. The four concepts  fulfil the first property, but only the elementary modes fulfil 
the second one. This subtle difference has been a source of errors and misunderstand-
ings. This chapter attempts  to clarify the intricate relationship among the different 
pathways by comparing them.

Part of  the contents of  this chapter appeared in the following journal article:

• Llaneras F, Picó J (2010). Which metabolic pathways generate and characterise 
the flux space? A comparison among elementary modes, extreme pathways and 
minimal generators. Journal of  Bioscience and Bioengineering, vol. 2010.
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3.1  Introduction

Recalling our standard notation, a metabolic network can be represented by a stoi-
chiometric matrix N, where rows correspond to the m metabolites and columns to the 
n reactions. If one assumes that intracellular metabolites  are at steady state, material 
balances can be formulated as follows (Stephanopoulos, 1998):

N ⋅v = 0 (1)

where v = (v1, v2, …, vn)T is the n-dimensional vector of flux through each reaction. 
Each feasible steady state is represented by a flux vector v. 

Taking into account these mass balances and the irreversibility of certain reactions, 
the space of feasible steady state flux vectors, or flux space, can be defined as follows  (see 
glossary at the end of  the chapter for words in italics):

P = v ∈Rn : N ⋅v = 0
D ⋅v ≥ 0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

(2)

where D is a diagonal n×n-matrix with Dii = 1 if  the flux i is irreversible (otherwise 0). 

The flux space is the cornerstone of constraint-based modeling, as it was explained in 
chapter II. In this context, network-based pathways are used to investigate the mod-
eled metabolism by the analysis  of a finite set of relevant pathways, which ideally rep-
resent all the metabolic states  that a cell can show. Some applications of this approach 
are enumerated in Table 3.1.

However, there is not a unique set of network-based pathways to be tagged as ‘rele-
vant’ and different proposals have been applied with success: extreme currents, ele-
mentary modes, extreme pathways and minimal generators. These concepts are not 
equivalent, but closely related. There are three major properties that a set of network-
based pathways  may hold: (P1) they generate the flux space P, (P2) they are the mini-
mal set of vectors fulfilling the first property, and (P3) they are all the non-
decomposable pathways in the network. The fact that all the network-based path-
ways—elementary modes, extreme pathways, etc.—fulfil the first property but not the 
others has been a source of  errors, imprecision and misunderstandings.

Along this chapter we discuss the relationship among the different network-based 
pathways  from a theoretical point of view. We will start defining the four pathway 
concepts  and then we will perform a comparison among them. Finally, we will present 
some examples and outline the major conclusions.
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3.2  Different concepts of pathways

The first attempts to systemically extract a set of pathways from a given metabolic 
network were based on the assumption that all the fluxes were irreversible, or more 
precisely, that its  dominant direction could be presumed. Convex algebra show that in 
this  case the flux space P is a pointed convex polyhedral cone in the positive orthant Rn, 
which can be generated by non-negative combination of certain vectors, its edges or 
extreme rays (Rockafellar, 1970). See Figure 3.1 for a geometric illustration.

These extreme rays were flux vectors, or pathways, with a remarkable property (P1): 
the extreme rays  generate the flux space P. That is, every flux vector v in P can be 
represented as  a non-negative combination of fluxes  through these pathways (ek de-
notes the extreme rays):

P = v ∈Rn :v = wk ⋅ek ,
k

e

∑ wk ≥ 0
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(3)

An example illustrating this property was shown in chapter II, section 2.6. Notice also 
that in general a given v cannot be uniquely decomposed into an activity pattern w, 
but a space of valid solutions exists  (Wiback, 2003).1 This is also true for the rest of 
generating sets that will be introduced in subsequent sections.

Moreover, the set of extreme rays had two additional properties: (P2) it was the small-
est (minimal) generating set of P, and (P3) the extreme rays were all the non-
decomposable vectors  in P, those that cannot be decomposed in simpler vectors (Gag-
neur, 2004). A non-decomposable vector is a minimal set of reactions that form a ‘func-
tional unit’, if any of its  participant reaction is  not carrying flux, the others cannot 
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Figure 3.1. Extreme rays of  two flux spaces.



operate alone. These functional units  are the simplest steady state flux vectors that 
cells can show, and the rest of feasible states  can be seen as the aggregated action of 
these units. This property makes it possible to investigate the infinite behaviors that 
cells can show by inspection of  the finite set of  non-decomposable vectors. 

But what happens if not all fluxes can be assumed to be irreversible? If so, the ex-
treme rays  may lose these properties. Indeed, a set of vectors  holding the three prop-
erties simultaneously (P1, P2 and P3) will not exist; there will be sets fulfilling P1 and 
P2, or P1 and P3, but not P2 and P3 in a general case.
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Table 3.1. Applications of  network-based pathways analysis.

Applications References

Identification of  pathways

Determination of  minimal medium requirements

Analysis of  pathway redundancy and robustness

Linkage between structure and regulation…

	 Correlated reactions (enzyme subsets)

	 Detect excluding reaction pairs

	 Prediction of  transcription ratios

	 Include regulatory rules

Support for metabolic engineering…

	 Identification of  pathways with optimal yields

	 Evaluation of  effect of  addition/deletion of  genes

	 Inference of  viability of  mutants

	 Detection of  minimal cut sets

	 Suggest operations to increase product yield

Translation of  a flux vector into pathways activities…

	 Particular solution methods

	 Alpha-spectrum

Aid in the reconstruction of  metabolic reaction networks…

	 Assignment of  function to orphan genes

	 Detection of  infeasible circles

	 Detection of  network dead ends

	 Support in the reconstruction of  metabolic maps

Development of  reduced, kinetic models

(Schuster, 2000; Schuster, 1999)

(Schilling, 2000)

(Stelling, 2002; Price, 2002)

(Papin, 2002; Pfeiffer, 1999)

(Klamt, 2003)

(Stelling, 2002; Cakir, 2004)

(Covert, 2003)

(Schuster, 1999)

(Carlson, 2002)

(Stelling, 2002)

(Klamt, 2004)

(Liao, 1996)

(Schwartz, 2006; Schwarz, 2005)

(Wiback, 2003; Llaneras, 2007)

(Forster, 2002)

(Price, 2002; Beard, 2002)

(Schilling, 2002)

(Cornish-Bowden, 2000)

(Teixeira, 2007; Provost, 2004; 2006)



Extreme currents

Extreme currents are probably the first attempt to define a set of network-based 
pathways  (Clarke, 1988). Their computation is based on splitting up each reversible 
reaction into two irreversible ones. If fluxes  are reordered to separate the irreversible 
fluxes vI and the reversible ones vR, the flux space (2) is augmented (N = [NI NR]):

Prc = v ∈Rn+r : NI NR −NR( ) ⋅
vI
vR
v 'R

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0 and

vI
vR
v 'R

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
≥ 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

(4)

The extreme rays  of the cone Prc are defined as the extreme currents of P. Notice 
that Prc is a pointed cone in the positive orthant Rn+r, so its  extreme rays have all the 
properties mentioned above (P1-P3). However, Prc lives in a higher-dimensional 
vector-space (augmented in one dimension for each split reversible reaction) and the 
extreme currents  lose their properties when they are translated to the original vector-
space. 

In fact, it has been recently shown that the set of extreme currents (ECS) coincide 
with the set of elementary modes, which will be introduced below, when it is  trans-
lated to the original vector-space (Wagner, 2005)—when computing the first a set of r 
spurious cycles appear (pathways formed by the forward and backward reaction of 
each reversible flux); however, these pathways  are not considered meaningful (Schil-
ling, 2000) and they disappear when the ECS are expressed in the original vector-
space Rn.

Elementary modes

The concept of elementary modes was  introduced to extend the property of non-
decomposability of the extreme rays (P3) to networks with reversible fluxes (Schuster, 
1999; Schuster, 2000). A flux vector e is  an elementary mode (EM) if and only if 
(Schuster, 2002): 

C1) e∈P , and,

C2) there is  no non-zero vector v ∈P such that the support of v supp(v) is a 

proper subset of the support of e supp(e).1 In other words, e cannot be decom-
posed as a positive combination of two “simpler” vectors v’ and v’’ in P that 
contain zero elements wherever e does and include at least one additional zero 
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1 The support of a vector x is the set of the indexes  of the elements in x equal to zero. Examples: given 

x={4, 3, 0, 1, 0} and y={1, 3, 5, 2, 1}, its supports are supp(x)={3, 5} and supp(y)={∅}.



component each. This  condition is the so-called non-decomposability, simplicity 
or genetic independence.

Thereby, the set of elementary modes  (EMS) is  defined as the set of all the non-
decomposable vectors in the flux space (P3). This definition implies  that the EMS ful-
fills  property P1, as  in (3), but also a more restrictive condition due to C2: a flux vector 
can always be represented as  a non-negative combination of elementary modes with-
out cancelations (Schuster, 2002): 

P = v ∈Rn :v = wk ⋅ek ,
k

e

∑ wk ≥ 0
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  without cancelations (*) (5)

(*) if the sum runs over two or more indices k, all the ek have zero components wherever v has zero 
components and include at least one additional zero each.

That means that the elementary modes are all the simple states  (or functional units,  
or non-decomposable vectors) that a cell can show, and the rest of feasible states  can 
be seen as its  strictly aggregated action. That is, its aggregated action without cancela-
tions. The “no cancelation rule” is relevant for several applications of network-based 
pathways; it makes it possible to investigate the infinite behaviors  that cells can show 
by simply inspection of the finite set of elementary modes, because there is  no possi-
bility of cancelations of reversible fluxes. This allows to answer many interesting ques-
tions in an easy way, for example:

• Which reactions are essential to produce the compound Y? Those that partici-
pate in all the elementary modes producing Y.

• Is there a route connecting the educt A with the product Y? Only if there is an 
elementary mode connecting them.

• Which are the capabilities  of the network if a reaction r is not carrying flux or 
has been knocked-out? The feasible states in these circumstances  are only those 
that result from aggregating, with no cancelations, the elementary modes not 
involving r (i.e., the consequences  of r not carrying flux can be directly pre-
dicted ignoring the elementary modes participated by r).

• Which is  the optimal yield to produce Y from A? The (stoichiometrically) opti-
mal pathway is  the elementary mode consuming A and producing Y with the 
best yield.

As we will see in subsequent sections, the main difference among network-based 
pathways  is that all of them satisfy (3), but only the elementary modes satisfy (5). This 
difference determines its applications.
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Minimal generators

We have seen that the elementary modes generate the flux space, as in (3), but usually 
they are not the smallest set satisfying this  condition because they have to fulfil the 
most stringent condition (5). Which is then the minimal set of vectors  that generates  P 
by non-negative combination? The term minimal generating set (MGS) has  been re-
cently coined to refer to this  set (Wagner, 2005). Wagner et al. also shown how to ob-
tain a MGS that is subset of EMS. However, there is not a unique minimal generating 
set in the general case: different MGS may exist within the EMS, and even vectors 
that are not EMs can be part of an MGS. Both cases  will be discussed in following 
sections. 

The idea of a minimal generating set also arises  from a different point of view. It is 
well known that the elementary modes are not systemically independent because some 
modes can be represented as  non-negative combination of others (Papin, 2004). 
These dependent modes are unnecessary to fulfil (3). Thus, any irreducible subset of the 
elementary modes, built by removing dependent modes, is a minimal generating set.

In summary, a set of minimal generators  fulfils properties  P1 and P2, whereas  the 
elementary modes fulfil P1 and P3. The elementary modes include additional non-
decomposable vectors to fulfil P3, which are redundant in (3) but necessary in (5). The 
fact that a MGS does not fulfils (5) reduces its  utility for the analysis of the underlying 
metabolism. Remarkably, the questions  mentioned in the previous  section cannot be 
easily addressed using the MGS because the cancelation of reversible fluxes  hides 
simple pathways. For example, the MGS has  to be recalculated after a gene deletion, 
and similar difficulties arise in other applications. The advantage of the MGSs  against 
the EMS is its  reduced size: considering the central carbon metabolism of E. coli, the 
computation of the EMS returns more than 500000 EMs, whereas a MGS contains 
around 3000 MGs (Wagner, 2005). This  also implies that obtaining the MGS is  com-
putationally more efficient. For these reasons, the MGS will be preferred in those ap-
plications  that just require a set of vectors generating the flux-space. For instance, the 
MGS has been used to perform phenotype phase-plane analysis (Wagner, 2005) and it 
can be used to extract the minimal connections  between extracellular compounds, 
information that can then be used to develop unstructured, kinetic models (Teixeira, 
2007; Provost, 2006; Provost, 2004).

Extreme pathways

As it happens with the extreme currents, extreme pathways  are obtained in an aug-
mented vector-space (Schilling, 2000); however, only the internal fluxes are decom-
posed in both forward and backward directions.1  Hence, if fluxes are reordered to 
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separate the irreversible internal fluxes  vI, the reversible ones  vR and the exchange 
fluxes vB, as  v = [vI vB vR]T, the flux space (2) can be reformulated as follows (where 
N = [NI NB NR]):

Prc = v ∈Rn+r : NI NB NR −NR( ) ⋅
vI
vB
vR
v 'R

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= 0 and

vI
vB
vR
v 'R

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

≥ 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

(6)

In this augmented vector-space, the set of extreme pathways (EPS) is a subset of the 
elementary modes that is  systemically independent (Papin, 2004); however, the ex-
treme pathways are not systemically independent in the original vector-space.1 There-
fore, they are not the irreducible subset of the elementary modes  and they are not the 
minimal generating set (Wagner, 2005). Unfortunately, this notion was  unclear in the 
literature until recently.

The extreme pathways  fulfil property P1—they generate the cone as in (3) because 
only dependent elementary modes are discarded—, but not P2 nor P3 in the original 
vector-space. As  it happens with the MGS, the fact that the EPS does not fulfil (5) re-
duces its  utility in certain applications. Their advantage with respect to the EMS is  its 
smaller size, but it must be kept in mind that very often the MGS will be smaller than 
the EPS (and never larger).

Example: two different vector-spaces. Consider the small network depicted in Figure 
3.2, case 2A. The 3 EPs  of this network represented in the augmented vector-
space {v1, v2, v3, -v3} are: E1=(1 0 1 0), E2=(0 1 0 1) and E3=(1 1 0 0). These 3 
vectors  are systemically independent. However, when translated to the original 
vector-space {v1, v2, v3}, these vectors  are: E1=(1 0 1), E2=(0 1 -1) and E3=(1 1 
0), which are not longer systemically independent, since E1 = E2 + E3. Figure 
3.2 also illustrates the systemic dependancy of  the EPs.

3.3  Comparison of the different pathway concepts

This  section is  devoted to the comparison of the network-based pathways  described 
above: extreme currents, minimal generators, elementary modes and extreme path-
ways. The case where all the fluxes are irreversible will be introduced first to contex-
tualize the problem; then, the presence of reversible fluxes  will be considered and the 
differences will become apparent (see Figure 3.2).
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Reference vector-space. Hereinafter we consider the original vector-space as the reference 
one: all the generating sets  will be expressed as elements  of the vector-space Rn where 
each flux corresponds to an axis. We choose Rn because it is  the original space of the 
fluxes that connect the metabolites of the network, and thus it is the meaningful one. 
For instance, in the previous  example the EPS expressed in the augmented vector-
space were unable to capture the fact that pathway E1 can be seen as  a combination 
of E2 and E3 (E1=E2+E3). Notice also that the relevant difference between equa-
tions (3) and (5), which depends on the cancelation of reversible fluxes, cannot be eas-
ily observed in the augmented vector-spaces. Since ECs and EPs are computed in 
augmented vector-spaces, once obtained, they have to be translated to Rn, simply 
merging the decomposed reversible fluxes. This process also removes the spurious  cy-
cles (pathways  formed only by the forward and backward reaction of each reversible 
flux) that appear as EPs and ECs in the augmented vector-spaces.

Case 1: All fluxes are irreversible

As explained in a previous section, when all the reactions  are irreversible the flux 
space P is a convex cone that satisfies two conditions: (a) it is  in the positive orthant 
R+ and (b) it is a pointed cone.

Condition (b) implies that P can be generated by non-negative combination of its ex-
treme rays (3) (more details below). In fact, the extreme rays always  belong to every 
generating set because by definition they cannot be generated by non-negative com-
bination of other vectors within the cone. Thus, if the extreme rays are able to 
generate the cone, as it happens in this  case, they are necessarily the minimal generat-
ing set. For the same reason, the extreme rays are always  non-decomposable vectors of 
P. Moreover, condition (a) implies that the intersections  of the cone with the (positive 
or negative) axis  of the vector-space, which are potential non-decomposable vectors, 
cannot be interior points  of P. Thus, in this particular case the extreme rays  will be all 
the non-decomposable vectors in P.

These two conditions imply that when all fluxes are irreversible the extreme rays  are 
the minimal generating set of the flux space (P1 and P2), but also the set of all non-
decomposable vectors (P3). Since the ECs and the EPs are extreme rays of two cones 
defined in augmented vector-spaces where the reversible reactions  are decomposed, it 
is  obvious  that, since there are no reactions  to be decomposed, the ECs and EPs  are 
the extreme rays of  the original cone P. Therefore:

Rule 1. If all fluxes are irreversible, all the generating sets are equivalent, EMS = ECS = 
EPS = MGS, and coincide with the extreme rays of  the flux space P. 
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Figure 3.2. Case-based scheme of the different network-based pathways. Metabolites are represented 

with circles,  and thin arrows represent the fluxes (reversible fluxes are double arrowed,  and solid ar-
rowhead defines  the sign criteria). The axis at the bottom represent the flux-space over {v1, v2, v3}, blue 
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Case 2: There are reversible fluxes

Now we consider the situation where certain fluxes  are reversible. The flux space P is 
still a convex cone, but it is  not necessarily in the positive orthant R+ and it may be 
non-pointed. If one reversible reactions  is  effectively reversible—i.e., both forward 
and backward directions can be followed by flux vectors—the cone will not be in the 
positive orthant (otherwise P would remain a pointed one in R+, as in case 1). Two 
situations are possible: case 2A, the cone is pointed, and case 2B, it is not.

Consider the lineality space of P, which represents  the linear subspace contained in the 
cone, and defined as (details are given in the glossary at the end of  the chapter):

lin.space(P) := {x∈Rn |A ⋅x = 0}

The lineality space allows to characterise the cone as follows: P is pointed if lin.space(P) 
= {0}; otherwise non-pointed. Hence, P will be a non-pointed cone if a vector x and its 
opposite –x exist in P. These vectors would involve only reversible fluxes and repre-
sent reversible vectors that can operate in both directions. Thus, P is non-pointed cone if 
and only if it contains a reversible vector. It is  also possible to check if a cone is 
pointed inspecting K, the kernel of  N, arranged in a suitable way (Wagner, 2005).

The more important consequence of this  classification is the following: a pointed cone 
P can be generated by non-negative combination of its  extreme rays, which constitute 
its unique MGS, but this not longer true for a non-pointed one. A non-pointed cone 
still can be generated by non-negative combination, but a unique MGS will not exist.

Case 2A: reversible fluxes but not reversible vectors

If there are reversible fluxes  but not a reversible vector, the flux-space P is still a 
pointed cone and it can be generated by its  extreme rays (Schrijver, 1998). As ex-
plained above, if the extreme rays  generate the cone, they are necessarily the minimal 
generating set because they belong to every generating set by definition.

Rule 2. If the flux space P does not contain a reversible vector, a unique MGS exists and 
it coincides with the extreme rays of  P.

However, if there are reversible fluxes, and they are effectively used in both directions, 
the cone is not restricted to the positive orthant R+. This implies that the intersections 
of vector-space axis  with the cone will be non-decomposable vectors  of P. That is, 
there are non-decomposable vectors in P that are not extreme rays. The EMS sill con-
tains the extreme rays, which are always  non-decomposable, but also other non-
decomposable vectors. Notice that these extra EMs are necessary to generate the flux 
space P without cancelations (5), but can be redundant to fulfil (3).
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Rule 3. The EMS (ECS) is always a superset of the extreme rays of the flux space P. If 
there are reversible fluxes, more EMS than extreme rays may exist.

By rules  2 and 3 it follows  that if the flux space P does not contain a reversible vector, 
the unique MGS is a subset of the EMS. Moreover, those EMs not belonging to the 
MGS will be systemically dependent and the MGS is  the unique irreducible subset of 
the EMS.

Rule 4. If the flux space P does not contain a reversible vector, the unique MGS is the 
irreducible subset of the EMS. It can be extracted from the EMS selecting the systemically 
independent vectors (see appendix A).

This  property was incorrectly assigned to the extreme pathways in the past, but these 
are systemically independent only in an augmented vector-space and not in the origi-
nal one (see example below). The EPs are the extreme rays of the cone obtained when 
the internal and reversible reactions  are split, whereas the EMs (ECs) are the extreme 
rays of the cone obtained when all the reversible reactions are split. This differences 
determine the relationship among the concepts (Figure 3.3): 

Rule 5. If the flux space P does not contain a reversible vector, the EPS can be a subset of 
the EMS, but in general it is not the MGS. That is, EMS (ECS) ⊇ EPS ⊇ MGS, and 
two particular cases exist:

a. If  all exchange fluxes are irreversible, EMS (ECS) = EPS

b. If  all internal fluxes are irreversible, EPS = MGS

The two rules can be rephrased as follows:

a. EPS can be a proper subset of  the EMS ⇔ there are reversible exchange fluxes

b. MGS can be a proper subset of  the EPS ⇔ there are reversible internal fluxes

Proof outline. (a) If all the reversible fluxes are internal, the EPs  and the ECs (EMs) are 
the extreme rays of the same cone. (b) If all the internal fluxes are irreversible, the 
EPs are the extreme rays of the original cone, which coincide with the extreme rays 
due to rule 2.

Case 2B: Reversible fluxes and a reversible vector

If the reversible fluxes  form a reversible vector, the flux space is  now a non-pointed 
cone. A non-pointed cone can be represented as, Pr = H + Q, where H is  the linear 
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space lin.space(Pr), and Q is  a pointed sub-cone, with Q ⊆ H⊥ (H⊥ denotes  the or-
thogonal complement of H). This is  indeed the general representation of a convex 
polyhedral cone, cases 1 and 2A were particular cases  with H = {0}. Thus, a non-
pointed cone can be generated as follows (Schrijver, 1998): 

Pr = v ∈Rn+r : v = λk ⋅ fk
k

nf

∑ + β j ⋅xj
j

nb

∑ , λk ≥ 0
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(7)

where fk are the ‘irreversible’ generating vectors, for which its  opposite are not con-
tained in Pr, and xj are the ‘reversible’ ones, for which its  opposite -xj is  also con-
tained in Pr. Vectors  xj must form a base of H, whereas  vectors fk generate the sub-
cone Q. Notice that Pr can still be generated by non-negative combination, as in (3), 
using fk, xj and -xj as  generating vectors. Unfortunately, there is  a price to pay for the 
cone being non-pointed: the set of  minimal generating vectors is not unique anymore. 

In fact, a minimal generating set of Pr can be obtained choosing an arbitrary base 
{xj} of H, and taking one arbitrary ray fk from each minimal proper face of the cone 
(Schrijver, 1998). When the cone is  pointed, there are no vectors {xj} and the the 
minimal proper faces are the extreme rays, so they are uniquely defined. 

The extreme rays  of Pr will be present in any generating set because they cannot be 
represented as  non-negative combination of other vectors in Pr. However, they are 
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insufficient to generate a non-pointed cone, they could even not exist.1  Additional 
vectors  {xj} and {fk} must be combined with the extreme rays  to form a MGS, but 
the choice is not unique.

Rule 6. If the flux space Pr contains a reversible vector, its extreme rays are not a complete 
generating set and there is not a unique MGS.

However, it is  still possible to find a MGS containing only non-decomposable vectors, 
and thus being a subset of the EMS. This kind of MGS can be obtained with a 
lexico-smallest representation (Larhlimi, 2009) or extracted from the set of EMs as 
explained in below.

Rule 7. If the flux space Pr contains a reversible vector, a irreducible subset of the EMS 
constitutes a MGS formed only with non-decomposable vectors.

Notice that other MGS will exist. Indeed, even more than one MGS formed with dif-
ferent non-decomposable vectors  may exist, since there is not necessarily a unique ir-
reducible subset of  EMS. Both situations will be illustrated in next examples. 

Regarding the EPS, rule 5 should be rephrased recalling that the MGS is  not longer 
unique. Moreover, since reversible vectors  are typically participated both by internal 
and external fluxes (except if they are futile cycles), a common situation arise where, 
EMS (ECS) ⊃ EPS ⊃ a MGS. 

Rule 8. If the flux-space Pr contains a reversible vector, the EPS can be a subset of the 
EMS, but in general the EPS is not a MGS. The most common case will be EMS (ECS) 
⊃ EPS ⊃ a MGS.

Computing the different pathways

The elementary modes  can be computed with Metatool (Pfeiffer, 1999) and cellNetAna-
lyzer (Klamt, 2003), both running under MATLAB, and with OptFlux (Rocha, 2010). 
The extreme pathways can be computed using expa (Bell, 2005). Minimal generating 
sets  can be obtained using SNA (Urbanczik, 2006), a software package running under 
Mathematica, or using ccd (Fukuda, 1996) as reported in (Larhlimi, 2009). 
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In addition, we describe a simple method to get a MGS from the EMS extracting a 
irreducible subset. The procedure can be outlined with the following pseudo-code: 

for each elementary mode ei in E	 	 	

 	 define A = [M Er]	 	 	 	 	

 
 if  (there is no w ≥ 0 | A⋅w = e) then: add ei to M


end

where E is the matrix formed with EMs as  columns, Er is  the sub-
matrix of E only with columns  after i, and M is  a matrix collect-
ing the MGs (and thus empty at the first iteration).

If the cone is pointed, the resultant set is the unique MGS (the extreme rays of the 
cone). Otherwise, it is one MGS (of  many) formed with non-decomposable vectors.

3.4  Illustrative examples

Some examples  will be used to illustrate the different cases  described above. The first exam-
ples  (1 to 5) use a simple network taken from Papin et al. (2004). The network has 6 reac-
tions—3 internal and 3 exchanges—and three metabolites, so it has 3 degrees  of freedom. If 
all the reactions were reversible, the kernel of N would provide a basis  of the flux space 
formed by 3 reversible vectors. Herein we consider 5 examples where different reactions are 
irreversible (results are depicted in Figure 3.4).

Example 1. In the first example all fluxes  are assumed to be irreversible (case 1). In this 
case, the flux space is a pointed cone in R+ and ECS, EMS, EPS and MGS are equivalent.

Example 2. Now the exchange flux v4 is  assumed to be reversible. This example corre-
sponds to case 2A (the flux space is  a pointed cone not in R+). In this  case the EMS can be a 
superset of the MGS, as  indeed happens  in this  example: EM4 is  systemically dependent 
(EM4 = MG1 + MG2), so it is an EM but not a MG. On the other hand, the EPS is  equal to 
the MGS because the internal fluxes  are all irreversible. EM4 is  not an EP because the re-
versible flux being cancelled in MG1 + MG2 is  an exchange, so EM4 is  systemically depend-
ent in the vector-space where EPs are computed.

Example 3. In this third example the exchange flux v4 and the internal flux v2 are reversi-
ble. This is  a general case and therefore, EMS ⊇ EPS ⊇ MGS. EM5 is neither an EP nor a 
MG (EM5 = MG1 + MG2). EM4 is  not a MG (EM4 = MG3 + MG2), but it is  an EP; one of 
the fluxes  cancelled in MG3 + MG2 is  an internal flux, so this  cancelation cannot be done in 
the augmented vector-space where the EPs are computed.
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Example 4. In this  example only two internal fluxes, v1 and v3, are reversible. Again, the 
EMS is  a superset of the MGS: EM4 is  not a MG because it is systemically dependent (EM4 
= MG3 + MG2). On the other hand, as  all the reversible fluxes  are internal, the EPs  and the 
EMs are necessarily equivalent.

Example 5. Now there are four reversible fluxes—v1, v2, v5 and v6—that define a reversible 
vector. This corresponds  to case 2B, where the flux space is  a non-pointed cone. There are 7 
EMs and 5 of them are also EPs. The two vectors  that form the reversible vector are extreme 
rays  in this  example. To form a MGS they need to be combined with 2 other vectors, but the 
choice is  not unique. For instance, 2 subsets  of EMs  are minimal generating sets, MGS1 and 
MGS2.

Example 6. Klamt et al. uses  a simple example, referred as N2 in their article, to in-
vestigate the relationship between the EMS and the EPS (Klamt, 2003). This  network 
has 9 reaction (3 exchanges) and 6 metabolites. After computing the EMS, the EPS 
and the MGS, it turns out that there are 8 EMs and 5 EPs (the extra EM9/EP6 in 
(Klamt, 2003) disappears in the original vector-space because it is  a spurious cycle 
caused by decomposing the reversible fluxes). Yet, the MGS contains only 4 vectors, 
indicating that there is  an EP that is not systemically independent: it can be checked 
by simple inspection that EP1 = EP2 + EP4 (when they are represented in the origi-
nal vector-space). 

Example 7. Another example to be analyzed is  the small network used by Schilling 
et al. (2000). We obtained 7 EMs and the 5 relevant EPs given in the paper. Again, the 
EPs are not systemically independent when translated to the original vector-space 
(EP2 = EP3 + EP5) and 4 vectors  are sufficient to form a MGS. It turns out that the 
MGS is  not unique because there is a reversible vector in the flux-space (in fact, the 
reversible vector defines  two EPs: EP3 and EP4 use the same reactions  but in opposite 
directions).

Example 8. We have also analyzed the metabolic network of CHO cells given in 
(Provost, 2006a). The network has 24 reactions (9 reversible) and 18 internal metabo-
lites, so it has 6 degrees of freedom. There are 18 EMs and 8 EPs, but only 6 vectors 
form the unique MGS. More details  about this  model will be given in chapter IV, 
where it is used as a case study.

3.5  Conclusions

The purpose of network-based pathways  analysis is  to identify a finite set of systemic 
pathways  in a metabolic network, and use these pathways to study the cell metabo-
lism. In this  chapter four similar concepts  of network-based pathways have been de-
scribed and compared.

We have seen that all the flux states  of a given metabolic network can be represented 
as  an aggregation of fluxes through its elementary modes, which are all the simple, or 
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non-decomposable, pathways in the network. Nevertheless, the set of elementary 
modes is not the smallest set of pathways  fulfilling this property. This role corresponds 
to the so-called minimal generating sets. In certain cases there is a unique minimal 
generating set, but often there are many of them. Interestingly, the set of elementary 
modes can be reduced by eliminating modes that are systemically dependent, result-
ing in a minimal generating set formed only with elementary modes. We have also 
highlighted that, contrarily to what has sometimes been stated, the extreme pathways 
are not a minimal generating set, because they are usually systemically dependent in 
the original vector-space.

The minimal generating sets  can be of use in applications  where a set of generating 
vectors  is  required. In these cases  they will be preferred due to its reduced size and 
because their computation is more efficient. For instance, minimal generators  are suit-
able for extracting the fundamental connections  between extracellular compounds, 
information that can be used to develop unstructured, kinetic models (Teixeira, 2007; 
Provost, 2004; 2006). However, the analysis of the elementary modes is  more power-
ful. The fact that the set of elementary modes comprises all the simple pathways in 
the network—its functional states—makes it possible to investigate the infinite behav-
iors that cells can show by simply inspecting them. This  makes it easy to answer sev-
eral questions: which reactions are essential to produce a certain compound, which 
will be the capabilities of the network if a reaction is knockout, etc. Answering these 
questions  using the minimal generators  or the extreme pathways  may be difficult be-
cause one has to take into account the possible cancelations of  reversible fluxes.

Significant efforts are being done to improve network-based pathways analysis, par-
ticularly in the context of genome-scale metabolic networks, where their more critical 
limitation appears. When the number of reactions in the network grows, the number 
of pathways  dramatically increases, reducing understandability and even becoming 
not computable (Papin, 2004; Gagneur, 2004). Recent works  have improved the com-
putation algorithms (Klamt, 2005; Terzer, 2008), and proposed methods  to get par-
ticular subsets of pathways  (Figueiredo, 2009) or decompose large networks  in mod-
ules (Schuster, 2002b). New concepts  of pathways have been also recently introduced. 
Kaleta et al. have introduced Elementary flux patterns, which explicitly takes  into account 
possible steady-states fluxes through a genome-scale network when analyzing path-
ways through a subsystem, thus allowing the application of many (not all) elementary-
mode-based tools to genome-scale networks  (Kaleta, 2009). Barrett et al. have used 
Monte Carlo sampling in conjunction with principal component analysis to obtain a 
low-dimensional set of pathways  generating the flux space of genome-scale networks 
(Barrett, 2009).

Most applications  of network-based pathway analysis are currently found in the con-
text of microbial production (e.g., Schilling, 2000; Price, 2002; Schwartz, 2006), but 
also in botany (Poolman, 2003; Steuer, 2007) or in biomedicine (Zhong, 2002; Nolan, 
2006).
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Part II: Interval methods 





IV
Interval estimates of metabolic fluxes under 

data scarcity

This  chapter describes an interval approach to perform flux estimations, a variant of 
metabolic flux analysis particularly well suited to scenarios of data scarcity. This  ap-
proach exploits the available measurements, coupled with a constraint-based model, 
to estimate each metabolic flux. The approach is based on a linear programming 
formulation, so it is simple and computationally efficient.

We use two real cases  studies to illustrate the limitations  of traditional MFA and show 
the benefits of  the interval approach.

Part of  the contents of  this chapter appeared in the following journal articles:

• Llaneras F, Picó J (2007). An interval approach for dealing with flux distribu-
tions and elementary modes  activity patterns. Journal of Theoretical Biology, 
246(2):290-308.

• Llaneras F, Picó J (2007). A procedure for the estimation over time of metabolic 
fluxes in scenarios  where measurements are uncertain and/or insufficient. BMC 
Bioinformatics, 8:421.
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4.1  Introduction

As we saw in chapter II, constraint-based models  define the space of metabolic states 
that cells  can exhibit, but do not predict which of these are likely to take place at 
given circumstances. These predictions can be obtained with flux balance analysis 
(FBA), which assumes that cells  have evolved to be optimal (Price, 2003). FBA is able 
to predict the actual fluxes, but requires to identify the objectives relevant at different 
conditions  (Schuster, 2008; Schuetz, 2007). As an alternative, one can perform a 
metabolic flux analysis (MFA), which, generally speaking, is  the exercise of estimating 
the fluxes shown by cells combining the model with experimental measurements. 

Traditional MFA uses only measurements of uptake and production rates (i.e., fluxes 
in and out cells) that are balanced around the intracellular metabolites (see chapter 
II). This purely stoichiometric approach has some limitations, particularly in scenarios 
lacking data and where measurements  are imprecise. Traditional MFA requires a 
large number of  accurate measurement to be of  use, but these are often not available.

In this chapter we follow a constraint-based approach to address  this problem. We 
present a variant of MFA that exploits an interval representation of fluxes.1 The pro-
posed method, called flux-spectrum (FS-MFA) is particularly well suited for scenarios 
of data scarcity, scenarios where: (a) isotope experiments are not available, (b) there is 
often a lack of measurable fluxes, and (c) the available measurements may be impre-
cise or inaccurate.

The benefits of  an interval approach to MFA can be summarised as follows:

• It considers  reactions irreversibility and other inequality constraints, and repre-
sents the measured fluxes with intervals, thus capturing its uncertainty.

• It provides interval estimates, instead of  point-wise ones.

• Intervals  estimates are more reliable (their uncertainty is explicit) and richer 
(more informative).

• Intervals  estimates  enable the use of MFA in two new cases: (a) when there is a 
lack of measurements, and (b) when these are highly inconsistent. Point-wise 
estimates fail in both cases, but intervals may be valuable.

