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Molecular dimensions influence of swelling agents on lamellar 
morphology of MWW-type zeolites active for fructose conversion 
A. J. Schwankea, S. B. C. Perghera, U. Díazb, A. Cormab 

A new route to obtain pillared, disordered or desilicated MWW-type zeolites was developed  assisted by  quaternary 
ammonium surfactants with different hydrocarbon tail size acting as swelling agents (C12TA+, C16TA+, C18TA+). Effect of 
surfactant concentration and swelling conditions were determinant to obtain MWW-type zeolites with different lamellar 
organization and spatial distribution of individual zeolitic layers. Specifically, soft swelling at 25 °C preserved layer structure 
instead of aggressive processes at 80 °C that favored desilication, damaging the layers structure in case of  C12TA+ and  C16TA+ 
and C18TA+. It was proved that surfactant size combining with swelling and pillaring procedure influenced on physico-
chemical and morphological nature of MWW-type materials. The obtained derivative MWW zeolites with different 
morphology, order and acessibility levels were firstly evaluated by catalitic dehydration fructose to 5-hydroxymethylfurfural 
showing, superior activity compared to commercial zeolite catalyst. 

Introduction 
Zeolites are microporous crystalline aluminosilicates composed 

of tetrahedral bonds TO4 (T= Si or Al usually) coordinated by oxygen 

atoms. The different spatial organization between these tetrahedral 

units and their relationships generate different topologies of 

ordered porous structures with shape selectivity that play an 

important role in adsorption processes, ion exchange, separation, 

and catalysis.1,2,3 However, the accessibility in the microporous 

range (usually, with pore sizes until 1 nm) imposes restriction for 

larger molecules that cannot access towards internal active sites, 

decreasing catalytic efficiency and imposing significant diffusional 

limitations.4,5 

In contrast, zeolites with a hierarchical pore system have 

received growing attention in recent times.4,6,7,8 The strategy based 

on generating secondary mesoporosity regions in zeolites emerges 

as a way to facilitate molecular diffusion and increase the variety of 

reagents capable to achieve and react with internal active sites.6 

Among the strategies "bottom-up" to hierarchy zeolites, pillaring 

process is able to separate individual layers of two-dimensional (2D) 

zeolitic precursors. This procedure creates mesoporous regions by 

inserting organic or inorganic species as pillars, located in the 

interlayer space, together with intrinsic microporosity present in the 

zeolitic layers.9, 10 Considering the best examples in the state-of-art 

of successful hierarchical pillared zeolites, we found MCM-36 

(MWW topology), ITQ-36 (FER topology) and recently, nanosheet 

pillared and self-pillared MFI-type zeolites.11,12,13,14 
The MWW topology until now, offers the major versatility in 

zeolite modifications.15 Specifically, for MCM-36, pillarization 

procedure is carried out after the swelling of MWW precursors with 

long chain surfactants. Normally, swelling procedures in aggressive 

conditions (high temperatures, 90 °C) were gently replace by mild 

conditions (ambient temperature) and successive washing cycles 

with intention of preserving the structure of individual layers. This 

modification facilitated the preparation of more stable and efficient 

catalysts, avoiding the partial silica dissolution and the preservation 

of the lamellar organization without the formation of undesirable 

mesoporous phase competitors.16,17,18. On the other hand, a recent 

study report that mild conditions could affect the swelling efficiency 

in MWW precursors with high Al content (Si/Al=~15) and varies 

depending on the type of cation-hydroxide used to generate  high 
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pH in swelling treatment.19 According to Roth et al,15 the swelling 

step is historically the most difficult and critical step for modifying 

precursors. Moreover, the effect of swelling with different swelling 

agents has being widespread to other zeolite precursors as ICP-1 

based on germanosilicate and offer diversity to create more open 

zeolites structures showing that in swelling and pillaring, tiny details 

determine everything.20,21  Recently, new strategies for 

swelling/pillaring MWW-type materials, using dual-template agents 

and obtaining disordered zeolitic structures, have been 

reported.22,23   However, the control of size galleries by surfactant 

size assisted method and pillaring process still need to be deeply 

explored.15 

This work aims to evaluate the influence of long chain 

surfactants used as swelling agents, which exhibit different 

molecular dimensions, on pillared MWW-type zeolites through soft 

and aggressive swelling conditions. The obtained MWW-type 

zeolites with different physico-chemical nature, morphology and 

lamellar order were firstly evaluated by catalytic dehydration 

fructose to 5-hydroxymethylfurfural (5-HMF), being this an 

important reaction of conversion biomass to produce sustainable 

fuels. 

