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Abstract

The flyby anomaly is a persistent riddle in astrodynamics. Orbital
analysis in several flybys of the Earth since the Galileo spacecraft flyby
of the Earth in 1990 have shown that the asymptotic post-encounter
velocity exhibits a difference with the initial velocity that cannot be
attributed to conventional effects. To elucidate its origin, we have de-
veloped an orbital program for analyzing the trajectory of the space-
craft in the vicinity of the perigee, including both the Sun and the
Moon’s tidal perturbations and the geopotential zonal, tesseral and
sectorial harmonics provided by the EGM96 model. The magnitude
and direction of the anomalous acceleration acting upon the space-
craft can be estimated from the orbital determination program by
comparing with the trajectories fitted to telemetry data as provided
by the mission teams. This acceleration amounts to a fraction of a
mm/s2 and decays very fast with altitude. The possibility of some
new physics of gravity in the altitude range for spacecraft flybys is
discussed.
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1 Introduction

The dawn of modern science is deeply intertwined with the improvement in
the accuracy of astronomical observations. Moreover, in the development
of General Relativity 1 a major role was played by the so-called anomalous
advance of Mercury’s perihelion as determined by Urbain Le Verrier in 1859
[49, 66]. Later on, Newcomb gave an improved value which it is very close
to the one accepted today [57]. Advances in astronomical instrumentation
have also been very important in the subsequent tests of the theory from
the determination of the angle of light bending for rays grazing the Sun in
eclipses [21] 2 to the latest verification of the frame-dragging and geodetical
effects on the Gravity Probe B experiment [22] 3.

In the last fifty years there have also been many developments in the high-
accuracy tracking of moons, planets and spacecraft by means of Doppler
effect of radio signals and laser ranging techniques [20, 32, 33, 34]. We
can fairly say that we are now at an era of high-precision astronomy and
astrodynamics in which the level of accuracy for the position and velocity
determination of spacecraft and celestial bodies is several order of magnitude
better than it was at the time of optical astronomy [81, 82]. Spacecraft
missions are of particular interest for testing gravitational and orbital models
and they also provide an opportunity for analyzing trajectories not usually
found in natural objects. Moreover, the careful design of spacecraft allows
for a better analysis of the physical effects acting upon them in comparison
with celestial bodies whose composition and physical parameters are not so
well-known. The improvement of measurement techniques has allowed for
the discovery of some possible astrometric and gravitational anomalies in
recent years such as: anomalous perihelion precessions of the planets, an
unexplained secular increase of the eccentricity of the Moon’s orbit, the faint
young Sun paradox, the secular increase of the mass parameter of the Sun,
among other. For comprehensive reviews see [42, 10].

Also, the improved high-accuracy tracking of spacecraft have revealed
some unexpected phenomena. The recent, but canonical example, of the
discovery of an unexplained residue in the tracking analysis of a spacecraft
corresponds to the Pioneer anomaly, i. e. , the anomalous constant drift of

1For recent overviews pointing to unsolved questions and perspectives see [41, 18]
2For some recent critical discussions on its implications see [46, 52, 76]
3For a comparative discussion of this measurement with other ones, see [38]. Overviews

of frame-dragging tests can be found in, e.g., [44, 64]
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the redshifted signal received from the Pioneer 10 and Pioneer 11 spacecraft
[8, 9, 71]. These spacecraft were sending downlink signals in response to re-
ceived uplinks since their launch in the early 1970s until the early 2000s when
they were at 80 AU from the Sun and during this time it became apparent
that they were exhibiting and anomalous acceleration towards the Sun with
magnitude aP = (8.74± 1.33)× 10−8 cm/s2 [72]. Despite some hasty claims
for new physics as the explanation of this anomaly, it has now been generally
accepted that the origin of the extra acceleration comes from the anisotropic
emission of thermal radiation off the spacecraft [72, 65]. This was already
proposed as early as 1998 by Murphy [55]. The spacecraft heat is diffusing
from the radioisotope thermoelectric generators filled with Plutonium 238,
whose half-life is 87.74 years, and the decay of this isotope correlates with the
diminishing anomalous acceleration unveiling the classical origin of the Pio-
neer anomaly. Notwithstanding this explanation in terms of thermal effects,
there are still some researchers who are seeking for some gravitational mech-
anism to provide a basis for the origin of the phenomenon (see, for example,
the work of Nyambuya [59]). However, this approach faces the problem of the
absence of any noticeable effects, from a similar acceleration, on the orbits
of the major bodies of the Solar system, as it has been crucially pointed out
by Iorio and Giudice [43] and Standish [68, 69].

Another lingering anomaly concerns the tidal models for the evolution
of the Earth-Moon system. These calculations have disclosed an anomalous
increase in the eccentricity of the orbit of the Moon with a value de/dt '
(9 ± 3) × 10−12 per year [79, 80, 83]. This anomaly has not been totally
explained with improved models, although the discrepancy among the models
and the observations has been slightly reduced to the presently accepted value
of de/dt ' 3 × 10−12 yr−1 [78]. Explanations in terms of modified gravity
models have been proposed by Iorio [37, 36, 40].

Another surprising result was discovered during the orbital analysis of
the first flyby of the Earth performed by the Galileo spacecraft on December
8th, 1990 with a perigee of only 960 km. This analysis revealed a noticeable
difference among the post-encounter and pre-encounter asymptotic velocities
of 3.92 mm/s [7, 48]. Subsequent flybys throughout the years have also shown
similar unexplained residues in the fitting of the Doppler tracking data into
a single orbital model. In particular, in the second Galileo flyby (performed
on December, 8th, 1992) a total residual velocity decrease of −8 mm/s was
found. In this case, the altitude at perigee was attained inside the thermo-
sphere and atmospheric friction must be taken into account. However, it
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has been estimated that only −3.4 mm/s should correspond to this atmo-
spheric friction effect [7, 3]. Other flybys performed by the NEAR, Cassini
and Rosetta spacecraft have also exhibited these flyby anomalies. Anyhow,
no anomalies (or negligible ones within the threshold of measurement errors)
were found in the Messenger flyby [7], the second and third Rosetta flybys
[45] and, also, in the Juno flyby of October, 9th, 2013 [70].

This anomaly is still puzzling because no satisfactory conceptual frame-
work for predicting its outcome on the next flyby has still been found despite
ongoing research in the problem.

Anderson et al. [7] provided a preliminary phenomenological approach
to the data in their seminal work. These authors proposed a formula to
fit the results for the anomalous asymptotic velocity variation of six flybys
of the Earth performed by the NEAR, Galileo (two flybys), Cassini, Rosetta
and Messenger between December 1990 and August 2005. In this work it was
found that the anomaly, ∆V∞, could be related to the cosine of the directions
defined by the incoming and the outgoing velocity vectors, i.e., the angle of
these vectors with the rotation axis of the Earth:

∆V∞ = V∞K (cos δi − cos δo) , (1)

where V∞ is the asymptotic velocity for the osculating orbit at perigee.
Anderson et al. [7] speculated that K is a constant related to the quotient
of the tangential velocity of the Earth at the Equator and the speed of light
as follows:

K =
2 ΩRE

c
= 3.099× 10−6 . (2)

Here Ω = 7.292115×10−5 s−1 is the angular velocity for the Earth’s rota-
tion around its axis, RE = 6371 km is the average Earth’s radius and c is the
speed of light in vacuum. Although, this phenomenological formula provides
a good agreement with the observations of the six flybys analyzed in their
paper [7], it has proven to be incorrect in the analysis of subsequent flybys
as it does not predict the null results for the asymptotic velocity anomaly
obtained for the Rosetta II and III [45], and the most recent Juno flyby of
the Earth in October, 2013 [70, 39]. Moreover, Anderson et al. [7] do not
provide any explanation of their formula apart from suggesting a connection
with an enhanced Lense-Thirring effect not predicted by General Relativity.