The chapter is structured as follows: we first review traditional MFA and discuss  its 
limitations. In section 4.3, flux-spectrum MFA is  introduced as  an alternative. After-
wards, two cases  of study are used to illustrate the limitations of traditional MFA—
some of  them not well-know—and show the advantages of  the flux-spectrum.
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4.2  Preliminaries on metabolic flux analysis

Recalling ideas from chapter II, let us consider a metabolic network with m internal 
metabolites  and n reactions. Thus, assuming that internal metabolites  are at steady-
state, mass balances around internal metabolites can be formulated as follows:

N·v = 0 (1)

where v = (v1, v2, ..., v3)T is the n-dimensional vector of metabolic fluxes, and N is  a 
stoichiometric matrix.

A flux vector v represents the metabolic state of the cells  at a given time, without any 
information on the kinetics of the reactions. Notice that as  typically n is  larger than m, 
the system (1) is  underdetermined, i.e., there is a wide range of stoichiometrically-fea-
sible flux vectors.

Now, we consider that some fluxes  in v have been measured, v = (vu vm). Keeping in 
mind that measurements are imprecise, they can be represented as follows: 

wm = vm + em (2)

where em represents measurement errors and wm the measured values.

Traditional metabolic flux analysis  (TMFA) can be defined as  the estimation of a flux 
vector v satisfying (1-2) for a “reasonably small” measurement error. TMFA is often 
formulated as a two-step procedure: (1) analyse the consistency of the measurements 
to detect gross errors, and (2) solve a weighted least squares problem to estimate v. 
Details about TMFA calculations can be found in chapter II (section 2.8).

Let us recall the concepts of determinacy and redundancy. If we split (1) between 
measured (m) and unknown fluxes (u), we obtain the equation:

Nu ·vu = −Nm ·wm (3)

This equation allows us to classify any MFA problem as follows:

	 Determinacy. If the system (3) is determined,1 there are enough linearly inde-
pendent constraints  to uniquely calculate all non-measured fluxes vu. If it is  underde-
termined, at least one flux in vu, probably most of  them, are non calculable.
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	 Redundancy. If the system (3) is redundant,1 some rows  in Nu are linear com-
binations of other rows, this  can lead to an inconsistent system if wm contains  such 
values that no vu exists that exactly solves (3). These redundancies can be exploited to 
analyse measurements consistency and adjust some measured fluxes.

Remember that, ideally, traditional TMFA should be performed only when the system 
is determined and redundant: (a) if it is not redundant, measurements consistency 
cannot be evaluated, and the point-wise estimate given by TMFA will be unreliable, 
and (b) if the system is underdetermined, a point-wise estimate will be only one of 
multiple (infinite) possible values (Klamt et al., 2002).

Limitations of MFA

Although it has been successfully applied for many years (see chapter II for examples), 
this traditional formulation of  MFA has some limitations:

(i) It only considers equality constraints. (For example, reversibility constraints or 
maximum flux values cannot be taken into account.)

(ii) It provides  only point-wise estimates, uninformative and unreliable when the 
uncertainty is significant.

(iii) It cannot be used if measurements are (highly) inconsistent, because point-wise 
estimates cannot reflect their obvious high uncertainty.

(iv) It requires a large number of measured fluxes to be of use: the system (3) has  to 
be determined and redundant. Otherwise, the given estimate will be one of 
many possible ones.

Several alternatives have been suggested to face these limitations  (Bonarius, 1997). For 
instance, quadratic programming allows to get estimates considering irreversibility 
constraints  (but inherits  the rest of drawbacks and the χ2 tests  lose validity). There are 
also proposals to incorporate assumptions to overcome the lack of measurements. 
Nookaew et al. have proposed to get estimates  based on the assumption that cells  are 
likely to use as many pathways as  possible to maintain robustness and redundancy 
(2007). Related hypotheses have been formulated using the concept of elementary 
modes (Poolman, 2004; Schwartz, 2006). The FBA assumption of optimal cell behav-
iour could be also invoked. Another option is incorporate intracellular data obtained 
from stable isotope tracer experiments (Sauer, 2006; Szyperski, 1998; Wiechert, 2001). 
Yet, data from isotope tracer experiments will not be considered in this work because 
they are seldom available.
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Instead, we follow a constraint-based approach to introduce a variant of MFA. We do 
not attempt necessarily to predict the actual fluxes with accuracy, but to obtain candi-
date flux values  by means of intervals. We will show that this approach overcomes the 
limitations of traditional metabolic flux analysis described above, providing reasona-
bly estimates in scenarios lacking data and where measurements  are imprecise, with-
out new hypothesis and without data from isotopic experiments.

4.3  Flux-spectrum MFA: an interval approach

Let us  approach metabolic flux analysis with a constraint-based perspective. First, 
along with the mass balances at steady-state (1), we consider the irreversibility of cer-
tain reactions:

D ⋅v ≥ 0 (4)

where D is a diagonal n×n-matrix with Dii = 1 if  the flux i is irreversible (otherwise 0). 

Hence, the flux space of  feasible (steady) state flux vectors is defined as:

P = v ∈Rn : N·v = 0
D·v ≥ 0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

(5)

The flux space can be seen as  a simple constraint-based model. which can be easily ex-
tended adding adjustable constraints for measured fluxes at given circumstances. To 
account for the uncertainty of the measurements, each measured flux can be repre-
sented with an interval vm,i = vm,i

m ,vm,i
M⎡⎣ ⎤⎦ ,  and then (2) is substituted by inequalities:

vm
m ≤ vm ≤ vm

M (6)

At this  point, the constraints given by mass  balances and irreversibility constraints (5), 
together with the measured fluxes (6), define the so-called current flux space F:

F = v ∈Rn :
N ⋅v = 0
D ⋅v ≥ 0

vm
m ≤Q·v ≤ vm

M

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

(7)

where Q is  a matrix that selects the measured fluxes having exactly one “1” per row, 
other elements zero. The space F contains  the flux vectors v ∈ P compatible with the 
measurements.
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At this point, flux-spectrum MFA (FS-MFA) can be defined as  the exercise of esti-
mating the flux vectors v that fulfil the constraints (7). 

Classifying FS-MFA problems

Before addressing the flux estimations, the FS-MFA problems  defined with F in (7) 
should be classified in analogy to traditional MFA problems, accounting for its consis-
tency, closure and determinacy.

Consistency. A FS-MFA problem is  consistent if there is at least one vector v ∈ F; 
otherwise the FS-MFA problem is  inconsistent (Figure 4.1A). Notice that the consis-
tency of a TMFA problem and the consistency of the correspondent FS-MFA prob-
lem are not equivalent: FS-MFA considers  reactions irreversibility to detect new in-
consistencies and considers measurements uncertainty, so that the problem can be 
consistent even if  the original measurements are not (Figure 4.1B).
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Closure. A FS-MFA problem is  bounded (or closed) if and only if F is  bounded. In 
other words, the problem is said to be bounded in if the range of possible values for 
each flux is bounded, if ∀i = 1...n, values vim and viM exist so that vim≤ vi ≤ viM. A 
bounded FS-MFA problem can be considered solvable, in the sense that all the fluxes 
can be estimated (Figure 4.1D).

Determinacy. Using the classical definition given in the introduction, a FS-MFA 
problem is said to be determined if the measurements impose enough linearly inde-
pendent constraints  to uniquely determine all the fluxes.1 Although a FS-MFA prob-
lem can be solvable even if it is  underdetermined, the notion of determinacy is still 
useful. A determined FS-MFA may have multiple solutions, but it is  always bounded and 
all fluxes can be estimated (Figure 4.1C); on the contrary, if a problem is underdeter-
mined, the flux estimation will be always non unique, and maybe unbounded.

The flux-spectrum

Once the admissible flux space F has  been defined (7), interval estimates  can be easily 
obtained for each measured and non-measured fluxes. These intervals are obtained 
solving two linear programming (LP) problems for each flux vi as follows:

∀vi ,   i = 1... n
 vi

m = min vi s.t.  v ∈F

 vi
M = max vi s.t. v ∈F

⎧
⎨
⎪

⎩⎪
(8)

In this  way we get an interval estimate for each flux, an interval bracketing its  possible 

values, vi ∈ vi
m ,vi

M⎡⎣ ⎤⎦ .

The flux-spectrum S can be defined as the set of  these intervals:

S = v ∈Rn :vi
m ≤ vi ≤ vi

M{ } (9)

The flux-spectrum S is the smallest “plane-parallel” set that encloses the flux space F. 
S encloses F but contains  other flux vectors that do not fulfil (7). However, this overes-
timation is unavoidable if  one wants to give an independent estimation for each flux.

The width of the intervals reflects  the precision of the estimate, which depends on the 
number of non-measured fluxes, the irreversible reactions, the available measure-
ments  and the considered degree of uncertainty. Of course, the further constraints are 
available the tighter intervals are obtained.
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As it will be shown in next sections, the interval approach of the flux-spectrum pro-
vides several advantages over traditional MFA.1

Simple example of FS-MFA

We now apply FS-MFA to a simple example. A toy network and its stoichiometric 
matrix N are given in Figure 4.1. All fluxes except v4 are irreversible, so matrix D is 
defined as, D = diag(1 1 1 0 1 1).

Three fluxes in the network are measured at successive time instants  {v3, v5 and v6},   
but its uncertainty is initially not taken into account. The MFA problem is  determined 
and not redundant, so there is a unique flux vector v fulfilling (7). In this case, FS-
MFA provides the same point-wise estimate that TMFA (Figure 4.2). 

However, we should consider that measurements  are in practice imprecise. For in-
stance, we can assume an uncertainty around the measured values  of ±10% for v3, 
±20% for v5 and 0% for v6, and define the constraints in (6) accordingly. The, solving 
the linear programming problems in (8), FS-MFA provides interval estimates that have 
into account the uncertainty of  the original measurements (Figure 4.2).

Benefits of the FS-MFA

As shown in the previous  example, if uncertainty is not considered, all fluxes are re-
versible, and the MFA problem is  determined, FS-MFA gives the same point-wise es-
timate that traditional MFA. In addition, FS-MFA bring several advantages  that can 
be summarised as follows (table 4.1):

• FS-MFA considers reactions irreversibility. These and other inequality constraints  
further restrict the interval estimates  (Figure 4.3). This  will be useful to handle 
uncertainty and the lack of measurements. Moreover, these constraints can de-
tect inconsistencies even if  there are not redundant measurements.

• FS-MFA represents the measured fluxes with intervals to capture its uncertainty. This also  
allows one to incorporate other knowledge, such us capacity constraints, or 
measurements that are highly uncertain.

• FS-MFA provides interval estimates, instead of point-wise ones. Intervals estimates are 
more reliable (their uncertainty is explicit) and richer (more informative).
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1 Mahadevan and Schilling used a similar approach to analyse alternate optimal solutions in constraint-
based metabolic models  (Mahadevan, 2003). Their proposal, called Flux Variability Analysis, solves a 
similar set of LP problems, but with a different purpose.  Flux variability analysis  follows is an FBA ap-
proach: it incorporates  the assumption of optimal cell behaviour as  constraint to predict the cell behav-

iour. However, the flux-spectrum is  an MFA-wise method:  it incorporates a set of experimentally meas-
ured fluxes, instead of  the optimality assumption, to estimate the cell behaviour at a given moment.



• FS-MFA interval estimates enable MFA when there is a lack of measurements, i.e., when 
the FS-MFA problem is  underdetermined. TMFA point-wise estimates fail in 
this  situation because they provide only one of multiple solutions, while FS-
MFA intervals capture all of them. These interval estimates are typically nar-
row enough to be valuable and informative.

• FS-MFA intervals estimates enable MFA when measurements are highly inconsistent. A 
point-wise estimate cannot be chosen in this situation—because the measure-
ments  have been proved to be highly uncertain—, but we can define a band of 
uncertainty around the measurements  to enclose nearby consistent measure-
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ments, and get interval estimates from it (Figure 4.3). Furthermore, the band 
size needed to find the first solution provides  an indication of the degree of in-
consistency.

These benefits will be illustrated with two cases studies in subsequent sections.
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Figure 4.3. FS-MFA in use. Each figure shows a schematic projection of a high-dimensional flux 

space.  (A) Underdetermined case. (B) Determined and redundant case. (C) Adding reversibility con-
straints. (D) Detection of sensitivity problems. (E) Considering uncertainty. (F) Consistency analysis 
with reversibility constraints. In all cases, the space of possible solutions before taken into account v1 

and v2 is represented with a black line or a polygon; the uncertainty of the measured fluxes is repre-
sented with blue intervals, and the interval estimates  with red intervals;  subindex m and c denote meas-
ured and calculated fluxes, respectively.
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Limitations of FS-MFA

We have seen that FS-MFA brings some interesting advantages  over traditional MFA, 
but it still has some limitations.

• The flux-spectrum is an overestimation. Since each individual flux cannot be varied 
independently, there are combinations  of fluxes within the flux-spectrum that 
are unfeasible flux vectors, i.e., that do not fulfil (7). Unfortunately, this overes-
timation is  unavoidable if one wants to give an independent estimation for each 
flux. Notice also that it is  guaranteed that all the feasible solutions of (7) are 
captured by the flux-spectrum intervals.

• MFA is still limited to small metabolic networks. TMFA can only be applied with rela-
tively small networks, otherwise the available measurements (even if 13C data 
are available) are insufficient to offset the network under-determinacy. FS-MFA 
reduces this  difficulty, thanks to the irreversibility constraints and the use of in-
tervals, being able to get estimates  in underdetermined cases. However, if the 
under-determinacy is large, the interval estimates will be wide and even un-
bounded.

• Interval estimates tend to be conservative. To enclose all values  that are reasonably 
possible, the interval description of the measurements tend to be conservative, 
and this is translated to the estimates. A single interval cannot distinguish highly 
possible values  from those which are only reasonably possible. In other words, 
an interval is  more informative than a single value, but it is  still limited. This 
problem will be addressed in chapter VII using a possibilistic framework.

Table 4.1. Comparison between MFA and FS-MFA.

Rich data Data ScarcityData ScarcityData Scarcity

Determined
Redundant

Determined
Not Red.

Underdet.
Redundant

Underdet.
Not Red.

Traditional MFA (TMFA)

  Flux estimation o o
  ... with high uncertainty

  Evaluates consistency (χ2) o o
  Evaluates consistency (irreversibility)
Flux-spectrum MFA (FS-MFA)

  Flux estimation o o (o) (o)
  ... with high uncertainty o o (o) (o)
  Evaluates consistency (χ2) o o
  Evaluates consistency (irreversibility) o o

The symbol “o” denotes a feature, and “(o)” a potential feature.
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Parametric description of the current flux space

The current flux space F can be defined with a set of constraints (7), but this descrip-
tion is not operative. The flux-spectrum is  a more useful description, but at the cost of 
overestimating the space of feasible flux states. To provide a third alternative, this sec-
tion introduces an exact and parametric description of  F.

From a geometric perspective, the current flux space F is  a convex polyhedron of the 
form {x|A∙x ≥ b}, where A is a matrix and b a column vector.1 Interestingly, any 
convex polyhedron can be decomposed as the sum of a convex hull and a convex 
polyhedral cone (Le Verge, 1994; Schrijver, 1999). Therefore:

F = ω j ⋅xj
j

q

∑ : ω j ≥ 0, ω j
j

q

∑ = 1
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Convex hull

  

+ σ k ⋅hk
k

p

∑ : σ k ≥ 0
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Convex Polyhedral Cone

  

(10)

where ωj are σk are weights, vectors {xj} are the vertices  of the hull and vectors  {hk} 
are a generating set of the cone. (The first are sometimes called bounded generators and 
the second unbounded generators.)

The generating vectors  hk and xj provide a parametric (or explicit) description of the 
current flux space F. Any flux vector v ∈F can be represented as a non-negative com-
bination of these generating vectors; and any combination of these vectors, satisfying 
the conditions for ωj and σk, corresponds to a flux vector v ∈F. Figure 4.4 provides a 
graphical representation.

Notice that vectors xj correspond to vertices of the convex hull and are uniquely de-
fined, but this is not necessarily true for the vectors  hk generating the cone: they will 
be unique if  the cone is pointed, but not otherwise.2

Remark. If  F is bounded (it is a polytope), it can be generated using vectors xj only:

F = ω j ⋅xj
j

q

∑ : ω j ≥ 0, ω j
j

q

∑ = 1
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(11)
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1 Remember that the flux space P is not a convex polyhedron, but a convex polyhedral cone of the 

form {x|A∙x ≥ 0}. The cone P was studied in chapter III.

2 Any convex polyhedral cone C can be decomposed as the sum of a pointed cone and a linear space, 

C = Cp + lin.space(C). C can thus be represented as non-negative combination of a minimal set of 

vectors: {g1, ..., gs, b1,...,bp}, with gi ∈ Cp\lin.space(C) and bi ∈ lin.space(C). This  representation is in 

general not unique (Schrijver,  1999). But if C is pointed, then lin.space(C)={0} and the extreme rays 

form the unique, minimal generating set of  C. This issue was discussed in chapter III.



In this case, the minimal generating set of F could be obtained solving a vertex enu-
meration problem.

Parametric description: finding generating vectors

A set of generating vectors for F can be obtained as follows: (1) encode the convex 
polyhedron F as  a convex polyhedral cone C, (2) obtain a generating set for C, and (3) 
translate the generating set of  C into a generating set of  F.

The polyhedron F can be encoded as  an auxiliary cone C introducing a scalar vari-
able λ to transform the system of linear inequalities A∙x ≥ b into an equivalent homo-
geneous one (Le Verge, 1999):

C = v
λ

⎛
⎝⎜

⎞
⎠⎟
∈Rn+1 :

N 0( ) ⋅ v
λ

⎛
⎝⎜

⎞
⎠⎟
= 0

D 0
Q −vm

m

−Q vm
M

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⋅ v

λ
⎛
⎝⎜

⎞
⎠⎟
≥ 0

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

(12)

If a vector v satisfies  (7), then (v, λ) satisfies (12) and, conversely, each solution (v, λ) of 
(12) yields the solution v/λ of  (7), unless λ = 0. 

Now we define the function Ψ(v, λ) that allows  us to transform a given generating set 
of  the cone C to one of  the polyhedron F:

Ψ v,λ( ) =
v if λ = 0

v / λ else

⎧
⎨
⎪

⎩⎪
(13)

If {g1,..., gs} is  a generating set of C, then Ψ({g1,..., gs}) is  a generating set of F. For 
each, gi = (vi, λi)T, then Ψ(gi) is an unbounded generator if λi = 0. If λi ≠ 0, Ψ(gi) is  
bounded.

In this  way, the problem of finding a generating set for the polyhedron F has been 
transformed into that of finding a generating set for the cone C, a set of vectors {g1, 
..., gs}  that fulfill the following:

C = α j ⋅gj
j

s

∑ , α j ≥ 0
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(14)
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A minimal generating set of convex polyhedral cone can be found applying the 
Chernikova’s algorithm (Chernikova, 1965; Le Verge, 1994) with the software ccd 
(Fukuda, 1996). The pathways described in chapter III are also generating sets (not 
always  minimal) so they fulfil (14). Elementary modes can be computed with Metatool 
(Pfeiffer, 1999), cellNetAnalyzer (Klamt, 2007) and , and OptFlux (Rocha, 2010).1

Parametric description and the flux-spectrum

Notice that the flux spectrum S described in a previous section can be obtained from 
the explicit description of F. The bounds vim and viM can be directly obtained from the 
set of  generating vectors {hk} and {xj} as follows:

vi
m =

−∞ if ∃hk  ∀hk,i < 0

min x1,i … xs,i{ } else

⎧
⎨
⎪

⎩⎪

vi
M =

∞ if ∃hk  ∀hk,i > 0

max x1,i … xs,i{ } else

⎧
⎨
⎪

⎩⎪

(15)

where xj,i denotes the i-th element of  xj and hk,i denotes the i-th element of  hk. 

Notice, however, that computing S using linear programming (8) is more efficient 
than using a parametric representation (10) and then obtaining S by means of  (15).

Parametric description and the centroid

Although interval estimates are more reliable and richer, sometimes it is  useful (or 
necessary) to combine them with point-wise estimates. One option is  calculate a 
weighted least squares  solution (the one given by TMFA, but considering irreversibil-
ity constraints). Another sensible choice is  the centroid of F, a flux vector “sur-
rounded” by all the feasible states within F.2

A three-step procedure can be used to obtain the centroid of a bounded flux space F, 
(1) project F into a full-dimensional polytope FFD, (2) compute the centroid of FFD, (3) 
and then recover the centroid of  F from it.

102

1 Some tools require that inequalities appear in (12) as diagonal n×n-matrix H with Hii = 1 or Hii = 0. 

To satisfy this condition, slack variables s1 and s2 as follows: 

Q ⋅v ≥ −vm
M → Q ⋅v + vm

M = s1 , s1 ≥ 0        (s2  is defined in analogy, but to vm
m )

Hence, the cone C is reformulated as C* = {x|A∙x = 0, H∙x ≥ 0}, with x = (v  s1  s2  λ)T. 

2 The flux-spectrum should be also computed to check that the centroid represents the whole current 
flux space reasonably well. If the intervals of the flux-spectrum are large—indicating that the estima-
tion is imprecise—the centroid, or any other point-wise estimation, will be unreliable.
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F is a (n-m)-dimensional polytope in an n-dimensional space (Figure 4.4A). The 
equalities in (1) imply that m fluxes  can be considered as  dependent (vD) of others (vI), 
so we can project F over (n-m) independent fluxes to obtain a full-dimensional poly-
tope FFD (Figure 4.4C). Notice that reordering rows, equation (1) can be reformulated 
as, (NI ND)*(vI vD)T = 0, so that each v can be reconstructed from vI (coordinates of 
FFD), as follows:

v =
vI
vD

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=Ω⋅vI , Ω =

I
−NI

−1 ⋅ND

⎛

⎝
⎜

⎞

⎠
⎟ (16)

Taking this into account, we can choose vI to project F over the first n-m coordinates 
such that ND is  invertible (Braunstein, 2008). The vertexes  that define FFD can be ex-
tracted from the vertexes {x1,..., xs} of F, by simply removing the rows that corre-
spond to dependent fluxes (Figure 4.4B).

At this point, we can obtain the centroid cFD of the polytope FFD, for example, divid-
ing it into simplices and determining the weighted sum of their centroids1. Finally, the 
centroid c of  F is recovered from cFD from (16).

Remark on computation efficiency. The procedure outlined to compute the centroid re-
quires a parametric description of F, its  vertexes {x1,..., xs}, which computation is 
expensive. Indeed, it has been recently proved that computing the centroid is a NP-
hard problem (Rademacher, 2007). As  an alternative, the centroid can be approxi-
mated sampling random points from the polytope, the number of samples depending 
polynomially on the desired approximation (Elbassioni, 2009; Kannan, 1997).

4.4  Case study: cultivation of CHO cells

In this  section we will use the example of Chinese hamster ovary (CHO) cells  culti-
vated in batch mode in stirred flasks to illustrate the methods  presented along the 
chapter.

• We introduce and describe the example of CHO cells, showing how to formu-
late the flux estimation problem.

• For the sake of comparison, we include the results given by traditional meta-
bolic flux analysis (TMFA).
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1 We use a MATLAB implementation of this method written by Michael Kleder, which is  based on the 
Quickhull algorithm (Bradford, 1995).



• We demonstrate that the flux-spectrum (FS-MFA) can be of use under data 
scarcity, both in scenarios lacking measurements (where TMFA cannot be ap-
plied), and in scenarios where measurements are uncertain. 

After this, a second case study will be devoted to show the limitations  of TMFA, pro-
vide further validation of  FS-MFA, and discuss its benefits in other scenarios.

Preparation: metabolic network and constraint-based model

We will use the metabolic network depicted in Figure 4.5, which has been taken from 
(Provost, 2004), but with reactions  for nucleotide synthesis taken from (Provost, 
2006a). The network describes  the metabolism concerned with the two main ener-
getic nutrients, glucose and glutamine. The metabolism of the amino-acids provided 
by the culture medium is  not included. Four pathways  are considered: the glycolysis, 
the glutaminolysis, the TCA cycle and the nucleotides synthesis. The complete lists  of 
compounds is given in tables 2 and 3, and the list of  reactions in Table 4.4.

The stoichiometric matrix Ni to define (1) or (7) is thus the following:

Ni =

1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1
0 0 0 0 1 -1 -1 −1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 -1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 1
0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -1 1 1 2
0 0 0 0 0 0 0 0 -1 0 0 1 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 -1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

     

G6P
DAP
G3P
R5P
Pyr

ACA
Cit

AKG
Mal
Glu
Osa
Asp

(17)

The information in the matrix Ni defines the stoichiometric constraints (1):

Ni ⋅vi = 0 (18)

The extracellular fluxes for glucose (vG), lactate (vL), and alanine (vA) coincide with 
three fluxes of the network, and they need to be incorporated by inspection of the 
network. It is also natural to assume that the formation of purine and pyrimidine nu-
cleotides is the same. As a result, four new equations are incorporated (Provost, 2004):




−vG :   v1
vL :   v6
vA :   v7




vNH4 :   v19 = v15 + v16
−vQ :   v20 = v16 + v17 + 2 ⋅ v18
vCO2 :   v21 = v3 + v8 + v10 + v11 + v13 − v18
vExtra :   v22 = 0 = v17 − v18
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Figure 4.5. Simplified metabolic network of  CHO cells metabolism (Provost, 2004).

Table 4.2. List of  substrates and products.

G	 	 Glucose	 	 initial substrates Q	 	 Glutamine	 initial substrates

L	 	 Lactate	 	 extracell. product A	 	 Alanine	 	 extracell. product

NH4	 	 Ammonia	 extracell. product CO2	 	 Carbon dioxide	 extracell. product

Pu	 	 Purine	 	 intracell. product Py	 	 Pyrimidine	 intracell. product

Table 4.3. List of  balanced metabolites.

G6P	 	 Glucose-6-phosphate	 	 G3P	 	 Glyceraldehyde-3-phosphate 

DAP	 	 Dihydroxy-acetone Phosphate	 Pyr	 	 Pyruvate 	 	 	

R5P	 	 Ribose-5-Phosphate	 	 ACA	 	 Acetyl-coenzyme A 	 	

Cit	 	 Citrate 	 	 	 Oxa	 	 Oxaloacetate 	 	

Mal	 	 Malate 	 	 	 aKG
 
 α-ketoglutarate 
 


Glu	 	 Glutamate 	 	 	 Asp 	 	 Aspartate 	 	 	



For convenience, these extracellular fluxes and the constraints  regarding the nucleo-
tides can be represented defining a 4×18 matrix Ne fulfilling the equation:

ve = Ne ⋅v (19)

with Ne =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2
0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

In this way (18) and (19) can be joined to define an extended homogeneous system of  
linear equations where all the extracellular fluxes appear as a unique flux in v:

N·v = 0,       with      N =
Ni 0
Ne I

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,  v = vi
ve

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ (20)

The extended system has 16 metabolites (mx) and 22 reactions (nx). The system is  un-
derdetermined and has 6 degrees of  freedom.

Then we assume that all the reactions are constrainted to be positive, so that the 
matrix D in D∙v ≥ 0 is a n-dimensional diagonal matrix of “1”. Many reactions in the 
network are indeed reversible (e.g., v2, v4, v5, v6 and v7), but herein we consider only 
one possible direction, the one exhibited during the growth phase (Provost, 2004; Pro-
vost, 2006a, 2006b). Therefore, the model will be valid in this phase, but not under 
different conditions (e.g., when glucose is exhausted and lactate and alanine are con-
sumed instead of  produced).

This  way, we have completely defined the flux space of admissible steady state flux vec-
tors—as in equation (5)—that corresponds to the given network. 

Fluxes estimated with Traditional MFA

In (Provost, 2004), experimentally measured values  are given for 6 fluxes (in bold in 
table 4.4). In this case, the rank of Nu, 16, is  equal to the number of unknown fluxes, 
22-6, so the MFA problem is determined and not redundant (see sections 4.2 and 4.3 
for details). The unique flux vector fulfilling (3) has been estimated using traditional 
MFA as  explained in chapter II. The results, given in tables  4 and 5 (reference col-
umn), are exactly those reported by Provost and Bastin (2004). To provide further 
validation of these data, experimental measurements and estimated fluxes from other 
studies with mammalian cells have been included in table 4.4.
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Table 4.4. Production/consumption rates and reaction fluxes.

dataset Pdataset P dataset Gdataset G dataset B

Production and uptake rates  [mM/(d∙109 cells)]  [%]  32h [%] 24h [%]  [%]

G (v1) 4.05* 100** 100** 100** 100**

Q (v20) 1.18 29.14 - - 17.00

L (v6) 7.39 182.47 173.91 177.08 102.00

A (v7) 0.26 6.42 6.5217 10.41 7.00

NH4 (v19) 0.96 23.70 - - -

CO2 (v21) 2.61 64.44 - - 126.00

Py-Pu (v22) 0 0 - - .

Reaction fluxes
1: G→G6P 4.05 a 100.00 100 100 100.00
2: G6P→G3P+DAP 3.76 92.84 - - -
3: G6P→R5P+CO2 0.28 6.91 - - 76
4: DAP→G3P 3.76 92.84 - - -
5: G3P→Pyr 7.53 185.93 - - -
6: Pyr→L 7.39 182.47 173.91 177.08 102
7: Pyr+Glu→A+aKG 0.26 6.42 6.5217 10.42 7
8: Pyr→ACA+CO2 0.34 8.40 13.043 33.33 8
9: Oxa+ACA→Cit 0.34 8.40 - - 27
10: Cit→aKG+CO2 0.34 8.40 - - 6
11: aKG→Mal+CO2 1.10 27.16 23.913 62.5 -
12: Mal→Oxa 0.63 15.56 15.217 45.83 -
13: Mal→Pyr+CO2 0.47 11.60 2.17 25 -
14: Oxa+Glu→Asp+aKG 0.28 6.91 8.69 45.83 6
15: Glu→aKG+NH4 0.20 4.94 6.52 10.42 -1
16: Q→Glu+NH4 0.75 18.52 4.34 31.25 18
17: R5P+Asp+Q→Pu + Glu 0.14 3.46 - - -
18: R5P+Asp+2Q+CO2→Py+Glu+Mal 0.14 3.46 - - -

*Experimentally measured values are in bold. **Fluxes are represented as percentage of  glucose uptake. 

P: Provost & Bastin (2004). Data from the growth phase of CHO cells cultivated in batch mode 
(µ=0.69d-1). Measurements and fluxes computed with traditional MFA.

G: Gambhir et al.  (2003).  Data from a cultivation of hybridoma cells  in batch mode (µ=0.72d -1) at two 

time instants of the growth phase. Measurements  and fluxes calculated with a variant of traditional 
MFA based on carbon and nitrogen balances. 

B: Bonarius et al. (1996). Data from a cultivation of  hybridoma cells in continuous mode (µ=0.83d -1).

Comments: The data correspond to experiments with differences in cultivation modes, medium, type 
of cells,  bioreactor conditions, etc. Nevertheless, datasets  P and G (32h) show a good agreement for all 
fluxes except 13 and 16. These two fluxes are closer lla to G (24h) suggesting that dataset P corresponds 
to cells at a state between the two time instants. Dataset B corresponds to an experiment in continuous 

mode, where cells exhibit a different metabolic state (the measured values diverge from P and G).



FS-MFA: scenarios lacking measurements

To illustrate one of the benefits of FS-MFA, we have estimated the fluxes in underde-
termined scenarios  that use different subsets of measurements. The results  are given 
in table 4.5 (columns L1-L3) and compared with those obtained with TMFA in the 
previous section, where all the measurements were available.

Scenario L1. Let us  consider that only 4 fluxes  are measurable instead of 6: glucose, 
alanine, glutamine and CO2. The MFA problem is  underdetermined, so TMFA can-
not be applied, and there are no calculable fluxes.1 However, interval estimates  can be 
obtained with FS-MFA solving the LP problems in (8). The results, depicted in Figure 
4.6, show that the flux-spectrum intervals are accurate, similar to the point-wise esti-
mates given by TMFA, but using 4 measurements instead of 6. Some interval esti-
mates are wider (v15 and v19), but most of  them are precise and narrow. 

Scenario L2. Now we consider that a different set of 4 fluxes are measured. In this 
case the estimates are slightly worse: the average interval size is 13% instead of 7.3%. 
This  suggests  that fixing the value of v21 (CO2) impose a stronger constraint than fix-
ing v6 (L)—at least in combination with the other measurements. This is indeed rea-
sonable, because CO2 participates in 6 reactions and lactate just in 1.

Scenario L3. Although 5 fluxes are now measured, the MFA problem remains un-
derdetermined, so TMFA cannot be used. However, as shown in Figure 4.6, the inter-
val estimates given by FS-MFA are practically equivalent to those obtained with MFA.

Chapter IV   |   109 

1 The kernel of  Nu, has no null rows. See chapter II for details.
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FS-MFA: scenarios of measurements uncertainty

As explained in the previous section, one of the benefits of FS-MFA is that it consid-
ers  the uncertainty of the measurements, which is  also transferred to the estimates, 
and explicitly reflected in their intervals.

Scenario U. We consider the scenario L3, but we incorporate uncertainty adding a 
band of of ±5% around the measured values. After this, the flux-spectrum intervals 
are obtained as  usual (8). The obtained interval estimates, given in table 4.5, are 
wider, but still useful: the interval sizes range between 1.6% and 14.82% instead of 
0.14% and 4.5%, the average interval size is 6.4%, and only 8 intervals  are wider 
than 10%.

FS-MFA: dealing with reversible reactions

In the previous examples  all reactions have been assumed to be irreversible, but FS-
MFA can be applied if this  is not the case. For instance, let us consider that reactions 
2, 4, 5, 6 and 7 are reversible. In this  case, FS-MFA estimation in the scenario L3 
gives exactly the same results. The same happens  if the measured fluxes  are {v1, v6, 
v20, v21} or {v1, v6, v7, v21}. However, this  is  not always the case. For instance, when the 
measured fluxes  are {v1, v20, v21, v22}, the intervals for fluxes  v7, v8, v15 and v19 are un-
bounded. Indeed, there is a route involving the reactions 7, 8, 15, and 19 that trans-
forms  alanine into lactate through 7, and since none of the fluxes  is measured, the 
flux through the route cannot be bounded.

4.5  Case study: C. glutamicum

In this section we will use a a classical model of Corynebacterium glutamicum and experi-
mental data from a batch fermentation to illustrate some limitations  of traditional 
metabolic flux analysis (TMFA), and show that it can be overcome using FS-MFA.

• We validate FS-MFA against experimentally measured fluxes.

• We show that TMFA is unreliable if  there are not redundant measurements.

• We show that even with redundant measurements, TMFA point-wise estimates 
can be deviated due to uncertainty. Conversely, FS-MFA is  more reliable be-
cause the interval estimates are only as precise as allowed by the uncertainty.

• We demonstrate that FS-MFA can provide good estimates even if only a few 
external metabolites  measured—when the MFA problem is  underdetermined 
and TMFA cannot be used.
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Preparation: metabolic network and constraint-based model

Corynebacterium glutamicum is  a glutamic acid bacteria used to produce lysine by micro-
bial fermentation from glucose. A stoichiometric network for this bacteria has been 
taken from (Gayen, 2006), but it is a slight variation of the one constructed by Vallino 
et al. (1994). The reactions  considered to describe the primary metabolism of C. glu-
tamicum necessary to support lysine and biomass  synthesis from glucose are thus in-
cluded in the network. A reaction of ATP dissipation is included to allow variations of 
the maintenance related ATP consumption and the operation of futile cycles. A 
closed balance was assumed for NADPH in the works by Gayen et al. and Vallino et 
al. However, since assumption has  been questioned (Yang, 2006; Wittmann, 2002; 
Marx, 1996), so we decided to remove the balance of  NADPH from the network.

The network considers 41 reactions  and 39 metabolites  (tables  6, 7, 8 and 9). There 
are 4 redundant mass balances1, and therefore the row-rank of the network is 36 and 
it has 5 degrees of freedom. The corresponding 36×41 stoichiometric matrix N is 

112

1 Pairs of  balanced metabolites that impose the same constraint, for instance ATP and ADP.

Table 4.6. Extracellular metabolites.