Experimental 
MCM-22 precursor synthesis: Synthesis of precursor (P) was done 

similarly to literature.24 Thus, 0.37 g of NaOH (Sigma Aldrich) and 

0.37 g of NaAl2O3 (Riedel-de-Haën), were dissolved in 81.18 g of 

distillated water. In a next step 4.98 g of hexamethyleneimine (HMI, 

Sigma Aldrich) and 6 g of fumed silica (Aerosil 200, Degussa) were 

added to the mixture. The resulting slurry with Si/Al ratio=~25 was 

stirred for 2 h and hydrothermally treated in PTFE-lined stainless-

steel autoclave with rotation (60 rpm) at 135 °C for 7 days. After the 

aging period, the autoclave was quenched and the MCM-22 

precursor filtered, washed with distilled water and dried overnight 

at 60°C. After calcination (580 °C for 12 h), resulting 3D-MCM-22 

zeolite denoted (C). 

Swelling precursor: Typically, 9.0 g of aqueous slurry of MCM-22(P) 

(20 wt% solids) was mixed with 35.0 g of an aqueous solution of 29 

wt% C18TA+Br/OH-, C16TA+Br/OH- or C12TA+Br/OH- (50, 51 and 53% 

ionic exchange, respectively). 11.0 g of an aqueous solution of 40 

wt% TPA+Br/OH- (45% ionic exchange) was added, and the resultant 

slurry treated at 80°C (aggressive swelling) or 25°C (soft swelling) for 

18 h. In Figure S1 it is shown the previous experiments that 

succeeded the choice of this surfactant mixture. Swollen materials 

were washed with distilled water by successive centrifugation cycles 

(12000 rpm) up to ten times and dried at 60°C for overnight. 

Aggressive or soft swelling treatments were denoted “A” and “S”, 

respectively, followed by “x” as number of washing cycles.   

Pillaring: Swollen materials were added in tetraethyl orthosilicate 

(TEOS, 98%, Aldrich), 1:5 wt/wt, at 80°C for 24 in vigorous stirring 

under nitrogen atmosphere.16 Due to successive centrifugation 

cycles that decrease the pH of the solution, each material was 

hydrolyzed with water (pH=9, controlled with NaOH) to ensure to 

complete hydrolysis of TEOS at 40°C for 12 hours and dried at 60°C 

for overnight. Calcination was done in tubular Pyrex reactor up to 

550 °C with heating rate of 3 °C min-1 under nitrogen flow, followed 

by 8 hours under oxygen flow. All materials were converted to acidic 

form through three consecutive ion exchanges of 1 g of zeolite in 50 

mL of 0.1 mol L-1 NH4NO3 (Aldrich) solution  at ambient temperature 

for 3 h, and subsequent calcination at 500°C (heating rate of 5 °C 

min-1) for 2 h under air atmosphere. 

Catalytic tests: Conversion of fructose to 5-hydroxymethylfurfural (5-

HMF). 218 mg of fructose and 18 mg of zeolite catalyst were added 

into a 10 mL Pyrex reactor, containing 8.0 g of dimethyl sulfoxide 

(DMSO). The formed mixture was stirred in an oil bath at 120 °C for 

3h. The products, after fructose dehydration, were sampled at 

intervals and analyzed using HPLC. Fructose conversion (1), yield (2) 

and selectivity (3) of 5-HMF were calculated following the next 

equations:  Conversion: 
�𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�0−�𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑡𝑡 

�𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�0
 𝑥𝑥 100%  (1) 

Yield: (𝐶𝐶5−𝐻𝐻𝐻𝐻𝐻𝐻)𝑡𝑡
�𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�0

 𝑥𝑥 100%  (2) 

Selectivity: (𝐶𝐶5−𝐻𝐻𝐻𝐻𝐻𝐻)𝑡𝑡
�𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑡𝑡

 𝑥𝑥 100%  (3) 

Characterization: Powder X-ray diffraction (XRD) patterns were 

collected on a Philips X’Pert diffractometer equipped with a graphite 

monochromator, operating at 40 kV and 45 mA, using nickel-filtered 

CuKα radiation (λ = 0.1542 nm). Nitrogen adsorption isotherms at -

196 °C were measured with a Micromeritics ASAP 2010 manometric 

adsorption analyzer. Before the measurements, the samples were 

outgassed for 12 h at 300 °C. The specific surface area (SBET) was 

calculated by the BET method25 from the nitrogen adsorption data 
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in the relative pressure range from 0.06 to 0.11. The total pore 

volume (VTP)26 was obtained from the adsorbed amount of N2 at a 

relative pressure of about 0.99. The external surface area (Sext) and 

micropore volume (Vmicro) were estimated using the αS-plot method 

(with LiChrospher Si-1000 macroporous silica gel27  as reference 

adsorbent) in the p/p0 range from 0.05 to 0.11. The pore size 

distribution (PSD) were obtained using the modified Barret–Joyner–

Halenda (BJH) method28 with nitrogen adsorption branch data. 