We also notice that for the case of Jupiter, and other giant planets, the
ratio K in Eq. (2) is larger because these bodies spin faster than the Earth
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and they have also much larger radiuses. For example, for the case of Jupiter
we find K ' 4.19 × 10−5. If the idea behind Anderson’s formula [7] has an
element of truth, we can expect a larger flyby anomaly effect for a spacecraft
flyby of Jupiter and anomalous accelerations ten times larger than those
acting in the case of the Earth.

As such a claim as the failure of well-established theories to explain a
phenomenon requires a meticulous analysis of all the possible sources of er-
ror or overlooked conventional effects, there have been a sustained effort to
evaluate the impact of classical sources of perturbations in close flybys of
the Earth [48]. Some of the effects that have been studied in detail and dis-
missed as possible explanations (because their impact is small or negligible in
comparison with the anomalies) are ocean tides [2], the Lense-Thirring effect
[35, 28], time-dependent coupling with the tesseral harmonics [2], Lorentz’s
charge acceleration [11] and thermal radiation [65], among other [48].

An alternative explanation should look at a new kind of interaction in-
cluding a fifth force or new effects arising in extensions of General Relativity.
Some of these possibilities have been explored by several authors: Adler stud-
ied the interactions of spacecraft with a putative halo of dark matter particles
around the Earth [5, 6]. Gravity models with retardation effects where sug-
gested by Hafele [29]. Later on, Bel and Acedo pursued this idea by studying
an extension of Whitehead’s theory [1, 4] and Pinheiro has provided a topo-
logical torsion current approach to try to understand the positive, negative or
null values of the anomaly in the different flybys [62, 63]. Other radical pro-
posals have been given: a modification of inertia [53], light speed anisotropy
[14], and other non-standard gravity models [58, 51, 73, 74, 12].

On the present status of this problem, the issue of the conventional or
unconventional origin of the flyby anomalies is not to be solved by theoretical
undertakings alone. Obtaining new data and analyzing them properly in
previous and future missions would be the only way to confirm the existence
of this anomaly and to qualify it as such, once that all the possible sources of
conventional effects have been taken into account. An excellent opportunity
for such a detailed analysis would have been possible with the STE-QUEST
mission [60] which had been programmed to perform flybys of the Earth
at different altitudes during the successive orbits. With this mission now
cancelled, we have to rely on the data from previous or future flybys of the
Earth, which are routinely planned on many missions to the outer Solar
system.

The objective of this paper is to determine any residuals accelerations
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remaining in the orbital modelling of several spacecraft that have performed
flybys of the Earth since the Galileo flyby of the Earth in 1990 until the Juno
flyby of 2013. To this aim, we will incorporate all the relevant perturbations
for a period of an hour before and after the perigee: tidal perturbations by
the Sun and the Moon, atmospheric friction and the geopotential model for
the zonal, tesseral and sectorial contributions to the potential. Moreover, we
evaluate the impact of the sources of error in the calculation including mis-
modelling of the zonal, tesseral and sectorial harmonic coefficients, the effect
of Jupiter and other planets in the Solar system, uncertainties in the geocen-
tric latitude, longitude and the obliquity of the ecliptic as well as numerical
errors in the integration method. We find that for altitudes below 3000 km
over the surface of the Earth there are statistically significant anomalies in
the acceleration acting upon the spacecraft of the order of magnitude of 0.1
mm/s2 as expected in some models of the flyby anomaly [1]. The method
described in this paper could allow for the spatial and temporal resolution of
the anomalous force field and we show that the radial, polar and azimuthal
components can be estimated.

To this aim we compare the predictions of our model with the ephemeris
provided by the mission teams which incorporate the information of teleme-
try’s monitoring to fit the trajectories [15, 27].

The paper is organized as follows: In sec. 2 we describe the orbital model
and the error analysis procedures for the integration method. Results on the
discrepancies on position and the anomalous acceleration for several flybys
are given in sec. 3. The paper ends with some conclusions and guidelines for
future work in sec. 4.

2 Development of the orbital model

We have retrieved the trajectories in their Earth’s flybys for the following
six missions: NEAR (January 1998), Galileo (first flyby performed in De-
cember 1990, second flyby in December 1992), Cassini (August 1999) and
Juno (October 2013). In other flybys, such as the Rosetta flyby of March
2005 or the Messenger of August 2005, the results were either negligible or
not statistically significant so we have excluded them from our final analy-
sis. The position and velocity coordinates were obtained from the Horizons
web application in the ICRF/J2000.0 reference frame with the center of the
Earth as origin. The values are obtained with double precision and Doppler
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ranging data can be considered precise on the range of a few cms, especially
around the closest approach of the spacecraft to the Earth. We must take
into account that improved ephemeris have developed over the years (in the
considered period from 1990 to 2013) but the additional bodies incorporated
into the new ephemeris [24] should not have a relevant impact for the par-
ticular section of the trajectory we are interested in this paper.

Another important issue is that the ephemeris for the spacecraft incorpo-
rated into Horizons are provided by the mission teams and they are fits to the
telemetry data within the context of the specific orbital model [27]. In that
sense, they can be seen as reflecting the real Doppler and ranging data. So,
whenever we refer in this paper to the data, we are meaning the processed
mission data to provide these ephemerides. In contrast with these ephemeris,
that take into account the real tracking data, we are using, as comparison,
an orbital model that considers all the basic terms of importance for the
dynamics close to the perigee.

As our reference initial condition we have chosen the position, rP , and
velocity, vP , of the spacecraft at the discrete time instant (in minutes) of the
data file corresponding to the closest approach to the Earth. This should
not correspond to the true perigee but this is irrelevant for our purpose
because our concern is to analyze the trajectory near the Earth were we
expect that any anomalous forces giving rise to the flyby anomaly would
manifest themselves.