BIOMASS	 	 Glucose LYSI	 	 	 Lysine
CO2	 	 	 Carbon dioxide NH3	 	 	 Ammonia
GLC	 	 	 Glucose TREHAL	 	 Trehalose
H2O	 	 	 Water

Table 4.7. List of  internal metabolites.

ADP Adenosine diphosphate GLUT Glutamate
AKG Kalpha-etoglutaric acid OAA Oxalate
AKP 2-Amino-6-ketopimelate PEP Phosphoenolpyruvate
ALA Alanine PYR Pyruvate
ASP Aspirate RIB5P Ribose-5-phosphate
ATP Adenosine triphosphate RIBU5P Ribulose-5-phosphate
E4P Erythrose--4-phosphate SED7P Sedoheptulose-7-phosphate
FAD Flavin adenine dinucleotide (oxidized) SUC Succinate
FADH Flavin adenine dinucleotide (reduced) SUCCOA Succinyl coenzyme A
FRU6P Fructose-6-phosphate VAL Valine
G3P 3-Phosphoglycerate XYL5P Xylulose-5-phosphate
GAP Glyceraldehydes-3-phosphate ACCOA Acetyl coenzyme A
GLC6P Glucose-6-phosphate COA Coenzyme A
GLUM Glutamine MDAP Meso-Diaminopimelate

NAD Nicotinamide adenine dinucleotide (oxidized)Nicotinamide adenine dinucleotide (oxidized)Nicotinamide adenine dinucleotide (oxidized)Nicotinamide adenine dinucleotide (oxidized)
NADH Nicotinamide adenine dinucleotide (reduced)Nicotinamide adenine dinucleotide (reduced)Nicotinamide adenine dinucleotide (reduced)Nicotinamide adenine dinucleotide (reduced)
NADP Nicotinamide adenine dinucleotide phosphate (oxidized)Nicotinamide adenine dinucleotide phosphate (oxidized)Nicotinamide adenine dinucleotide phosphate (oxidized)Nicotinamide adenine dinucleotide phosphate (oxidized)
NADPH Nicotinamide adenine dinucleotide phosphate (reduced)Nicotinamide adenine dinucleotide phosphate (reduced)Nicotinamide adenine dinucleotide phosphate (reduced)Nicotinamide adenine dinucleotide phosphate (reduced)



given in table 4.10. The vector of reactions irreversibility, which defines  the diagonal 
of the matrix D, is  also given in table 4.10. These two matrices define the flux space P 
in (5), the constraint-based model that we will use along this section.
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Table 4.8. List of  considered reactions of  the central carbon metabolism of  C. glutamicum.

System Reaction

Glucose Phosphotransferase System 1. X_GLC + PEP -> GLC6P + PYR

Storage Compounds; Trehalose 2. 2 GLC6P + ATP <> TREHAL + ADP

EMP Pathway 3. GLC6P <> FRU6P

4. FRU6P + ATP -> 2 GAP + ADP
5. GAP + ADP + NAD <> NADH + G3P + ATP

6. G3P <> PEP + H2O

7. PEP + ADP -> ATP + PYR

8. PYR + NADH <> LAC + NAD

Carboxylation reaction 9. PEP + CO2 -> OAA

TCA Cycle 10. PYR + COA + NAD -> ACCOA + CO2 + NADH

11. ACCOA + OAA + H2O + NADP <> AKG + COA + NADPH + CO2
12. AKG + COA + NAD -> SUCCOA + CO2 + NADH

13. SUCCOA + ADP <> SUC + COA + ATP

14. SUC + H2O + FAD +NAD <> FADH + OAA + NADH

Acetate Production or Consumption 15. ACCOA + ADP <> AC + COA + ATP

Glutamate, Glutamine, 

Alanine, and Valine Production

16. NH3 + AKG + NADPH <> GLUT + H2O + NADP

17. GLUT + NH3 + ATP -> GLUM + ADP
18. PYR + GLUT -> ALA + AKG

19. 2 PYR + NADPH + GLUT -> VAL + CO2 + H2O + NADP + AKG

Pentose Phosphate Pathway 20. GLC6P + H2O + 2 NADP -> RIBU5P + CO2 + 2 NADPH

21. RIBU5P <> RIB5P
22. RIBU5P <> XYL5P

23. XYL5P + RIB5P <> SED7P + GAP

24. SED7P + GAP <> FRU6P + E4P

25. XYL5P + E4P <> FRU6P + GAP

Oxidative Phosphorylation 26. 2 NADH + O2 + 4 ADP -> 2 H2O + 4 ATP + 2 NAD

27. 2 FADH + O2 + 2 ADP -> 2 H2O + 2 ATP + 2 FAD

Asparate Amino Acid Family 28. OAA + GLUT <> ASP + AKG

29. ASP + PYR + 2 NADPH + ATP -> AKP + 2 NADP + ADP + H2O
30. AKP + SUCCOA + H2O + GLUT -> MDAP + COA + AKG + SUC

31. MDAP -> LYSI + CO2

ATP Dissipation 32. ATP -> ADP

Biomass Synthesis 33. 30 PYR + 21 GLC6P + 7 FRU6P + 150 G3P + 52 PEP + 13 GAP + 332 AC-

COA + 126 RIB5P + 80 ASP + 33 LYSI + 446 GLUT + 25 GLUM + 54 ALA + 
40 VAL + 100 NADPH + 3000 ATP -> 1000 BIOMAS + 143 CO2 + 100 NADP 

+ 332 COA + 364 AKG + 3000 ADP
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Preparation: measured fluxes of C. glutamicum

Experimental data of a batch fermentation of C. glutamicum cultured on minimal glu-
cose medium was  taken from (Vallino, 1994). There, the fluxes  of biomass and several 
external metabolites  (lactate, acetate, glucose, O2, CO2, NH3, lysine, and trehalose) 
were experimentally measured. The accumulation of lactate and acetate were negli-
gible, so their flux is  always zero in this  study. The rest of measured fluxes and its 
standard deviations are given in table 4.10. The high uncertainty of the measure-
ments is illustrated by the 90% confidence intervals (MR90 in table 4.10). 

As expected, the original measurements (M) are slightly inconsistent; they do not ex-
actly satisfy the network stoichiometry. We follow two approaches to exploit these in-
consistencies and obtain better (adjusted) measured fluxes: (a) Perform a consistency 
analysis using a χ2-test, which do not detect gross  errors (h = 1.23), and then adjust the 
measurements using weighted least squares  (see chapter II for details). (b) Perform 
Monte Carlo simulations  to compute the ranges that contain those values  in M that 
satisfy the stoichiometry and the reactions irreversibility (5).

TMFA calculations were performed with the three-step procedure described in chap-
ter II, accounting for the standard deviations given in table 4.10. FS-MFA estimates 
were performed representing the measured fluxes  with the intervals of 90% confi-
dence (MR90 in table 4.10).

TMFA and FS-MFA estimates against measurements

In this  section we use the experimental measurements  described above to validate FS-
MFA estimates and to illustrate the limitations  of TMFA. We perform 5 batteries (A-
D) of estimations using different sets  of measurements. In each run, a subset of the 
seven known fluxes are really used as measurements  (as inputs), while the rest are es-
timated. These estimates  are then compared with the experimental values, thus pro-
viding a cross-validation of  FS-MFA and TMFA.

A. Leave-1-measurement-out. All the MFA problems on this battery are redun-
dant1, so we could checked if the measurements  pass the χ2-tests. This is  the scenario 
where TMFA is  supposed to be reliable, but the results show that in some cases (A1 
and A7) its estimations are significantly deviated from the experimental values. 

Conversely, FS-MFA intervals  show a good agreement in all the cases (although they 
are sometimes slightly conservative). Notice also that the degree of overestimation of 
the flux-spectrum intervals  varies from some cases to others, which indicates that 
some measurements impose stronger constraints. For instance, the overestimation in 
A1 is negligible, but important in A4. Notice also that the centroid, and even the cen-
tre of  the intervals, are better point-wise estimates than the ones given by TMFA.
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1 There are 5 degrees of  freedom and 6 independent measurements.



B. Leave-2-measurements-out. 12 out of 20 MFA problems of this battery are 
determined, but not redundant. TMFA is  typically unreliable in this  situation, because 
measurements consistency cannot be checked, but herein we know a priori that the 
measurements are consistent, so this problem is  avoided. Yet, the results  show that in 
most cases (e.g., B2, B7 or B8), TMFA estimations  are deviated from the experimental 
values. The rest of MFA problems of the battery (B13 to B21) are underdetermined, 
so TMFA cannot be applied.

On the contrary, FS-MFA is  still able to provide valuable estimates, even in those cases 
that are underdetermined. The centroid is  within the measured intervals  in 28 out of 
42 cases, and always close to them. The flux-spectrum intervals are wider than in the 
previous case, but still informative.

C. Leave-1-measurement-out (balanced NADPH). At this  point we modify the 
network to include the cofactor NADPH and assume that it is balanced, as  done in 
the original work of Vallino et al. (1994). Again, FS-MFA estimates  provide better re-
sults than TMFA, particularly in cases C4 and C6. 

Notice also that the estimates show a good agreement with the experimental data,  
thus indicating that the assumption of a balanced NADPH is, at least, compatible 
with the extracellular behaviour of  cells at the given conditions.

D. Leave-2-measurement-out (balanced NADPH). All the estimation problems 
are redundant, so this  is again a scenario where TMFA is supposed to be reliable. 
However, the results show that TMFA estimates can be highly deviated from the ex-
perimental values. On the contrary, FS-MFA estimates fit quite well. Notice also that 
the flux-spectrum intervals  are again precise, indicating that the assumption of a bal-
anced NADPH may be valid.
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Table 4.10. Experimentally measured fluxes during a batch fermentation of  C. glutamicum. 

Metabolite (# reaction)Metabolite (# reaction)Metabolite (# reaction) Production/consumption rates or fluxes (mM/h)Production/consumption rates or fluxes (mM/h)Production/consumption rates or fluxes (mM/h)Production/consumption rates or fluxes (mM/h)

M
Measurements

MR90
Meas. range 90%

CR
Consistent range

WL
WLSQ adjust.

GLC (1)GLC (1) Consump. 40.6±22 [-4.4, 76.8] [20.1, 35.9] 25

O2 (34)O2 (34) Consump. 59.2±5.9 [49.5, 68.9] [49.5, 67.6] 592

NH3 (35)NH3 (35) Consump. 64.8±44 [-7.5, 137] [8.3, 27.1] 17

LYSE (37)LYSE (37) Production 0.04±.01 [0.02, 0.06] [0.02, 0.06] 23

TREHAL (38)TREHAL (38) Production 0.4±2 [-2.9, 3.7] [0.04, 3.7] 4

Biomass (36)Biomass (36) Production 21.9±5.4 [13, 30.8] [13, 30.8] 66

CO2 (39)CO2 (39) Production 61.9±6.2 [51.4, 71.8] [52.6, 71.8] 618

M: Original measurements and its  standard deviation (Vallino, 1994). MR90: Values with 90% of con-

fidence. CR: intervals bracketing the consistent values in M. WL: weighted least squares adjustment.



Leave-3-measurement-out (balanced NADPH). Most of the MFA problems of 
this  battery are determined, but not redundant (28), and as expected, TMFA estimates 
are deviated in many of them. There are also 7 underdetermined problems, where 
TMFA cannot be applied. FS-MFA estimates are remarkable good for the 35 cases, 
particularly if  one takes into account that only 4 fluxes are measured.

In summary, (i) we have corroborated that TMFA is unreliable when there are not re-
dundant measurements  (batteries  B and E), (ii) while FS-MFA provides  a good estima-
tion, only slightly more imprecise that the obtained when redundant measurements 
where available. Moreover, (iii) it has been shown that even if there are redundant 
measured fluxes and its  inconsistency is  low, TMFA can be unreliable due to the effect 
of measurements  uncertainty (see A2, A4, A7, D10 and D15), but (iv) FS-MFA gave 
better results for all these batteries. 

FS-MFA estimates in data scarce scenarios

This  section shows the results  given by FS-MFA in some scenarios where TMFA can-
not be applied or is unreliable due to a lack of  measurable fluxes.

Scenario 1: measuring seven fluxes. The case where all the measured fluxes 
given in table 4.6 are considered will be used as reference. Again, the results point out 
that even if there are redundant measurements, the uncertainty may have a signifi-
cant effect over the estimation of certain fluxes (e.g., v32 or v40). FS-MFA copes with 
this providing interval estimates that are only as precise as allowed by the uncertainty.
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for validation are depicted. Experimentally measured values  (CR) are indicated with a black interval, 
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Scenario 2: measuring five fluxes. If 5 fluxes are measured {vGLC, vO2, vLYSE, vBio 
and vCO2}, the flux estimation problem is not redundant, so TMFA will be unreliable. 
Nevertheless, the results  in Figure 4.10 show that FS-MFA provides a very good esti-
mation. The results are practically equivalent to those obtained in the scenario 1 (the 
centroid has a mean deviation of 0.054 mM/h with respect S1, for a flux vector with 
a mean value of  19.85mM/h).

Scenario 3: measuring four fluxes. When 4 fluxes are measured {vGLC, vO2, vBio 
and vCO2}, the flux estimation problem is underdetermined, so TMFA cannot be ap-
plied. Yet, FS-MFA provides a valuable estimation (see Figure 4.10).

In the scenarios  1 to 3 we have incorporated an artificial flux of NADPH to estimate 
the total amount being consumed or produced by cells  at the given conditions. As it 
can be seen in Figure 4.10, the value of this  flux (v41) is  between -39.4 and 13.6 mM/
h, indicating that a balanced NADPH, even if it is not the only possibility, is  compati-
ble with the measurements and the model. At this  point, we repeat the FS-MFA esti-
mations in the same 3 scenarios, but now we assume that the cofactor NADPH is  bal-
anced, thus improving the accuracy of the results, if the assumption is  indeed accept-
able. The results are depicted in Figure 4.11.

Scenario 4: measuring five fluxes (balanced NADPH). The MFA problem is 
now redundant thanks  to the added balance NADPH balance. Interestingly, even if 5 
fluxes are measured instead of 7, the obtained flux estimates  are similar to those in 
the reference scenario S1 (the centroid has a mean deviation of  1.4 mM/h).

Scenario 5: measuring four fluxes (balanced NADPH). The flux estimates  are 
similar to those in S1, and much more precise than those obtained in S3 (the mean 
deviation of the centroid in S5 is  2.5 mM/h, significantly better than the 7.18 mM/h 
of S3). This suggests that, in this particular case, the assumption of a balanced 
NADPH is partially overcoming the lack of  measurements.

Scenario 6: measuring two fluxes (balanced NADPH). In this  case only two 
fluxes are measured {vBio and vCO2}, so the MFA problem is underdetermined with 
two degrees  of freedom. Yet, the estimates are similar to those in S1 and practically 
equivalent to those in S5.

The results show that the actual fluxes  can be estimated even if only a few measure-
ments  are available. In this  particular case, FS-MFA provides an estimate even if only 
two external fluxes—growth rate and CO2 production—were measured. Clearly, the 
structure of a highly simplified metabolic network restricts  the flux states that cells can 
show. However, it must be keep in mind that a small network may be biased to fit a 
particular cell state, thus  being valid only under certain conditions. The network 
model is  used herein only as an example, so this problem has not been addressed. 
However, the validation of reduced networks like this one will be discussed in chapter 
IX.
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4.6  Conclusions

In this  chapter we have presented an interval approach to estimate the metabolic 
fluxes that operate within cells. The method, called FS-MFA, is  based on coupling a 
constraint-based model with a set of measurements. It is  a variant of metabolic flux 
analysis particularly well suited to scenarios with data scarcity.

The main benefit of FS-MFA is that, instead of point-wise estimates, it provides inter-
val estimates. These are richer and more reliable (uncertainty is explicit). The use of 
intervals also enables MFA in two scenarios: when there is  a lack of measurable fluxes, 
and when the available measurements highly imprecise.

Two cases  studies have been used with three objectives: (1) to pinpoint some limita-
tions of traditional metabolic flux analysis  (TMFA), (2) to validate FS-MFA against 
experimental data, and (3) to illustrate its main benefits. We have corroborated that, as 
expected, TMFA is  unreliable if there are not redundant measurements. Moreover, 
we show that, even with redundant measurements, TMFA point-wise estimates  can be 
highly deviated because of the uncertainty; FS-MFA is  more reliable because its inter-
val estimates are only as precise as  allowed by the uncertainty. Finally, we have dem-
onstrated that FS-MFA could provide good estimates even if only a few external 
fluxes are measurable. 

Next chapters will further develop the work described here as follows:

• In chapter VI, the flux-spectrum will be used to estimate time-varying fluxes 
during a cultivation process. The presented procedure can be used as an off-
line analysis  of collected data, or for the on-line monitoring of a running proc-
ess, mitigating the traditional absence of  reliable on-line sensors in industry. 

• In chapter VII, possibility theory will be used to extend the ideas underlying 
FS-MFA, resulting in a more complex methodology, but bringing several ad-
vantages. This methodology will be applied to the estimate metabolic fluxes 
(chapter VII an VIII), build dynamic FBA models (chapter VIII), and validate a 
constraint-based models (chapter IX).

In summary, the described FS-MFA is a powerful, yet simple, improvement of tradi-
tional metabolic flux analysis, which can be particularly valuable in scenarios where 
data are scarce, as it is  common in industry. The key feature of the approach is  that 
the method provides  reliable estimates, since these are only as  precise as allowed by 
the available data and knowledge.
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V
Translation of flux states into pathway 

activities under data scarcity

This  chapter discusses how to translate a given metabolic flux state into a pattern of 
pathway activities. As  in chapter IV, fluxes are represented by means of intervals  to 
handle scenarios  of data scarcity: scenarios where not all fluxes  are known, and sce-
narios where the know fluxes are imprecise or uncertain. Experimental data from a 
cultivation of  CHO cells will be used as case study.

Part of  the contents of  this chapter appeared in the following journal articles:

• Llaneras F, Picó J (2007). An interval approach for dealing with flux distribu-
tions and elementary modes  activity patterns. Journal of Theoretical Biology, 
246(2):290-308.
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5.1  Introduction

In chapter II, it was explained that a metabolic flux state, the distribution of flux 
through a metabolic network, reflects the behaviour exhibit by cells at given condi-
tions. Chapter III was devoted to network-based pathways and it was shown that 
every flux state can be seen as  the aggregated action of these pathways. In other 
words, any flux state can be translated into a pattern of pathway activities. This en-
ables  the study of cellular states in a context of pathways instead of fluxes, which can 
be valuable to connect the intracellular state with regulation processes  or with the ex-
hibited phenotypes.

This  chapter is  devoted to study this  translation. We will review methods to determine 
how much flux is  being carried by each pathway at given conditions. It will be shown 
that in most cases there are multiple valid translations, that is, that a given a flux state 
can be represented with different patterns of pathway activities. Two approaches  are 
usually followed: chose one pattern based on a reasonably assumption (Poolman, 
2004; Schwartz, 2006), or deal with the whole space of possible patterns. The second 
approach relies  on the so-called α-spectrum, the ranges of possible activities for each 
pathway (Wiback, 2003).

Here we will show how the α-spectrum can be computed when the fluxes are repre-
sented by means of intervals, what provides some benefits in scenarios of data scar-
city: (i) the α-spectrum can be computed when the flux state is partially unknown, (ii) 
accounting for uncertainty, and (iii) handling high inconsistency. These advantages 
will be illustrated with a case study.

The chapter is  structured as follows. In section 5.2 the translation problem is  studied, 
and particular translation methods are discussed. In section 5.3 the α-spectrum is  pre-
sented, and in section 5.4 its  interval version is  introduced. In section 5.4 a case study 
with CHO cells  shows  that the α-spectrum can be of use in scenarios of data scarcity. 
The chapter concludes with some conclusions.

5.2  From fluxes to pathway activities

First, let us  recall the formulation used in previous chapters. A simple constraint-based 
model is the flux space P, which could be defined as follows:

P = v ∈Rn : N·v = 0
D·v ≥ 0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

(1)

where v is  the vector of fluxes that represent the mass flow through each of the n re-
actions  in the network, N is the stoichiometric matrix, and D is  a diagonal matrix with 
Dii = 1 if  the flux i is irreversible (and otherwise 0).
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These constraints define the space of feasible flux (steady) states, which ideally com-
prises  every possible phenotype: only those flux vectors v that fulfil (1) are valid cellu-
lar states.

Network-based pathways generate the flux space

Now consider the network-based pathways discussed in chapters  II and III. Network-
based pathways are flux vectors1 with certain properties that make them useful for the 
analysis of the modelled metabolism. For instance, elementary modes are all the simplest 
pathways  in the network, those that cannot be decomposed in simpler ones, and a 
minimal generating set is a smallest set of pathways sufficient to span the flux space (Fig-
ure 5.2). Other network-based pathways are extreme currents and extreme pathways. A 
comparison among all these concepts was carried out in chapter III.

However, herein we are interested in one characteristic that these sets of pathways 
share: they all generate the flux space. That is, every feasible flux vector v in P can be 
translated into a pattern of  pathway activities (Figure 5.3).

In particular, each flux vector v can be expressed as sum of  pathway activities:

v = ek ⋅α k ,    
k

e

∑ α k ≥ 0 (2a)

The same can be expressed in matrix form, as follows:

v = E ⋅α,     α k ≥ 0 (2b)

where each ek denotes a generating pathway, and each αk its  non-negative activity. 
The matrix E is formed with pathways as a columns.

The patterns  of pathway activities (α) express  how much flux is  being carried by each 
pathway, an information that can be simpler and more meaningful than reaction 
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1 As each pathway is a flux vector, they can be represented as a vector e = (e1,..., en)T fulfilling (1).
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Figure 5.1. Example of  metabolic network and its stoichiometric matrix.



fluxes. The translation connects the phenotype (the fluxes), with larger structures (the 
pathways), thus linking it with regulation and other high-level mechanisms.

Remark on nomenclature. Hereinafter we use the term generating set to refer to any of the 
network-based concepts: elementary modes, extreme pathways, or minimal genera-
tors. The results  discussed hereinafter apply to all of them. We also use the term path-
way to refer to each vector in a generating set (e.g., an elementary mode).

Analysis of the translation problem

The relationship between a given flux vector v and the corresponding pattern of 
pathway activities  α is  given by the system of linear equations (2b). One can study the 
determinacy and redundancy of  the translation problem as follows.

Determinacy. The number of elementary modes ne is always equal to or larger than 
n-m, the number of linear independent vectors needed to span the flux space (1). 
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Figure 5.2. The elementary modes of the metabolic network depicted in Figure 5.1. There are 4 

elementary modes; a minimal generating set is formed by E1, E2 and E3 (since E4 = E3 + E2).	
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Figure 5.3. Translation of  a flux state into a pattern of  pathways activities. A flux state is translated 

into two different patterns. The pathways, elementary modes in this example, are given in Figure 5.2.
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Thus, the rank of E is  n-m. In the particular case when the number of unknowns  (ne) 
is  equal to the rank of E (n-m), the translation problem (2) is  exactly determined and 
the unique pattern α can be calculated as follows: 

α = E−1 ⋅v (3)

This  is  a rare case, however. In most cases, ne > (n-m), so the system (2) is underdeter-
mined with ne - (n-m) degrees of freedom, and there are infinite α’s fulfilling (2). That 
means that, in general, a given flux vector v cannot be uniquely translated into a pat-
tern of  pathway activities. 

Those αk that are uniquely determined can be detected by considering the general 
solution αG of  the translation problem (2):

αG =α p +K ⋅ λ, α k
G ,α k

p ≥ 0 (4)

where αp is a particular solution, K the null space of  E and λ an arbitrary vector. 

Those elements  αGk of αG whose corresponding row in K is a null row are classified as 
calculable. These elements do not depend on λ, so they are uniquely determined, and 
its value can be taken from any particular solution (e.g., the non-negative least square 
solution) because for these elements, αGk = αpk .

Redundancy. The rank of E is  always  less than n, and therefore the system is  always 
redundant. That means that any given flux vector v will not be consistent with (1) in 
general due to measurement or modeling errors. A procedure to detect inconsistent 
fluxes and to adjust their values  was described in the context of metabolic flux analy-
sis in chapter II.

Particular translation methods

It has been shown that the translation of a flux vector into pathways  activity patterns 
has multiple solutions: there can be infinite α’s  fulfilling (2). Two directions are possi-
ble to face with this problem: choose a particular solution based on a rational criterion 
or deal with the whole space of  translations. 

Several translation methods have been proposed following the first approach:

• Schwartz et al. (2006) select the translation that minimizes  pathway activities α, 
because this  decomposition makes maximum use of the closest pathways to the 
actual state of  cells. 

• Poolman et al. (2004) used the same assumption, and although the calculation 
procedure was different, very similar results were obtained. 
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• Schwarz et al. (2005) chose the shortest pathways assuming that they are those 
that most contribute to gene expression, as it has been experimentally observed 
in the metabolism of E. coli (Stelling, 2002). This  is  also supported by the fact 
that metabolic networks grow selectively around central metabolites  to favor 
short metabolic paths (Wagner, 2001).

• Nookaew et al. (2007) proposed to maximize the number of used pathways, 
based on the assumption that cells  are likely to use as many routes as possible to 
maintain robustness  and redundancy, as  required to survive under genetic and 
environmental stresses.

These methods are able to yield a unique translation among those that are possible, 
but the validity of these translations depends  on the validity of the underlying as-
sumptions. This  methods  should be only applied if there is reasonably evidence that 
the underlying assumptions are true. As an alternative, to investigate the translation 
without incorporating any of these assumptions, the α-spectrum concept can be used 
(Wiback, 2005).

5.3  The α-spectrum

The α-spectrum concept provides  a simple way to represent the whole space of possi-
ble translations for a given flux vector v. Basically, the range of possible activities for 

each pathway are calculated and expressed with an interval, α k
m ,α k

M⎡⎣ ⎤⎦ .
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These intervals  can be calculated solving two linear programming problems for each 
pathway (to get upper and lower bounds):

 ∀α j , j = 1…ne

α j
m = min{α j} s.t.

v = E ⋅α             

α k ≥ 0 k = 1…ne

⎧

⎨
⎪

⎩
⎪

α j
M = max{α j} s.t.

v = E ⋅α             

α k ≥ 0 k = 1…ne

⎧

⎨
⎪

⎩
⎪

(5)

The α-spectrum A can be defined as the set of  the obtained intervals:

A = α ∈Rne :α k
m ≤α k ≤α k

M{ }

In this  way, the α-spectrum indicates  which pathways  can be responsible of the actual 
cell state. The intervals  obtained can be plotted in a bar graph with the pathways  rep-
resented on the x-axis and their activities on the y-axis (Figure 5.4B).

Let us now discuss some issues regarding the α-spectrum:

• The α-spectrum contains all particular translations. All the translations that can be 
yield based on different assumptions  exist within the α-spectrum. This comes at 
the cost of indeterminacy: the α-spectrum cannot determine the true pathway 
activities.1

• The α-spectrum is an overestimation. The α-spectrum is a simple representation of 
the space of possible translations (2), but not an exact one; it is  an overestima-
tion (Figure 5.4A). The α-spectrum contains  all the possible translations, but 
also combinations of pathway activities that do not fulfill (2). Notice, however, 
that this  inexactitude is  needed to give an independent activity for each path-
way, and thus keep the representation simple and understandable (Figure 5.4B).

• Pathway redundancy enlarges the α-spectrum. It is well-known that the number of 
admissible paths through a network increases  rapidly as the number of reac-
tions increases (Schuster, 1999). This increment of pathway redundancy results 
in wider ranges for pathway activities.2
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The α-spectrum: interval approach

A slight modification of the method proposed by Wiback et al. (2005) enables  com-
puting the α-spectrum when fluxes are represented by means of  intervals:

 ∀α j , j = 1…ne

α j
m = min{α k} s.t.

vm ≤ E ⋅α ≤ vM

α k ≥ 0 k = 1…ne

⎧

⎨
⎪

⎩
⎪

α j
M = max{α k} s.t.

vm ≤ E ⋅α ≤ vM

α k ≥ 0 k = 1…ne

⎧

⎨
⎪

⎩
⎪

(6)

where vM and vm are vectors with maximum and minimum values for each flux.1

In this way, the α-spectrum (A) contains  every pattern of pathway activities  that ful-
fills (2) for any of  the flux vectors within the interval representation ([vm, vM]).

This interval version of  the α-spectrum bring some benefits:

• The α-spectrum can be computed when the flux vector v is partially unknown. Simply, the 
unknown fluxes are represented with intervals, e.g., [0, ∞], [-∞, ∞], [0, vM]. The 
computed α-spectrum will contain all the α ‘s that correspond to flux vectors 
compatible with the available knowledge.

• Uncertainty can be accounted for. The uncertainty of the fluxes—consequence, for 
example, of measurement errors—can be represented with intervals, e.g., [0.9, 
1.1]. The α-spectrum will be less precise, wider, but more reliable.

• High inconsistency can be faced by means of uncertainty. A given inconsistent flux vec-
tor v can be adjusted, but if its inconsistency is  high, any point-wise adjusted  
flux vector will be unreliable, because the original values have proved uncer-
tain. A more conservative approach would be define interval fluxes  to enclose 
nearby consistent measurements, and get the α-spectrum from them.

• Interval fluxes can be used to represent a range of cellular states. This  allows us to com-
pute the ranges of pathway activities  that are needed to represent this behavior. 
This  may be useful, for instance, to build reduced kinetic models  considering 
only those pathways that are active for a desired range of  cellular states.

Some of  these advantages will be illustrated in the case study that comes next.
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5.4  Case study: CHO cells

The methods described above are now applied to the case of cultivation of CHO cells 
in batch mode. This  problem was also addressed in chapter IV, where more details are 
available, including the metabolic network, the list of metabolites, and the stoichio-
metric matrix.

Preparation: compute the pathways

The elementary modes have been chosen as  network-based pathways. Nevertheless, 
all the types of generating sets  described in chapter III are equivalent in this  example 
because all reactions  are irreversible. The 7 elementary modes of CHO cells were 
computed with Metatool (Pfeiffer, 1999) and given in Table 5.1.

Analysis of the translation equation

Consider the flux vector given in Table 5.2, which was calculated in chapter IV apply-
ing metabolic flux analysis  from a set of six measurements. We first analyse the trans-
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Table 5.1. Elementary modes of  the model of  CHO cells.

Reaction E1 E2 E3 E4 E5 E6 E7
v1 1 1 0 0 2 0 1
v2 1 0 0 0 0 0 1
v3 0 1 0 0 2 0 0
v4 1 0 0 0 0 0 1
v5 2 0 0 0 0 0 2
v6 2 0 0 1 0 0 0
v7 0 0 1 0 0 0 0
v8 0 0 0 0 0 1 2
v9 0 0 0 0 0 1 2
v10 0 0 0 0 0 1 2
v11 0 1 1 1 2 2 2
v12 0 1 0 0 2 1 2
v13 0 0 1 1 0 1 0
v14 0 1 0 0 2 0 0
v15 0 0 0 1 0 1 0
v16 0 1 1 1 2 1 0
v17 0 1 0 0 1 0 0
v18 0 0 0 0 1 0 0
v19 0 1 1 2 2 2 0
v20 0 2 1 1 5 1 0
v21 0 2 2 2 4 5 6
v22 0 1 0 0 0 0 0



lation problem for these data. The rank of E is 6 and there are 7 elementary modes, 
so the translation problem (2) is underdetermined and has  multiple solutions. How-
ever, the inspection of the kernel of E shows that some activities  are uniquely deter-
mined:

K = −0.3 0 0 0.6 0 0.6 0.3( ) (7)

The activity of 3 elementary modes  can be taken from a particular solution, such us 
the non-negative least square solution, resulting in: α2 = 0, α3 = 0.268 and α5 = 0.143. 
The activity of  the other 4 elementary modes remains undetermined.

To estimate the possible activities  of all the pathways, the α-spectrum can be com-
puted with (5) or (6). The obtained intervals, used as reference hereinafter, are de-
picted in Figure 5.5. The results show that even if the activity of 4 pathways is not 
uniquely determined, its ranges of  possible values can be narrow.

The α-spectrum and partial knowledge

Let us consider that only v1 (G), v6 (L), v20 (Q) and v21 (CO2) are measured. This is  an 
underdetermined MFA problem, where the available measurements are insufficient to 
determine all the fluxes1. However, the α-spectrum can be computed. 

First, the partially unknown flux vector has to be represented with intervals (Table 5.3, 
row B). Then, the intervals of the α-spectrum are computed using (6). The results are 
given in Table 5.4 and Figure 5.5B.
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details about MFA problems.

Table 5.2. A complete flux vector of  CHO cells. Fluxes in mM/(d∙109 cells).

Reaction Flux Reaction Flux Reaction Flux

G (v1) 4.05 L (v6) 7.39 NH4 (v19) 0.96
Q (v20) 1.18 A (v7) 0.26 CO2 (v21) 2.61

1: G→G6P 405 7: Pyr+Glu→A+aKG 0.26 13: Mal→Pyr+CO2 0.47
2: G6P→G3P+DAP 3.76 8: Pyr→ACA+CO2 0.34 14: Oxa+Glu→Asp+aKG 0.28
3: G6P→R5P+CO2 0.28 9: Oxa+ACA→Cit 0.34 15: Glu→aKG+NH4 0.20
4: DAP→G3P 3.76 10: Cit→aKG+CO2 0.34 16: Q→Glu+NH4 0.75
5: G3P→Pyr 7.53 11: aKG→Mal+CO2 1.10 17: R5P+Asp+Q→Pu 0.14
6: Pyr→L 7.39 12: Mal→Oxa 0.63 18: R5P+Asp+2Q→Py 0.14



This  example shows that even from partial knowledge, the α-spectrum can be infor-
mative. In fact, the ranges obtained are very similar to those obtained from the com-
plete flux vector, only the activities of  elementary modes 2 and 3 are conservative.

The α-spectrum and uncertainty

The interval formulation in (6) makes it possible to compute the α-spectrum account-
ing for uncertainty. As an example, the α-spectrum has been computed using the un-
certain measurements given in Table 5.3, row C. Results  are given in Table 5.5 and 
Figure 5.5A. As  expected, the α-spectrum intervals are wider, but more reliable if 
measurements are indeed uncertain.
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Figure 5.5. The α-spectrum in two scenarios of data scarcity. (A) The α-spectrum when measure-

ments  are uncertain (Table 5.3, row C). (B) The α-spectrum if the flux vector is  partially unknown (Ta-

ble 5.3, row B). The α-spectrum from the certain and complete flux vector is depicted in black.
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Table 5.3. Different flux vectors of  CHO cells. Fluxes in mM/(d∙109 cells).

v1 (G) v2-v5 v6 (L) v7(A) v8-v18 v19 (NH4) v20 (Q) v21 (CO2) v22

Measure.Measure. 4.0546 7.3949 0.255 0.9617 1.186 0

Partial B 4.0546 [0,∞] 7.3949 [0,∞] [0,∞] [0,∞] 1.186 2.557 [0,∞]

Uncertain C [3.5,4.5] [0,∞] [6,8] [0.1,0.5] [0,∞] [0.6,1.4] [1,1.5] [0,∞] 0

A: Measured values  (Provost, 2004). B: an uncertain flux vector defined around the measurements. C: 
partially unknown flux vector where only 4 fluxes are known.



The α-spectrum and consistency

Finally, let us  consider an inconsistent flux vector generated adding random noise 
(±10%) to the flux vector given in Table 5.2. To approaches  are possible to handle the 
inconsistency: 

(a) Adjust the measurements to be consistent (as explained in chapter II), and then 
compute the α-spectrum from them using (5).

(b) Represent the measurements with intervals  to consider their (obvious) uncer-
tainty, thus enclosing the nearby consistent sets of measurements, and then 
compute the α-spectrum from these intervals using (6).