Elemental analysis was determined by ICP Varian 715-ES ICP-optical 

emission spectrometer, after dissolution of the solids in a HNO3/HF 

solution. Thermogravimetric analysis (TGA) measurements were 

done in a Mettler-Toledo TGA/SDTA851E analyzer in air flux with a 

heating range of 10°C min-1. Field-emission scanning electron 

microscopy (FESEM) micrographs were recorded on a ZEISS Ultra 55 

microscope operating at 2 kV, with a 2 × 10−9. Transmission 

Electronic Microscopy analysis (TEM) were recorded on a Philips 

CM10 operating at 100 kV. The samples were ultrasonically 

dispersed in dichloromethane and dropped to carbon copper grids. 

Infrared (IR) with absorption of pyridine were performed in a Nicolet 

710 FTIR spectrometer using vacuum cells. The measurements were 

performed in self-supported wafers of 10 mg cm-2 that were 

degassed overnight under vacuum (10-4 to 10-5 Pa) at 400°C. The 

spectra were recorded and pyridine was admitted and, after 

equilibration, the samples were outgassed for 1 h at increasing 

temperatures (150/250/350 °C). After each desorption step, the 

spectrum was recorded at room temperature and the background 

subtracted in the pyridine case and absorption coefficients 

calculated by Emeis29 were used. HPLC analysis was performed on a 

Waters 1525 equipped with RID detector at 35°C and ion exclusion 

column Coregel 87H3 (7.8 x 300 mm) at 60°C with flow rate of 0.7 

mL min-1 and H2SO4  0.005 mol L-1 as mobile phase. Amount of 

fructose and HMF were determined using external calibration. 

Results and discussion 
 Figure 1 shows the XRD patterns of precursor and calcined MCM-

22 samples, as well as the diffractograms of the MWW materials 

obtained after soft and aggressive swellings treatments and applying 

different washing cycles. For MWW precursor (P), diffraction 2Θ 

bands located at 3.3° and 6.6° range corresponding to (001) and 

(002) reflections, relative to MWW zeolitic layer stacking with 

thickness of each individual layer of ~2.6 nm, are observed.30 These 

layers are connected by hydrogen bonds between silanol groups 

with the presence of HMI template molecules located between  

Figure 1. XRD of swelling with C12TA+, C16TA+, C18TA+materials with soft and 
aggressive procedure. 

layers.31 In addition, intralayer diffraction bands located at 2Θ=7.1° 

corresponding to (100) diffraction and reflections at higher 2Θ 

angles, 25.1° and 26.2° assigned to (220) and (310) planes, are also 

detected. After calcination silanol groups were condensed together 

with the elimination of interlayer organic template, conventional 

zeolite 3D-MCM-22 (C) being obtained.  

The Intercalation of swelling agents in layered materials 

exhibited four mean type-accommodations as lateral monolayer, 

lateral bilayer, pseudotri-layer and paraffin-type monolayer as 

showed in Figure 2. This behavior can be monitored by XRD with the 

increase of basal spacing which is directly related with the thickness 

of MWW layer, the length of swelling agent and its height of head-

group and tail-group. In this case, C18TA+, C16TA+ and C12TA+ have the 

same height of head and tail-group differentiating them by alkyl-

chain length with 2.3, 2.0 and 1.8 nm, respectively, as showed in 

Figure S2. 

The soft swelling treatment using C16TA+ resulted in the 

overlapping of the  (101) and (102) diffraction bands, yielding only a 

broad peak located between 8° and 10° 2ɵ range. This fact indicated 

partial loss of vertical alignment order in the stacking direction, i. e., 

along axis c. The molecular dimensions of the swelling agents which 

are placed in the interlayer space, between individual MWW layers, 

are shown in Figure 1 and S2. Based on XRD, the sum of length C16TA+ 

(2.0 nm) and thickness of an individual MWW layer (2.5 nm) should 

presents a basal spacing estimated with 4.5 nm which leads a 

surfactant accommodation in paraffin-type monolayer between  
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Figure 2. Type-accommodation of C16TA+ (2.0 nm length) swelling agent 
between MWW layers monitored by XRD. For the basal spacing it was 
considered the thickness of an individual MWW layer (2.5 nm), the height of 
head-group surfactant (~0.5 nm) and height of tail-group (~0.46 nm).  
 