The orbital model in the vicinity of the perigee is obtained by integrating
the system of equations of motion for the position, r, and velocity, v, of the
spacecraft:

dr

dt
= v , (3)

dv

dt
= −µE

r

r3
+ Ftidal + Fgeo , (4)

where µE = GME = 398600.435436 km3/s2 is the mass constant for
the Earth and, apart from the Newtonian monopole, we take into account
the tidal, Ftidal, and geopotential, Fgeo, perturbations in the terms for
the total spacecraft acceleration. The tidal acceleration imparted upon the
spacecraft located at r from a celestial body at R is given by:
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Ftidal = µ

(
− R

R3
+

R− r

(r2 +R2 − 2r ·R)3/2

)
, (5)

where µ is the mass constant of the third body. For the Sun and the
Moon we have

µS = 132712440041.939400 km3/s2 , (6)

µM = 4902.800066 km3/s2 , (7)

according to the most precise determinations of these paremeters [24].
The last term in the right-hand side of Eq. (4) arises because the field

of the Earth is described in terms of a series of zonal, tesseral and sectorial
harmonics. All these terms must be taken into account because of the polar
flattening of the planet and the inhomogeneous distribution of mass inside
the planet or the irregularities of the surface. In particular, the distribu-
tion of oceans and land masses. Many studies of the perturbations exerted
upon the orbits of artificial satellites throughout the years of the space age,
and gravimetry analysis as well, have allowed for the development of an ac-
curate geopotential model. A great achievement was the publication of the
NASA GSFC and NIMA joint geopotential model in 1996 [50] (also known as
EGM96). This model is complete up to order 360 of the harmonic expansion
for the potential in spherical coordinates:

U(r, θ, φ) = −µE
r

N∑
n=2

n∑
m=0

(
R

r

)n
Pn,m(cos θ)

(Cn,m cos (mλ) + Sn,m sin (mλ)) ,

(8)

where θ is the polar angle (or colatitude), λ is the terrestrial longitude and
R = 6378.1363 km is a reference radius. Notice that here Pn,m(x), m =
0, . . . , n are the associated Legendre functions obtained by application of an
extension of Rodrigues’ formula:

Pn,m(x) =
(−1)m

2nn!

(
1− x2

)m/2 dn+m

dxn+m
(
x2 − 1

)n
. (9)

Although there are more recent geopotential models, as the one was devel-
oped in 2008 (EGM2008) which includes spherical harmonics of degree and
order 2159, we will see that for our purpose it is enough to take into account
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the order N = 360 provided by the EGM96 model [50]. The latest gravity
missions: GRACE, CHAMP and GOCE have provided additional informa-
tion of the Earth’s gravity field model and the accuracy has been improved
(see ICGEM webpage [30]) but we will show that for our main objective of
elucidating the existence of an anomalous acceleration of order 0.1 mm/s2

acting upon the spacecraft on the vicinity of the Earth, the EGM96 provides
sufficient precision and accuracy.

Notice also that in Eq. (8) we are considering only the perturbations to
the simple Newtonian potential U0 = −µE/r. In this expansion the zonal,
nonzero tesseral and sectorial coefficients of order n = 2 are, for example:

C2,0 = −1.08262668× 10−3 ± 7.962× 10−11 , (10)

C2,1 = −2.414000000× 10−10 ± 1.290× 10−30 , (11)

C2,2 = 1.5744603745× 10−6 ± 3.468× 10−11 , (12)

S2,1 = 1.5431000000044× 10−9 ± 1.2909× 10−30 , (13)

S2,2 = −9.038038× 10−7 ± 3.5084× 10−11 . (14)

We must also remember that among the coefficients as they appear in the
model given by Eq. (8) and the tabulated ones by Lemoine et al. [50] there
is a conversion factor:

Cn,m = κ(m)(2n+ 1)
(n−m)!

(n+m)!
C̄n,m , (15)

where C̄n,m are the tabulated values and κ(m) = 1 for m = 0 and κ(m) = 2
for m 6= 0. A similar conversion is necessary for Sn,m. From Eq. (8) we can
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find now the components of the perturbing force in spherical coordinates:

Fr = −∂U
∂r

(16)

= −µE
r2

N∑
n=2

n∑
m=0

(n+ 1)

(
R

r

)n
Pn,m(cos θ) (17)

{Cn,m cos (mλ) + Sn,m sin (mλ)} , (18)

Fθ = −1

r

∂U

∂θ
(19)

= −µE
r2

N∑
n=2

n∑
m=0

(
R

r

)n
P

′

n,m(cos θ) sin θ (20)

{Cn,m cos (mλ) + Sn,m sin (mλ)} , (21)

Fλ = − 1

r sin θ

∂U

∂λ
(22)

=
µE

r2 sin θ

N∑
n=2

n∑
m=1

m

(
R

r

)n
Pn,m(cos θ) (23)

{−Cn,m sin (mλ) + Sn,m cos (mλ)} . (24)

The total perturbing force vector is then given by Fgeo = Fr r̂+Fθ θ̂+Fλ λ̂,

where the unit vector λ̂ points to the west and, consequently, opposite to the
Earth’s rotation. In the following section, we will discuss the sources of error
of the integration performed with Eqs. (3)-(5) and the components of the
geopotential perturbation in Eqs. (16)-(22).

2.1 Error analysis

Our objective is to disclose any anomalous component in the force acting
upon a spacecraft which flybys the Earth once the sources of classical per-
turbations have been taken into account. The magnitude of the expected
anomalous acceleration can be estimated from some models that have been
proposed before to study the anomaly [1, 4]. In these models an acceleration
of magnitude:

δa =
µE
R2
E

ΩRE

c
' 1.52× 10−8 km/s2 , (25)

10



is found as the source of the anomaly, where RE = 6371 km is the average
radius of the Earth and ΩRE/c ' 1.5495× 10−6 s−1 is the ratio of the linear
velocity of a point at the Earth’s equator, as a consequence of the Earth’s
rotation around its axis, and the speed of light. Therefore, we should show
that all the sources of error are, in order of magnitude, negligible or, at least,
small in comparison with the expected value of the anomalous acceleration
we suppose to be acting upon the spacecraft in the vicinity of the perigee.

2.1.1 Atmospheric friction

First, we will analyze the kinematic effect of atmospheric friction on the prox-
imity of the perigee for a typical flyby. We will show that for altitudes over
500 km the deceleration is negligible because the density of the thermosphere
at those altitudes is very low. In particular, for the NEAR flyby the impact
of this effect on the final outgoing velocity has been evaluated in the range
of a hundredth of mm/s [3].

The drag force due to the atmospheric friction is estimated by the usual
expression [47]:

D = −1

2
ρv2ACdv̂ , (26)

where ρ is the atmospheric density, v is the spacecraft velocity, A is the
cross-sectional area perpendicular to the direction of motion and Cd is the
drag coefficient (which for satellites and various spacecraft geometries [54] is
roughly Cd & 2). The required parameters for NEAR at perigee (attained
on January 23rd, 1998 at 7:24 UTC) are: the mass, m = 730 kg, velocity
modulus, Vp = 12.739 km/s, effective area, ACd ' 2 ∗ 1.5 ∗ 2.75 m2, altitude
at perigee, h = 539 km, atmospheric density, ρ = 1.133 × 10−13 kg/m3.
Inserting these values into Eq. (26) yields:

aFriction = 1.0244× 10−10 km/s2 , (27)

which it is two orders of magnitude smaller than the expected anomalous
acceleration in Eq. (25). On the other hand, there is, at least, one flyby
in the series we are considering in which the effect of atmospheric friction
cannot be neglected. For the second Galileo flyby of the Earth in Decem-
ber 8th, 1992 the minimum altitude was 303 km and, in this case, a total
decrease of the final asymptotic velocity of −4.6 mm/s (from the observed
−8 mm/s) is attributed only to friction [7, 3]. This effect is to be carefully
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incorporated into the orbital model for this flyby in order to disclose any
remaining anomalous acceleration.