As shown in Table 5.6, the first approach (a) obtains  a narrower α-spectrum, but devi-
ated from the one that was obtained from the original flux vector (without the added 
noise). Following the second approach (b) we get an α-spectrum which is slightly 
wider, but which encloses the α-spectrum obtained from the original flux vector.

5.5  Conclusions

Sometimes  a pattern of pathways activities is  a more meaningful (and simpler) repre-
sentation than a vector of reaction fluxes, and therefore the translation between both 
representations is worth dealing with.

Table 5.4. The α-spectrum computed from a partially unknown flux vector (B).

E1 activity E2 E3 E4 E5 E6 E7

Complete [3.59,3.69] 0 0.26 [0,203] 0.14 [0,0.203] [0.07,0.17]

Partial [3.50,3.69] [0,0.39] [0,0.69] [0,0.39] [0,0.16] [0,0.36] [0,0.19]

Table 5.5. The α-spectrum computed from an uncertain set of  vector (C).

E1 activity E2 E3 E4 E5 E6 E7
Certain [3.59,3.69] 0 0.26 [0,203] 0.14 [0,0.203] [0.07,0.17]
Uncertain [2.7,4] 0 [0.1,0.5] [0,0.58] [0.01,0.28] [0,0.587] [0,1.69]

Table 5.6. Computation of  the α-spectrum from an inconsistent flux vector.

E1 activity E2 E3 E4 E5 E6 E7

Original [3.59, 3.69] 0 26 [0, 203] 14 [0, 0.20] [0.07, 0.17]

Ap. a [3.60, 3.65] [0, 0.02] [0.36, 0.38] [0, 0.07] [0.13, 0.15] [0, 0.07] [017, 0.22]

Ap. b [3.39, 3.76] 0 [0.26, 0.31] [0, 0.24] [0.13, 0.15] [0, 0.24] [0.06, 0.19]
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We have seen that there are proposals to choose one particular pattern of pathway 
activities  among those that are possible. Yet, these methods rely on assumptions  that 
are not easy to validate. As  an alternative, one can calculate the α-spectrum, which 
represents  the whole set of valid patterns. In particular, herein we have shown that the 
α-spectrum can be calculated even when the original fluxes  are represented with in-
tervals. This enhances  the usage of experimental flux data, providing a way to handle 
common problems, such as sensor inaccuracy or lack of  data.

The α-spectrum can be a useful tool in applications that connect the metabolic net-
works  with experimental data. For instance, it may be of use for the on-line monitor-
ing of the metabolic phases  of a cells  culture, if these phases are characterised by the 
active pathways. The α-spectrum could be also useful to build reduced dynamic mod-
els, which consider only those pathways active under the circumstances of  interest.

The major limitation of computing patterns  of pathways activities is that the number 
of pathways can be very large, resulting in several valid patterns. As explained in 
chapter III, the number of network-based pathways dramatically increases  as the 
number of reactions  in the network increases  due to a combinatorial explosion. This 
effect is particularly intense with elementary modes, but occurs also with extreme 
pathways  or minimal generators. This  large number of pathways is necessary in many 
applications. For instance, we need all the elementary modes to predict the effect of 
knockouts, and all the minimal generators to exactly generate the flux space. Fur-
thermore, redundancy is an inherent property of metabolism, so cells  have multiple 
ways to produce similar behaviors. However, there are applications that may require a 
lower-dimensional set of pathways (Barrett, 2009), and computing pathway activities 
is probably one of  them.
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VI
Estimation of time-varying fluxes under data 

scarcity

This  chapter describes a procedure to estimate time-varying metabolic fluxes  during a 
cultivation process. The procedure is based on the results  of chapter IV, so it handles 
measurements uncertainty and is particularly suitable in scenarios of  data scarcity. 

The procedure can be used as  an off-line analysis  of collected data to get insight on 
the dynamic behaviour of the organism, or to on-line monitoring a running process, 
mitigating the traditional absence of reliable on-line sensors  in industry. The cultiva-
tion of  CHO cells will be used as case study.

Part of  the contents of  this chapter appeared in the following journal article:

• Llaneras F, Picó J (2007). A procedure for the estimation over time of metabolic 
fluxes in scenarios  where measurements are uncertain and/or insufficient. BMC 
Bioinformatics, 8:421.
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6.1  Introduction

As seen in previous chapters, constraint-based models can be assembled for organisms 
of interest based on the mass  balances  around internal metabolites, which are as-
sumed to be steady-state, and other constraints, such us transport capacities  or ther-
modynamics. These constraints  define a space containing every feasible metabolic 
state. The environmental conditions  at particular circumstances would determine 
which of these corresponds  are exhibited by the cells. One approach to determine the 
flux state of cells  at a given moment, is  to incorporate experimental measurements. 
This  is  the idea underlying metabolic flux analysis  (MFA), as  discussed in chapters II 
and IV. 

MFA estimations are typically done under a static point of view. Therefore the ob-
tained flux vector will be only valid during certain time, while the environmental con-
ditions and the cells  state remains steady (e.g., during growth phase). If these condi-
tions change, as it happens in actual cultures, the flux vector may change. Clearly, fol-
lowing these changes  over time will be useful to investigate the dynamic behaviour of 
cells and to monitor the progress of  industrial fermentations (Mahadevan, 2005).

There are, in fact, several works  in the field devoted to this problem. Mahadevan et al. 
(2002) extended classical FBA to predict the dynamic evolution of the metabolic 
fluxes. In (Gayen, 2006), elementary modes and the assumption of optimal behaviour 
are used to estimate the flux vector of C. glutamicum at different phases of fermenta-
tion. Elementary modes  are also employed in (Provost, 2006b), where time-varying 
intracellular fluxes are obtained by switching the flux vectors calculated at different 
temporal phases. In (Herwig, 2002), on-line MFA is applied to quantify coupled intra-
cellular fluxes. Takiguchi et al. (Takiguchi, 1997) use a similar approach to recognise 
the physiological state of cells culture, and show that this information improves Lysine 
production yield. Henry et al. (2007) presented an on-line estimation of intracellular 
fluxes applying MFA to an over-determined metabolic network.

Although these works consider that intracellular fluxes  are in steady-state at each 
measurement step, the dynamic nature of the process is  not disregarded: the intracel-
lular fluxes  will follow the changes of environmental conditions  as  mediated by the 
measured fluxes (e.g., substrate uptakes). Intracellular fluxes  may undergo shifting 
from one state to another depending on the environmental conditions. The same idea 
can be found in several dynamic models (Provost, 2004; Provost, 2006; Lei, 2001; 
Teixeira, 2007; Sainz, 2003; Ren, 2003). In this way, we can study the (extracellular) 
dynamic behaviour of an organism, without considering the still not well-known in-
tracellular kinetics.

Most of the works mentioned above use Traditional MFA to get the estimates during 
the cultivation. However, as explained in chapter II, traditional MFA has some limita-
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tions1, and these are particularly critical under data scarcity, a situation common in 
industry, and worsen if measurements  are needed on-line. To overcome these limita-
tions, at least partially, in this  chapter we will use the MFA variant described in chap-
ter IV, the so-called flux-spectrum MFA (FS-MFA).

The objectives  of this chapter are twofold: first, introduce a procedure to estimate 
time-varying metabolic fluxes that uses  FS-MFA to be well-suited in scenarios of data 
scarcity. Second, illustrate the procedure applying it to a real case study: the cultiva-
tion of  CHO cells in batch mode.

6.2  Estimation procedure

In most cases, only a few extracellular metabolites  are measurable during a fermenta-
tion. For this  reason we follow an indirect approach to estimate those fluxes  that can-
not be measured: couple the available measurements with a constraint-based model. 
Under this  philosophy, the proposed procedure is structured as follows (Figure 6.1): (1) 
measure the concentration of some extracellular metabolites and biomass, (2) convert 
these concentrations to “measured” fluxes  and (3) estimate the non-measured fluxes 
with the flux-spectrum (FS-MFA).

It is  often overlooked that extracellular fluxes  are not directly measured. Instead, the 
concentrations  of a set of metabolites are measured (step 1), and those data are con-
verted to flux units  or measured fluxes (step 2). The importance of a good conversion 
should not be disregarded: errors in the measured concentrations may be amplified, 
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1 In brief, (i) traditional MFA cannot be used when measurements are scarce, (ii) it gives  only point-wise 
estimates (insufficient if multiple flux values  are reasonably possible due to the uncertainty), and (iii) it 
does not considers inequality constraints, such as reaction reversibility.
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Figure 6.1. Three-step procedure to estimate the time-varying metabolic flux. e(t) denotes the con-

centration of an extracellular metabolite, v(t) its  flux, and x(t) the biomass concentration. As  an exam-
ple, subindexes 1, 2 and 3 denote measured fluxes and 4, 5 and 6 non-measured ones.



incorporated to the measured fluxes, and then propagated to the estimation of the 
non-measured ones. To minimise this hitch, the conversion should be careful. 

Once the measured fluxes are available, the non-measured ones can be estimated by 
coupling them with the constraint-based model (step 3). This step has been done be-
fore using MFA (Herwig, 2002; Takiguchi, 1997; Henry, 2007; Ren, 2003), but herein 
the FS-MFA will be used instead.

The procedure can be useful in two ways: (a) as an off-line analysis  of collected data, 
or (b) to on-line monitoring running process. The procedure scheme and its  funda-
mental step (step 3) will be the same in both cases, but differences may arise in step 2.

Preliminaries: choose a constraint-based model

Recalling the formulation used in previous  chapters, a simple constraint-based model, the 
flux space P, can be assembled assuming that internal metabolites  are at steady-state 
and considering the irreversibility of  some reactions, as follows:

P = N ⋅v = 0
D ⋅v ≥ 0

⎧
⎨
⎩⎪

(1)

where v is the vector of metabolic fluxes, representing the mass flow through each of 
the n reactions  in the network, N is the stoichiometric matrix linking metabolites  and 
fluxes, and D is a diagonal matrix with Dii = 1 if  the flux i is irreversible (otherwise 0).

The constraints in (1) define a space of feasible steady-state flux vectors, or flux states, 
which ideally comprises  every possible phenotype. Only flux vectors v that fulfil (1) are 
valid cellular states. That means that there are infinite v fulfilling (1).

As explained above, to determine which feasible flux vector is the actual one at given 
circumstances, measured fluxes can be incorporated as additional constraints to apply 
TMFA (see chapters  II and IV). Unfortunately, these measurements tend to be scarce, 
which means that we need a reasonably small network to apply the estimation proce-
dure—otherwise, the measurements cannot offset or reduce the under-determinacy of 
the model (1) to get valuable estimates. To keep reductions of the network at mini-
mum, intracellular measurements  from tracer experiments can be incorporated 
(Sauer, 2006; Wiechert, 2001), but those data are in most cases  not available. FS-MFA 
will be also of help, because it gives estimates  without completely offset network 
under-determinacy. However, we must kept in mind that the main fact remains: rea-
sonably small networks are required.
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Step 1: measuring metabolite concentrations

There are several alternatives to measure the concentration of metabolites—e.g., on-
line sensors, isotopic tracer experiments or laboratory procedures—and describing 
them is out of the scope of this  work. Just remember that the more measurements are 
available, the more non-measured fluxes may be accurately estimated. However, one 
should be prepared to deal with lack of measurements, especially when the procedure 
is done on-line (due to the lack of  on-line sensors).

Step 2: converting measured concentrations into measured fluxes

A mass balance around an extracellular metabolite whose concentration is measur-
able can be stated as follows: 

de
dt

= ve ⋅ x −D ⋅e+ Fe (2)

where e is  the metabolite concentration, ve its flux (substrate uptake or product forma-
tion), x the biomass  concentration, D the dilution term and Fe the net exchange of the 
metabolite with the environment. This equation is  only valid for extracellular metabo-
lites, but biomass growth and mass balances  of internal metabolites not at pseudo-
steady state can be represented in a similar way (Bastin, 1990; Schüerl, 200).

One can calculate ve as a function of e, x, D, Fe and de/dt, but this  presents two main 
difficulties: (i) approximate a derivative (directly or indirectly) and (ii) deal with the 
presence of errors  and noise in the measured e. The underlying problem is how preci-
sion can be combined with robustness against measurement errors.

We propose two alternatives two calculate the fluxes: (a) combine an Euler method 
with moving average filters, and (b) use a non-linear observer. The first one is  suitable 
if  the procedure is done off-line, the second one is better to work on-line (Figure 6.2).

Notice, however, that there is  not a universal solution for the conversion. In real appli-
cations, the particularities of the measurements  (accuracy, sample rate, importance 
and characteristics of the noise, etc.) and the operation mode (off-line, on-line with an 
acceptable delay or purely on-line) determines the most suitable approach.

Euler approximation and moving average filters

One approach is  to approximate the derivative de/dt with a simple method, such as 
Euler or Runge-Kutta methods, and then solve (2) (Herwig, 2001). Euler methods 
provide the most straightforward approximations:
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Backward:  df(k)
dt

≈
f(k)− f(k −1)
t(k)− t(k −1)

Middle point: df(k)
dt

≈
f(k +1)− f(k −1)
t(k +1)− t(k −1)

The backward version does not introduce an intrinsic delay, but the middle point pro-
vides a less noisy approximation.

In most cases  this  straight approximations need to be combined with the use of filters 
to eliminate or reduce the presence of noise. Filters  based on the moving average are 
good candidates because they are simple and versatile. Basically, moving average fil-
ters calculate a new signal by averaging the values of the original signal within a time 
window. Thus, the new signal becomes smoother. This kind of filters  has already been 
applied to the calculation of  metabolic fluxes (Herwig, 2001). 

The centred moving average (CMA) provides best results  because uses  past and future 
information. The filtered value for instant k (CMAk) is  calculated by averaging the val-
ues of  the original signal (S) between k-n and k+n:

CMAk =
Sk-i + Sk + Sk+i

1

n

∑
1

n

∑
2 ⋅n +1

If only past values of the original signal are available, the standard moving average 
(SMA) can be used instead:

SMAk =
Sk-i

0

n

∑
n +1

The key parameter of moving average filters is  the window size n, i.e., the number of 
averaged values.1 The optimal size would be one observation, so as  to be close to the 
original signal. However, to reject noise, the window size needs to be increased. There 
is a trade-off  between sensitivity to noise and delay with respect to the original signal.

This  simple approach to calculate the fluxes ve(k) provides particularly good results 
when centred methods  can be used both to approximate the derivative and to filter 
the signals. That is, when past (k-i) and future information (k+i) is available. This is the 
case if  the whole procedure is done off-line.
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Non-linear observers and other alternatives

There are also methods especially aimed to the on-line approximation of derivatives. 
If the noise signal is  well characterised (e.g., the frequency band or a stochastic feature 
is known) a linear differentiator (Pei, 1989) or even a Luenberger observer may be 
used (Luenberger, 1971). If nothing is  known on the structure of the signal, then slid-
ing mode techniques are profitable. For example, the method introduced in (Levant, 
1998) combines exact differentiation for a large class of input signals with robustness 
against any small noises. An alternative based on Levant’s super-twisting algorithm 
have been proposed to similar problems (Battista, 2010).

Finally, there are methods to calculate the extracellular fluxes that avoid the approxi-
mation of the derivative, for example, the use of extended Kalman filters (Henry, 
2007; Dochain, 1988) or observers based on concepts  from non-linear systems  theory, 
such as  the high gain estimators described in (Bastin, 1990). These methods  do not 
use future information because they are aimed to on-line operation mode. For in-
stance, a high-gain non-linear observer of the extracellular fluxes  can be directly syn-
thesised from (2) using the method proposed in (Farza, 1998):

deo
dt

= ve ⋅ x −D ⋅eo − 2 ⋅θ ⋅ (eo − e)

dve
dt

= −
θ 2 ⋅ (eo − e)

x

where eo denotes the observed concentration of the extracellular metabolite and ve the 
observed flux. The unique adjustable parameter is θ. Not only these observers  are 
proved to be stable, but also its  asymptotic error can be made arbitrarily small by 
choosing sufficiently large values of θ. However, very large values need to be avoided 
in practice since the observer may become noise sensitive. Thereby, the choice of θ 
represents a trade-off  between fast convergence (minor delay) and sensitivity to noise. 
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Remark. Filtering the fluxes calculated by the high-gain non-linear observer may be 
also advisable to get a smoother signal, although similar results may be achieved by 
tuning the parameter θ.

Step 3: estimating the metabolic fluxes with FS-MFA

Finally, at each time instant k, the measured fluxes  obtained in step 2 are coupled with 
the constraint-based model (1) to estimate the non-measured fluxes (Figure 6.1). As 
explained in the introduction, previous  works applied traditional MFA (TMFA) with 
this  purpose, but herein we will apply a variant described in chapter IV, the so-called 
flux-spectrum (FS-MFA), which is  particularly suitable in scenarios of data scarcity, 
where measurements are imprecise and most metabolites are unknown.

FS-MFA estimates of the non-measured fluxes at each time instant k can be computed 
with the following three-step procedure:1

As explained in chapter IV, the size of the intervals—the imprecision of the estima-
tion—depends  on the measurements  and constraints: the more are available, the 
tighter intervals are obtained.

Step 3.1 Represent the measured fluxes  in v(k) with an interval, [vm,im(k), vm,iM(k)] 
by means of  inequalities:

  vm
m (k) ≤ vm (k) ≤ vm

M (k)                                          (3)

Step 3.2 Impose the constraints (1) to define the current flux space at k, F(k):

F(k) = v(k)∈Rn :
N ⋅v(k) = 0
D ⋅v(k) ≥ 0

vm
m (k) ≤ vm (k) ≤ vm

M (k)

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

                      (4)

The space F(k) contains  all the flux vectors v ∈ P compatible with the 
measurements at k, vm(k).
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Step 3.3 Calculate the flux-spectrum, the interval of feasible values for each flux 
vi(k), solving a set of  linear programming problems (LP): 

 

∀vi (k),  i = 1...n

   vi
m (k) = min vi (k){ } s.t. F(k)

   vi
M (k) = max vi (k){ } s.t. F(k)

                                 (5)

This gives an interval estimate per flux and time instant, [vim(k), viM(k)].

Remember also that if uncertainty is not considered, all fluxes  are reversible, and (4) is 
determined, the FS-MFA gives the same point-wise estimate that TMFA. However we 
saw in chapter IV that FS-MFA provides several advantages,1  and new ones arise 
when it is used in a successive way (as here):

• FS-MFA may detect sensitivity problems. An interval estimate anomalously 
large at k, indicates that a sensitivity problem exists. With TMFA this  sensitive 
problems may introduce peak values and misleading estimates.

• The inspection of past and future intervals, together with our qualitative 
knowledge on cells behaviour, may be useful to hypothesise which flux values 
are more likely among those that are feasible.

6.3  Case study: CHO cells

The three-step procedure described in the previous section is  now applied to the esti-
mation of the metabolic fluxes  of CHO cells cultivated in batch mode. The available 
experimental data are the typical data measured off-line (accurate measurements of 
the concentration of a few metabolites, with a low sampling rate), and therefore this 
example will be approached assuming that the procedure is done off-line.

Hereinafter we pay special attention to the third step of the procedure, since is the 
more novel one. In particular, we compare the results  given by FS-MFA with those 
provided by traditional MFA (TMFA), the well-established methodology that is  the 
basis of  similar procedures (Herwig, 2002; Takiguchi, 1997; Henry, 2007; Ren, 2003).
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1  Summarising, FS-MFA accounts for uncertainty, provides reliable and richer interval estimates (in-
stead of  point-wise ones), and can be used in scenarios of  data scarcity.



The comparison discusses the benefits of  the estimation procedure in three scenarios:

• S1. If measurements are almost sufficient. There are enough to determine all 
the non-measured fluxes, but there are not redundant measurements  (the sys-
tem (4) is determined and not redundant). 

• S2. If measurements are sufficient. Measured fluxes  are enough to determine 
the non-measured fluxes and there are also redundant measurements (the sys-
tem (4) is determined and redundant).

• S3. If measurements  are insufficient. There are not enough to determine all the 
non-measured fluxes (the system (4) is underdetermined and not redundant).

Preparation: metabolic network and constraint-based model

The metabolic network is the same that was used in chapter IV. However, in this case 
some reactions {2, 4, 5, 6 and 7} are considered reversible because the analysis  is not 
restricted to the growth phase (e.g., when glucose is exhausted lactate and alanine are 
consumed instead of  produced).

The complete list of metabolites  and reactions, the stoichiometric matrix and a depic-
tion of  the network were given in chapter IV.

Step 1: measuring metabolite concentrations

Experimental data taken from (Provost, 2006a) is given in Figure 6.3. The cell density 
(X) and the concentration of 5 extracellular metabolites are measured: two substrates, 
glucose (G) and glutamine (Q), and three excreted products, lactate (L), alanine (A) 
and ammonia (NH4). This  data was collected with a sample rate of 24 h. Notice that 
these measurements  cannot be filtered because, due to the low sample rate, it is im-
possible to distinguish between noise and true changes of  the signal.

Step 2: converting measured concentrations into measured fluxes

The second step of the procedure is convert the measured concentrations in meas-
ured fluxes. The measured fluxes  calculated with three different approximations of 
the derivative are depicted in Figure 6.4. Since the procedure is being done off-line, a 
centred approximation is the most advisable choice, so fluxes calculated with the 
middle-point Euler method will be used hereinafter.1 
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1 Similar results were obtained using a backward Euler approximation, which would be suitable in case 
the procedure were done on-line (not shown).



The results shown in Figure 6.4 already give the idea of uncertainty. The differences 
between different conversions  are significant. Clearly, the reliability of the conversion, 
along with the precision of the measurements  of metabolite concentrations, should be 
taken into account to define the uncertainty of  the measured fluxes.
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Figure 6.3. Concentration of measured extracellular metabolites and biomass during a cultivation of 

CHO cells. The measurements  correspond to cell density (X), glucose (G), glutamine (Q), lactate (L), 
alanine (A) and ammonia (NH4).
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Figure 6.4. Extracellular fluxes (vz) and biomass growth rate (µ) calculated from the measured concen-

trations. Fluxes have been calculated in three ways: using a middle-point Euler method (black, solid 
line), using a backward Euler method (green, dashed line),  and using a backward Euler method cou-
pled with a moving average filter of  order 2 (blue solid line). 
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Step 3: flux estimation — measurements are almost sufficient (S1)

If the five measured fluxes are used {v1 (G), v6 (L), v7 (A), v19 (NH4) and v20 (Q)} and it is 
assumed that the formation of purine and pyrimidine is the same {v22 = 0}, the MFA  
problem (4) is determined, but not redundant1.

Using traditional MFA

We can use traditional MFA (TMFA) to determine the non-measured fluxes (see chap-
ter IV for details). However, as it can be observed in Figure 6.5 (green solid line) the 
results obtained are not satisfactory:

• The estimated values at 24 h an 168 h for fluxes  v8, v9, v10, v11, v12 and v21 seem 
unreasonable: the measured fluxes evolve smoothly, but these fluxes show peaks.

• The estimated fluxes  v8, v9 and v10 do not fulfil the reversibility constraints 
(which, remember, are not considered in TMFA).

• To apply TMFA in an exactly determined case, we have to assume that there is 
no error in the measurements, which is unlikely, so the estimates are unreliable. 

To show the last point, two new estimations have been done, one at 24 h with meas-
ured values for fluxes  v1 and v6 slightly modified (+2% and -5% respectively), and an-
other one at 168 h with a slight variation in the measurements for v1 and v6 (-0.05 and 
+0.05 mM/(d∙109∙cells), respectively). It can be observed in Figure 6.5 (red crosses) 
that the peak values in v8, v9, v10, v11, v12 and v21 are eliminated or reduced, while the 
values of the rest of fluxes  remain almost unchanged. This indicates that the peaks at 
24 h and 168 h were artefacts caused by slight errors in the measurements.

This  illustrates  the unreliability of TMFA in exactly determined cases: the impact of 
slight errors in the measured fluxes  is not under control. These slight errors will exist 
in virtually all measured fluxes—they can even be consequence of the conversion 
step, as seen in Figure 6.4. This is  why TMFA should not be used in scenarios  without  
redundant measurements.

Using FS-MFA

The same scenario is now approached using FS-MFA instead of  MFA. 

If uncertainty is not considered and all reactions are considered reversible, FS-MFA 
provides the same solution that TMFA (results  not shown). However, constraints can 
be incorporated for those reactions  classified as irreversible (4). In this  way we detect  
a high inconsistency at 24 h and a lower one at 144 h (i.e., the space F(k) is empty at 
these time instants). It must be pointed out that system (4) is not redundant, so TMFA 
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1 The rank of Nu (16) is equal to the number of unknown fluxes (22-5-1).  See chapter IV for details on 

this kind of  analysis.
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Figure 6.5. FS-MFA and TMFA in the determined and not redundant case (S1). Measured fluxes are, 
v1 (G), v6 (L), v7 (A), v19 (NH4), v20 (Q) and v22. Measured fluxes have a grey background, and its  uncer-

tainty is represented with an interval. Fluxes estimated with FS-MFA are represented with an interval, 
and those estimated with TMFA with a green line. Two more TMFA estimations at 24 h and 168 h, 
from measurements of  v1 and v6  slightly deviated from the original ones, are depicted with red crosses.



consistency analysis cannot be used; FS-MFA is  detecting inconsistencies thanks  to the 
reversibility constraints.

Now we consider the uncertainty in the measurements. We define a band of uncer-
tainty around the measured values accounting for relative (5%) and absolute (0.1 
mM/(d∙109∙cells)) errors  around the values  of the measured fluxes. Thus, the band 
around  each measured flux vm(k) is defined as follows:

If  vm (k) ⋅Erel ≥ Eabs → band = vm (k) + vm (k) ⋅Erel , vm (k) - vm (k) ⋅Erel[ ]
Else → band = vm (k) + vm (k) ⋅Eabs , vm (k) - vm (k) ⋅Eabs[ ]

The relative error (Erel) will be the dominant when the measured value is high, and 
the absolute one (Eabs) if it approaches zero. If more information about the measure-
ments  were available (e.g., sensors  technical specifications), the range of uncertainty of 
each measured flux should be defined accordingly.

The results  obtained with FS-MFA when uncertainty is  accounted for are depicted in 
Figure 6.5. If  compared with those given by TMFA, several conclusions arise:

• Reversibility constraints  provide a method to detect inconsistencies. It can be 
easily checked that the solution provided by TMFA do not satisfy the reversibil-
ity constraints at 24 h (a negative value is  given to three irreversible fluxes, v8, v9 
and v10). This inconsistency is detected and avoided with FS-MFA.

• Peaks at 24 h an 168 h for v8, v9, v10, v11, v12 and v21 are avoided with FS-MFA.1

• The uncertainty of experimental measurements is  nontrivially propagated to 
the non-measured fluxes. For example, the estimates  of v8, v9 and v10 are highly 
influenced by measurements  uncertainty, while those of v2, v4, and v5 are practi-
cally insensitive. Even if all fluxes could be estimated, FS-MFA says that the 
estimates  for v8, v9 and v10 are less  reliable, less  precise, than those for v2, v4 and 
v5. FS-MFA provides not only estimates for the fluxes, but also an indication of 
the reliability of  these estimates.

In summary, this example shows  that the described procedure gives richer estimates of 
time-varying fluxes in scenarios where there are not redundant measurements.
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1 We saw that the peaks were replaced by more sensible predictions if the measurements were slightly 
modified. As these modified measurements  are enclosed by the band of uncertainty, the obtained inter-
vals  for v8, v9, v10, v11,  v12 and v21 contain the sensible predictions. However, if a peak value violates  the 
reversibility constraints, it will not be considered a valid solution, as happens at 24 h.



Step 3: flux estimation — measurements are sufficient (S2)

Consider now a scenario where the problem (4) is  determined and redundant. Again, 
the use of  TMFA is compared with that of  FS-MFA.

• TMFA. When there are redundant measurements, TMFA can be applied with 
a two-step procedure: (1) exploit redundancies  to detect gross  errors and to ad-
just the measured fluxes, and (2) solve a weighted least squares  problem to get a 
point-wise estimate for the non-measured fluxes. See chapter II for details.

• FS-MFA. It can be applied with the three step-procedure described in 6.2. No-
tice that it is still possible to exploit redundancies to detect gross errors, but in-
stead of adjust the measured fluxes, FS-MFA defines a band of uncertainty 
around the measurements.

To get problem (4) determined and redundant, we need 7 measured fluxes.1 There are 
only 6 available, so we assume that the flux of CO2, v21, was measured—assuming 
that it evolves smoothly and takes  the values given by MFA in the previous section, 
except at 24 h and 168 h, which values are approximated by means of  a spline curve.

First, we apply a χ2-test to analyse the degree of inconsistency of the measurements  at 
each time instant (see chapter II). The data fails the test at time 168 h (see Table 6.1), 
indicating that, if  the model is correct, those measurements contains gross errors.2

Afterwards, we can estimate the non-measured fluxes  during the cultivation of CHO 
cells using TMFA and FS-MFA. The results shown in Figure 6.6 indicate that FS-
MFA can be also useful in this scenario:

• Even if there are no gross errors  in the measurements, the point-wise estimate 
of TMFA can be unreliable due to uncertainty3. FS-MFA avoids this problem 
because its interval estimates  are only as precise as allowed by the uncertainty, 
so they avoid this problem. To illustrate this  problem, the fluxes that correspond 
to a set measurements near the original ones—within the band of uncertainty, 
and thus reasonably possible—have been highlighted in Figure 6.6 (dotted line). 
The evolution of some fluxes (e.g., v8, v9 and v10) is  clearly deviated from the es-
timates given by TMFA. Meanwhile, FS-MFA intervals  indicate that two differ-
ent interpretations  of fluxes v8, v9 and v10 are possible: they can be stable around 
0.6 or evolve from 0.2 to 0.7 mM/(d∙109∙cells). If there are evidences support-
ing one alternative over the other one, one could hypothesise which is more 
likely. In this way, accounting uncertainty in a richer way, FS-MFA reduces  the 
number of  wrong, or biased, predictions.
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1 The system will be redundant since the rank of  Nu (15) is less than the number metabolites m (16).

2 If  we assume that the model is correct.

3 Small changes in the measurements, which are expected, can have a large impact on the estimates. 
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Figure 6.6. FS-MFA and TMFA in the determined and redundant case (S2). Measured fluxes are, v1 

(G), v6 (L), v7(A), v19 (NH4), v20 (Q), v21 (CO2) and v22.  The measured fluxes have a grey background, and 
its uncertainty is represented with an interval. Fluxes estimated with FS-MFA are represented with an  
interval and those estimated with TMFA with a green line.  Fluxes estimated with TMFA from meas-

ured values near the original ones—thus reasonably possible—are also depicted (blue dotted line) to 
show the undesired sensibility of  TMFA results.



• Although there is a large error in measurements  at 168 h, FS-MFA finds feasi-
ble flux vectors within the band of uncertainty (complementing the χ2 test). 
Moreover, it  gives  an estimate accounting for the high uncertainty of measure-
ments  at 168 h. Conversely, TMFA estimates are sensitive to the large er-
ror—the value of v21 is significantly changed by the adjustment, resulting in a 
peak, and peaks appear also in v8, v9, v10, v11 and v12. In fact, TMFA estimates 
are usually discarded when measurements fail the χ2 test because, being point-
wise, they would be unreliable.

• Again, we see that measurements  uncertainty is  nontrivially transferred to the 
interval estimates. FS-MFA provides not only estimates  of the fluxes, but also 
an indication of  the reliability of  these estimates.

This  example shows that the described procedure provides  richer estimates of time-
varying fluxes also in scenarios where redundant measurements  are available. This  is 
the perfect scenario to apply TMFA—redundancies allow one to evaluate consistency 
and adjust the measurements—but FS-MFA still has some advantages: it gives more 
reliable estimates and handles larger inconsistency and uncertainty.

Table 6.1. χ2 consistency test for a confidence level of  95%.

Time 0 h 24 h 48 h 72 h 96 h 120 h 144 h 168 h 192 h
Value ha 0 3.02 0.0001 0 1 2 294 37.94 0

a The test fails when h > 3.84 (i.e., h>χ2).

Step 3: flux estimation — measurements are insufficient (S3)

In this section it is  shown that the procedure can be used even when the available 
measurements are insufficient, i.e., when the problem (4) is underdetermined. Notice 
that in this situation TMFA cannot be applied.

The procedure is  applied using different sets  of 4 and 5 measured fluxes  (remember 
that 6 was necessary to get a determined system). Uncertainty is  also accounted for, 
using the band described above. All results  are given in Table 6.2, and two illustrative 
cases are depicted in Figure 6.7.

With 4 sets of 5 measurements  (G, F, E and C) the evolution of all the non-measured 
fluxes can be estimated. Case G, where v22 is  not known, provides the best results. 
There is a mean interval increment of 39% over the determined case and the incre-
ment is  minor than 25% for 12 fluxes out of 17. This case is depicted in Figure 6.7 
(green). The interval estimates are practically the same as  in the determined case for 
most fluxes  (v2, v4, v5, v8, v9, v10, v11, v12, v13, v15 and v21). Estimates  for v3 and v14 are 
larger, but still accurate, and only the estimates  for v16, v17 and v18 are imprecise. 
Moreover, the temporal evolution—that can be roughly characterised by using the 
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Figure 6.7. FS-MFA in two underdetermined cases (S3). Interval estimates obtained using 5 meas-

urements {v1 , v6 , v7, v19 and v20} are depicted in green (second interval), and those obtained from {v1 , 
v6 , v7 and v19} in blue (third interval). To be used as reference, the estimates  obtained in the determined 

case, when 6 fluxes were measured, are depicted in black (first interval).
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middle point of the intervals—is always  similar to the determined case. Case C, 
where v7 is not measured, provides also very good results; all fluxes are predicted with 
a mean interval increment of 122%. The interval increment is minor than 25% for 5 
fluxes, and minor than 100% for 9 fluxes. Case F, where v20 is  not measured, provides 
good results  too. Case E, where v19 is  not measured, provides  slightly worse results 
than F. With the other two sets of 5 measurements  (B and A), some non-measured 
fluxes cannot be estimated, but the estimated ones (10 and 7, respectively) are exactly 
the same that in the determined case. 

Two sets of 4 measurements have been also considered (I and H). Case I, where v20 
and v22 are not measured, provides remarkable results. There is a mean interval in-
crement of 180% over the determined case, and the increment is  minor than 100% 
for 11 fluxes. This case is  depicted in Figure 6.7 (blue). The interval estimates  are 
similar to the determined case for most fluxes. Those for v16 and v20 are wider, but still 
useful, and only v3, v14, v17 and v18 are highly imprecise.

This  section illustrates  an important feature of the procedure: it is  able to estimate the 
metabolic fluxes  during a cultivation process  in scenarios  of data scarcity, when meas-
urements are uncertain and scarce.

6.4  Case study: CHO cells under uncertainty

In this section CHO cells  case is  used to analyse two issues regarding measurements 
uncertainty. We first discuss how the uncertainty is  propagated to the estimations. Af-
terwards, we describe a simple approach to investigate which measurements should be 
more accurate to improve the precision of  particular estimates.

The propagation of the uncertainty is unbalanced

As shown in previous sections, the uncertainty of the experimentally measured fluxes 
is  not equally propagated to all the estimated fluxes. The structure of the constraint-
based model (stoichiometry and reactions reversibility) determines  how the uncer-
tainty is propagated. A convenient way to investigate this effect is  to calculate the in-
terval sizes  of each estimated flux and time instant (both in absolute and relative 
terms). 

First, consider the aggregated average interval size (AIS) of each estimated flux (Table 
6.3). It can be observed (determined case) that certain fluxes, such as v10, v12 and v21, 
are highly affected by the uncertainty of the measurements—they have an average 
interval size larger than 1 mM/(d∙109∙cells). Other fluxes, such as v14 and v17, are less 
sensitive (values around 0.1 mM/(d∙109∙cells)). Obviously, smaller fluxes tend to be 
more affected by the uncertainty, in relative terms, but this phenomenon is not the 
only responsible for the unbalanced propagation of the uncertainty. For example, the 
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estimated v8 and v14 have similar magnitudes, but the effect of the uncertainty over 
them is  dramatically different: v8 is the more influenced flux (AIS of 90% in relative 
terms), while v14 is quite insensitive (AIS of 15%). Another example is given by v21, 
one of the fluxes  with larger magnitude, but highly affected by uncertainty (AIS inter-
val size of  3.4 mM/(d∙109∙cells) or 39%).