MWW layers. The XRD pattern obtained for the sample 16-S-3 

showed basal spacing of 4.7 nm estimated from (001) reflection 

band. The difference of 0.2 nm may related with excess of swelling 

agent intercalated once than after ten washing cycles the basal 

spacing was decreased to 4.5 nm, being (002) diffraction band also 

observed. The presence of TPA+ and its dimension (0.88 nm, see 

Figure S2) used with long-alkyl swelling surfactants for swelling may 

not be excluded of basal spacing value once that is also interacting 

with the long-alkyl surfactants. However, XRD pattern of swelling 

MWW with only TPA+ agent did not show increase of basal spacing 

consistent with its molecular dimension (see Figure S1). 

In terms of MWW structural conservation, XRD patterns show 

that soft swelling treatment preserved the crystal structure, 

indicating that room temperature, although working with high basic 

pH (13.57), minimized fragmentation and dissolution of the silica 

from zeolitic layers. The intense diffraction bands detected in (100), 

(220), (310) intralayer peaks and the excellent ordering degree of 

swelling materials, as it is evidenced by emergence of (002) and 

(003) basal peaks confirmed that soft swelling conditions better kept 

MWW structure of the layers, without losing the order along axis c.  

On the other hand, aggressive swelling 16-A-10 favored a 

separation between MWW layers with 4.5 nm with a broad (001) 

diffraction band (compared to 16-S-10) which indicated a marked 

irregularity in the accommodation of surfactant in paraffin type-

monolayer in the interlayer space. Furthermore, aggressive 

treatment implied lower intensities in the (100), (220) and (310) 

diffraction bands of swollen materials, showing that partial 

structural damage of zeolitic structure was occurring. These 

hypotheses are confirmed both by the absence of repetitive (00l) 

basal reflections, (002) and (003), indication lower ordering in the 

separation of the individual layers, and by the presence of broad 

region in the XRD pattern, between 15-30° 2ɵ, usually assigned to 

amorphous silica due to the partial dissolution of MWW layers.17 

The washing cycles carried out after swelling treatments were 

also evaluated. This step is useful to remove the excess of surfactant 

which could favor the formation of competitor mesophases, during 

the consecutive pillarization process. In addition, with this 

methodology, the pH present in the pillaring synthesis medium could 

be controlled, avoiding high pHs in the slurry that promotes the rapid 

polymerization of silica (TEOS) around of the MWW swollen 

nanocrystals and not only in the interlayer region. Figure 2 shows 

that increasing washing cycles’ number, more effective was the 

surfactant removing. As consequence, a slight shift of basal (001) 

(002) and (003) diffraction peaks toward high 2ɵ angles (see XRD 

patterns of 16-S-3 and 16-S-10 samples) is observed. The high 

surfactant concentrations (29% wt) used during the swelling step 

favors the excessive presence of long chain alkyl ammonium 

molecules in the interlayer space which can be removed during the 

successive washing cycles due to the weak interaction (H-bonding or 

Van der Waals) established between them and inorganic layers.  

Furthermore, pH values after washing cycles was monitored, as 

it is indicated in Table S3, being observed that soft swelling 

procedure kept similar pH values in all cases. In opposite, aggressive 

swelling treatment resulted in lower pHs associated to formation of 

deprotonated silicic acids and others oligomeric silicates caused by 

partial dissolution of zeolitic structure. Similar effect was also 

founded by Tsapatsis et al.16 In tenth washing cycle, both pHs 

achieved close values, although (002) and (003) diffraction bands 

were not observed in 16-A-10 sample. These results confirmed that 

aggressive swelling procedure did not favor the regular separation 

between MWW layers, being necessary an elevated number of 

furtherly washing cycles to decreased the pH of pillaring media. 

Thus, soft swelling method preserves better MWW structure of each 

individual layer without the necessity to carry out too much washing 

cycles. However, after tenth washing cycle, (002) basal diffraction 

band was even observed, evidencing the convenience to eliminate 

the excess of swelling agents through consecutive washing cycles.  