2.1.2 Tidal forces exerted by other planets

In our orbital model for the flyby trajectory around the perigee, we are going
to ignore tidal forces arising from other celestial bodies apart from the Sun
and the Moon. However, we must check that these are sufficiently small to
be safely excluded from the analysis. The third body in importance for tidal
perturbations of Earth flybys is Jupiter. The coordinates of NEAR at perigee
are [15]:

XNEAR = 1042.0129 km , (28)

YNEAR = −3750.0865 km , (29)

ZNEAR = 5710.3327 km . (30)

Where we are using the ecliptic reference frame with origin at the center of
the Earth. At this instant, the position of Jupiter was:

XJupiter = 4.95651 AU , (31)

YJupiter = −3.19481 AU , (32)

ZJupiter = −0.08915 AU . (33)

Here, AU = 149597870.7 km is the astronomical unit. Finally, the mass term
for Jupiter is µJ = 126712764.8 km3/s2. With these data, we can calculate
the tidal acceleration at perigee from Eq. (5) yielding atidal = 1.6278 ×
10−10 km/s2, i.e., two orders of magnitude below the relevant acceleration
magnitude we are looking for in the flyby data.

2.1.3 Mismodelling of the zonal, tesseral and sectorial harmonics
and geocentric latitude and longitude

In the EGM96 and EGM2008 models error bars for the uncertainty of the
zonal, tesseral and sectorial coefficients of the geopotential model are pro-
vided. In Eqs. (10)-(14), some of these error bars are given. If we assume
that these errors add up in the same direction, we can estimate the maxi-
mum error in the calculation of the perturbing forces corresponding to the
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geopotential model from Eqs. (16)-(22) and this yields the following result
for the expected maximum error at the perigee of the NEAR flyby:

|δFEGM96| = 4.399× 10−11 km/s2 , (34)

which it is clearly below the threshold of the required precision. Another
issue with the application of the geopotential model is that we must know
the geocentric colatitude, θ, and the longitude, λ, in order to evaluate the
perturbing forces in Eqs. (16)-(22). If we know the orientation of the Earth’s
rotation axis in the ecliptic frame, k̂, we can calculate the cosine of the
spacecraft colatitude by projecting the its position vector as follows:

cos θ =
r(t) · k̂
|r(t)|

. (35)

We can accurately compute the obliquity of the ecliptic by a polynomial [56]:

χ = 23◦26
′
21.406

′′ − 46.836769
′′
T

− 0.0001831
′′
T 2 + 0.00200340

′′
T 3

− 5.76
′′ × 10−7T 4 − 4.34

′′ × 10−8T 5 ,

(36)

where T is the time from the epoch J2000.0 in Julian centuries. For example,
we have T = −708/365.25 for the day of the NEAR flyby and this yields
χ = 23◦26

′
22.3139

′′
. The relation among the equatorial unit vectors, ı̂, ̂ and

k̂, and the ecliptic ones, êi, i = 1,2,3:

ı̂ = ê1 , ̂ = ê2 , (37)

k̂ = sinχ ê2 + cosχ ê3 . (38)

The present models for the evolution of the axial tilt of the Earth provide and
accuracy of 10−4 seconds of arc. Anyway, we notice that, even for an error of
one second of arc, a sensitivity analysis using Eqs. (16)-(22) and the compu-
tation of the cosine of the colatitude in Eq. (35) shows that the uncertainty
in the acceleration imparted by the perturbing terms of the geopotential is
changed only by 5.50×10−10 km/s2 for the NEAR flyby and this is only a one
per cent of the anomaly we are expecting to find. We should also emphasize
that the transformation of coordinates would ideally follow the IERS2010
convention [31] including the effects of precession, nutation, polar motion,
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etc but such an accuracy is not required in our model for the same reasons
discussed above.

The terrestrial longitude of the vertical of the spacecraft position, λ(t),
is related to the right ascension, α(t), by:

λ(t) = λ0 − Ωt+ α(t)− α0 , (39)

Ω being the angular velocity of the Earth’s rotation around its axis and α(t)
the right ascension of the spacecraft. The parameters λ0 and α0 are the
geocentric longitude and right ascension of the spacecraft at t = 0. The last
two parameters are connected by the expression:

λ0 = α0 − LST(Greenwich) , (40)

where LST(Greenwich) is the local solar time at Greenwich, U. K., i. e.,
the right ascension of a point at the Greenwich meridian. Notice that the
right ascension and the geocentric longitude are measured counterclockwise
as seen from the North Pole. For the NEAR flyby occurred on January 23rd,
1998 at precisely 7:24 UTC we have that the local solar time of Greenwich
was LST(Greenwich) = 15 hours, 33 minutes and 44 seconds and for the
right ascension of the spacecraft, at the closest instant to perigee, we can
find in the Horizons ephemeris program [15] that it was 18 hours, 30 minutes
and 28.23 seconds. This gives, according to Eq. (40), that λ0 = 44.184291◦

in sexagesimal degrees for the vertical of the NEAR spacecraft at perigee.
The uncertainty in λ0 is, then, at most one second of time, i.e., approxi-
mately ∆λ0 = 0.0042◦ in sexagesimal degrees. Consequently, the error bars
in the geopotential perturbing force modulus evaluated from Eqs. (16)-(22)
is bounded by

∣∣δFEGM96(∆λ0)
∣∣ < 1.69 × 10−11 km/s2 and it is also suffi-

ciently small to be of no serious concern in our orbital analysis for the NEAR
and other flybys.

Another important issue is the temporal variation of the Earth’s oblate-
ness as a consequence of large-scale mass transports [16]. The temporal
variation of J2 is of particular interest in this context. The variation of this
coefficient is correlated with mass transport in the atmosphere, oceans and
land hydrology and its amplitude is given, approximately, by ∆J2 ' 3×10−10.
A decreasing trend at a rate of −2.8×10−11 yr−1 has also been detected since
the seventies of the past century but these variations are still very small to
contribute significantly to the spacecraft acceleration as they imply only er-
rors ∼ 10−4 mm/s−2 in our simulation of the anomalous accelerations. This
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is, obviously, too small to explain away the flyby anomaly as we will see in
the next section.

2.1.4 Error control in the numerical methods

To solve the equations of motion we use a Picard iterative method [17] in
which each iteration is integrated numerically. So for the n-th iteration we
have:

d2r

dt2
+ µE

r

r3
=
∑
i

F i (rn−1) , (41)

where the right-hand side correspond to the sum over all perturbing forces
evaluated at the already known positions, rn−1(t) for the previous iteration
n − 1. The differential equation in Eq. (41) is then solved numerically
to obtain the n-th order approximation, rn(t) and the process is repeated
until we achieve the desired accuracy. In our case we start with r0(t) as the
keplerian solution in the absence of any perturbing forces. After iterating
two times, we have found that the errors are so small that no more iterations
are necessary. For example, 6 minutes after the perigee of the NEAR flyby
we find that:

||F(r1)| − |F(r0)|| ' 4.77× 10−9 km/s2 , (42)

|r1| −
∣∣robs

∣∣ = 10.1234 m , (43)

for the difference (in modulus) among the perturbing forces at the keplerian
positions, r0 and the corrected ones, r1. We also find that the difference of
the corrected trajectory with the observations, robs is only of the order of
10 meters. In the second iteration we have that the difference among the
perturbing forces evaluated at positions r1 and r2 are greatly reduced:

||F(r2)| − |F(r1)|| ' 9.02× 10−14 km/s2 , (44)

and this is already six orders of magnitude smaller than the magnitude of the
anomalous acceleration we are investigating in this paper. Concerning the
difference in positions we have ||r2| − |r1|| = 2.52 cm, which it is sufficiently
small to justify the use of only two iterations of the Picard method for the
evaluation of the flyby orbit in the time interval of our interest.