The data given in Table 6.3 also provides  a quantitative indication of the benefits of 
redundant measurements. When seven fluxes are measured instead of six, the esti-
mates are more precise: the intervals are reduced a 71% on average. This  is improve-
ment is  particularly significant for those fluxes  poorly estimated in the determined 
case (reduction of  78% for v8, v9 and v10 and 76% for v12).

Similar data, but aggregated with respect to time instants instead of fluxes, are given 
in Table 6.4. The same analysis could be done to evaluate the imprecision of each 
estimate, per flux and time instant, if  this is considered necessary.

Table 6.3. Imprecision of  the estimated fluxes caused by measurements uncertainty.

  Determined caseDetermined caseDetermined case Determined / redundant caseDetermined / redundant caseDetermined / redundant case   ComparisonComparison

Max. [a] AIS [a] AIS [%b] Max. [a] AIS [a] AIS [%b] Diff. [a] Diff. [%]

v2 6.041 0.377 6.25% 6.032 0.321 5.32% 0.057 14.97%
v3 0.853 0.129 15.12% 0.859 0.123 14.35% 0.006 4.41%
v4 6.041 0.377 6.25% 6.032 0.321 5.32% 0.057 14.97%
v5 12.081 0.755 6.25% 12.065 0.642 5.32% 0.113 14.98%
v8 1.166 1.053 90.37% 0.715 0.231 32.32% 0.822 78.07%
v9 1.166 1.053 90.37% 0.715 0.231 32.32% 0.822 78.07%
v10 1.166 1.053 90.37% 0.715 0.231 32.32% 0.822 78.07%
v11 3.769 1.180 31.30% 3.073 0.165 5.37% 1.015 86.02%
v12 1.854 1.017 54.89% 1.263 0.241 19.05% 0.777 76.34%
v13 1.813 0.209 11.52% 1.809 0.195 10.78% 0.014 6.58%
v14 0.853 0.129 15.12% 0.859 0.123 14.35% 0.006 4.41%
v15 1.113 0.150 13.52% 1.109 0.147 13.27% 0.003 2.11%
v16 2.665 0.117 4.39% 2.668 0.114 4.26% 0.003 2.91%
v17 0.426 0.101 23.64% 0.442 0.087 19.60% 0.014 14.10%
v18 0.426 0.079 18.42% 0.417 0.063 15.17% 0.015 19.48%
v21 8.698 3.407 39.17% - - - -

Mean 699 3.231% 202 1.432%  497 71,09%

Max: maximum value of the estimated flux along time. AIS: average interval size for each estimated 
fluxes (over time). Diff: difference between determined and over-determined cases; a in mM/

(d∙109∙cells). b average interval size for each estimated flux expressed w.r.t. its maximum value.
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The propagation of the uncertainty is nonlinear

In the previous section it was show that the propagation of the uncertainty from the 
measured fluxes  to the estimated ones is not balanced. Herein the non-linearity of this 
propagation is analysed.

We have performed 15x15 instances of the estimation procedure for different degrees 
of uncertainty in two measured fluxes, v1 and v6 (between ±2% and ±30%). Then, we 
calculate the averaged interval size for one of the estimated fluxes, v2. In this  way, we 
can analyse the effect over the estimate of  both sources of  uncertainty.

Figure 6.8 shows the averaged interval size (AIS) of the estimated v2 for each instance. 
As expected, the intervals  tend to increase as uncertainty increases. It is also clear that 
the uncertainty of the two measurements has not the same effect. The effect of uncer-
tainty in v6 over v2 is larger than the effect of  uncertainty in v1. 

Figure 6.8 also shows the non-linearity of the propagation of the uncertainty from the 
measurements to the estimates. Let f(ui) be the interval size of an estimated flux, such 
as v2, when measurements uncertainty is ui, then:

c. The propagation does not satisfy the principle of  superposition,

f(u1) + f(u2 ) ≠ f(u1 + u2 )

d. The propagation of  uncertainty does not satisfy the principle of  homogeneity,

f(k ⋅u1) ≠ k ⋅ f(u1)
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Table 6.4. Summary of  results for each time instant (determined and overdetermined cases).

  Determined caseDetermined case Determined / redundant caseDetermined / redundant case   ComparativeComparative
AIS [a] AIS [%b] AIS [a] AIS [%b]   Diff. IS [a] Diff. [%]

0h 1.617 73.99% 0.518 34.14%   1.099 67.96%
24 h 0.835 38.66% 0.295 21.68%   0.540 64.69%
48h 1.083 48.18% 0.283 16.30%   0.799 73.85%
72h 0.737 34.37% 0.202 14.19%   0.536 72.66%
96h 0.468 22.64% 0.151 11.66%   0.317 67.75%
120h 0.382 17.93% 0.089 7.42%   0.293 76.71%
144h 0.382 17.90% 0.102 8.08%   0.280 73.23%
168 h 0.392 18.43% 0.077 6.94%   0.315 80.31%
192h 0.397 18.68% 0.103 8.46%   0.295 74.18%

 
mean 0.699 32.31% 0.202 14.32%   0.497 71.09%

AIS: average interval size of the estimated fluxes at each time instant. Diff: difference between deter-
mined and overdetermined cases. a in mM/(d∙109∙cells).  b average at each time instant of the interval 
sizes of  the calculated fluxes expressed w.r.t. the maximum value.



To highlight (a), the result of summing up the independent effect of the uncertainty  
of v6 and v1 has been depicted with black dots  in Figure 6.8. When the uncertainty is 
low, f(u1) + f(u1) > f(u1 + u2), but this  is  inverted when uncertainty increases, and, f(u1) + 
f(u1) < f(u1 + u2). It can be observed that the effect of the uncertainty of v1 is  not im-
portant by itself, but it is  boosted in combination with the uncertainty of v6. Regard-
ing (b), Figure 6.8 clearly show that, f(k∙u1) ≠ k∙f(u1). For example, assume that the un-
certainty of v6 is  fixed in 10% (fourth row in the right top figure). The effect of adding 
the first 4% of uncertainty to v1 is higher than the effect of adding a second one, and 
after 16%, more uncertainty has practically no effect (there is a saturation). 

Therefore, the relationship between the uncertainty of the measurements  and the 
precision of the estimates is  a complex one: different for each estimate and clearly 
non-linear. Interestingly, this  means that the estimation procedure described earlier in 
the chapter provides non-trivial information in this respect.
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Figure 6.8. Effect over the estimated v2 of the uncertainty of the measured v1 and v6. The surface 
(and its projections) represents the averaged interval size (AIS) of the estimated v2 when different de-

grees of uncertainty are considered for the measured v1 and v6. In the top left figure, the result of sum-
ming up the independent effect of  v6 uncertainty and v1 uncertainty is shown with black dots.



Analysing the effect of the uncertainty of each measurement

In this section two methods are proposed to investigate how the precision of the esti-
mated fluxes can be improved acting on the measurements.

• Direct approach. Calculate the increase of the imprecision of the estimates when 
the uncertainty of  one measured flux is increased.

• Indirect approach. Calculate the reduction of the imprecision of the estimates 
when the uncertainty of  one measured flux is decreased.1

The direct approach, similar to a classical analysis of sensitivity, will be useful during 
the setting-up of a process plant to choose the equipment, sensors, and the measuring 
protocols. On the other hand, given a current setting (equipment, protocols, etc.), the 
indirect approach indicates  which fluxes  should be more accurately measured (e.g., 
using an accurate sensor or taking redundant measurements), if we want to improve 
the precision of a particular estimate, for a flux of interest, and even at a critical 
phase of  the cultivation process.

The procedure to perform the indirect analysis can be outlined as follows:

For each measured flux vm,x(k) in vm(k)For each measured flux vm,x(k) in vm(k)

Step 1 Apply FS-MFA to get interval estimates for each flux v(k), considering:


 
 ±5% of  uncertainty    ∀vm,i(k), i ≠ x


 
 ±2% of  uncertainty     vm,x(k)

	 	 *Particular values of  5% and 2% are just an example.

Step 2 Calculate the interval size for each estimated flux v(k).

Step 3 Quantify the reduction of  imprecision for each estimated flux v(k):


 
 Red = 100 −
BC −DX( )
BC −WC( ) ⋅100

where Dx is  the interval size of v(k), WC its  interval size in a worst-case 
[±5% of uncertainty ∀vm(k)], and BC its  interval size in a best-case 
[±2% of  uncertainty ∀vm(k)].

	 Note: the direct analysis can be formulated in an analogous way.	 Note: the direct analysis can be formulated in an analogous way.

162

1 Notice that increase and reduction are not inverse, i.e., f(u+x) + f(u-x) ≠ f(0).
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The indirect analysis has  been applied to the cultivation of CHO cells. The results, 
given in Figure 6.10, show how the imprecision of the estimated fluxes is reduced 
when the uncertainty of measured fluxes decreases  a 3%. For example, the results in-
dicate that the larger improvement of the estimates will occur if the uncertainty of v20 
is  reduced at 144 h: the imprecision of the estimates  for v3, v14, v16 and v18 is reduced 
by more than an 85%. It can be also observed that during the first 96 h, reducing the 
uncertainty in v20 reduces  only slightly the imprecision of the estimated v16, but this 
reduction is very important between 120 h and 192 h. It is also clear that reducing the 
uncertainty of v1 or v6 has no effect over the estimates  v3, v14, v15, v16 v17 and v18. These 
data will be valuable to improve the estimations (or an on-line monitoring system).

A summary of the direct analysis  can be given in a more compact way, as in in Figure 
6.9. These figures can be used to improve our estimations in a rational manner. Some 
examples are given below:

• If one is  interested in increasing the precision of the estimated v3, the best in-
tervention will be to reduce the uncertainty of  the measured v20. 

• If we want to improve the estimations  during the transition phase (between 72 
h and 120 h) we should reduce the uncertainty of  v7. 

• If we prefer to improve the overall precision of all the estimations, we should 
reduce the uncertainty in the measured v7, although reducing the uncertainty of 
v1 or v20 brings similar benefits.

6.5  Conclusions

In this  chapter we have presented a procedure to estimate time-varying metabolic 
fluxes during a cultivation process, which handles data scarcity and measurements un-
certainty. The procedure has  been illustrated with a real case study: the estimation of 
the intra- and extracellular fluxes of  CHO cells cultivated in batch mode. 

Previous approaches  to this problem used traditional MFA to perform the flux estima-
tion (Herwig, 2002; Takiguchi, 1997; Henry, 2007; Ren, 2003). However, it has  been 
shown that the flux-spectrum, introduced in chapter IV, has  advantages. The flux-
spectrum gives interval estimates instead of point-wise ones, thus allowing to apply 
the estimation procedure even if  measurements are insufficient, or imprecise.

The flux estimation procedure can be applied off-line (with collected data), providing 
insight into the time-varying behaviour of the organism. This can help to understand 
its dynamic regulation, and its  adaptation to environmental conditions. It can be also 
useful for physiological studies, to characterise strains, or to guide improvements  of  
strains and processes. The procedure could serve as basis for on-line monitoring proc-
esses in industrial environments, where reliable on-line sensors are lacking.
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In summary, it has been shown how a constraint-based model and set of measure-
ments  of metabolites  concentrations can be used to estimate time-varying metabolic 
fluxes during a cultivation process, even in scenarios of  data scarcity and uncertainty.
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Part III: Possibilistic methods





VII
Possibilistic framework to analyse consistency 

and estimate the metabolic fluxes

This  chapter discusses the use of possibility theory in the context of constraint-based 
models. We introduce a unifying possibilistic framework to (a) evaluate consistency 
between model and measurements, and (b) provide rich estimates of the metabolic 
fluxes. The framework is  shown to be flexible, reliable, usable under data scarcity, and 
computationally efficient.

Part of  the contents of  this chapter appeared in the following journal article:

• Llaneras F, Sala A, Picó J (2009). Possibilistic framework for constraint-based 
metabolic flux analysis. BMC Systems Biology, 3:79.
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7.1  Introduction

Constraint-based models  define the possible metabolic states or behaviours that can 
be exhibited by the cell; however, they do not predict which of these are likely under 
given circumstances. One approach to perform these predictions is  flux balance 
analysis (FBA), which assumes that cells behaviour has evolved to be optimal in a cer-
tain sense (Price et al., 2003). It has been shown that FBA is  able to predict the actual 
fluxes (Schuetz, 2007; Edwards, 2001; Schilling, 2002), but this requires to identify 
which are the relevant objectives  for different conditions (Schuster, 2008; Schuetz, 
2007). As an alternative, one could perform a metabolic flux analysis  (MFA) which, 
generally speaking, is  the exercise of estimating the fluxes shown by cells  by combina-
tion of  a constraint-based model and the available experimental measurements. 

One difficulty to be tackled by MFA is  that the available measurements are often in-
sufficient to estimate the intracellular fluxes, particularly in large-scale networks, be-
cause there may be different flux states  compatible with the measurements. To face 
this  situation, one could choose one flux vector among those that are compatible with 
the measurements. For instance, Nookaew et al. have proposed to estimate the intra-
cellular fluxes  based on the assumption that cells  are likely to use as many pathways as 
possible to maintain robustness  and redundancy (Nookaew, 2007). Related hypotheses 
have been formulated using the concept of elementary modes (Poolman, 2004; 
Schwartz, 2006). The assumption of optimal cell behavior typically used in FBA 
could be also used (Schuetz, 2007). Another option to face a lack of measurements is  
to incorporate intracellular information obtained from stable isotope tracer experi-
ments  (Sauer, 2006; Szyperski, 1998; Wiechert, 2001). Yet, data from isotope tracer 
experiments  are still rarely available, and will not be considered in this  work. Instead, 
we follow a constraint-based modelling approach, in the sense that we do not attempt 
necessarily to predict the actual fluxes with precision, but rather to distinguish “most 
possible” from “impossible” flux states, based on a suitable definition of  “possibility”.

With this purpose in mind, this chapter presents a possibilistic framework for MFA. 
Uncertainty, lack of measurements and model imprecision will be handled introduc-
ing the notion of “degree of possibility”. Then, an efficient optimisation-based ap-
proach will be employed to query the most possible fluxes and their possibility 
distributions.1 The methodology is based on a reinterpretation of the consistent causal 
reasoning paradigm (Dubois, 1995) as an equivalent problem of feasibility subject to 
equality and inequality constraints. Preferences under uncertain knowledge are incor-
porated by transforming the feasibility problem into a linear optimisation one, which 
may be interpreted in possibilistic terms. The optimisation approach to logic reason-
ing has been previously explored in (Sala, 1998; Sala, 2001; Sala, 2008). 
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The main features of the framework introduced herein, that will be called Possibilistic 
MFA (Poss-MFA), can be summarised as follows: 

• Poss-MFA exploits a constraint-based model, not only stoichiometric balances.

• It considers  measurements uncertainty and model imprecision in a flexible way 
(e.g., non-symmetric error or a band of  uncertainty due to systemic error). 

• It provides possibility distributions (and intervals) which are more informative 
than point-wise estimations if  multiple flux values are be reasonably possible.

• It is reliable even if  only a few fluxes are measurable.

• It can detect, and handle, inconsistencies between measurements and model.

• Furthermore, it has high computational efficiency. 

The chapter is  organised as follows. Preliminaries on possibility, optimisation and 
metabolic flux analysis  are first addressed. Afterwards, the basics of Possibilistic MFA 
and some refinements  are discussed, and the framework is  illustrated with examples 
and with a case study using a well-know model of C. glutamicum. The main conclusions 
are outlined to close the chapter.

7.2  Preliminaries: possibility and optimisation

In an abstract ideal situation, many estimation problems in science and engineering 
can be cast as  estimating some decision variables  δ given the known values of a set of 
other ones  m (e.g., measurements) and a model expressed as  a set of equality and ine-
quality constraints (involving decision variables, measurements and some model pa-
rameters). Then, the valid estimations will be the feasible solutions of a constraint sat-
isfaction problem (Kumar, 1992; Russell, 2003). 

However, in many practical cases, the measurements  are imprecise and the model pa-
rameters and constraints  are also not accurate, so real data violates them. This is  the 
reason why most real-life models  should include uncertainty. The most basic represen-
tation of uncertainty would be giving interval values  to measurements and model pa-
rameters. Refinements of the uncertainty representation lead to probabilistic (Russell, 
2003; Jensen, 1996; Hand, 1993) and possibilistic (Yager, 1983; Dubois, 1988; Zadeh, 
1981) frameworks. 

Probabilistic frameworks have an underlying interpretation in terms of the frequency 
in which some conditions appear; on the other hand, possibilistic frameworks measure 
the degree of compliance (consistency) of some decision variables with some (soft) 
modeling constraints. In this sense, the basic assumptions of both paradigms of infer-
ence under uncertainty are different. 
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In the following subsections the possibilistic framework will be described. Afterwards,  
the relationship between probability and possibility will be discussed to justify the use 
the possibilistic framework. 

Soft constraint satisfaction problems: a possibilistic approach

As explained above, the possibilistic framework is  the chosen representation for the 
problem under study, following the ideas in (Dubois, 1996), where possibilistic con-
straint satisfaction problems (CSP) are presented. There, the authors  introduce con-
straints which are satisfied to a degree, transforming the feasibility/unfeasibility of a 
potential solution into a gradual notion: given a CSP with multiple solutions δ∈∆ 
(where ∆ denotes the search space over which feasible values  for the decision variables 
will be searched), a function π:∆→[0,1] was  suggested in order to represent preference 
or priority as  a “consistency degree”. The meaning of π(δ)=1 would indicate that δ is 
in full agreement with the model and measurement constraints; the meaning of 
π(δ)=0 indicates  that δ is in “absolute, total contradiction” with the problem con-
straints, and never should be considered a feasible value. Intermediate values would 
denote values of decision variables which “somehow mildly” violate the problem con-
straints but could be considered “partially possible” from the “practical” knowledge of 
the “expert” modeller who defined π. The higher the value of π(δ), the higher the ac-
cordance with the problem constraints  should be (subjectively interpreted as  a higher 
“possibility” of the decision variable choice δ). Given this  subjective meaning of π, it 
is  denoted in literature as  possibility distribution. The possibilistic calculus  (Dubois, 1988; 
Dubois, 1996) refers  then to computations with possibility distributions from a series 
of axioms. Basic ideas on it will be outlined below in this section. A simple example 
illustrates the basic idea.

Example Consider a flux balance {f1 = f2}, stating equality between two flows, f1 
and f2, supposedly measured in a biological or chemical reaction. The 
measurements ma = (5, 7) and mb = (5, 5.1) are unfeasible, whereas mc = 

(5, 5) is feasible. However, it seems clear that the subjective “possibility” 
of mb is higher than that of ma —mb can be thought to be quite rea-
sonable in practice due to measurement errors. The idea can be easily 
formalised for further computations  by defining a possibility distribu-

tion, for instance: π ( f1, f2 ) = e
−( f1− f2 )

2

.

In this way, potential solutions can be ranked: π(ma) = 0.018, π(mb) = 

0.99 and π(mc) = 1. The search space in which to define the possibility, 
∆, could be defined as, say, ∆ = {(δ1 , δ2 )|0 ≤ δi ≤ 10}. 

Usually, the function π(δ) is built by conjunction of possibility functions of individual 
relations  πi(δi) (expressing user-defined preference or priority on each individual con-
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straint, in many cases in a problem-dependent way). Such conjunction will be latter 
discussed in this section. The best CSP solutions are defined to be those which satisfy 
the global problem to the maximal degree. 

In this  way, once the user has defined such function expressing how a particular com-
bination of system variables  is  “consistent” with its  model, the basic idea on possibilis-
tic calculus is, given a subset of the system variables (assumed as known or measured), 
estimate the “most possible” values of all the remaining variables via an optimisation 
problem. The close relationship between possibilistic calculus and optimisation is  dis-
cussed below. 

Possibility theory

The basic building block of possibility theory is  a user-defined possibility distribution 
π:∆→[0,1]. This  defines  the possibility of each “point” δ in ∆. A consistent problem 
formulation is defined to be the one in which there exists at least one point with possi-
bility equal to one. 

The second building block are events, formally defined as subsets  of ∆, in order to 
address  problems such as, in the above example, determining the possibility of event 
A = {(f1, f2) ∈ ∆ | 0 ≤ f1 ≤ 3, 4 ≤ f2 ≤ 10}. 

Possibility calculus as optimisation. By definition, the possibility of an event A (subset of ∆) 
is computed via: 

π (A) = sup
δ∈A

π (δ ) (1)

and, obviously, given two events A and B, A ⊂ B entails π(A) ≤ π(B). Hence, possibility 
computations are optimisation problems1. 

For a multidimensional ∆ = ∆1×∆2, δ = (δ1, δ2) ∈ ∆, the marginal possibility distribu-
tion of  δ1 is defined as:

π (δ1
* ) = sup

δ2∈Δ2
π (δ1

*,δ2 ) (2)

i.e., the possibility of  the event {δ1 = δ1*}. 

Optimisation as possibility calculus. Conversely, consider a cost function J:∆→R+ (i.e., veri-
fying J(δ) ≥ 0 for all δ  ∈ ∆), so that there exists δ0 ∈ ∆ such that J(δ0) = 0. Then, a con-
sistent possibility distribution may be defined on ∆ via: 
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π (δ ) = e− J(δ ) δ ∈Δ (3)

and the possibility of an event A is  given by replacing the possibility definition (3) in 
(1), resulting in: 

π (A) = e
− inf
δ∈A

J(δ )
(4)

In the next sections, abusing notation, an event A will be usually described by a set of 
constraints  on the decision variables δ. In this way, numeric constrained optimisation 
problems may be subjectively interpreted in possibilistic terms: the cost J(δ) will be 
interpreted as  the log-possibility of δ and, by definition, unfeasible values of decision 
variables will be assigned zero possibility. 

Let us now review some other relevant definitions and issues in possibilistic calculus. 

Necessity

To assert that an event A is  necessarily true (in our context, that all problem solutions 
belong to A), saying that A is “possible” may be not enough: it must also be true that 
the complementary event “not A” is  not possible. This motivates the introduction of a 
necessity measure: 

N(A) = 1−π (¬A) (5)

In a binary setting, all solutions  belong to a subset A if and only if π(A) = N(A) = 1; 
there exist solutions in A (and solutions outside A) if π(A) = 1 but N(A) = 0, and there 
are no solutions in A if  π(A) = 0. 

Extending the measures π(A), N(A) to [0,1] provides  a natural gradation of such 
concepts: π(A) = 0.95, N(A) = 0.1 would indicate that there are very possible solutions 
in A, but not all of them are in there (there are solutions with possibility 1 − 0.1 = 0.9 
outside A).

Interactivity and possibilistic conjunction

The possibilistic analogue to statistical independence is  the non-interactivity. If the 
joint possibility of two variables  ∆ = ∆1×∆2 , δ =(δ1, δ2) ∈ ∆ can be expressed as the 
product of  two univariate ones: 

π (δ1,δ2 ) = π1(δ1)π 2 (δ2 ) (6)

then variables δ1 and δ2 are said to be non-interactive. Thus, given two events A1⊂∆1 
and A2⊂∆2 , it is straightforward to prove that: 
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π (A1∩A2 ) = π1(A1)π 2 (A2 ) (7)

which can be read as “the possibility of event A1 and event A2 is the product of the 
individual possibilities when the events relate non-interactive variables”, interpreting, 
as usual in literature, set intersection as a linguistic conjunction.

Under the non-interactivity assumption, if the possibility is  defined as the logarithm 
of  a cost index (3), the product (6) gets transformed into a sum: 

J(δ1,δ2 ) := J1(δ1)+ J2 (δ2 ) (8)

On the following, given individual cost indices  J1(δ1), J2(δ2), etc. relating to different 
constraints, the expression above (8) will be the one used in most cases  to define a pos-
sibility distribution in the product space. In this way, we are interpreting the possibilis-
tic conjunction operator in (Dubois, 1996) as  an algebraic product of possibilities, i.e., 
stating an underlying non-interactivity assumption between different constraints. 

Note, however, that the interactivity assumption is not always intuitively needed. In 
the other extreme (total interactivity: variables  δ1 and δ2 fully “correlated”, for in-
stance equal), we would have: π(A1∩A2) ≤ max(π(A1), π(A2)), which would suggest the 
maximum possibility as  the conjunction operator when two events affect exactly the 
same decision variables. In between those two extremes, other choices may be also 
possible, e.g., T-norm operators (Benferhat, 1997). 

Conditional possibility

The possibilistic analogue to conditional probability is  conditional possibility. Con-
sider an event B with nonzero possibility. A quotient definition for conditional possi-
bility of  an event A given event B will be used in this work: 

π (A | B) := π (A∩B) /π (B) (9)

In this way, given a (multivariate) possibility distribution π(δ), the conditional possibil-
ity can be computed as: 

π (A | B) :=
sup
δ∈A∩B

π (δ )

sup
δ∈B

π (δ ) (10)

so, if  the possibility distribution is actually the exponential of  a cost index, we get: 

π (A | B) = e− minδ∈A∩B J(δ )−minδ∈B J(δ )( ) (11)
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that is, computing the possibility by subtracting the cost associated to event B from the 
cost of  any of  its subsets. 

To get a conditional possibility distribution of a variable δ, we assume event A being 
an individual point δ*, getting: 

π (δ * | B) =
e− J(δ

* )

e−minδ∈B J(δ )
δ ∈B

0 otherwise

⎧

⎨
⎪

⎩
⎪

(12)

That is, the conditional distribution can be obtained by dividing the possibility distri-
bution function for all points in a set by the maximum possibility of them, i.e., nor-
malising the possibility distribution on a restricted conditioning domain B to a maxi-
mum equal to one. 

The conditional definitions  allow for an analogy to Bayesian inference: if we assume 
that B is  actually certain (whatever the a priori possibility π(B) was), then conditional 
possibility may be understood as an a posteriori possibility. 

Possibility versus probability

Both possibility theory and probability theory are frameworks  for handling uncer-
tainty in constraint satisfaction problems. Basically, a subjective interpretation would 
assign high possibility to events  with high probability. Hence, in a first approximation, 
user-defined probabilities  and possibilities should be related by an implicit monotoni-
cally increasing function. Possibility-necessity measures have also been linked to im-
precise probabilities  (Dubois, 2005). However, once aggregation takes  place (via sums 
and integration in probability, via maximisation in possibility), although the subjective 
interpretation might be considered similar, there is no longer an implicit function re-
lating probability and possibility. For further discussion of possibility, probability, and 
other uncertain reasoning frameworks, and their interrelations, the reader is referred 
to (Klir, 1992, Dubois, 2001, Dubois, 2005).

Ideally, probabilistic results would be preferable (to confidently assert that, e.g., 95% of 
cases a flux estimate will lie in a particular interval). However, there are some draw-
backs: (i) exact probabilistic inference under equality and inequality modeling con-
straints is  computationally hard (multivariate integration on irregular sets) (ii) some of 
the a priori Bayesian probabilities are in practice rough user-given estimates, (iii) some 
of the assumptions (linearity of transformation, Gaussian distributions) may not hold 
in practice, and (iv) there may be some uncertainty in the model parameters  or in the 
model probabilities. Thus, as  practical use of probability does not fully adhere to the 
theoretical assumptions, its  results  should be interpreted with some flexibility. As  this 
work will discuss, the proposed possibilistic framework is  much less  demanding com-
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putationally (using optimisation instead of integrals, so large-scale cases  become trac-
table) and gives similar results to the probabilistic approach in realistic cases. 

The objective of the next sections is  to set up a possibilistic framework for efficient 
computations in metabolic flux analysis.

7.3  Preliminaries: metabolic flux analysis

As explained in previous  chapters, the metabolic networks  encoding the elementary 
biochemical reactions  taking place within a cell can be translated to a matrix N, 
where rows are the m internal metabolites and columns  the n reactions. If these me-
tabolites are at steady state, mass balances can be formulated as follows (Stephano-
poulos, 1998): 

N·v = 0 (13)

where v = (v1, v2,..., v3)T is the n-dimensional vector of  metabolic fluxes. 

Hence, a (steady-state) flux vector v represents  the metabolic state of the cells at a gi-
ven time, without any information on the kinetics  of the reactions; it shows the con-
tribution of each reaction to the overall metabolic processes of substrate utilization 
and product formation. Notice that as  typically n is larger than m, the system (13) is 
underdetermined, i.e., there is a wide range of  stoichiometrically-feasible flux vectors. 

Assuming now that some fluxes in v have been measured (denoted as vm), while the 
rest remain unknown (denoted as vu), equation (13) can be rearranged as follows: 

Nu ·vu = −Nm ·vm (14)

As measurements  are imprecise in practice, such measurement imprecision can be 
incorporated as constraints: 

vm = wm + em (15)

where em represents  measurements  errors and wm represents  the actual measured 
flux value. In our approach, the measurement uncertainty is translated into an a priori 
possibility distribution for em from sensor characteristics. Other approaches consider 
different choices, as discussed below. 

As seen in previous chapter, traditional metabolic flux analysis (TMFA) can be defined 
as  the estimation of the flux vector satisfying (14) and compatible with the measure-
ments  (15). In particular, TMFA is often formulated as  a two step procedure (Heijden, 
1994a and 1994b): (1) analyse measurements consistency (and detect gross errors) us-
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ing chi-square tests, and (2) solve a least squares problem to estimate the actual flux 
vector v:

min em
T·F−1 ·em

s.t.   
Nu ·vu = −Nm ·vm
vm = wm + em

⎧
⎨
⎩

(16)

where it is assumed that em are distributed normally with a mean value of zero and a 
variance-covariance matrix F. 

Since all the constraints  are linear equalities, the analytic solution of this minimisation 
problem can be obtained, resulting in the expressions  to estimate vu and vm that are 
typically seen in literature, (Stephanopoulos, 1998, Gambhir, 2003). Details about 
TMFA calculations can be found in chapter II, section 2.8.

Unfortunately, with this formulation TMFA has some important limitations: (i) irre-
versibility constraints, or any other inequality constraints, cannot be considered, (ii) 
measurement errors  have to be assumed to be normally distributed, (iii) it only pro-
vides point-wise flux estimates, and (iv) it requires  a high number of measurable fluxes 
to be of  use—system (14) has to be determined and redundant (Klamt, 2002).

Several alternatives have been suggested to face those limitations (Table 7.1). Quad-
ratic programming solves  the least squares  problem (16) allowing to include irreversi-
bility constraints, but inherits  the rest of drawbacks (and introduces a drawback: χ2-
tests loose validity). The flux-spectrum, described in chapter IV, follows  an interval 
approach to overcome the limitations mentioned before, but its estimations tend to be 
conservative because represents  measurements uncertainty only with lower and upper 
bounds. Monte Carlo has  been also used in the context of 13C-MFA (Wiechert, 2001; 
Kadirkamanathan, 2006; Schmidt, 1999), but rarely in absence of isotopic data. 
Moreover, sometimes  it has been used incorrectly: Monte Carlo cannot be performed 
just solving a quadratic programming problem for each simulated set of measure-
ments, because this  introduce a bias on the results. Anyway, the major drawback of 
Monte Carlo is its  high computational cost, which restricts  its use for medium meta-
bolic networks  as  an impractical number of samples  is required to assess probabilities 
within a reasonable accuracy. 

In the following we introduce a possibilistic framework for MFA that brings several 
interesting features: (i) it overcomes all the mentioned limitations of TMFA, (ii) is able  
to detect, and handle, inconsistencies between measurements  and model, and fur-
thermore (iii) with high computational efficiency.
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7.4  Possibilistic MFA

In this section the possibilistic framework for MFA flux estimations is  discussed. First, 
we define a set of time-invariant constraints  derived from the metabolism being mod-
elled. Then we incorporate the constraints  imposed by the measured fluxes, represent-
ing its uncertainty by means of auxiliary slack decision variables  and a cost index. In 
this  way the notion of “degree of possibility” is incorporated. Finally, we show how 
(linear) optimisation problems are able to settle queries  about the most possible fluxes, 
the possibility distributions, etc.

Problem statement

Let us  define a set of invariant constraints  that every steady-state flux vector must sat-
isfy; they do not depend on environmental conditions, do not change through evolu-
tion, etc. (Palsson, 2006). In this  work these model constraints, denoted as  MOC, will be 
the stoichiometric relationships  (13) and irreversibility constraints, described by means 
of  inequalities:

MOC = N·v = 0
D·v ≥ 0

⎧
⎨
⎩⎪

(17)

where D is a diagonal nxn-matrix with Di,i = 1 if  the flux i is irreversible (otherwise 0). 

Other model-based constraints can be defined in an analogous way. For instance, 
elementary balances or degree of reduction balances might be incorporated into (17) 
as  additional constraints  (Stephanopoulos, 1998). It may be also possible to add con-

Table 7.1. Possibilistic MFA (Poss-MFA) is compared with four approaches for metabolic flux analysis, 

Traditional MFA (TMFA), constraint least-squares MFA (LS-MFA) and the flux-spectrum (FS-MFA). 

Legend: (x) provided feature, (-) partially provided feature and (◦) potentially provided feature.

Feature TMFA LS-MFA FS-MFA M. Carlo Poss-MFA

Considers irreversible reaction x x x x

Usable in scenarios lacking measurements x o x

Includes a check of  consistency x - - o x

Flexible description of  meas. errors - x x

Richer estimations (not only point-wise) - x x

Computational efficiency x x x x
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straints based on standard Gibbs free energy changes (Henry, 2007; Feist, 2007) or 
extracellular metabolites concentrations (Mo, 2009).

Incorporating the measurements

Estimating the non-measured fluxes would amount for solving the above equations 
(17), where some of the elements in vector v are measured (vm). However, this simple 
approach will be impractical in two very common situations: 

• Measurements are very few, so the system has many—infinite—solutions. 

• Real measurements  do not exactly satisfy the constraints  due to measurements 
(and modelling) errors. Therefore, no solution will be found1.

Hence, the approach needs refinements to deal with a lack of measurements  and to 
introduce the “possibility” of sensor errors and imperfect models. As  shown below, 
such difficulties  can be overcome by the introduction of slack variables  and a cost in-
dex, enabling a grading of  different candidate flux vectors as more or less “possible”. 

Possibilistic description of measurements. Each experimental measurement wm can be de-
scribed by a constraint as follows:

vm = wm +em (18)

where em is  a decision variable that represents the intrinsic uncertainty of the experi-
mental measurements, i.e., the discrepancy between the actual flux vm, and the meas-
ured value wm. for convenience (see remark below), em is  substituted by two non-
negative decision variables, ε1 and µ1: 

vm = wm + ε1 − µ1 with: ε1,µ1 ≥ 0 (19)

These decision variables  δ  = {ε1, µ1} relax the basic assertion wm = vm, conforming a 
possibility distribution in (wm, vm) associated to some cost index Jm(δ). Among different 
possible choices, a simple—yet sensible—one is the linear cost index: 

J δ( ) =α ·ε1 + β·µ1 (20)

with α ≥ 0 and β ≥ 0. As explained in a section below, the weights α and β should be 
defined related to each measurement’s  “a priori accuracy” (usually, if sensor error is 
“symmetric”, α and β should be defined to be equal).
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Recalling the ideas introduced the preliminaries section, the interpretation of (19) and 
(20) may be the following: “vm = wm is  fully possible; the more vm differs  from wm, the 
less possible such situation is.”

Indeed, the event A = {vm = wm} ≡ {ε1 − µ1 = 0} will be fully possible, because:

inf
δ=(ε1,µ1 )∈A

J(δ ) = 0

achieved at ε1 = µ1 = 0, and then π (A) = e−0 = 1.  