Integration of the equations of motion was carried out in Mathematica
[84] with standard routines and double precision.
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3 Results

In this section we will show that an unexplained residual discrepancy remains
among the position provided by the Deep Space Network telemetry data and
the positions and accelerations predicted by orbital models, after considering
all the classical effects:

• Atmospheric friction [3].

• Tidal forces by the Sun, the Moon and the planets.

• Zonal, tesseral and sectorial contributions from the geopotential models
[2].

• Solid and ocean tides.

• Corrections provided by General Relativity which, as a rule of thumb
[77], are O(v2/c2g) ' 10−9g ' 10−11 km/s2 for a typical velocity at
perigee of 10 km/s.

• Other minor effects already studied and dismissed by other authors
(spacecraft charge [48], Lense-Thirring or gravitomagnetic field of the
Earth [35, 28], solar wind and anisotropic thermal emission[65]).

The IERS 2010 conventions [31] also recommend to take into account effects
such as the solid Earth and ocean pole tides. These are a consequence of the
ocean response to the small perturbations to the Earth’s rotation axis that
primarily occur with a period of 433 days (the so-called Chandler’s wobble)
[19]. However, these correspond only to a change in the altitude of the tide
only of the order of one centimente and the effect of such changes are totally
negligible for the analysis of the flyby anomaly (See [2, 48]).

Solar radiation pressure, Earth’s infrared radiation pressure and albedo
modelling are other radiative effects that could play a role in the study of
high-precision orbital dynamics. In particular, it would be interesting to take
into account its variation depending upon the Sun’s location in the sky as
the spacecraft performs its flyby. Nevertheless, these effects are expected
to be very small in comparison with the magnitude of the anomalous ac-
celeration responsible for the flyby anomaly (' 0.1 mm/s2). Estimations of
Lämmerzahl et al. [48] are ' 2.4 × 10−6 mm/s2 for both the Earth albedo
and Solar wind effect. Consequently, we can safely ignore these minor effects
in our orbital model for the flyby anomaly.
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Another radiative effect is the one suggested and studied by I. V. Yarkovsky
in the late XIXth century and the beginning of the XXth century. Accord-
ing to this author, we should find that small asteroids or spacecraft would
suffer a speed-up or speed-down of their rotational velocities as a result of
the asymmetric emission of infrared radiation from their surfaces as they
are heated by the Sun. This effect is expected to be important for large
time-scales of thousands or millions of years [67] but we can ignore it on a
short-time process such as a flyby whose duration is measured in hours.

The induction of currects as the spacecraft crosses the magnetic field of
the Earth is another small effect to be considered. For a surface of S ' 10
m2, we can estimate the maximum magnetic flux as ϕ ' BmaxS, with
Bmax = 65 × 10−5 Teslas at the surface of the Earth. A bound on the
maximum current induced can then be obtained by assuming that the flux
changes from this maximum to zero during the time that the spacecraft
spends in the vicinity of the Earth’s surface (approximately, T = 1 hour).
For a minimum resistance of R = 0.001 ohms, corresponding to a thick
copper wire, we get Imax = ϕmax/TR ' 1.80 × 10−4 A and a magnetic
moment m = 2ImaxS ' 0.036 A m2. According to Lämmerzahl et al. [48],
the steepness of the magnetic field close to the Earth is not larger than
|∆B/∆x| ' 2 × 10−7 gauss/m. The force for the spacecraft with magnetic
moment m would be F = ∇ (m ·B) and, in magnitude, is not larger than
|F| < 7.22×10−13 N. For a mass of 103 Kg this leads to an acceleration of the
order of 10−13 mm/s2 which is far too small in comparison with the expected
anomalous acceleration in the flyby anomaly.

The residual discrepancy (after taking into account all these effects or
dismissing them because of its small magnitude) allows us to estimate the
anomalous acceleration acting upon the spacecraft as a function of time
around its perigee. To do so, we start by calculating the first iteration of
the equation of motion, i. e., we obtain the keplerian orbit. In Fig. 1, we
have plotted the predictions of this keplerian orbit for the NEAR flyby in
comparison with the real data obtained from the NASA database [15]. Ap-
parently, the agreement is very good but this is consequence of the large
distance scale used in the diagram. If we plot the difference among the mod-
ulus of the real position vector and the keplerian model we obtain the results
in Fig. 2 where we see that difference up to one km builds up during a period
of 30 minutes after the perigee.

To reduce this discrepancy we have incorporated, in a first step, the tidal
forces of the Sun of the Moon as given by Eq. (5) and the result is shown
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Figure 1: The modulus of the position vector of the spacecraft and the
prediction from the Keplerian model of the orbit in km vs time in minutes
(t = 0 corresponds to the point in the data closer to the surface of the Earth).
The real orbit is plotted as a solid lines and the keplerian approximation as
circles. The difference among them has been enlarged by a factor 103 to
enhance the discrepancy which it is shown below on a separate figure.
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Figure 2: Difference among the modulus of the position vector of the space-
craft and the prediction from the Keplerian model of the orbit in km vs time
in minutes.
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Figure 3: Difference among the modulus of the position vector of the space-
craft in the model with tidal forces and the prediction from the Keplerian
model of the orbit in meters vs time in minutes. Notice that the effect of
incorporating the tidal forces from the Sun and the Moon is three orders of
magnitude smaller than the discrepancies of the real data with the Keplerian
orbit.

in Fig. 3 where we have plotted the difference among the vector modulus
for the model with tidal forces and the ideal keplerian orbit. It is clear
that this contribution is completely insufficient (a few meters in comparison
with some kilometers) to explain the data, apart from being of the wrong
sign. This shows that the contributions of the perturbation arising from the
terms in the geopotential model should be further more important. Finally,
we have incorporated also the geopotential terms in Eqs. (16)-(22). By
computing the difference of the real distance to the center of the Earth and
the prediction of the model we obtain the results in Fig. (4). We find that,
after the perigee, the NEAR spacecraft was closer to the Earth than we
should expect according to our orbital model. The difference being 50 m
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Figure 4: Difference among the modulus of the position vector of the space-
craft for the real data and the prediction from the model of the orbit with
the tidal and geopotential perturbations (in km) vs time in minutes. This
discrepancy corresponds to the anomaly we are looking for in our analysis.

after, approximately, 25 minutes. This discrepancy we have found in the
NEAR flyby is also found in other flybys and points towards an anomaly
in the reconstruction of the orbit that cannot be eliminated by conventional
effects in perturbation theory. Now that we have analyzed all the sources
of perturbation and errors in the evaluation of the trajectory of the NEAR
spacecraft in the vicinity of its perigee. So, we can estimate the residual
acceleration giving rise to the discrepancies in the coordinate’s data. If we
denote by δr the difference among the real and the predicted position, as
plotted in Fig. 4, we have that a good approximation to the extra acceleration
corresponding to this discrepancy is given by a fourth-order finite difference
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method [25] as follows:

δa =
1

h2

{
− 1

12
(δr(t− 2h) + δr(t+ 2h))

+
4

3
(δr(t− h) + δr(t+ h))− 5

2
δr(t)

}
− 1

90

d6δr

dt6
h4 +O

(
h5
)
,

(45)

where h is the timestep which we will take as h = 1 min to conform to the
real time interval used in the spacecraft tracking. Similarly, we can use a
second-order central finite difference method to evaluate the sixth derivative
in Eq. (45) to give an estimation of the numerical error in the numerical
method:

d6δr

dt6
=

1

h6
(δr(t− 3h) + δr(t+ 3h)

− 6δr(t− 2h)− 6δr(t+ 2h) + 15δr(t− h)

+ 15δr(t+ h)− 20δr(t)) +O (h2) ,

(46)

From the discrepancies in the position, with respect to the orbital model, we
can calculate the corresponding acceleration vector and its numerical error
from Eqs. (45)-(46). To keep the precision of the anomalous acceleration
as high as possible, it is convenient to choose the time step, h, as one minute
in Eq. (45). In doing so, we obtain the results plotted in Figs. 5-7 for the
radial, polar and azimuthal components during the NEAR flyby. In the first
place, we notice that the magnitude of the anomaly is consistent with the
expected estimate in Eq. (25) as suggested by some theoretical models. It
reaches a tenth of mm/s2 at some instants with an error estimate from Eq.
(46) below 0.001 mm/s2. On the other hand, this effect seems to be closely
related to the proximity of the spacecraft to the surface of the Earth as the
three components of the anomalous acceleration rapidly diminish with the
time before of after the perigee.

Another interesting feature is that the sign of the radial acceleration
changes as the spacecraft crosses its perigee. To check if this pattern per-
sists in other flybys we have performed the same analysis for the first and
second Galileo flybys, the Cassini [7] and the Juno flybys [70, 1, 39]. The
results are plotted in Figs. 8-10 where the change in the sign after perigee
of the anomalous acceleration vector is clear for the radial, polar and az-
imuthal components. We have also modelled the Rosetta and Messenger
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Figure 5: Radial component of the anomalous acceleration for the NEAR
flyby in mm/s2 vs time in minutes where t = 0 corresponds to the perigee.
The solid line is the result of the numerical analysis of the orbital model and
the dotted line is a possible fitting as discussed in the main text.
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Figure 6: The same as Fig. 5 but for the polar component.
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Figure 7: The same as Fig. 5 but for the azimuthal component of the anoma-
lous acceleration.
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Figure 8: Radial component of the anomalous acceleration as derived from
our orbital model for the (from left to right and from top to bottom): Galileo
II, Galileo I, Juno and Cassini flybys vs time from the respective perigee
in minutes. Solid lines are the numerical results and dotted lines is the
prediction of a tentative model discussed in the main text.
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Figure 9: Polar component of the anomalous acceleration as derived from our
orbital model for the (from left to right and from top to bottom): Cassini,
Galileo I, Juno and Galileo II flybys vs time from the respective perigee
in minutes. Solid lines are the numerical results and dotted lines is the
prediction of a tentative model discussed in the main text.
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Figure 10: The same as Figs. 8 and 9 but for the azimuthal component on
the Cassini, Galileo II, Juno and Galileo I flybys.
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flybys of 2005 but in these cases the anomalous acceleration is in the range
(−0.01, 0.01) mm/s2, so it cannot be discriminated from statistical fluctu-
ations. This way, we confirm the absence or negligible value for the flyby
anomaly for these flybys [7]. A first attempt to model this behaviour could
be given by:

δai = αi g0 e
−h/Li F (θ)

ṙ

c
, i = r , θ , λ , (47)

where i stands for the radial, polar or azimuthal component, ṙ/c is the radial
velocity ratio with the speed of light and F (θ) = cos θ for the radial compo-
nent or F (θ) = sin θ for the polar or azimuthal (θ denotes the colatitude).
Here αi, Li are a non dimensional constant and a length scale, respectively,
h is the distance of the spacecraft to the Earth’s surface and g0 = 9.8 m/s2 is
the surface gravity. The fittings in Figs. 5-10 were obtained with αr = −3,
αθ = 1, αλ = −1.5 and Li = 1060 km for i = r, θ, φ. The proposed in-
teraction in Eq. 47 would be a medium ranged fifth-force proportional to
the ratio ṙ/c and, consequently, much larger that the corrections to Newto-
nian gravity provided by General Relativity in the region of a few thousand
kilometers around the Earth. The agreement with the data of this, very
preliminary, approach is not good for every flyby and additional components
of the anomalous force should, probably, be necessary. Anyway, we should
refrain at the present status of the data analysis from further speculation as
more data should be collected in the future to validate these models.

On the other hand, we will integrate the proposed force term in Eq.
(47) along the hyperbolic trajectory for the NEAR and the Cassini flybys
to compare with the independent analysis at JPL, performed by Anderson
et al. [7], in which the flyby anomaly was discovered. This should provide
a test of consistency for our method. The anomalous acceleration vector is
given by δapert = δarr̂ + δaθθ̂ + δaλλ̂. The integration along the trajectory
is then:

δv(T ) =

∫ T

0

δapert dt , (48)

where t is the time since the crossing of the perigee and δv(T ) is the pertur-
bation in the velocity at time T after, or before, the perigee.

Following Anderson et al. [7] we should define the variation of the velocity
modulus at time T with respect to the ideal hyperbolic trajectory as follows:

δVpert = |V + δv(T )| − |V| ' V

|V|
· δv(T ) , (49)
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Figure 11: The anomaly in the modulus of the velocity with respect to its
value in the ideal keplerian orbit as a function of time since the perigee in
hours. Solid line denotes the case of the NEAR flyby and dashed line is for
the Cassini flyby.

where |V| denotes the modulus of the corresponding velocity vector in the
keplerian ideal trajectory and the approximation, as the dot product of the
vector in Eq. (48) and Kepler’s velocity vector, V, is obtained for small
perturbations.

The results are plotted in Fig. (11) for the NEAR flyby with αr = −3,
αθ = 1, αλ = −1.5 and, with these values of the parameters, we find a
variation of the asymptotic post-encounter velocity with respect to the pre-
encounter velocity of 14.70 mm/sec. Maximum time for the integration was
taken as T = 5 hours after and before the perigee. For the case of the Cassini
flyby and with similar parameters (αr = −2, αθ = 1.7 and αφ = −0.8) we
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obtain that the asymptotic velocity perturbation, with respect to the incom-
ing asymptotic direction, is around −1.96 mm/s. On the other hand, both
values of δVpert are consistent with the previous orbital analysis [7]. The

variability in the coefficients of Eq. (47) required to fit the velocity anomalies
may indicate that these are not really constants but that an additional, more
complicated, dependence with colatitude is present. We should highlight the
relevance of this result to fundamental physics because it shows that, if the
flyby anomaly is a real phenomenon, a force-field of the form given in Eq.
(47) maybe acting in a region close to the Earth’s surface. This would be
an effect of first order in the ratio of the spacecraft’s velocity to the speed
of light in contrast with the second order corrections predicted by General
Relativity.