On the other hand, the possibility of the event A corresponding to vm being different 
from wm—to say, A = {vm = wm + ∂} ≡ {ε1 − µ1 = ∂}—will be given by:

π (A) = e
− inf
δ∈A

J(δ )

 For example, with a cost index J(δ) = 5ε1 + 5µ1, and a measurement wm = 0.1, the pos-
sibility of the actual flux vm being vm = 0.2 is  e−5∙0.1 = 0.6065 (“quite” possible), and the 
possibility of vm = 1.1 is e−5∙1 = 0.0063 (“almost” impossible). 

A global cost index. Consider now a set of measurements wm = (w1,..., wm) with its  associ-
ated slack variables δ1 = (ε1, µ1),..., δm = (εm, µm), and individual cost indices  J1(δ1),..., 
Jm(δm). These results in what we call measurement constraints, MEC:

MEC =
vm = wm + ε1 − µ1

ε1,µ1 ≥ 0

⎧
⎨
⎪

⎩⎪
(21)

In order to have a possibility distribution, under the non-interactivity assumption (6), 
the cost index is defined as a linear function, as follows:1 

J .( ) =α ·ε1 + β·µ1 (22)

where α and β are the row vectors  of sensor accuracy coefficients  and ε1 and µ1 corre-
spond to stacking in vectors the slack variables from individual constraints. 
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1 The Poss-MFA will be cast as  a linear programming problem, and this is why the decision variables ε1 

and µ1 were introduced instead of em. However, it can be formulated using any other optimisation 

framework, such as quadratic programming. Throughout the thesis, linear programming will be as-
sumed due to its great computational performance (solvable in polynomial time), which is  a great ad-

vantage when dealing with large networks. Nevertheless, an example using quadratic programming will 
be described in a next section to point out the flexibility of  the Poss-MFA.



The possibilistic MFA problem

At this point, we can define the Poss-MFA problem by means of the cost index J (22) 
and the set of  constraints CB:

CB =MOC∩MEC (23)

where the decision variables δ are the actual fluxes  v = (vu, vm), and the slack vari-
ables ε1 and µ1. 

The cost index J(δ) reflects  the log-possibility of a particular combination of the deci-
sion variables, that is, the log-possibility of  a particular flux vector v. 

Example 1 Problem statement. Consider the toy metabolic network depicted at the top 
of Figure 7.1, and the corresponding constraints, MOC and MEC. Let 
us consider that the measurement of v2 is  “very accurate”, that of v5 is 
moderately accurate and those of v3 and v4 are quite unreliable. The 
weights  α and β associated to the slack variables  (ε1 and µ1) can be de-
fined in accordance with this information: if we take α2 = β2 = 2, α5 = β5 

= 0.5, and α3 = β3 = α4 = β4 = 0.15, for supposed measurements w2 = 9, 
w5 = 31, w3 = 30, w4 = 10, the measurements will be represented as  de-
picted at the bottom of  Figure 7.1.

Flux estimations: point-wise

The simplest outcome of a Poss-MFA problem is  a point-wise flux estimation: the 
minimum-cost (maximum possibility) flux vector. This problem can be conveniently 
cast as the optimisation of  a linear functional subject to linear constraints. 

According to (4), the maximum possibility flux vector vmp corresponding to a given 
set of measurements is  obtained as the solution to the linear programming (LP) opti-
misation problem: 

min
v ,ε1 ,µ1

J =α ·ε1 + β·µ1

s.t. CB
(24)

being its degree of  possibility π(vmp) = exp(Jmin). 

The obtained vmp contains the most possible flux values  consistent with the model 
and the measurements. A possibility equal to one must be interpreted as the flux vec-
tor being in complete agreement with model and original measurements. Lower val-
ues  of possibility imply that vmp corresponds to fluxes vm deviated from the meas-
urements wm.
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Notice that as π(vmp) = π(CB), it can be interpreted as the “a priori” possibility of en-
countering the measurements wm. If π(vmp) is low, this  implies that either (a) there is  a 
gross error in the measurements, (b) there is  an error in the model, or (c) both. There-
fore, the maximum possibility can be used to evaluate consistency and detect errors. 
We will come back to this point in a subsequent section. 

Example 1 Continued. Consider again the model and the measurements  given in 
Figure 7.1. The maximum possibility flux vector resulting from (24) is 
vmp = (0.75, 9, 30.25, 8.25, 31, 39.3)T, with a possibility of e-0.3 = 0.74. 
The most possible flux vector being not fully possible (peak value not 
equal to 1) indicates that the measurements and the model are not in 
complete agreement. Indeed, the model says that v2 − v4 = v5 − v3, but w2 
− w4 = -1 and w5-w3 = 1. If the measurements had been fully compatible 
with the constraints imposed by the model—i.e., w2 = 10, w5 = 30, w3 = 

30 and w4 = 10—the maximum possibility flux vector would have been 
vmp = (0, 10, 30, 10, 30, 40)T, with a possibility of  π(vmp) = 1.

Notice also that the possibility depends on the reliability associated to 
each measurement. If all the measurements were supposed to be more 
reliable, say   α* = 10α and β* = 10β—the possibility distribution func-
tions would be narrower. The interpretation of the new coefficients 
would, therefore, be that the same deviation from the fluxes of maxi-
mum possibility will be now be considered as a less possible fact.
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Figure 7.1. Example 1: problem statement. A toy network and the corresponding constraints are 

given at the top. A possibilistic distribution representing a set of  measurements is at the bottom.



Flux estimations: distributions and intervals

Clearly, the validity of a point-wise flux estimation is limited in a situation where mul-
tiple flux values might be reasonably possible. To face these situation, marginal and 
conditional possibility distributions (and intervals) can be obtained, again, by solving 
linear optimisation problems. These flux estimations, illustrated in Figure 7.2, will be 
described next.

Marginal possibility distributions

Marginal possibility distributions (2) can be easily plotted and give a valuable informa-
tion for the end user: they show, and rank, the possible values for each flux in the net-
work. 

The possibility of vi being equal to a given value f, π (vi = f ∩CB),  is  computed simply 

adding a constraint to (24): 

min
v ,ε1 ,µ1

J =α ·ε1 + β·µ1

s.t.
CB
vi = f

⎧
⎨
⎪

⎩⎪

(25)

Hence, plotting the marginal possibility for a range of fixed given values f (taken 
within a pre-specified range) will provide the marginal possibility distributions that be 
interpreted as the “distribution of the possible values for each flux in the network, 
given the measurements” (see Figure 7.2, left). 
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Notice that “cuts” [vi,g
m , vi,g

M ] of a possibility distribution, containing those values of vi 

with a marginal possibility higher than γ, can be obtained solving two LP problems: 

vi,g
m = min vi s.t.

CB
J < − logγ

⎧
⎨
⎪

⎩⎪

vi,g
M = max vi s.t.

CB
J < − logγ

⎧
⎨
⎪

⎩⎪

(26)

This  provides an efficient procedure to get a possibility distribution: compute “cuts” of 
possibilities between 0 and 1, say, π = 0.1, 0.2, etc.1 This approach is  better (computa-
tionally) than defining a range of values f and computing its possibility with (25), be-
cause avoids the problem of determining the most convenient step size and bounds 
for the flux (which, usually, are not known beforehand). 

Conditional possibility distributions 

Using the definition given in the preliminaries  (12), the conditional possibility distribu-
tion of  a flux vi can be computed as follows: 

π (vi = f |CB) =
π (vi = f ∩CB)

π (CB)
f ∈CB

0 otherwise

⎧

⎨
⎪

⎩
⎪

(27)

This  is  equivalent to normalise the marginal possibility distribution to a maximum 
equal to one (see Figure 7.2).

Conditional possibility may be understood as an a posteriori possibility: the possibility of 
vi having the value f, if we assume that CB is  actually true, i.e., that the model and the 
measurements are correct.

(A posteriori) Possibilistic intervals

In analogy to (26), the interval of flux values [vi,g
m vi,g

M ] with a degree of conditional (or 

a posteriori) possibility higher than γ can be obtained solving two LP problems: 
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1 Notice that, remarkably, computing the marginal possibility of all the fluxes  in the network by means 
of  a grid of  points is linear in the number of  grid points and polynomial in the number of  fluxes.



vi,g
m =

min
v ,ε1 ,µ1

 vi

s.t.
CB

J − logπ (CB) < − logγ
⎧
⎨
⎪

⎩⎪

(28)

The upper bound vi,g
M  would be obtained by replacing minimum by maximum. 

These possibilistic intervals have a similar interpretation to confidence intervals (credible 
intervals) in Bayesian statistics, providing a concise flux estimation that can be repre-
sented by means of  a box-plot chart (see Figure 7.2, right). 

Example 1 Continued. Given the measurements  in Figure 7.1, the obtained marginal 
possibility distributions for each flux are plotted in Figure 7.3A. They 
show that, for instance, the most possible value of v1 is 0.75 (π = 0.74), 
that v1 being 2.25 is quite possible, but that v1 bigger than 10 is almost 
impossible (π < 0.05). The possibility distributions also reflect the reli-
ability of the estimation of each flux: the estimation of v6 is  less reliable 
than the one of  v1 or v2.
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Notice too that the uncertainty on the measurements  is  often strikingly 
reduced through the flux estimation. For instance, the estimation of 
v4—whose measurement was  quite unreliable a priori—has been signifi-
cantly improved, once the model constraints and the rest of measure-
ments  are incorporated. This reflects the already noticed fact that the 
network structure greatly constrains the possible values of fluxes  for a 
given, typically small, set of measured flux values. The plots  of mar-
ginal possibility can also detect multiple flux vectors with maximum 
possibility (possibility distribution functions with flat top). Figure 7.3B 
depicts the maximum possibility flux estimation and three possibilistic 
intervals by means  of a box-plot chart. The intervals point out that, for 
instance, the highly possible a posteriori values  of v5 are those in [30.75, 
31] (π > 0.9) and that those in [29.5, 32] are also quite possible (π > 0.5), 
while those outside [27, 34.5] are almost impossible (π < 0.1).

7.5  Possibilistic MFA: refinements

Now that the basics of the Poss-MFA framework have been introduced, some refine-
ments will be discussed. 

A better description of measurement’s uncertainty

The formulation used above to describe the uncertainty of the experimental meas-
urements  might be considered somehow limited in some applications. Fortunately, it is 
very easy to add new slack variables, and modify the CB (23) and the cost index (22), 
allowing to work with possibility distribution functions of  different characteristics. 

As an example, the constraints  (29) and cost (30) below describe an interval measure-
ment plus some possibility of  having outlier measurements:

vm = wm + ε1 − µ1 + ε2 − µ2 with :

 ε1, µ1 ≥ 0

   0 ≤ ε2 ≤ ε2
M

0 ≤ µ2 ≤ µ2
M

⎧

⎨
⎪⎪

⎩
⎪
⎪

(29)

and

J .( ) =α ·ε1 + β·µ1 (30)
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The possibility of wm ∈[vm − ε2
M , vm + µ2

M ]  is  one and the possibility of the actual flux vm 

being out of  the referred interval depends on the cost index weights (α and β). 

For instance, a band with possibility equal to one can be used to account for systemic 
errors in measuring a particular flux, and a couple of additional slack variables may 
be defined to account for the decreasing possibility of random errors. These kind of 
representation of  measurement uncertainty will be illustrated in subsequent examples. 

Notice that more slack variables  can be added to achieve a more complex representa-
tions of the measurements uncertainty. In fact, any convex representation of the log-
possibility uncertainty can be approximated if sufficient slack variables  are incorpo-
rated. Details are omitted for the sake of  brevity. 

Considering uncertainty in the model structure 

Until now, the model-based constraints (23) have been considered as  hard constraints; 
only those flux vectors  v that exactly satisfy them could be feasible solutions. However, 
these constraints can be “softened” via suitable slack variables to consider uncertain 
knowledge. Then, these additional slack variables may be used in a cost index to 
generate a possibility distribution. 

Consider, as an example, an equality restriction a = b. A relaxed (“softened”) version 
of  such restriction may be written as:

a = b +ζ −ν, ζ ,ν ≥ 0 (31)

with ζ and ν being slack variables penalised in an optimisation index J = f(ζ, ν), typi-
cally with linear cost index terms, γ∙ζ + τ∙υ, in an analogous way to the discussion of 
uncertain measurements. 

Notice also that a “softened” inequality restriction is  nothing but an equality one with 
no penalisation on one of the slack variables  above. For instance a ≤ b + ε can be ex-
pressed as a = b + ε − µ with free µ. 

Such softened model constraints may be used to roughly incorporate imprecision in 
the model arising, for instance, from non-compliance with the pseudo-steady-state as-
sumption, partial unbalance of some metabolites or uncertain yields. Although these 
issues require further research, let us outline some ideas below. 

Relaxing the pseudo-steady state assumption. Equation (13) derives from the dynamic mass 
balance around the internal metabolites  c, where it is  assumed that dc/dt ≈ 0. Adding 
slack decision variables to (13) makes it possible to relax this assumption. 

Partial unbalance of metabolites. Sometimes, a metabolite cannot be assumed to be bal-
anced, for example if there are reactions producing or consuming this metabolite that 
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have not been taken into account in the network, as it is often the case for the cofac-
tors, ATP, NADP, etc. This  unknown consumption or production can be represented 
by means of  slack variables if  some interval bounds are known.

Uncertainty in stoichiometric yields. Sometimes  the value of a yield coefficient is not exactly 
known, as it happens with the yield coefficients of lump reactions used to represent 
biomass  synthesis. Let vr be the flux through a reaction with an uncertain yield Yi,r for 
the metabolite i. The row corresponding to this metabolite in (13) can be rewritten as: 

[ni,1...Yi,r ...ni,n ]·v = [ni,1... ni,n ]·v +Yi,r ·vr = 0 (32)

If  Yi,r ∈[Yi,r
min ,Yi,r

max ]  and vr is irreversible, equation (32) can be substituted by: 

[ni,1... ni,n ]·v + ur = 0 (33)

Yi,r
minvr ≤ ur ≤Yi,r

maxvr (34)

However, if  the flux vr is reversible, inequalities in (33) cannot be set up, and the ap-
proach is no longer applicable. Integrating modal interval arithmetic (Gardeñes, 2001) 
could be an option to face this problem.

7.6  Possibilistic MFA: illustrative examples

Other features  of Possibilistic MFA (Poss-MFA) will be briefly illustrated using the 
same example used above, which metabolic network is depicted in Figure 7.1.

Example 2: detecting errors in measurements and model

As mentioned earlier, the value of the peak possibility in the resulting flux distribution 
provides an indication of the agreement between the model (MOC) and the meas-
urements  (MEC). A low degree of possibility means that the model and the measure-
ments  are inconsistent. That is, that there is  no flux vector “near” the measured values 
satisfying the model-based constraints. If the maximum possibility flux vector has  a 
low value, one must assume that either (a) there is an error in one or more measure-
ments, (b) there is  an error in the model (e.g., a mass balance is not closed, or a me-
tabolite is not at steady state), or (c) both. 

If a high inconsistency (low possibility) is detected, it is possible to investigate what is 
causing it, and thus  correct the measurements  or improve the model. For instance, we 
can remove one measured flux at a time and perform the flux estimation to determine 
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if the removed measurement was causing the low possibility1. If this  is  the case, we 
may consider the following alternatives: (a) consider that wm is  a totally unreliable 
measurement and accept the flux estimation inferred from the others measurements, 
(b) measure either wm again, or a different flux that could provide new information, or 
(c) consider wm a reliable piece of data and, hence, conclude that there is  an error in 
the model. In case (c), a similar approach can be used to investigate which particular 
model-based constraint is causing the low possibility. 

A simple example of the procedure just described is shown in Figure 7.4. Initially, a 
Poss-MFA estimation using all the measured fluxes was performed, obtaining a 
maximum possibility flux vector with low possibility, π(v) = π(wm) = 0.15. We then  
repeated the estimation removing the flux w4, but the maximum possibility does  not 
increase. However, when the estimation was performed removing w6, the maximum 
possibility was  significantly higher (0.7). This suggests that there is  a large error in w6, 
or an error in the model around metabolite C which involves fluxes v2, v3 and v6.
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1 Another approach to analyse consistency with possibilistic MFA, based on the inspection of the slack 
variables, will be presented in chapter VIII.
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Figure 7.4. Example 2: Poss-MFA to detect errors in measurements and model. The metabolic net-
work depicted in Figure 7.3 is used, assuming that five fluxes have been measured: w2, w3, w4, w5 and 

w6 (dotted line).  The possibility distributions  for each flux are depicted in three cases: using all the 
measurements (deep blue), removing the flux w4 (red) and removing the flux w6 (light green).



Example 3: scenario of data scarcity

One of the features of Poss-MFA is  that it can be used even if there is  a lack of meas-
urements; i.e., even if (14) is  underdetermined or not redundant (Klamt, 2002). Let us 
continue with our example assuming now that only two fluxes are measured. Poss-
MFA flux estimates  are shown in Figure 7.5. Notice that crisp estimates will be only 
obtained if the irreversibility constraints, or other inequalities, are able to “bound” 
the under-determinacy of (14). Interestingly, our experience shows  that this is  often 
the case for medium size networks. Moreover, if this  is  not the case, the possibilistic 
flux estimation will be less  precise—large intervals and flat distributions—but still reli-
able. The estimates will always be only as precise as allowed by the available data. 

Example 4: using quadratic programming

To show how Poss-MFA can be cast within other optimisation frameworks, an exam-
ple using quadratic programming will be discussed. We define MEC as wm = vm + 
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Example 4: quadratic programming
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Figure 7.5. Examples 3 and 4. Both examples use the simple model described in Figure 7.1, assuming 

that some fluxes  are measured (dashed lines). (A) (C) Possibility distributions of measured and non-
measured fluxes (solid line). (B) (D) flux intervals for conditional possibilities  of 0.8 (box), 0.5 (thick line) 
and 0.1 (narrow line) and the maximum possibility flux estimation (squares and circles  for non-

measured and measured fluxes, respectively).



em and J = emT⋅Y⋅em, where W is a diagonal matrix of weights. Hence, the possibil-
ity for each measurement is given by:

π (vm ) = e
−yi (wm−vm )

2

In this way, measurements are represented with a quadratic possibility distribution.

We continue with our example using the measurements of Figure 7.1, but represent-
ing them with the quadratic formulation just introduced. The original possibility dis-
tribution of single measurements (dashed lines) and the possibility distributions com-
puted with Poss-MFA (solid lines) are depicted in the Figure 7.5. Notice that results 
are similar to those obtained in the previous example (Figure 7.1), where the standard 
linear programming framework was  used. However, the qualitative similarity between 
the results makes  the author think that, in most cases, the linear programming setup is 
expressive enough and much more efficient than quadratic or other more complex 
optimisation frameworks.

Example 5: comparison with other methods

This  example compares Poss-MFA with traditional MFA and some of its extensions. 
We perform estimations with Poss-MFA, but also with traditional MFA (TMFA), MFA 
as a constraint least-squares problem (LS-MFA) and the flux-spectrum (FS-MFA). 

To show that Poss-MFA is  able to represent measurements in a flexible way, we con-
sider that errors  in v2 and v3 are non-symmetric, and we add a band of uncertainty to 
account for systemic errors (Figure 7.6). Conversely, errors  have to be approximated 
with a normal distribution so that TMFA and LS-MFA can be used (see preliminar-
ies). To apply FS-MFA we represent the measurements with interval of 95%, or 2σ 
(see chapter IV). All the results are depicted in Figure 7.6. 

Notice that TMFA assigns a negative value to an irreversible flux, v1, because it is not 
taking reversibility constraints into account. This  was  clearly predictable, but it must 
be highlighted because TMFA is  still widely used in the literature. The results also 
point out that the possibilistic estimates, distribution and intervals, are much more in-
formative than the point-wise estimations of TMFA and LS-MFA, or the intervals  of 
FS-MFA. Basically, point-wise estimations fail when several flux values reasonably 
possible, whereas the flux-spectrum interval tend to be conservative. Remember also 
that TMFA and LS-MFA cannot be used in scenarios  lacking data, such as example 3, 
where Poss-MFA and was shown to be valuable. 
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scribed in Figure 7.1 considering that v2, v3, v4 and v5 have been measured. Poss-MFA: the measure-
ments  represented in possibilistic terms are depicted in grey, and the possibility distributions  calculated 
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Carlo approach: the measurements  represented assuming that errors are normally distributed are de-
picted in grey, and the histograms are those resulting from the Monte Carlo simulations.
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Figure 7.6. Example 5: comparison of Poss-MFA and alternative methods. We use the model de-

scribed in Figure 7.1 considering v2,  v3, v4 and v5 have been measured (depicted in grey). (A) The mar-
ginal distribution computed with Poss-MFA are depicted in blue, the point-wise estimations  of TMFA 
and LS-MFA in light and dark grey, respectively, and the intervals of FS-MFA in green. (B) The maxi-

mum possibility flux estimate and the flux intervals  for conditional possibilities 0.8 (box), 0.5 (thick line) 
and 0.1 (narrow line) are compared with the estimates given by TMFA, LS-MFA and FS-MFA.



Example 6: comparison with Monte Carlo

Continuing with our example, now measurements are represented (a) in possibilistic 
terms (linear case) and (b) with a “similar” probabilistic formulation assuming that 
errors are normally distributed. Both representations are depicted in Figure 7.7 
(dashed lines). Then, we perform two flux estimations using (a) Poss-MFA and (b) 
Monte Carlo simulations (1.7 millions of combinations  of values of measured fluxes 
were generated, taken into account their normal distribution). The conditional possi-
bility distributions and the histograms resulting from Poss-MFA and Monte Carlo, 
respectively, are depicted in Figure 7.7. Even if probability and possibility are not 
truly equivalent, a reasonable similarity between the results  from both approaches  ex-
ists. 

Notice that this  is a simple case where Monte Carlo can be applied. Nonetheless, its 
worst performance is  clear: the cost of computing the possibility distributions is  poly-
nomial in the number of fluxes (as shown above), whereas the cost of a Monte Carlo 
approach grows exponentially with the number of  independent decision variables.

7.7  Case study: C. glutamicum

In this section we apply Possibilistic MFA (Poss-MFA) to a medium-size example. For 
illustrative purposes, we have chosen a very well-know metabolic model of Corynebacte-
rium glutamicum. 

Preparation: metabolic network and constraint-based model

The metabolic network of C. glutamicum has been taken from (Gayen, 2006) and is a 
slight variation of the one originally described in (Vallino, 1994; Vallino, 2000). The 
network describes  the biochemistry of the primary metabolism of C. glutamicum neces-
sary to support lysine and biomass  synthesis from glucose. A reaction of ATP dissipa-
tion is included in the network, so that the ATP balance could be maintained, without 
actually constraining the flux space. On the contrary, the co-factors NADP, NAD and 
FAD are supposed to be balanced. The reaction for biomass formation is an approxi-
mation using as  reactants  those amino acids  that explicitly appear in the network and 
the precursors of the other amino acids  synthesized by C. glutamicum. This same ex-
ample was used in chapter IV (section 4.5), where more details  can be found, includ-
ing the lists of  reactions and metabolites, and the stoichiometric matrix.

Poss-MFA setting. The stoichiometric relationships, embedded in a 36×40 stoichiomet-
ric matrix N, and the irreversibility of certain reactions, embedded in a 40×40 diago-
nal matrix D, define our model-based constraints  (MOC) according to (17). Both ma-
trices are given in chapter IV (section 4.5).
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Preparation: experimental measurements

Experimental data of a batch fermentation of C. glutamicum cultured on minimal glu-
cose medium was  taken from (Vallino, 1994). There, the growth rate and the fluxes 
(production or consumption rates) of the external metabolites—lactate, acetate, glu-
cose, O2, CO2, NH3, lysine and trehalose—were experimentally measured. Since the 
accumulation of lactate and acetate was  negligible, their flux is zero in this case study. 
The measured fluxes vGLC (1), vO2 (34), vNH3 (35), vLY (37), vThre (38) and vCO2 (39) and the 
growth rate vBio (36), and their standard deviations, are given in Figure 7.8. 

Poss-MFA setting. Using the data in Figure 7.8, we have built a possibilistic representa-
tion of single measurements defining convenient auxiliary variables  and weights (Fig-
ure 7.8). The criteria to choose the weights was the following: 

π = 1, for vm ∈ wm ± σ/2

π = 0.5, for vm ∈ wm ± 1σ

π = 0.1, for vm ∈ wm ± 2σ

where σ denotes  the standard deviation of the measurement. If errors were assumed 
to be normally distributed, these levels  would correspond to the probabilistic confi-
dence intervals of  38%, 68% and 95%, respectively.
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Figure 7.8. Experimentally measured fluxes  during a batch fermentation of C. glutamicum. The second 
column contains the experimental measurements and their standard deviation, taken from (Vallino, 

1994). The possibility distribution representing each single measurement is depicted in the third col-
umn, when the used weights are given.



Possibilistic flux estimation

First, we obtained the maximum possibility flux vector considering all the available 
measurements, vGLC, vO2, vNH3, vLY, vThre and vCO2 and vBio. Its  possibility was π = 0.38, 
which could be considered relatively low if one considers that a significant uncertainty 
was  already being taken into account (Table 7.1). We then obtained the marginal pos-
sibility distributions for each flux, which inspection indicates that the low possibility is 
almost completely caused by only one measured flux, vNH3 (35). This suggests  that this 
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Figure 7.9. Possibilistic flux estimation for C. glutamicum. The measured fluxes  are vGLC (1),  vO2 (34), 

vNH3 (35),  vLY (37), vThre (38) and vCO2 (39) and vBio (36). (A) Marginal possibility distributions for each flux. 
The original distribution of single measurements appear in grey (thick line).  (B) The maximum possi-

bility flux estimation (circles  and squares  for measured and non-measured fluxes, respectively) and the 
flux intervals for conditional possibilities of 0.8 (box), 0.5 (thick line) and 0.1 (narrow line) are depicted. 
All fluxes are in mM/h.



measurement was inaccurate, or that its  standard deviation was underestimated. In-
terestingly, this  flux was indeed the most uncertain one in the original dataset (its 
standard deviation was a huge 44mM/h for a nominal value of  64.8mM/h). 

As a result of this analysis—which is a rough example of the procedure mentioned in 
a previous section—we decided to remove the measurement and repeat the calcula-
tions. As expected, this time we obtained a maximum possibility flux vector with a 
similar shape, but higher possibility (π = 0.88). The possibility distributions for this 
case are depicted in Figure 7.9A, and the flux intervals are depicted in Figure 7.9B.

Possibilistic flux estimation under data scarcity

We have also performed a flux estimation using only three measured fluxes  that can 
be measured with standard equipment: vGLC, vCO2 and vBio. In this  case the obtained 
maximum possibility flux vector is  fully possible. This  flux vector and the flux intervals 
are depicted in Figure 7.10. Remarkably, even if few measurements are available, the 
possibilistic estimates are quite precise (narrow). 

Possibilistic flux estimation with an uncertain model

As explained above, the model-based constraints  can be soften to relax the pseudo-
steady state assumption. As  an example, we have assumed a degree of uncertainty 
around all the mass balances in (17) introducing decision variables  ζ1 and υ1 and the 
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Figure 7.10. Possibilistic flux estimation for C. glutamicum under data scarcity. Only three measured 

fluxes are available vGLC (1),  vCO2 (39) and vBio (36). The maximum possibility flux estimation (circles  and 
squares for measured and non-measured fluxes, respectively) and the flux intervals for conditional pos-

sibilities of  0.8 (box), 0.5 (thick line) and 0.1 (narrow line) are depicted. All fluxes are in mM/h.



weights  γ1 = τ1 = 2 (see Figure 7.11). Thus, flux vectors that imply small accumulations 
of  a metabolite will be accepted, yet considered less possible. 

It can be also stated that the metabolic network used above, the one introduced by 
Vallino et al., relies on an unrealistic assumption: that cofactors  NADP, NAD and 
FAD are balanced (Yang, 2006; Marx, 1996). To avoid this, we can remove these me-
tabolites from the stoichiometric matrix or, as an alternative, use the expressivity of 
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Figure 7.12. Possibilistic flux estimation for C. glutamicum when uncertainty is incorporated into the 
model. Marginal possibility distributions  for each flux are depicted in three cases: (a) the model-based 

constraints are not relaxed (red) (b) the pseudo-steady state assumption is relaxed and NADP/NADPH 
is  allowed to be unbalanced (deep blue), and (c) the pseudo-steady state assumption is relaxed and the 
three cofactors are allowed to be unbalanced (light green). The original distribution of single meas-
urements are depicted with dashed lines. All fluxes are in mM/h.



the possibilistic framework to allow a certain degree of unbalance for these metabo-
lites. Just as an example, we have assumed that cofactors  can be unbalanced with 
some limits: 30 mM/h for NADP/NADPH, and 15 mM/h for FAD/FADH and 
NAD/NADH. This “knowledge” can be easily incorporated into the model defining 
the convenient auxiliary variables and weights as explained above (see Figure 7.11).

At this  point, Poss-MFA was performed in three scenarios: (a) the model-based con-
straints are not relaxed (reference case); (b) the pseudo-steady state assumption is re-
laxed and NADP/NADPH is  allowed to be unbalanced; (c) the pseudo-steady state 
assumption is relaxed and the three cofactors, NADP/NADPH, FAD/FADH and 
NAD/NADH, are allowed to be unbalanced.

The possibility distributions obtained in each case are compared in Figure 7.12. It can 
be observed how model uncertainty is  translated into the flux estimates; consider un-
certainty results in less precise estimates, given the less reliable model equations.

7.8  Conclusions

In this chapter we have discussed a unifying, possibilistic framework to evaluate con-
sistency and estimate metabolic fluxes, which is shown to be flexible, reliable, usable 
under data scarcity and computationally efficient.

Considering ordinary constraint-satisfaction problems, the metabolic fluxes fulfilling a 
set of model-based constraints  and compatible some experimental measurements  are 
“possible”, otherwise “impossible”. Herein, this idea is refined to handle uncertain 
knowledge by introducing the notion of “degree of possibility”, which enables  grad-
ing the candidate flux values.

Possibilistic MFA overcomes  several limitations of traditional MFA and some of its  
extensions. It considers  measurements uncertainty and model imprecision in a flexible 
way (e.g., non-symmetric error), and is  reliable even if few fluxes  are measurable (a 
common scenario). Possibilistic MFA provides distributions  (and intervals) that are 
more informative than point-wise estimates  when multiple flux values are reasonably 
possible. These are also better than the intervals of the flux-spectrum. In addition, 
Possibilistic MFA detects and handles inconsistencies between the measurements  and 
the model. Finally, Possibilistic MFA has been cast as linear optimisation problems, for 
which widely known and efficient tools exist. This great computational performance 
makes the methodology suitable for large-scale metabolic networks.

There is, however, a challenge when estimating fluxes  in large networks because there 
may be many flux vectors  compatible with the (few) available measurements (Bonar-
ius, 1997). Interestingly, Possibilistic MFA is  still of use in this situation: it will detect 
all these equally possible flux vectors  (or those similarly possible) by means of possi-
bilistic distributions or intervals (e.g., example 3). Unfortunately, if there is a wide 

Chapter VII   |   199 



range of candidates, the estimation may be little informative (but reliable, since all 
reasonably possible flux vectors  are captured). To face this difficulty one can promote 
particular flux vectors among those that are equally possible. For instance, it can be 
assumed that fluxes  are optimally regulated depending on the given environmental 
conditions, and invoke this  principle to choose particular flux vectors (Schuetz, 2007; 
Palsson, 2006; Schilling, 2002). There might be still alternate optima, but the ap-
proach will reduce the range of candidate flux vectors. The use of this  optimality 
principle in a possibilistic framework will be discussed in chapter VIII.

In summary, the combination of computational efficiency and flexibility of the as-
sumptions is a distinctive advantage of Possibilistic MFA over other approaches  which 
either may rely on stronger assumptions  (chi-squared distributions, interval-only de-
scriptions, absence of irreversibility), or be only data-based (so they do not incorpo-
rate, say, stoichiometric model balances), or provide only point-wise estimates  (for 
fluxes or consistency), or be computationally intensive (multi-variate integration in a 
general Bayesian estimation problem).
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VIII
Possibilistic, dynamic prediction of fluxes and 

metabolites

In this  chapter the possibilistic framework is  used to get predictions from a constraint-
based model accounting for extracellular dynamics. We consider both predictions 
given by metabolic flux analysis (MFA), and by flux balance analysis (FBA).

The methods described provide rich estimates for time-varying fluxes and metabolite 
concentrations, taking into account uncertainty, alternate optima and sub-optimality. 
The approach can also be used to monitor consistency and detect faults.

Part of  the contents of  this chapter appeared in the following publications:

• F. Llaneras, A. Sala and J. Picó. Dynamic flux estimations from constrain-based 
models: a possibilistic approach (In preparation)

• Llaneras F, Sala A, Picó J (2010). Possibilistic estimation of metabolic fluxes 
during a batch process accounting for extracellular dynamics, Computer applica-
tions in biotechnology 2010.

• Llaneras F, Sala A, Picó J (2010). Dynamic flux balance analysis: a possibilistic 
approach, Systems biology of  microorganisms 2010.
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8.1  Introduction

There are two main approaches to get predictions  from a given constraint-based 
model—which, recall, defines a space of feasible cellular states based on the operating 
constraints: 

(a) Use experimental measurements  to perform a metabolic flux analysis (MFA), 
following a traditional approach (Heijden, 1994) or one of the proposals de-
scribed earlier in this thesis. (See chapters IV and VII.)

(b) Assume that cells have evolved to be optimal in some sense and apply flux bal-
ance analysis (FBA). (See chapter II.)

These predictions are typically static, aimed to study cells  at a given state, but extra-
cellular dynamics can be easily taken into account. As seen in chapter II, mass  bal-
ances around the extra-cellular species can be established as follows:

de
dt

= ve ⋅ x −D ⋅e + Fe (1)

where e denotes the concentration of extracellular metabolites (substrates  and prod-
ucts), ve the vector of extracellular reaction rates (uptake or production), D the dilu-
tion rate (inflow per volume) and Fe the inflow of  extracellular metabolites.

Given a metabolic network of the modelled cells, and extracting its  stoichiometric 
matrix, mass balances around the intracellular metabolites can also considered:

dc
dt

= N ⋅v − µ ⋅c (1b)

where c is the m-dimensional vector of intracellular metabolite concentration, v the n-
dimensional vector of flux through each reaction, µ is  the growth rate of biomass 
cells, and N is the stoichiometric matrix linking fluxes and internal metabolites.

However, since reaction kinetics  are still rarely known, internal metabolites are often 
assumed to be at steady-state. In this  way a model of cells  considering extracellular 
dynamics can be as follows:

0 = N ⋅v (2a)

de
dt

= Ne ⋅v −D ⋅e + Fe (2b)

where Ne is a selection matrix linking each external metabolite with its  flux. Without 
loss  of generality, each extracellular metabolite can be represented by two nodes, one 

202



intra- and one extra- cellular, so that there is  only one reaction in v accounting for its 
total uptake or consumption. Biomass can be considered as  another external metabo-
lite and its  synthesis  represented with a flux in v. The formulation in (2) has  been 
used, for instance, to seek extracellular or macroscopic models compatible with the 
underlying metabolic network (Provost, 2004; Haag, 2005; Provost, 2006, Bastin, 
2007).

Along with the mass  balances, other constraints can then be imposed, such as  the ir-
reversibility of  certain reactions:

D·v ≥ 0 (3)

where D is a diagonal matrix with Dii = 1 if  the flux i is irreversible (otherwise 0).

The resultant constraint-based models are typically used under a static point of view 
to analyse the metabolic fluxes  at a given state. Therefore extracellular dynamics  are 
not considered and derivatives are replaced by constant uptake or production rates  in 
(2b). However, several works accounting for extracellular dynamics  can be found in 
the literature, both in the context of MFA (Herwig, 2002; Takiguchi, 1997; Henry, 
2007) and FBA (Mahadevan, 2002; Hjersted, 2009). 

In this chapter the extracellular dynamics are considered in a similar way, to explore 
the benefits that the possibilistic framework introduced in chapter VII can bring in 
this context.