4 Conclusions

In this paper, we have discussed the development of an orbital model to
analyze spacecraft flybys around the Earth in the vicinity of the perigee. This
model includes all known relevant contributions to the perturbations: tidal
forces from the Sun and the Moon, atmospheric friction for low perigee flybys
and zonal, tesseral and sectorial harmonics of the geopotential model. Other
minor effects have also been considered in the error analysis: ocean tides,
corrections provided by General Relativity, perturbations by other bodies in
the Solar system such as Jupiter, errors in the zonal, tesseral and sectorial
harmonic coefficients, determination of celestial coordinates and terrestrial
longitude and latitude and errors in the numerical procedure.

The objective of this study has been to extract reliable information about
the perturbations in the position of the spacecraft from approximately half
an hour before the perigee to half an hour afterwards. And from this data,
to derive the magnitude and components of the anomalous acceleration act-
ing upon the spacecraft, i. e., the acceleration that should be imparted upon
the spacecraft to obtain an exact agreement among the predicted and the ob-
served trajectories (By observed trajectories we mean the fittings to telemetry
data incorporated in the Horizons database by the mission teams [15]. These
trajectories take into account the information processing of the Doppler trak-
ing of each spacecraft [27]). We have found that such acceleration can be
deduced from the numerical method and that its magnitude agrees with the
expected estimate provided by some modified models of gravity [1, 4] as given
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in Eq. (25). This acceleration peaks at values around 0.1 mm/s2 and it is
characterized by nonzero radial, polar and azimuthal components that, in
most cases, change sign when the spacecraft crosses its perigee. Moreover,
this anomaly decreases very fast with altitude with a characteristic length
scale around 1000 km. These features are consistent with the existence of an
unknown fifth field of force around the Earth beyond standard physics. This
field is more intense than the relativistic corrections to Newtonian gravity in
that regime and we suggest that it could be proportional to the ratio among
the spacecraft radial velocity and the speed of light.

A fifth force of a different nature was considered in 80’s of the past century
but finally dismissed [26]. Recently, there have also been a proposal for a
protophobic fifth force mediated by a new boson as an explanation of certain
anomalies in transitions of 8Be [23]. In the case of larger scales there is also
a possibility for a fifth force which should manifest itself as a modification of
standard gravity. As this force is expected to be proportional to the inertial
mass, it would be, fundamentally, gravitational in origin but not considered
in the formalism of general relativity. We must also point out that the
present status for the experimental verification of the General Relativity
theory of gravity is not comparable with that of the other interactions [75].
In addition, the form of the lagrangian in this case is not constrained by
gauge and renormalizability conditions as those of the electroweak and strong
interactions [61].

In any case, an inductive scientific approach for the elucidation of this
riddle would require further experimental data as could have been provided
by the STE-QUEST mission [60], now cancelled. Research into the flyby
anomaly is, consequently, in dire need of new reliable data and pursuing
the theoretical analysis could help to plan orbital analysis as a scientific
mission objective in future missions. Another opportunity to the study of
the anomalies is provided by the recent Juno mission, in which the spacecraft
is planned to perform 36 highly elliptical orbits of Jupiter with a perigee at
roughly 4200 km over the top clouds of the planet. Although the gravitational
field of Jupiter is not known with the detail of that of the Earth if would be
highly interesting to analyze these orbits, with similar procedures as those
described in this paper, to find if a similar anomaly is found. In this study,
the most recent determination of Jupiter’s zonal harmonics from the first
data sets of Juno’s orbit can be helpful [13]. If the anomaly is discovered
also in this case we will have an important science case. Moreover, we expect
larger anomalous accelerations for the flyby of Jupiter by the Juno spacecraft
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(' 10 times those found in the case of the Earth). Work along this line is in
progress and it will be published elsewhere.

Acknowledgements

I gratefully acknowledge NASA’s JPL for providing their orbital fits, for the
missions considered in this paper, through the Horizon’s website.

References

[1] L. Acedo. The Flyby Anomaly in an Extended Whitehead’s Theory.
Galaxies, 3:113–128, July 2015.

[2] L. Acedo. On the effect of ocean tides and tesseral harmonics on space-
craft flybys of the Earth. MNRAS, 463(2):2119–2124, 2016.

[3] L. Acedo. Kinematics effects of atmospheric friction in spacecraft flybys.
Advances in Space Research, 59(7):1715–1723, April 2017.

[4] L. Acedo and L. Bel. On a correlation among azimuthal velocities and
the flyby anomaly sign. Astronomische Nachrichten, 338(1):117–124,
January 2017.

[5] S. L. Adler. Modeling the flyby anomalies with dark matter scattering.
International Journal of Modern Physics A, 25:4577–4588, 2010.

[6] S. L. Adler. Modeling the flyby anomalies with dark matter scattering.
In Proceedings of the Conference in Honour of Murray Gellimann’s 80th
Birthday, pages 352–364, November 2011.

[7] J. D. Anderson, J. K. Campbell, J. E. Ekelund, J. Ellis, and J. F. Jordan.
Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys
of Earth. Physical Review Letters, 100(9):091102, March 2008.

[8] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, and S. G.
Turyshev. Indication, from Pioneer 10y11, Galileo, and Ulysses Data, of
an Apparent Anomalous, Weak, Long-Range Acceleration. Phys. Rev.
Lett., 81(14):2858–2861, 1998.

33



[9] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, and
S. G. Turyshev. Study of the anomalous acceleration of Pioneer 10 and
11. Phys. Rev. D, 65(8):082004, April 2002.

[10] J. D. Anderson and M. M. Nieto. Astrometric solar-system anomalies.
In S. A. Klioner, P. K. Seidelmann, and M. H. Soffel, editors, Relativity
in Fundamental Astronomy: Dynamics, Reference Frames, and Data
Analysis, volume 261 of IAU Symposium, pages 189–197, January 2010.

[11] J. A. Atchison and M. A. Peck. Lorentz Accelerations in the Earth
Flyby Anomaly. Journal of Guidance Control Dynamics, 33:1115–1122,
July 2010.

[12] O. Bertolami, F. Francisco, and P. J. S. Gil. Hyperbolic orbits of Earth
flybys and effects of ungravity-inspired conservative potentials. Classical
and Quantum Gravity, 33(12):125021, June 2016.

[13] S. J. Bolton, A. Adriani, V. Adumitroaie, M. Allison, J. Anderson,
S. Atreya, J. Bloxham, S. Brown, J. E. P. Connerney, E. DeJong,
W. Folkner, D. Gautier, D. Grassi, S. Gulkis, T. Guillot, C. Hansen,
W. B. Hubbard, L. Iess, A. Ingersoll, M. Janssen, J. Jorgensen, Y. Kaspi,
S. M. Levin, C. Li, J. Lunine, Y. Miguel, A. Mura, G. Orton, T. Owen,
M. Ravine, E. Smith, P. Steffes, E. Stone, D. Stevenson, R. Thorne,
J. Waite, D. Durante, R. W. Ebert, T. K. Greathouse, V. Hue, M. Parisi,
J. R. Szalay, and R. Wilson. Jupiter’s interior and deep atmosphere: The
initial pole-to-pole passes with the Juno spacecraft. Science, 356:821–
825, May 2017.

[14] R. T. Cahill. Resolving Spacecraft Earth-Flyby Anomalies with Mea-
sured Light Speed Anisotropy. ArXiv e-prints, March 2008.

[15] A. Chamberlin, D. Yeomans, J. Giorgini, and P. Chodas. Horizons
ephemeris system. http://ssd.jpl.nasa.gov/horizons.cgi, 2016.
Accessed: 2016-10-27.

[16] B. F. Chao. Earth’s oblateness and its temporal variations. Comptes
Rendus Geoscience, 338:1123–1129, November 2006.

[17] E. Coddington and N. Levinson. McGraw-Hill, New York, 1955.

34



[18] I. Debono and G. F. Smoot. General Relativity and Cosmology: Un-
solved Questions and Future Directions. Universe, 2(4):23, 2016.

[19] S. D. Desai. Observing the pole tide with satellite altimetry. Journal of
Geophysical Research: Oceans, 107(C11):7–1–7–13, 2002. 3186.

[20] J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs,
J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G.
Williams, and C. F. Yoder. Lunar Laser Ranging: A Continuing Legacy
of the Apollo Program. Science, 265:482–490, July 1994.

[21] F. W. Dyson, A. S. Eddington, and C. Davidson. A Determination of the
Deflection of Light by the Sun’s Gravitational Field, from Observations
Made at the Total Eclipse of May 29, 1919. Philosophical Transactions
of the Royal Society of London. Series A., 220:291–333, 1920.

[22] C. W. F. Everitt et al. Gravity probe b: Final results of a space exper-
iment to test general relativity. Physical Review Letters, 221101(106),
2011.

[23] J. L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T. M. P.
Tait, and P. Tanedo. Protophobic Fifth Force Interpretation of the
Observed Anomaly in 8Be Nuclear Transitions. Physical Review Letters,
117:071803, 2016.

[24] W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and
P. Kuchynka. The Planetary and Lunar Ephemerides DE430 and DE431.
IPN Progress Report, 42(196), 2014.

[25] B. Fornberg. Generation of Finite Difference Formulas on Arbitrarily
Spaced Grids. Mathematics of Computation, 51(184):699–706, 1988.

[26] A. Franklin and E. Fischback. The rise and fall of the Fifth Force.
Discovery, pursuit, and justification in modern physics, Second Edition.
Spriger International Publishing AG, New York, U. S. A., 2016.

[27] J. D. Giorgini. personal communication, 2015.

[28] E. Hackmann and C. Laemmerzahl. Flyby anomaly and Lense-Thirring
effect. In 38th COSPAR Scientific Assembly, volume 38 of COSPAR
Meeting, page 3, 2010.

35



[29] J. C. Hafele. Effect of the Earth’s Time-Retarded Transverse Gravita-
tional Field on Spacecraft Flybys. ArXiv e-prints, April 2009.

[30] ICGEM. http://icgem.gfz-potsdam.de/tom_longtime. Interna-
tional Center for Global Gravity Field Models.

[31] IERS. IERS Technical Note No. 36. In G. Petit and B. Luzum, editors,
IERS Conventions (2010), pages 1–179. Frankfurt am Main: Verlag des
Bundesamts für Kartographie und Geodäsie, 2010.

[32] L. Iess and S. Asmar. Probing Space-Time in the Sola System: From
Cassini to BepiColombo. International Journal of Modern Physics D,
16:2117–2126, 2007.

[33] L. Iess, S. Asmar, and P. Tortora. MORE: An advanced tracking ex-
periment for the exploration of Mercury with the mission BepiColombo.
Acta Astronautica, 65:666–675, 2009.

[34] L. Iess, M. Di Benedetto, M. James, M. Mercolino, L. Simone, and
P. Tortora. Astra: Interdisciplinary study on enhancement of the end-
to-end accuracy for spacecraft tracking techniques. Acta Astronautica,
94:699–707, 2014.

[35] L. Iorio. The Effect of General Relativity on Hyperbolic Orbits and Its
Application to the Flyby Anomaly. Scholarly Research Exchange, 2009,
January 2009.

[36] L. Iorio. An Empirical Explanation of the Anomalous Increases in the
Astronomical Unit and the Lunar Eccentricity. The Astronomical Jour-
nal, 142:68, September 2011.

[37] L. Iorio. On the anomalous secular increase of the eccentricity of the
orbit of the Moon. MNRAS, 415:1266–1275, August 2011.

[38] L. Iorio. Some considerations on the present-day results for the detection
of frame-dragging after the final outcome of GP-B. Europhysics Letters,
96, 2011.

[39] L. Iorio. A flyby anomaly for Juno ? Not from standard physics. Ad-
vances in Space Research, 54(11):2441–2445, December 2014.

36



[40] L. Iorio. The Lingering Anomalous Secular Increase of the Eccentricity
of the Orbit of the Moon: Further Attempts of Explanations of Cosmo-
logical Origin. Galaxies, 2:259–262, May 2014.

[41] L. Iorio. Editorial for the Special Issue 100 Years of Chronogeometro-
dynamics: The Status of the Einsteins Theory of Gravitation in Its
Centennial Year. Universe, 1(1):38–81, 2015.

[42] L. Iorio. Gravitational anomalies in the solar system? International
Journal of Modern Physics D, 24:1530015–343, February 2015.

[43] L. Iorio and G. Giudice. What do the orbital motions of the outer
planets of the Solar System tell us about the Pioneer anomaly? New
Astronomy, 11:600–607, July 2006.

[44] L. Iorio, H. I. M. Lichtenegger, M. L. Ruggiero, and C. Corda. Phe-
nomenology of the Lense-Thirring effect in the Solar System. Astro-
physics and Space Science, 331:351–395, 2011.

[45] B. Jouannic, R. Noomen, and J. A. A. van den IJSel. The flyby anomaly:
An investigation into potential causes. In Proceedings of the 25th Inter-
national Symposium on Space Flight Dynamics ISSFD, Munich (Ger-
many), 2015.

[46] D. Kennefick. Testing relativity from the 1919 eclipsea question of bias.
Phys. Today, 62:37–42, 2009.

[47] D. King-Hele. Satellite orbits in an atmosphere. Theory and applications.
Blackie and Son Ltd., Glasgow, UK, 1987.

[48] C. Lämmerzahl, O. Preuss, and H. Dittus. Is the Physics Within the
Solar System Really Understood? In H. Dittus, C. Lammerzahl, and
S. G. Turyshev, editors, Lasers, Clocks and Drag-Free Control: Explo-
ration of Relativistic Gravity in Space, volume 349 of Astrophysics and
Space Science Library, page 75, 2008.

[49] U. Le Verrier. Lettre de M. Le Verrier à M. Faye sur la théorie de
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