(i) Possibilistic metabolic flux analysis  (Poss-MFA) is  extended to get dynamic 
(time-varying) estimations of  fluxes and metabolite concentrations.

(ii) Is it also discussed how Poss-MFA can be used to monitor consistency, as  a fault 
detection procedure.

(iii) A possibilistic version of flux balance analysis  (Poss-FBA) is  presented herein. It 
gives dynamic predictions  for fluxes  and metabolites invoking an optimality as-
sumption, and accounting for alternate optima and sub-optimality.

The chapter is organised as  follows. Dynamic, possibilistic MFA is  presented in section 
8.2, and illustrated with a case study in section 8.3. The dynamic, possibilistic version 
of FBA is  discussed in section 8.4, and illustrated with a case study in 8.5. The chap-
ter is closed with a summary and the discussion of  future work.

8.2  Dynamic Possibilistic MFA

In chapter VII we described Poss-MFA, a framework to formulate metabolic flux es-
timations  as possibilistic constraint satisfaction problems (thus following a constraint-
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based modelling approach). Herein we extend this idea to take extracellular dynamics 
into account. 

Consider a batch process1 during a period of time [0, T] divided in t intervals given 
by the sampling rate of the measurements. First, we consider the constraints  conform-
ing the model at successive time instants k, hereinafter referred as MOC(k)2:

MOC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

0 = N ⋅v(k) (4a)

MOC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

e(k)− e(k −1)
ΔT

= Ne ⋅v(k) (4b)

MOC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 
D·v(k) ≥ 0 (4c)

MOC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

 e(k) ≥ 0 (4d)

Initial conditions should be given, at least, for each metabolite e(0). For convenience, 
hereinafter the set of  system variables will be denoted as var(k)={v(k), e(k)}.

Then, measured concentrations of extracellular species are also incorporated as  con-
straints, MEC(k):

MEC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

em (k) = fm (k)+ ε1(k)− µ1(k)+ ε2 (k)− µ2 (k) (5a)

MEC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
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ε1(k), µ1(k) ≥ 0 (5b)

MEC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
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0 ≤ ε2 (k) ≤ ε2

max (k) (5c)
MEC k( ) =

  

⎧

⎨

⎪
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⎩

⎪
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⎪

 

0 ≤ µ2 (k) ≤ µ2
max (k) (5d)

where em(k) represent the actual concentrations of each metabolite and fm(k) the 
measured values. Slack variables ε and μ are introduced to consider uncertainty and 
relax the assertions  fm(k) = em(k), conforming a possibility distribution associated to a 
cost index J(k):

J(k) =α(k)·ε1(k)+ β(k)·µ1(k) (6)

where α(k) and ß(k) are row vectors of  user-defined, sensor accuracy coefficients. 
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The index J(k) reflects  the log-possibility of each em(k). The interpretation of (5-6) 
may be: “fm(k) = em(k) is  fully possible; the more fm(k) differs from em(k), the less pos-
sible such situation is”.

Two pairs of slack variables  are used to represent each measurement, the bounds for 
ε2 and μ2 define an interval of values  with possibility equal to one (fully possible), and 
the possibility of the actual concentration being out of this  interval depends  on the 
chosen α(k) and β(k). This allows to account for systemic and random errors. Slack 
variables can be added to achieve more complex representations of the measure-
ments. See chapter VII for more details on this issue.

Dynamic Possibilistic MFA: simultaneous approach

Now that the constraint-based model has  been formulated, two main problems can be 
addressed: (1) the estimation of fluxes and metabolite concentrations along the proc-
ess duration, and (2) the monitoring of  measurements consistency. 

The most straightforward way to approach both problems  is  to consider the operating 
constraints  at each time instant simultaneously. In this  way all the available knowledge 
and information is taken into account to get each estimate. Clearly, this approach can 
be computationally expensive, and even non solvable if the sampling rate is high (the 
number of constraints will be extremely large). However, this difficulty will rarely arise 
because extracellular dynamics  are typically slow and measurements  are taken with 
relatively long sampling periods.

Monitoring consistency of measurements and model

To detect errors  in measurements (or in the model) is  it possible to monitor the consis-
tency between measurements and model along the process  evolution. The maximum 
possibility (minimum-cost) solution of the constraint satisfaction problem (4-5) can be 
obtained solving a linear programming problem (LP):

min JT = J(k)
k=0

t

∑

s.t.
MOC(k) ∀k
MEC(k) ∀k

⎧
⎨
⎪

⎩⎪

(7)

The possibility πmp of  the most possible solution varmp is given by the minimised cost:

π mp = π (varmp ) = exp(−JT
min ) (8)
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The value of πmp provides a measure of consistency: possibility equal to one must be 
interpreted as  complete agreement between the model and measurements, lower val-
ues imply that there is some error in one of  them.

To analyse which measurements might be causing the inconsistency, the values  of the 
slack variables can be inspected, just noticing that:

π mp = π k
mp

k
∏ = exp −JT

min (k)( )
k
∏ (9)

π mp = π k,i
mp

i
∏

k
∏ = exp − α i (k)·ε1,i

min (k)+ βi (k)·µ1,i
min (k)( )

i
∑⎛

⎝⎜
⎞
⎠⎟k

t

∏ (10)

where index k denotes  the time instants, index i the measurements elements of em(k), 
and ε1,i

min (k)  and µ1,i
min (k) are the values of  the slack variables in JT

min (k) .

Thus, it can be investigated which measurements  are those that most likely are caus-
ing the inconsistency by plotting the values of  π k

mp and π k,i
mp can (see example in 8.3).

Monitoring consistency using QP

It can be argued that it is  better to formulate the consistency analysis  as a quadratic 
programming problem (QP), instead of using LP. If two variables (measurements) are 
inconsistent, LP solution concentrates the error in the less penalised one (the less  reli-
able), whereas  QP solution distributes the error between both variables. This  second 
alternative is  more convenient because guaranties that all the possible sources of in-
consistency are detected, even if  they seem less likely. 

Example. Consider the constraints {A=B, Am=6, Bm=10}, where the measured Bm is 
more reliable. The LP solution will be A=B=10, while the QP solution will be some-
thing in between, say A=B=9, suggesting that the problem can be due to Am or Bm 
but that the first is more likely according to the considered uncertainty.

The consistency analysis can be formulated as a QP problem replacing (5) with: 

em (k) = fm (k)+θ(k) (11)

and defining the cost index as:

J(k) = θ(k) '·W(k)·θ(k) (12)

where W(k) is  a matrix of user-defined, sensor accuracy coefficients, analogous to α(k) 
and ß(k) in the LP case.
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The benefits  of formulating the consistency analysis as  a QP problem, instead of an 
LP one, will be illustrated with an example in section 8.3.

Dynamic estimation of fluxes and metabolites

The simplest estimate is  given by the solution of (7), which contains  the most possible 
value for each flux and metabolite, var(k). However, these point-wise estimates are 
insufficient if multiple solutions are reasonably possible, as discussed in chapter VII. 
As an alternative, possibilistic intervals can be obtained.

The interval of values with conditional possibility higher than γ for a given flux or 
metabolite, [ vari,γ

m (k) , vari,γ
M (k) ], can be computed solving two LP problems:

vari,γ
m (k) = min vari (k)

  s.t.  

MOC(k) ∀k
MEC(k) ∀k

J(k)∑ − logπ (varmp ) < − logγ

⎧

⎨
⎪⎪

⎩
⎪
⎪

(13)

The upper bound can be obtained by replacing minimum by maximum.

These possibilistic intervals provide a rich and concise estimation. Remember also 
that the possibility distribution of a particular variable can be reconstructed obtaining 
the intervals for a grid of possibilities, to say π=1, 0.9, 0.8, ... 0.1. These and other 
details about possibilistic calculus and optimisation can be consulted in chapter VII.

Notice that (13) can be used both to estimate the metabolic fluxes  v(k) and the me-
tabolite concentrations e(k). Regarding the last ones, it  is  remarkably that even the 
evolution of non-measured metabolites  could be estimated, such as the concentration 
of  a product of  interest. An example of  this feature is given below.

Dynamic Possibilistic MFA: isolated approach

The approach described above can be computationally intractable if the sampling 
rate of measurements highly increases. This  contingency will be rare, as  mentioned 
above. However, if one needs to reduce the computational cost, the problem can be 
divided in t small problems, considering only the constraints  operating at each time 
instant k.

This  kind of “isolated” approaches, even imperfect, were indeed followed by the ma-
jority of works  that can be found in the literature accounting for extracellular dynam-
ics in the context of constraint-based modelling (Herwig, 2002; Takiguchi, 1997; 
Henry, 2007; Mahadevan, 2002; Hjersted, 2009).
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Monitoring consistency of measurements and model

With the isolated approach, the consistency analysis  now requires solving t smaller LP 
problems, one at each time instant k:

∀k

 min JT = J(k)+ J(k -1)

s.t.
MOC(k)
MEC(k)
MEC(k -1)

⎧
⎨
⎪

⎩⎪

(14)

With possibilities, π k
mp = π (varmp (k)) = exp(−JT

min (k)) .

At this point, the same approach described above to investigate which measurements 
could be causing inconsistency, can be used in an analogous  way, by the inspection of 
the values of  π k

mp and π k,i
mp .

Dynamic estimation of fluxes and metabolites

The interval estimate for a given flux or metabolite, at a given time k and with condi-
tional possibility higher than γ, can now be obtained solving two smaller LP problems:

  

vari,γ
m (k) = min vari (k)

s.t.

MOC(k)
MEC(k)
MEC(k -1)

J(k)∑ − logπ (varmp ) < − logγ

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(15)

The upper bound obtained by replacing minimum by maximum.

Using this isolated approach, the possibilistic intervals  are obtained solving LP prob-
lems that do not grow with the sampling rate. There is, however, a price: as  less  con-
straints are considered at a time, the solution space will be larger and the computed 
intervals will eventually become wider than those given by (13). Being the intervals 
conservative, the isolated approach may lead to less insight, but in no case will lead to 
wrong results with respect to the simultaneous case.

Remark: a mixed version. In the previous  sections we have described two different proce-
dures to get the dynamic, possibilistic MFA estimates. The first one considers  simulta-
neously the operating constraints at every time instant, each k in [1, t], while the sec-
ond one divides the problem in a succession of smaller sub-problems, one per each 
time instant k in [1, t], which consider only constraints at k and k-1. Clearly, a mixed 
approach considering a time window of  user-defined size can be easily implemented.
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8.3  Case study: CHO cells

To illustrate the described methods  we consider the example of Chinese Hamster 
Ovary cells (CHO cells) cultivated in batch mode.

Preparation: metabolic network and constraint-based model

A metabolic network that describes  the metabolism concerned with the two main en-
ergetic nutrients, glucose and glutamine has  been taken from (Bastin, 2007).1  The 
network is depicted in Figure 8.1.

The network includes 31 reactions (24 internal, 6 exchanges and the biomass growth) 
and 25 metabolites  (these are listed in tables 2 and 3). There are no redundant mass 
balances, therefore the network has 6 degrees  of freedom. The corresponding 25×31 
stoichiometric matrix N is given in Table 8.1. The vector of reactions irreversibility, 
which defines the diagonal of the matrix D, is  also given in Table 8.1. The 7 fluxes 
that represent uptakes or productions  of extracellular metabolites are the last ones  in 
v. In this way, the constraint-based model (4) is completely defined.

Preparation: measurements

Measurements  of concentration for glucose (G), alanine (A), lactate (L), glutamine (Q) 
and ammonia (NH4) and the growth rate (µ) were taken from (Provost, 2006). Those 
data were collected with a sample rate of 24 h. The uncertainty of the measurements 
is represented in possibilistic terms as follows:

• Values near the measured ones, within ±2% deviation, are considered fully pos-
sible, π=1 (to account for systemic errors). 

• A decreasing possibility is assigned to larger deviations: values  with a deviation 
of ±5% have a possibility of π=0.5 and those with a deviation of ±10% a pos-
sibility of  π=0.15 (to account for random errors).

Notice that possibility has been defined by conjunction; thus, if two measurements are 
deviated with possibilities 0.8 and 0.5 respectively, their joint possibility will be 0.4.

Dynamic Poss-MFA: estimating fluxes and metabolites

First, we show how the dynamic Poss-MFA can be used to estimate all the metabolic 
fluxes (measured or not) and the metabolite concentrations along the cultivation proc-
ess (0-196 h). We used (13) to compute three possibilistic interval (π=1, π=0.5, 
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π=0.15) for each variable at each time instant. This  implies  solving 2∙3∙9 LP problems 
(2∙p∙t) for each variable. 

The evolution of the metabolite concentrations is depicted in Figure 8.2. Remarkably, 
it is  possible to estimate the evolution of the concentration of non-measured metabo-
lites, such as CO2 (dynamic Poss  MFA is thus  being used as an observer). The estima-
tions of measured concentrations are also valuable since they can reduce the uncer-
tainty of the measurements, and correct them if they are inconsistent—however, this 
effect was not significant in the considered example.

The estimated fluxes  are depicted in Figure 8.3. It can be observed that some of them 
are estimated with precision (v5 or v7), whereas other estimates are wider (v8 or v12). 
However, even the wider ones can be valuable: for instance, v12 indicates that this  re-
action is  always active during exponential growth (0-120 h). Uptake or production 
rates for the extracellular metabolites can also be estimated (v25 or v26).  

Dynamic Poss-MFA: estimating fluxes and metabolites (isolated)

The estimation is  now performed with the isolated formulation described in section 
8.3, instead of the simultaneous one used above. The results  are depicted in Figure 
8.4. As expected, the obtained estimates are similar, but wider. The increase of the 
estimated areas  (one per variable and degree of possibility) with respect to those ob-
tained with the simultaneous approach have been calculated: on average, the estima-
tion of fluxes is  3.2% larger (between 0% and 12.4%) and the estimation of metabo-
lites  is 4.3% larger (values  between 0% and 7.8%). The oversize is  depicted in Figure 
8.5. It can be checked that it is reasonably small, at least for this particular example.
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Dynamic Poss-MFA: monitoring consistency

Herein we apply the ideas described in section 8.2 to detect errors by monitoring the 
degree of consistency between measurements  and model along the cultivation. To 
perform this  analysis  we solved one LP problem (7) to obtain the maximum possibility 
solution of the constraint satisfaction problem (4-5). The solution obtained is  fully 
possible (πmp = 1), indicating that the original measurements were consistent. That is, 
the measurements show full agreement with the model during the whole batch proc-
ess (for the considered degree of  uncertainty).

For the shake of illustration, we repeated the analysis after introducing two errors in 
the measurements:

(a) A deviation of  65% in the measurement of  glucose at 48 h, 

(b) A deviation of  0.5 mM in the measured NH4 at 120 h. 

Now the solution of (7) showed a very low possibility (πmp = 0.04), meaning that errors 
are detected. We then performed the same analysis using QP, after choosing an ap-
propriate matrix W so that measurements  uncertainty is  represented in a similar way. 
The QP analysis also detected the inconsistency (πmp = 0.06).

To investigate the candidate sources of inconsistency, he values of the slack variables 
were calculated as  explained in section 8.2, which can be inspected with the monitor-
ing charts given in Figure 8.5. The upper charts  represent the contribution to the total 
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Table 8.1. Stoichiometric matrix for CHO cells.

Irrevers. 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
Reaction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 vG vL vA vNH4 vQ vCO2 vBio

1 G6P 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
2 F6P 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3 G3P 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
4 DAP 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Pyr 0 0 0 0 1 -1 -1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 ACO 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Cit 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 aKG 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Fum 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Mal 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Oxa 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Glu 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 -1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Asp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0
14 RU5P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0
15 RI5P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 1 0 0 -1 0 0 0 0 0 0 0
16 X5P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0
17 E4P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0
18 CO2i 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0
19 NUC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0,17
20 G -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
21 L 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
22 A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
23 NH4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
24 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -3 0 0 0 0 0 0 0 0 0 0 1 0 0
25 CO2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0

Table 8.2. List of  initial substrates, extracellular and intracellular products.

G	 	 Glucose	 	 Substrates Q	 	 Glutamine	 initial substrates

L	 	 Lactate	 	 extracell. product A	 	 Alanine	 	 extracell. product

NH4	 	 Ammonia	 extracell. product CO2	 	 Carbon dioxide	 extracell. product

Nuc	 	 Nucleotides	 intracell. product

Table 8.3. List of  internal metabolites.

G6P	 	 Glucose-6-phosphate	 	 Mal	 	 Malate 	 	 	

F6P	 	 Fructosa-6-phosphate Oxa	 	 Oxaloacetate 	 	

G3P	 	 Glyceraldehyde-3-phosphate Glu	 	 Glutamate 	 	 	

DAP	 	 Dihydroxy-acetone Phosphate	 Asp 	 	 Aspartate 	 	 	

Pyr	 	 Pyruvate 	 	 	 Ri5P	 	 Ribose-5-Phosphate	 	

ACO	 	 Acetyl-coenzyme A 	 	 Ru5P	 	 Ribulose-5-Phosphate	 	

Cit	 	 Citrate 	 	 	 X5P	 	 Xylose--Phosphate

aKG
 
 α-ketoglutarate 
 
 E4P	 	 Eryt-4-Phosphate
Fum	 	 Fumarate 	 	 	 CO2i	 	 Carbon dioxide (intracellular node)



inconsistency of each measurement: a white background means no inconsistency 
(π=1) and a black one total contradiction (π=0). The lower charts  monitor the aggre-
gated degree of  consistency at each time instant.

Clearly, both LP and QP consistency analysis  are able to identify the error in the 
measured NH4 at time 120 h. However, the LP analysis  fails  to detect the error in the 
measured glucose: it detects  that the error is  at 120 h, but it erroneously suggests that 
the source is  the measured lactate. Conversely, the QP analysis is able to detect that an 
error in the measured glucose can also be causing the problem (even if it still suggests 
that an error in lactate is  a more likely cause given the declared measurements uncer-
tainty). This example illustrates  why the use of QP is a better choice to perform the 
consistency analysis.

8.4  Dynamic Possibilistic FBA

As explained in chapter II, flux balance analysis  (FBA) is a methodology that uses op-
timisation to get predictions from a constraint-based model invoking an assumption of 
optimal cell behaviou. Basically, one particular state among those that cells can show, 
accordingly to a constraint-based model, is  promoted based on the assumption that 
cells have evolved to be optimal (and that their “objective” is  known and can be ex-
pressed, at least approximately, in convenient mathematical terms).

FBA is  typically used to analyse cells at a particular state, but extracellular dynamics 
have been taken into account to predict fluxes and external metabolites during a cul-
tivation (Mahadevan, 2002; Hjersted, 2009). The novelty of the approach described 
hereinafter is that optimality is  defined in a gradual way using possibility theory: the 
optimal state is considered fully possible, and the more a state differs  from it, the less 
possible such situation is  considered. This enables getting dynamic FBA predictions 
accounting for alternate optima and a desired degree of  sub-optimality.

Problem setting

Dynamic FBA considers the model constraints at each time instant k, as in (4), includ-
ing dynamic mass balances for the extracellular metabolites, assuming that the inter-
nal ones  are at steady-state, and imposing constraints on reactions reversibility. Notice, 
however, that measurements are not incorporated. Instead, constraints  on a few up-
take fluxes  are imposed based on known capacities, on a kinetic expression or on the 
availability of  substrates. These constraints are denoted as CAP(k):

CAP(k) = v
u

m (k) ≥ vu (k) ≥ v u

M (15)
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Then, to get FBA predictions one has to invoke an optimal use of resources  (e.g. 
maximum growth), expressed by means of  a linear cost index Z(k):

Z(k) = d ⋅v(k) (16)

FBA predictions at each time instant k could be now obtained maximising Z(k) subject 
to the operating constraints, MOC(k) and CAP(k). However, some refinements can be 
easily incorporated.

Considering sub-optimality

To account for optimality in a gradual way, the following constraints are defined:

Z(k) = Zmax (k) ⋅ 1−φ(k)( ) (17a)

0 ≤ φ(k) ≤1 (17b)

where φ(k) is a slack variable that represents sub-optimality.

Now, possibility can be redefined in terms of  optimality using a new cost index Jopt:

Jopt (k) =α s ⋅φ(k) (18)

where αs is  user-defined weight linking possibility and optimality. For instance, if one 
chooses αs = -log(0.5), then π = 0.5 is assigned to Z=0.5∙Zmax.

In this  way, only an optimal cells  state, var(k), maximising Z(k) is considered fully pos-
sible, and the more a state differs  from this  optimal one, the less possible such situation 
is considered.

Dynamic Poss-FBA: predicting fluxes and metabolites

Predictions  with sub-optimality (possibility) γ are obtained successively, for each k, fol-
lowing a two-step procedure:
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Step 1
max  Z(k)    

s.t.

MOC(k) 1... k
CAP(k) 1... k

Z(k) = Zmax (k) ⋅ 1−φ(k)( ) 1... (k -1)
0 ≤ φ(k) ≤1 1... (k -1)

α s ⋅φ(k) < logγ 1... (k -1)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(19)

The last three constraints guarantee that the optimal solution at k, Zmax(k), does not 
violate the optimality γ at previous time instants {1 ... k-1}.

In the second step, Zmax(k) is  used as  reference to get the sub-optimal predictions  as 
possibilistic intervals, [vari,γ

m (k) , vari,γ
M (k) ]:

Step 2 vari,γ
m (k) = min vari (k)

s.t.

MOC(k) 1... k
CAP(k) 1... k

Z(k) = Zmax (k) ⋅ 1−φ(k)( ) 1... k
0 ≤ φ(k) ≤1 1... k

α s ⋅φ(k) < logγ 1... k

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(20)

  Bound vari,γ
M(k)  is obtained by replacing minimum by maximum.

This  two-step procedure can be repeated for different degrees  of possibility—to say, 
π=1, π=0.8 and π=0.5—thus  getting a rich prediction that considers sub-optimality. 
and accounts for alternate optima (those in the interval estimate of  π=1).

8.5  Case study: E. coli

To illustrate the kind of results that can be obtained with the dynamic Poss-FBA, we 
use an example of diauxic growth of E. coli on glucose and acetate. The example has 
been taken from Mahadevan et al. (2002), where dynamic FBA was presented.

Preparation: metabolic network and constraint-based model

Mahadevan et al. (2002) chose 4 pathways from a genome-scale reconstruction of E. 
coli, and used them to define a simplified network with 3 extracellular metabolites, 
glucose (G), acetate (A) and oxygen (O), and biomass (x):
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v1 :
v2 :
v3 :
v4 :

39.43 A + 35 O2 →  x
9.46 G + 12.92 O2 →  x
9.84 G + 12.73 O2 →  1.24 A + x

19.23 G →  12.12 A + x

(21)

A constraint-based model accounting for these metabolites and biomass can be de-
fined with the constraints MOC(k) and CAP(k). We consider a duration of the batch 
of  10 h, divided in 21 intervals, so that k = [1, 2,..., 21]. 

The first constraints  in MOC(k) are the mass balances  around the extracellular me-
tabolites and biomass, as in (4), are the following:

G(k)−G(k −1)
ΔT

= 0 −9.46 −9.84 −19.23( ) ⋅v(k)

A(k)− A(k −1)
ΔT

= −39.43 0 1.24 12.12( ) ⋅v(k)

O2(k)−O2(k −1)
ΔT

= −35 −12.92 −12.73 0( ) ⋅v(k)+ kL 0.21−O2(k −1)( )

x(k)− x(k −1)
ΔT

= 1 1 1 1( ) ⋅v(k)

(22)

where G, A and O denote the metabolite concentrations  (in mM), and x the biomass 
concentration (in g/L). The mass  transfer coefficient for oxygen, kL, is  7.5 h-1 accord-
ingly to (Edwards et al., 2001), and the oxygen concentration in the gas  phase is as-
sumed to be a constant and equal to 0.21 mM.

Constraints are also incorporated to define fluxes as  irreversible, and to impose a posi-
tiveness condition to the concentrations (which, obviously, cannot be negative):

D·v(k) ≥ 0 (23a)

 e(k) ≥ 0 and x(k) ≥ 0 (23b)

The constraints CAP(k) only bound the glucose uptake by the measured concentra-
tions1 of  glucose Gm(k):
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G(k)−G(k −1)
ΔT

=
Gm(k)−Gm(k −1)

ΔT
⇒G(k) = Gm(k) (24)

In this way, the constraint operating at each time instant have been defined, MOC(k) 
constraints are defined with (22) and (23), and CAP(k) constraints with (24).

The last step is  define cells optimality. In this example, following (Mahadevan, 2002) it 
is  considered that the cells objective is to maximise growth. This assumption can be 
expressed with the following objective function:

Z(k) = 1 1 1 1( ) ⋅v(k) (25)

To account for sub-optimality, the parameter αs (18) is  defined as  αs = -log(0.5), so that 
possibility is 0.5 when the biomass growth is 50% of  maximum.

Dynamic Poss-FBA: predictions of fluxes and metabolites

The two-step procedure described above (19-20) is applied to get dynamic estimates 
for all the variables, fluxes and metabolites, for three degrees of optimality, π=0.95, 
π=0.8 and π=0.5. The results are depicted in figures 6 and 7.

It can be observed that Poss-FBA detects alternative optima. It provides alternative 
predictions for v2 and v3 (see Figure 8.7) even if only a slight sub-optimality is allowed 
(π=0.95), what seems sensible because both pathways have similar yields (i.e., both are 
nearly exchangeable in terms of biomass  growth). This could indicate that both 
pathways  can be efficiently used by the organism, or more likely, that the selection of 
one of them depends  on phenomena not captured by the model (e.g., the choice de-
pends on a secondary objective or its  regulated by an environmental condition differ-
ent from the substrates availability).

The results  in Figure 8.6 also show that considering sub-optimality gives  a richer pre-
diction, and better agreement with the actual concentrations. Cells behaviour can be 
reasonably captured with the simple model considered here, even if it seems clear that 
the assumption of “maximisation of growth” is  not perfect. During the phase of 
growth on glucose, the growth rate is  between 80% and 50% of the maximum. In the 
second phase, when acetate is  consumed, actual behaviour seems nearer to the opti-
mal one. 

Considering sub-optimality and alternate optima also provides an indication of the 
uncertainty of each prediction. For instance, as expected, the assumption of “maximi-
sation of growth” provides a narrower prediction for biomass, than for oxygen or ace-
tate, for which wider ranges of  values are reasonably possible.
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8.6  Conclusions

In this  chapter we have discussed the benefits that the possibilistic framework intro-
duced in chapter VII brings when getting predictions  from a constraint-based model 
accounting for extracellular dynamics.

In the context of MFA, it has been shown how to estimate time-varying fluxes and 
extracellular metabolite concentrations  considering uncertainty and dealing with data 
scarcity. We have also outlined a procedure for monitoring the consistency between 
measurements and mode during a cultivation, which can be a useful tool for on-line 
fault detection in industrial processes. Notice also that dynamic Poss-MFA inherits 
other benefits  of the possibilistic framework that were discussed in chapter VII. For 
instance, Poss-MFA handles data scarcity, and represents knowledge in a flexible way 
to account for measurements uncertainty or model imprecision.

As stated above, the first method described to perform dynamic Poss-MFA computa-
tions, which considers all the constraints simultaneously, is computationally expensive 
when the sampling rate is high. Fortunately, this problem will be rare because extra-
cellular dynamics are typically slow and measurements  are taken with low sampling 
rates. To deal with high sampling rates, the so-called “isolated” approach, or a mixed 
one, can be used, but this  comes at the cost of wider estimations. Future work should 
address  this issue, because a better approach to deal with faster sampling rates could 
make the methodology suitable to other problems.

In the context of FBA we have shown that the possibilistic approach is  able to provide 
rich predictions, for fluxes and external metabolites, which (a) consider sub-optimality, 
thus improving the agreement with measured data, and (b) include alternate and 
quasi-alternate optima solutions.

In summary, we have shown that the possibilistic framework enables  getting richer 
dynamic predictions from a constraint-based model, using measurements, as  in Poss-
MFA, or invoking optimal cell behaviour, as in Poss-FBA.
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IX
Possibilistic validation of a constraint-based 

model of P. pastoris

In this chapter elementary modes analysis and Possibilistic MFA are used to validate 
against experimental data a model of P. pastoris, a yeast used in industry for the expres-
sion of  recombinant proteins. 

This  work follows a systematic, yet simple, procedure to validate small-sized 
constraint-based models in a common scenario of  data scarcity.

Part of  the contents of  this chapter have been published in the journal paper:

• Tortajada M, Llaneras F, Picó J. Validation of a constraint-based model of Pi-
chia pastoris growth under data scarcity. BMC Systems Biology, 4:115.
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9.1  Introduction

The biochemical reactions involved in the metabolism of cells are assembled in net-
works, which can then be used to build constraint-based models, assuming that inter-
nal metabolites not accumulate (thus  avoiding reaction kinetics) and incorporating 
other constraints, such as enzyme kinetics, thermodynamics, or the irreversibility of 
certain reactions (see chapter II for details). These constraint-based models are often 
build upon large, or genome-scale, networks of well-characterised organisms such as 
E. coli, S. cerevisiae, or P. putida, (Feist, 2007; Nogales, 2008) but also in simpler networks 
that consider only a few key metabolites (Schuetz, 2007; Teixeira, 2007; Nookaew, 
2007).

As seen in previous  chapters, a constraint-based model can be combined with extra-
cellular measurements  to perform metabolic flux analysis (MFA) and estimate the 
non-measured fluxes in the network. This provides  information about the state of cells 
at given circumstances.

The main difficulty to be faced to apply MFA is  the lack of measurements1. If one 
considers  all the complexity of the metabolic network of a cell, the available meas-
urements  (and known constraints) cannot offset its  under-determinacy nor reduce it 
enough to get valuable estimates. This  is why MFA can only be performed using rea-
sonably small networks. To keep reductions of the network at minimum, intracellular 
measurements from tracer experiments can be incorporated (Sauer, 2006; Wiechert, 
2001), but those data are in most cases not available. Interval and possibilistic meth-
ods (chapters IV and VII) are also helpful because do not require to completely offset 
the network under-determinacy to get the estimates. However, the main fact remains: 
reasonably small networks are required.

Unfortunately, these small-sized networks are sometimes not properly validated, even 
if they are simplifications of the whole (known) metabolism of a cell, and rely neces-
sarily on reductionist hypothesis. They are often not evaluated against datasets  differ-
ent from the one of interest, which is  thus inconveniently used both to validate the 
model and to perform the MFA analysis. Herein we discuss  a procedure seeking for a 
more exhaustive validation of  these networks.

We will follow a systematic, yet simple, procedure to validate a small-sized model of P. 
Pastoris using only data from extracellular measurements. The same procedure could 
be used with other organisms of  industrial interest.

We work with a model of Pichia pastoris, a methylotrophic yeast recognised world-wide 
as  a reference platform for the expression of recombinant proteins in eukaryotes, due 
to the possibility to grow cultures  to very high cell densities, its  ability to produce post-
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translational modifications, and the good protein yield per cost ratio. Heterologous 
genes  are cloned under P. pastoris’ strong and tightly regulated alcohol oxidase pro-
moter, and thus expressed when the cells  grow on methanol as sole or combined car-
bon source. The optimisation of recombinant protein expression in P. pastoris has been 
usually addressed heuristically. Only a few publications describe rational, model-based 
optimisation of Pichia growth and protein production. Among these, structured or 
metabolism-based models representing intracellular behaviour are particularly rare 
(Ren, 2003; Solà, 2007). 

The chapter is  organised as follows. First, a constraint-based model of P. pastoris will 
be described and validated against the available experimental data. Then, its ability to 
predict non-measured fluxes will be illustrated by estimating the biomass growth rate. 
The potential use of the model to predict intracellular fluxes will be discussed to close 
the chapter.

9.2  Methods

Recalling the formulation used in previous chapters, a constraint-based model—assuming 
steady-state for internal metabolites  and considering the irreversibility of some reac-
tions—can be described with a set of  model constraints (MOC) as follows:

MOC = N·v = 0
D·v ≥ 0

⎧
⎨
⎩⎪

(1)

Where v is  the flux vector representing the mass flow through each of the n reactions 
in the network, N is  the stoichiometric matrix, and D is  a diagonal matrix with Dii = 
1 if  the flux i is irreversible (otherwise 0).

The constraints in (1) define a space of feasible steady-state flux vectors, or flux states, 
which ideally comprises every theoretically possible phenotype: only flux vectors v 
that fulfil (1) are considered valid cellular states.

Consistency analysis

The simplest consistency analysis  could be performed checking that the flux states  shown by 
cells  fulfils  the constraints  imposed by the model. However, this  simple approach would be 
impractical because, as  measurements  are imprecise, they do not exactly satisfy the constraints. 
Such difficulty is overcome by taking into account uncertainty, as follows:

vm = wm + em (2)

where em represents the deviation between the fluxes vm in v and the measurements wm.
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 Model and measurements  will be consistent if there is  a flux vector v fulfilling (1) and (2) for  
“reasonably small” deviations  em. Otherwise, we will conclude that model and measurements 
are inconsistent. An easy way to evaluate the consistency is  finding the flux vector v fulfilling 
(1-2) that minimises the (variance-weighted) sum of  measurements errors:

min Φ = em
T·F−1 ·em s.t. MOC (3)

where it is  assumed that em are distributed normally with a mean value of zero and a 
variance-covariance matrix F.

If only linear equality constraints  are considered in MOC, the residual φ is  a stochastic vari-

able following a χ2-distribution, and therefore a χ2-test can be used to detect and evaluate the 

inconsistency. The χ2-test is  based upon statistical hypothesis  testing to determine if the devia-
tion is within expected experimental error (See chapter II). However, we want to consider 
inequality constraints  in (2), so the χ2-test cannot be used because its  assumptions are not ful-
filled (φ does  not follows  a χ2-distribution anymore). Yet, the residual φ provides  at least a 
rough indication of  consistency. 

Consistency analysis with Possibilistic MFA

The consistency analysis  can also be formulated as a possibilistic constraint satisfac-
tion problem, following the ideas presented in chapter VII. The basic idea is that a 
flux vector fulfilling the model constraints  (1) and compatible with the measurements 
will be considered “possible”, otherwise “impossible”. This idea can be refined to 
handle measurements errors by using the notion of  “degree of  possibility”. 

As explained in chapter VII, we can introduce a set of measurement constraints 
(MEC) considering measurement imprecision, as  in (2), but where em is  substituted by 
two pairs of  nonnegative decision variables:

MEC =

vm = wm + ε1 − µ1 + ε2 − µ2

ε1, µ1 ≥ 0

0 ≤ ε2 ≤ ε2
max

0 ≤ µ2 ≤ µ2
max

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(4)

These decision variables {ε1, µ1, ε2, µ2 } relax the basic assertion wm = vm, conform-
ing a possibility distribution in (wm, vm) associated to some cost index J. 

Among different possible choices, a simple –yet sensible– one is the linear cost index:

J =α ·ε1 + β·µ1 (5)
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 with α≥0 and β≥0 being row vectors of  user-defined, sensor reliability coefficients.

The cost index J reflects  the log-possibility of a particular combination of the decision 
variables δ={v, ε1, µ1, ε2, µ2}, that is, the log-possibility of a particular flux vector v. 
The possibility of  each solution is given by:

π (δ ) = e− J(δ ) δ ∈MOC∩MEC (6)

The interpretation of (4) and (5) may be: “wm = vm is  fully possible; the more wm dif-
fers from vm, the less possible such situation is”.

The maximum possibility (minimum-cost) flux vector vmp corresponding to a given 
set of  measurements can be obtained solving a linear programming (LP) problem:

min
ε ,µ ,v

 J s.t. MOC
MEC

⎧
⎨
⎪

⎩⎪
(7)

The possibility of  the most possible flux vector vmp being, πmp = e
− Jmin .

This  degree of possibility provides an indication of the consistency between model 
(MOC) and measurements  (MEC): a possibility equal to one must be interpreted as 
complete agreement between the model and the original measurements; lower values 
of possibility imply that certain error in the measurements is  necessary to find a flux 
vector fulfilling the model constraints.

See chapter VII for further technical details on the possibilistic framework.

Estimating the non-measured fluxes with Possibilistic MFA

Possibilistic MFA can also estimate the non-measured fluxes, based on the model and 
the available measurements  (as  discussed in chapter VII). The simplest point-wise es-
timate is the minimum-cost flux vector resulting from (7), which contains  most possi-
ble value for each flux. However, a point-wise estimate is  limited when multiple com-
binations might be reasonably possible; in this situation, a possibilistic interval esti-
mate is a better choice. 

Remember that the interval of values with conditional possibility higher than γ for a 
given variable, vi,g

m , vi,g
M⎡⎣ ⎤⎦ , can be computed solving two LP problems:
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vi,g
m = min

ε ,µ ,v
 vi s.t.  

MOC∩MEC
J − logπ (vm ) < − logγ

⎧
⎨
⎪

⎩⎪
(8)

The upper bound vi,g
M would be obtained by replacing minimum by maximum. 

9.3  Constraint-based model of P. pastoris

The metabolic network presented in Figure 9.1 is  based on the stoichiometric model 
defined in (Dragosits, 2009) for P. pastoris growth on glucose, which has been extended 
with reactions representing methanol and glycerol metabolism. 
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depicted, but given in Table 9.3.



The main catabolic pathways—Embden-Meyerhof-Parnas  pathway, citric acid cycle, 
pentose phosphate and fermentative pathways—of the yeast P. pastoris are represented 
for growth on the substrates  mainly used for its  culture: glucose, glycerol and metha-
nol. A mean biomass equation derived from the macromolecular composition of the 
yeast is  used to summarise the anabolic pathways (Dragosits, 2009). Key metabolites 
such as  NAD, NADP, AcCoA, oxalacetate and pyruvate are considered in distinct cy-
tosolic (cyt) and mitochondrial pools (mit).

The model considers 45 compounds  and 44 metabolic reactions  (tables 1-3). The 
steady-state assumption can by applied to 36 metabolites, resulting in 8 degrees of 
freedom. The corresponding 36×44 stoichiometric matrix N and the vector of reac-
tions reversibility—the diagonal of matrix D—is given in Table 9.4. Matrices N and 
D define the constraint-based model used in this rest of  the chapter.

Table 9.1. Extracellular metabolites.

O2 (E) Oxygen Cit (E) Citric Acid
GLU (E) Glucose Pyr (E) Pyruvic acid
CO2 (E) Carbon dioxide Met (E) Methanol
EtH (E) Ethanol Biom Biomass
GOL (E) Glycerol

Table 9.2. List of  internal metabolites.

GLCcyt Glucose ACCOAmit Acetyl coenzyme A (mitochondrial)
G6Pcyt Glucose-6-phosphate OAAmit Oxalate (mitochondrial)
F6Pcyt Fructose-6-phosphate ICITmit Isocitric acid (mitochondrial)
FBPcyt Fructose-6-biphosphate AKGmit 2-Amino-6-ketopimelate (mitochondrial)
DHAPcyt Dihydroxyacetone phosphate PYRmit Pyruvate (mitochondrial)
GAPcyt D-glyceraldehyde 3-phosphate SUCmit Sucinate (mitochondrial)
PG3cyt Glyceraldehydes-3-phosphate MALmit Malate (mitochondrial)
PEPcyt Phosphoenolpyruvate NADPHmit NADPH (mitochondria)
PYRcyt Pyruvate ACDcyt Acetaldehyde
GOLcyt Glycerol ACEcyt Acetate
RU5Pcyt Ribulose-5-phosphate iCO2 Carbon dioxide
R5Pcyt Ribose-5-phosphate iO2 Oxygen
XU5Pcyt Xylulose-5-phosphate NADH NADH
S7Pcyt Sedoheptulose-7-phosphate EtOH cyt Ethanol
E4Pcyt Erythrose--4-phosphate MeOHcyt Methanol
OAAcyt Oxalate HCHOcyt formaldehyde
AKGcyt 2-Amino-6-ketopimelate DHAcyt dihydroxyacetone
ACCOAcyt Acetyl coenzyme A NADPHcyt NAD

Cytosolic (cyt) and mitochondrial pools (mit) are considered.
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Table 9.3. List of  considered reactions in the model of  P. pastoris.

System Reaction

Embden Meyerhoff  Parnas (Glycolysis) GLCcyt > G6Pcyt 
G6Pcyt <> F6Pcyt 

F6Pcyt <> FBPcyt 
FBPcyt <> DHAPcyt + GAPcyt

DHAPcyt <> GAPcyt
GAPcyt + NADcyt <> PG3cyt + NADHcyt 
PG3cyt <> PEPcyt + H2O

PEPcyt <> PYRcyt 

Pyruvate branch point PYRcyt + iCO2 > OAAcyt 

PYRcyt <> ACDcyt + iCO2

Fermentative patways ACDcyt + NADHcyt > ETHcyt + NADcyt

ACDcyt + NADPcyt > ACEcyt + NADPHcyt 
ACEcyt + HCOAcyt > ACCOAcyt 

TCA cycle PYRmit + HCOAmit + NADmit > ACCOAmit + iCO2 + NADHmit

ACCOAmit + OAAmit <>ICITmit + HCOAmit 
ICITmit + NADmit >AKGmit + iCO2 + NADHmit 
ICITmit + NADPmit > AKGmit + iCO2 + NADPHmit

AKGmit + NADmit > SUCmit + iCO2 + NADHmit 
SUCmit + NADmit > MALmit + NADHmit 

MALmit + NADmit > OAAmit+ NADHmit

Pentose phosphate pathway G6Pcyt + 2 NADPcyt > RU5Pcyt + iCO2 + 2 NADPHcyt 

RU5Pcyt >XU5Pcyt
RU5Pcyt > R5Pcyt
R5Pcyt + XU5Pcyt > S7Pcyt + GAPcyt

S7Pcyt + GAPcyt > E4Pcyt + F6Pcyt
E4Pcyt + XU5Pcyt>F6Pcyt + GAPcyt

Glycerol formation DHAPcyt + NADHcyt > GOLcyt + NADcyt 

Oxidative phosphorylation NADH + 0.5 iO2 > NAD

Transport reactions OAAcyt <> OAAmit

PYRcyt >PYRmit
AKGmit >AKGcyt
O2(E) > iO2

GLC(E) > GLCcyt
iCO2 >CO2(E)

ETHcyt > ETH(E)
GOL(E)> GOLcyt
CIT(E) <> ICITmit

PYR(E) >PYR cyt
MET(E) > METcyt

Methanol metabolism METcyt + 1/2 O2 > HCHOcyt + H2O

HCHOcyt + 2 NADcyt > 2 NADHcyt + iCO2 
HCHOcyt + XU5Pcyt <> DHAcyt + GAPcyt 
DHAcyt > DHAPcyt 

Biomass Synthesis 0,0033 ACCOAcyt + 0,008 ACCOAmit + 0,0266 AKGcyt + 0,0146 E4Pcyt + 0,0363 F6Pcyt + 

0,0165 PG3cyt + 0,0363 G6Pcyt + 0,0000003 GOLcyt + 0,000002 iO2 + 0,0242 OAAcyt + 
0,00079 OAAmit + 0,0252 PEPcyt + 0,0294 PYRmit + 0,011 R5Pcyt + 0,199 NADPHcyt + 
0,056 NADPHmit + 0,0626 NAD > 1 BIOM + 0,0127 iCO2 + 0,0626 NADH + 0,0033 

HCCOAcyt + 0,008 HCCOAmit + 0,199 NADPcyt + 0,056 NADPmit 

232



T
ab

le 9.4. Stoichiom
etric m

atrix of P. pastoris.

Irreversible
1

0
0

0
0

0
0

0
1

1
1

1
1

1
0

1
1

1
1

1
1

0
0

0
0

0
0

1
0

1
1

1
1

0
1

1
1

1
1

1
0

1
1

1
R

eaction
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

O
2

G
L

C
C

O
2

E
T

G
O

L
C

it
Pyr

M
E

T
B

IO

1
G

L
C

cyt
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
2

G
6Pcyt

1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-0,036

3
F6Pcyt

0
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-0,036

4
FB

Pcyt
0

0
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

D
H

A
Pcyt

0
0

0
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

6
G

A
Pcyt

0
0

0
1

1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

-1
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

7
PG

3cyt
0

0
0

0
0

1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-0,017
8

PE
Pcyt

0
0

0
0

0
0

1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-0,025

9
PY

R
cyt

0
0

0
0

0
0

0
1

-1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

10
G

O
L

cyt
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
11

N
A

D
PH

cyt
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-0,199
12

iC
O

2
0

0
0

0
0

0
0

0
-1

1
0

0
0

1
0

1
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

-1
0

0
0

0
0

0,0177
13

R
U

5Pcyt
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

-1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
14

R
5Pcyt

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-0,011

15
X

U
5Pcyt

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
-1

0
-1

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

0
0

0
0

16
S7Pcyt

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
E

4Pcyt
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-0,015
18

O
A

A
cyt

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-0,024

19
PY

R
m

it
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

-0,029
20

A
C

C
O

A
m

it
0

0
0

0
0

0
0

0
0

0
0

0
0

1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-0,008
21

O
A

A
m

it
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-0,001
22

IC
IT

m
it

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
-1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

23
N

A
D

H
0

0
0

0
0

1
0

0
0

0
-1

0
0

1
0

1
0

1
1

1
0

0
0

0
0

0
-1

-1
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0,0627
24

A
K

G
m

it
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
25

N
A

D
PH

m
it

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-0,056

26
A

K
G

cyt
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

-0,027
27

SU
C

m
it

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

28
M

A
L

m
it

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
-1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

29
A

C
D

cyt
0

0
0

0
0

0
0

0
0

1
-1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
30

A
C

E
cyt

0
0

0
0

0
0

0
0

0
0

0
1

-1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

31
A

C
C

O
A

cyt
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-0,003
32

iO
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
-1

0
0

0
-1

0
0

0
1

0
0

0
0

0
0

0
-2E

-05
33

E
tO

H
 cyt

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

34
M

eO
H

cyt
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

0
1

0
35

H
C

H
O

cyt
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
-1

-1
0

0
0

0
0

0
0

0
0

0
36

D
H

A
cyt

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

-1
0

0
0

0
0

0
0

0
0

Chapter IX   |   233 



9.4  Analysis of the elementary modes

As explained in chapters II and III, elementary modes analysis provides a way to sys-
tematically identify a set of relevant pathways of a metabolic network (Schuster, 
1999). The elementary modes  (EMs) are the simplest (steady-state) flux vector that 
cells can show; whereas  the remaining feasible states  can be seen as its aggregated ac-
tion (without cancelations of reversible fluxes). Moreover, the fact that they comprise 
all the simple pathways in the network—the functional states or non-decomposable 
vectors—makes  it possible to investigate the infinite behaviours that cells can show by 
simply inspecting them. They have been used, for instance, to identify pathways with 
optimal yields (Schuster, 2002), determine minimal medium requirements (Schilling, 
2000), and infer viability of  mutants (Stelling, 2002).

The 98 elementary modes  for the model described in the previous  section were ob-
tained using Metatool (Pfeiffer, 1999). The set of EMs can be classified as shown in 
Figure 9.2 depending first on its ability to produce biomass, and second on the carbon 
source used: glucose, methanol or glycerol. There are 17 EMs that do not result in 
biomass  production, whereas 9 generate ethanol. No ethanol is  produced in single 
substrate EMs when growing. 

The carbon yields  for biomass obtained for each EM are shown in Table 9.5. The 
maximum yield is 4.93 Cmol∙dcw/Cmol, and is achieved with glucose as solely sub-
strate. Glucose is  the most efficient substrate for growth also in combination with glyc-
erol or methanol. Methanol is the worst biomass yielding substrate. The distribution 
of  the EMs according to their biomass yield is illustrated in Figure 9.3.

Table 9.5. Maximal biomass yields (Cmol∙DW/mol)

Glu Glyc Met YTotal EM

x 4.93 32

x 2.46 33

x 0.82 37

x x 3.68 41

x x 2.25 38

x x 3.98 34

x x x 3.47 85
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EMS: GLC + GLY + Methanol => growth

EMS: GLC or GLY or Methanol => growthEMS: GLC + GOL, GLC + MET, GOL + MET => growth

EMS: no growth

O2      GLC    CO2   ETH   GOL     CIT     PYR   MET    BIO

O2      GLC    CO2   ETH   GOL     CIT     PYR   MET    BIO

O2      GLC    CO2   ETH   GOL     CIT     PYR   MET    BIO

O2      GLC    CO2   ETH   GOL     CIT     PYR   MET    BIO

Figure 9.2. Macroscopic equivalents  of the elementary modes. Blue denotes substances  being con-

sumed by the EM, and red those being produced (the darker, the higher stoichiometric coefficient).
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9.5  Validating the model against experimental data

In this  section a total of 11 different datasets compiled from the literature (tables 6 
and 7) are used to determine whether the simplified model described above is coher-
ent with the available experimental data.

Validation: experimental versus theoretical yields

As a first validation, we checked that the experimental growth yields  do not exceed 
the maximum theoretical ones  given by the model (which have been obtained by in-
spection of the elementary modes). For instance, the theoretical yield for growth on 
glucose is 4.93, whereas the experimental one is  3.98 (Cmmol∙DW/mmol). The 
maximum yield on glycerol and methanol is 2.25, and the experimental ones—at dif-
ferent ratios of glycerol and methanol—range between 1.31 and 0.63. It also seems 
that the experimental yields decrease for combinations of substrates with lower theo-
retical yields. 
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Figure 9.3. Biomass yields for each elementary mode of  the network of  P. pastoris.
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Thus, no experimental yield violates the maximum theoretical ones (the contrary 
would indicate errors  in the model because theoretical yields were obtained from it). 
However, the experimental yields  tend to be lower than theoretical ones. There are 
multiple reasons  for this deviation: (a) the model does not consider restrictions  on en-
ergy cofactors, such as ATP, nor the resources devoted to recombinant protein pro-
duction, (b) the EM analysis do not takes into account the ratio between the different 
substrates  in mixed cases, and (c) even if they are feasible, cells does  not necessarily 
make use of  the pathways optimal for growth (Schuetz, 2007).

Validation: consistency between model and experimental data

The same datasets  are now used to check that the experimental measurements, which 
reflect the metabolic state of cells, are feasible states  according to the model. Two dif-
ferent analysis  of consistency were performed: one based on minimized, variance-
weighted sum of squared residuals  (φ) and another one based on the possibility of the 
most possible flux state or vector (π). Both were described in the methods section. The 
possibilistic approach is preferred in this  case because the analysis of least squares  re-
siduals has limitations due to the presence of  inequalities in the model. 

In all weighted least squares problems, a standard deviation of 10% is assigned to 
each measurement of the set trying to capture their uncertainty. The variance-
covariance matrix F in (4) is defined accordingly.
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Table 9.6. Validation of  the model against experimental data (yields).

Ref* μ QGlu QGly QMet Qet OUR CPR QP Yields Exp. / Theo.Yields Exp. / Theo.

Cmol/
(Kg∙h)

Cmol/
(Kg∙h) " " " " " mg/ 

(g∙h) 
Cmol∙DW/

(mol) "

D1 3.86 0.97 0.00 0.00 0.00 2.02 2.07 0.020 3.98 < 6.62

A1 1.88 0.00 1.09 0.00 0.00 2.16 1.56 0.000 1.73 < 2.46
A2 2.07 0.00 0.95 0.63 0.00 2.70 1.70 0.001 1.31 < 2.25
A3 1.72 0.00 0.74 1.48 0.00 3.90 2.10 0.014 0.77 < 2.25
A4 2.02 0.00 0.57 2.33 0.00 4.85 2.21 0.024 0.70 < 2.25

B1 6.17 0.00 2.75 0.00 0.00 3.62 2.35 0.000 2.24 < 2.46
B2 6.18 0.00 2.22 1.87 0.00 7.19 4.18 0.001 1.51 < 2.25
B3 6.24 0.00 2.23 2.73 0.00 7.20 3.60 0.012 1.26 < 2.25

C1 2.32 0.00 0.74 2.22 0.00 3.58 2.05 0.012 0.78 < 2.25
C2 2.32 0.00 0.37 3.33 0.00 4.44 2.55 0.021 0.63 < 2.25
C3 2.32 0.00 0.00 4.44 0.00 5.29 2.82 0.022 0.52 < 0.82

*All the datasets correspond to continuous fermentation in defined chemical media. Further detail can 

be found in D, (Dragosits, 2009); A, (Solà, 2007); B, (Solà, 2007); C, (Jungo, 2007). Citrate and Pyru-
vate are assumed not to be produced nor consumed, except for dataset D1 in which citrate is consumed 
at 0.007 Cmol/(Kg∙h).



In Possibilistic MFA problems, the uncertainty of the measurements was  represented 
as follows: 

• Full possibility (π=1) is  assigned to values near the measured ones, less  than 
±5% deviation, to account for random errors. 

• A decreasing possibility is assigned to larger deviations so that values  with a de-
viation equal to ±20% have a possibility of π=0.1 (those values with a deviation 
of  ±9.5% will have possibility of  π=0.5).1

This  representation is  achieved choosing the necessary bounds (ε2max, µ2max) and 
weights  (α, ß) for each measurement wm. Due to (a), the bounds are simply defined as  
ε2max=µ2max =0.05∙wm. Then we operate with equations  (5-7) to achieve (b). From (5) 
we have that, 0.2∙wm=ε120%+ε2max, and from (6) and (7), log(0.1)=– α∙ε120%. As  a result 
we get that, α=–log(0.1)/(0.2-0.05)/wm. Since uncertainty is symmetric, ß=α. 

The results for each dataset are shown in Table 9.7, where the minimised, variance-
weighted sum of squared residuals  (φ) and the possibility of the most possible flux 
state or vector π(vmp) are given. The last column contains another useful indicator of 
consistency: the degree of measurements  uncertainty needed to find a flux vector in 
full agreement with the model constraints (i.e., with π=1). All the computations were 
performed with MATLAB (MathWorks Inc., 2003), and YALMIP toolbox (Lofberg, 
2004) was used to perform Possibilistic MFA.  

The consistency between model and experimental measurements is  very high, except 
for a pair of datasets. In these cases, the inconsistency pinpoints  especial characteris-
tics of  these sets of  data, as explained below. 

The dataset D1, which corresponds  to Pichia growing on glucose, shows  very good 
agreement. The measured data has full possibility (π=1), meaning that there is a flux 
vector compatible with model and measurements; a band of 1% around the meas-
ured values is encloses this flux vector. The residual is also very low.

Datasets  A1 and A2, which correspond to cultures  growing totally or mainly on glyc-
erol and producing a small amount of protein, also show a good agreement. The dis-
crepancy between measurements and model is  bigger for A3 (π=0.25), but still a band 
of 10% of deviation around measurements encloses a flux vector compatible with the 
model. Dataset A3 corresponds to a culture growing mainly on methanol, but sup-
plemented on glycerol, and producing larger amounts of protein. The discrepancy is 
larger for A4, which corresponds to a scenario with high protein productivity. 
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1 Notice that possibility has been defined by conjunction (see methods),  so that if two measurements are 
deviated, for instance with possibilities 0.8 and 0.5 respectively, their joint possibility will be 0.4. Hence, 
a maximum possibility of 0.36 implies that there is an error between 10% and 20% in one measure-
ment, or maybe an error between 5% and 10% in two measurements.



Similar results  are obtained with cultures  at a higher growth rate: B1 is  highly consis-
tent, while protein producing B2 and B3 show similar behaviour to A3-A4. This re-
veals the existence of non-modelled phenomena, probably related with protein pro-
duction. The agreement is quite good for the three datasets C1-C3, but the increase 
of  the discrepancy along with higher protein expression is also noticeable.

Finally, we used two batteries of random datasets  to assess whether the model is in-
deed able to reject flux vectors that do not correspond to actual states  of P. pastoris cul-
tures. These datasets  were defined taking random combinations of values for each 
flux within predefined bounds (see Table 9.7). Most of these random scenarios  were 
highly inconsistent with the model (possibilities lower than 0.1 in 99% and 95% of the 
datasets, for each battery).

In summary, the constraint-based model shows acceptable agreement with the ex-
perimental data reported by different groups for P. pastoris cultures, and at the same 
time, rejects artificially generated invalid datasets. The scenarios with lower agree-
ment pinpoint non-modelled phenomena, possibly related to protein expression.
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Table 9.7. Validation of  the model against experimental data (consistency).

Ref* μ QGlu QGly QMet Qet OUR CPR QP Consistency**Consistency**Consistency**

Cmmol/
(g∙h)

mmol/ 
(g∙h) " " " " " mg/ 

(g∙h) φ π To 
π=1

D1 3.86 0.97 0.00 0.00 0.00 2.02 2.07 0.020 0.03 1.00 2%

A1 1.88 0.00 1.09 0.00 0.00 2.16 1.56 0.000 0.28 1.00 7%

A2 2.07 0.00 0.95 0.63 0.00 2.70 1.70 0.001 1.20 0.73 12%
A3 1.72 0.00 0.74 1.48 0.00 3.90 2.10 0.014 2.81 0.25 20%
A4 2.02 0.00 0.57 2.33 0.00 4.85 2.21 0.024 5.36 0.09 29%

B1 6.17 0.00 2.75 0.00 0.00 3.62 2.35 0.000 0.07 1.00 4%

B2 6.18 0.00 277 1.87 0.00 7.19 4.18 0.001 0.88 0.82 12%
B3 6.24 0.00 2.23 2.73 0.00 7.20 3.60 0.012 2.34 0.32 19%

C1 2.32 0.00 0.74 2.22 0.00 3.58 2.05 0.012 0.06 1.00 3%

C2 2.32 0.00 0.37 3.33 0.00 4.44 2.55 0.021 0.79 1.00 10%
C3 2.32 0.00 0.00 4.44 0.00 5.29 2.82 0.022 1.63 0.49 15%

Random 0-10 0-10 0-10 0-10 0-10 0-10 0-10 - >10 99% <0.1 99% -
Random 1.5-6 0-2 0-2.7 0-2.7 0-0.1 2.1-7.2 1.5-4 - >10 86% <0.1 95% -
*All the datasets correspond to continuous fermentation in defined chemical media. Further detail can 
be found in D, (Dragosits, 2009); A, (Solà, 2007); B, (Solà, 2007); C, (Jungo, 2007).

Citrate and Pyruvate are assumed not to be produced nor consumed, except for dataset D1 in which 
citrate is consumed at 0.007 Cmol/(Kg∙h).
**Abbreviations refer to: minimized sum of  squared residuals (φ), possibility of  the most possible flux 

vector (π) and degree of  measurements uncertainty to π=1.



9.6  Using the model to predict growth

Possibilistic MFA can now be applied to estimate the biomass growth rate for each of 
the previous datasets. Details of this  estimation can be found in the methods  section. 
Basically, Possibilistic MFA is applied to the datasets shown above excluding the 
measured value for the growth rate (which will be used to validate the estimates).

The estimated growth rate is found to be in very good agreement with the measured 
one for the vast majority of the analysed scenarios (D1, A1, A3, A4, B1, B2, B3, C1 
and C2), which correspond to cultures at different growth rates, using different sub-
strates, and coming from three independent literature references. For two other sce-
narios (A2 and C3), the most possible estimate is still accurate.

The fact that, although limited, the model has  predictive capacity provides further 
validation for the constraint-based representation. This conclusion is  strengthened if 
we consider that the growth rate is  highly interconnected along the whole network, 
since the biomass equation takes  into account several metabolic precursors (Table 
9.3), and thus accurate correspondence between substrate uptake, respiratory fluxes 
and growth cannot be inferred from the network in a straightforward way.
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Figure 9.4. Prediction of growth rate for P. pastoris cultures  using Possibilistic MFA. Crosses denote the 

measured values  and circles most possible estimates. The intervals of possibilities of 0.8 (box), 0.5 (bar) 
and 0.1 (lines) are also depicted.



9.7  Using the model to estimate every flux

Once a validated model is available, possibilistic MFA could be used to estimate all 
the fluxes, intracellular or extracellular, as it has  been done with the growth rate in the 
previous section (and as  it was deeply discussed in chapter VII). For illustration pur-
pose, the whole distribution of  fluxes for the scenario A2 is depicted in Figure 9.5. 
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Figure 9.5. Possibilistic MFA estimates for every flux in the scenario A2. Most possible values  (circles 
and squares for measured and non measured fluxes, respectively) and intervals of conditional possibili-

ties 0.8, 0.5 and 0.1 are depicted for each flux.
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Notice that these estimations  could not be done with traditional MFA because the 
measurements would be insufficient to get a determined system. The network has 8 
degrees of freedom (44 fluxes  and 36 linear equations) and there are 9 measured 
fluxes. However, these measurements  introduce only 7 independent linear constraints, 
so the system remains  underdetermined with 1 degrees  of freedom. Possibilistic MFA 
can be used because considers reactions irreversibility and gives interval estimates  (or 
even distributions) if  there are multiple reasonably possible flux values.

It is also possible to estimate fluxes  of particular interest to compare the different sce-
narios. For instance, the estimates  for three relevant groups of fluxes, which represent 
splitting nodes within the network, are depicted in Figure 9.6.

• Fluxes v2, v3 and v4 belong to glycolysis pathway, are positive as  expected in cul-
tures grown in glucose, and appear inverted in glycerol and/or methanol fed 
cultures.

• Fluxes v21, v22 and v23 represent the isomerization of R5P into Ru5P and Xu5P. 
Note how v23 inverts its direction at growing methanol fluxes, as  increased 
methanol consumption demands higher amounts of Xu5P thus requiring more 
R5P precursor.

• Fluxes v32, v33 and v34 represent the branch-point related to methanol usage, 
that is, how this  flux is split between direct oxidation and catabolic pathways. 
High methanol fluxes are necessarily conducted through CO2 generation: see 
how flux v34 becomes distinct from zero in A4, B4, C2 and C3 scenarios.

These results, even if  may require to be tested experimentally, can lead intervention 

within cells or optimization through manipulation of  extracellular variables.

9.8  Conclusions

This  chapter has  described the application of the possibilistic framework (introduced 
in chapter VII) to validate a constraint-based model of Pichia pastoris in a real scenario 
of  data scarcity where only a few extracellular measurements are available.

The model of Pichia pastoris has shown a reasonably agreement with the measure-
ments  in several scenarios, and at the same time, is able to rejects  artificial, invalid da-
tasets. Besides, it has been verified that the model has  predictive capacity for cell 
growth rate, an attractive target for industrial fermentation monitoring and control. 
Interestingly, the accuracy of predictions  worsens for higher protein producing sce-
narios, showing how the model, derived for a wild-type strain, is  increasingly less  pre-
cise as wider resources are devoted to recombinant protein generation. 
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It must be highlighted that the model has been strictly constructed upon first-
principles  and sensible hypothesis. At this  point, the model can be curated, extended, 
and its  parameters tuned to improve the consistency with the investigated scenarios. 
Particularly, energy requirements, strongly related to protein expression, are not yet 
considered by the model. Possibilistic MFA becomes a useful tool to systematise this 
procedure of  model improvement.

Under a general perspective, the work described in this chapter shows how a small-
sized network can be assessed following a rational, quantitative procedure even when 
measurements are scarce. This approach enables  validation considering the stoichio-
metric balances  and also reactions reversibilities, and accounting for measurements 
imprecision. The use of Possibilistic MFA also makes it possible to predict non-
measured fluxes  without removing the network underdeterminancy. There is, how-
ever, a challenge when validating networks with higher number of degrees  of freedom 
because there may be many flux vectors compatible with the (few) available measure-
ments. It is  expected that the datasets  will be highly consistent, so the approach in this 
case would be to check if  the model rejects the artificially generated invalid datasets.

This  chapter also illustrates  the potential of the possibilistic estimates in scenarios 
lacking data. For instance, when a validated model is available—ideally incorporating 
measurements for some intracellular fluxes—the kind of comparative analysis  de-
scribed in the last section can provide insight on how the internal state of the cells de-
termines  its  external behavior. This knowledge can potentially lead intervention 
within cells, suggesting target metabolites  or biochemical branch-points, and optimize 
through manipulation of extracellular variables, such as feeding strategies  and sub-
strate selection.
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“Maturity of mind is the capacity to endure uncer-
tainty”

John Finley

 
Conclusions 

This  thesis addressed problems related to constraint-based metabolic models. The ob-
jective was to find simple ways to handle the difficulties that arise in practice due to 
uncertainty: models  of organisms of interest are incomplete, there is a lack of meas-
urable variables, those available are imprecise, etc. With this  purpose in mind, we 
have developed tools to analyse, estimate and predict the metabolic behaviour of  cells.

The contributions of this work were listed in the introduction, and particular conclu-
sions can be found in each chapter. Here, some general conclusions  are discussed to-
gether with lines for future work.

• The application of constraint-based models show that much valu-
able information can be extracted from them even if intracellular 
kinetics are unknown. Constraint-based models  are being employed to ana-
lyse the modelled organisms (e.g., identify optimal pathways), to simulate ge-
netic modifications  (e.g., gene deletions), to estimate which reactions  are active 
at certain conditions, and to predict cells  behaviour. Moreover, new and better 
knowledge will improve the models  in an iterative way since they are easily ex-
tensible. Indeed, we expect that the increasing availability of biological data 
will fuel the use of  mathematical models in biology.

• Interval and possibilistic MFA-wise methods provide better esti-
mates of the metabolic state of cells (chapters IV and VII). The esti-
mation of the metabolic fluxes provides  insight on the internal state of cells, 
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which determine the behaviour exhibit at given environmental conditions. This 
knowledge can potentially lead to intervention within cells, suggesting target 
metabolites  or biochemical bifurcation, and process  optimisation through ma-
nipulating external variables, such as  feeding strategies or substrate selection. 
The interval approach (FS-MFA) is  a simple extension of traditional MFA that 
considers  inequality constraints and measurements  uncertainty, and can be ap-
plied even if measurements are scarce or imprecise. The possibilistic methodol-
ogy (Poss-MFA) is  slightly more complex, but also more powerful. It has a dis-
tinctive advantage over other approaches  which either rely on stronger assump-
tions (chi-squared distributions, absence of irreversibility), or are only data-
based (so they do not incorporate a model), or provide only point-wise esti-
mates (instead of the richer possibility distributions  and intervals), or are com-
putationally intensive (e.g., multi-variate integration in a general Bayesian esti-
mation problem). For these reasons, FS-MFA and Poss-MFA are a better alter-
native than traditional MFA in many current applications. An interesting exten-
sion of Poss-MFA would be to incorporate other constraints or measurements 
from stable isotope tracer experiments. This would be straightforward if the 
constraints  are linear equalities  or inequalities, but this  is  often not the case 
(e.g., thermodynamic constraints include integer variables). Although the possi-
bilistic framework could be still of use, most likely computational efficiency will 
be lost.

• The combination of a constraint-based model with measurements 
enables monitoring the intracellular state of cells during a running 
process (chapter VI and VIII). This  information is of great use for fault-
detection and manual or automatic control of industrial processes. Although 
similar approaches  have been described in the literature before, real applica-
tions remain difficult due to the scarcity of reliable online sensors. Interestingly, 
the methods proposed in this thesis  mitigate this problem (FS-MFA and Poss-
MFA). Yet, more variables  should be measurable online to boost these model-
based monitoring systems. Meanwhile monitoring could be applied quasi-
online using (fast) measurements  even if those require manual intervention. 
Current work is also being done to generalise the possibilistic monitoring as 
model-based observers suitable in other fields. 

• The major challenge regarding MFA-wise methods in large networks 
is the lack of information; many metabolic flux states are often compatible 
with the (known) constraints and the (few) available measurements. Conversely 
to traditional methods, those proposed here are still of use in this situation. 
Poss-MFA detects all the equally possible flux states (or “similarly” possible) 
capturing them by means of possibilistic distributions or intervals. If there is a 
wide range of candidates, however, the estimation may be little informative. If 
this  is  the case, one could decide to incorporate a rational assumption, as  it is 
done by FBA.
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• A possibilistic approach to FBA allows to account for alternate op-
tima and sub-optimality (Chapter VIII). FBA predicts  the state of cells  at 
given conditions  based on the assumption that cells  evolved to be optimal in 
some sense. Defining possibility for optimality, Poss-FBA gives predictions  that 
capture alternate optima (cell states with equal “performance”) and grades sub-
optimality, somehow relaxing the original assumption. So far, this  approach has 
been used to predict the fluxes and metabolite concentrations  during a cultiva-
tion process. However, the same ideas  should be used to analyse flux spaces as  it 
has been done with Monte Carlo sampling methods.1 Other relevant issues for 
FBA could be investigated under the possibilistic perspective, such as non-linear 
or multi-objective functions (both to better represent the strategies  that cells  ac-
quired through evolution). Some suggestive questions  arose in this respect when 
Poss-FBA was applied considering extracellular dynamics: can be assumed that 
cells behave optimally at each instant or should a temporal horizon be consid-
ered? Are cells optimal in rare environments (e.g., lack of competitors) or they 
anticipate that the environment is likely to change? Although these are specula-
tive questions, constraint-based models and FBA-wise methods may be of help 
for those interested in answering them.

• A constraint-based model can be validated even if experimental data 
is scarce (chapter IX). Many medium-sized metabolic models are not prop-
erly validated, ignoring that they are simplifications of the whole metabolism 
and rely on reductionist hypothesis. For instance, some models  are only evalu-
ated against one set of data, which is thus inconveniently used both to validate 
the model and perform the analysis. Trying to face this problem, this thesis 
proposes a simple procedure to validate models  against data from different cul-
tures that can be of use if data is  scarce. First, elementary modes  are used to 
check that the experimental growth yields  do not exceed the maximum theo-
retical ones  given by the model. Then, Poss-MFA is  used to check if the model 
shows acceptable agreement with the experimental data, and at the same time 
rejects artificially generated invalid data. This way, the data available is ex-
ploited to build more reliable reduced models. The procedure may be extended 
to detect limitations of a model and guide its improvement. This procedure has 
been applied to validate a model of P. pastoris, a yeast used in industry for the 
expression of  recombinant proteins.

• Possibility theory and a constraint-based model can be used to de-
tect errors in a set of experimental measurements (chapter VII). The 
approach is  similar to the χ2-tests used in traditional MFA, but more flexible: it 
is  not necessary to assume that errors are normally distributed and inequality 
constraints  can be considered besides  equalities  (e.g., irreversibility). Notice that 
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this  approach can be seen as the inverse of the validation procedure mentioned 
above (“check a model against reliable measurements” versus “check measure-
ments  against a reliable model”). Future work may apply these ideas  to find er-
rors in other measurements, such as metabolite concentrations.

• Elementary modes have advantages over other similar network-
based pathways (Chapter III). Although the minimal generating set will be 
preferred in some applications  due to its  reduced size and because their compu-
tation is more efficient, the elementary modes allow to answer several questions 
by simply inspecting them (such as which reactions  are essential to produce a 
compound, or which would be the effect of a reaction knockout). There is, 
however, a major limitation of all these approaches regarding large models: the 
number of pathways  dramatically increases, reducing understandability and 
becoming not computable. Recent works in literature face this problem looking 
for better ways  to compute the elementary modes  and proposing other path-
ways, smaller in number, but holding some of  their properties.

The work described in this thesis  shows  the importance of accounting for uncertainty 
when modelling living cells. We have seen that constraint-based models provide a way 
to handle uncertainty: maybe we cannot exactly model how cells operate,1 but the 
available knowledge allow us  to distinguish what is  possible (as far as we know) from 
what is not. Following this idea, we have developed interval and possibilistic methods 
to analyse, estimate and predict the metabolic behaviour of cells. These methods start 
by representing our knowledge accounting for its uncertainty, and then exploit this 
knowledge to generate reliable new information. 

Uncertainty is  still present in biological systems, it cannot be neglected, and it really 
makes things  more difficult. But it can be handled. This way imperfect mathematical 
models of  living cells can be used with success.
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