For soft swelling treatment, using C12TA+ as intercalation agent, 

a modest coalescence of (101) and (102) reflection bands was 
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detected, indicating that non-regular MWW layers separation 

occurred in vertical alignment, perpendicularly to axis c. This fact 

was confirmed by emergence of broad (002) reflection with (001) 

diffraction band with basal spacing of 3.0 nm, probably due to the 

insufficient amount of swelling agent accommodated in form of 

lateral monolayer between MWW layers. In contrast, aggressive 

swelling in presence of C12TA+ molecules caused the overlapping of 

(101) and (102) reflection bands, indicating poor vertical ordering of 

c-stacking crystals. The (001) diffraction band with a broad region is 

observed with basal spacing of 3.5 nm which suggests a lateral 

bilayer conformation of swelling agent. 

In the case of MWW samples swollen with C18TA+ long chain 

surfactant (18-S-10 and 18-A-10 samples), some differences were 

observed comparing its low angle XRD patterns. The 18-S-A-10 

sample showed an intense (001) diffraction band with basal spacing 

of 4.8 nm. Considering the theoretical estimation of molecular 

dimensions of C18TA+ with 2.3 nm (Figure S2), the basal spacing value 

is consistent with the molecular dimension of surfactant in paraffin-

type monolayer intercalated between individual MWW layers. In 

addition, (003) diffraction band is observed which indicate a swelling 

materials with high ordering. Moreover, on the right side of (001) 

diffraction band, a shoulder is founded with basal spacing of 3.9 nm. 

This value may indicate that a portion of surfactant in pseudotri-

layer accommodation between MWW layers even associated with 

flexibility and coiling effect that could occurs when a straights-chain 

hydrophobic groups of surfactant exceeds 16 carbon atoms.32 

Moreover, the high angle XRD pattern indicate a considerable 

decrease of (100), (220) and (310) diffraction bands which is not only 

attributed to partial damage of MWW structure treatment with 

C18TA+ in aggressive swelling but also the increase amount of organic 

intercalated (C18TA+ > C16TA+ > C12TA+) which corroborates with total 

loss mass observed by TGA of Figure 3 and Table S4 when aggressive 

swelling . For 18-S-10 sample, the (001) basal spacing with 4.3 nm is 

lower than expected based on theoretical estimation dimensions of 

C18TA+.  When compared the low angle XRD of both samples (18-S-

10 and 18-A-10) the basal spacing value is close to value of the 

shoulder (with basal spacing of 3.9 nm) present in low angle XRD 

pattern of 18-A-10 sample, which also suggests a pseudotri-layer 

accommodation by flexibility and coiling effect of C18TA+ surfactant. 

Regarding swelling ordering and MWW layer zeolitic preservation, 

soft swelling with C18TA+ maintain the (002) and (003) reflections 

which indicates a well ordering degree. In addition, the integrity of 

MWW layers is preserved by the (100), (220) and (310) diffraction 

bands that are not drastically affected after swelling. 

From TGA and DTG of the derivative MWW samples (Figure 3 

and Table S4), different mass losses of swollen materials are 

observed. In general, increasing washing cycles, the amount of final 

incorporated surfactant decreased when soft treatments were 

carried out during the swelling process. Normally, the first loss mass 

observed at 110 °C, assigned to water adsorbed on surface of 

materials, was not detected for 16-S-3 sample due to marked  

 
Figure 3. TGA and DTG of swelling with C12TA+, C16TA+ and C18TA+ materials 
with soft and aggressive procedure. 
 

hydrophobic character of the solid associated to high amount of 

swelling agent molecules located in the interlayer space. 

The main mass loss of this last sample was observed between 

180-340 °C, although HMI molecules could also be included into this 

temperature range come from structural directing agents used 

during the hydrothermal synthesis of MWW starting precursors. 

Furthermore, an additional weight loss was detected around 110– 

180 °C probably associated to some surfactant molecules located 

outside of interlayer region or weakly interacting with MWW 

crystals, being more pronounced when the number of washing 

cycles is higher. In Table S4, weight losses of MWW samples for the 

different temperature ranges are indicated. In the temperatures 

range oscillating between 180 °C and 340 °C, long chain ammonium 

surfactants used as swelling agents and located in the interlayer 

region, as well as HMI molecules placed in the MWW surface “cups” 

12 MR were oxidized, this fact being even favored by the swelling 

conditions (temperature and pH). Between 340-480 °C, mass loses 

observed were similar for samples prepared through soft swelling 

treatments, being assigned to more stabilized HMI molecules 
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located into the sinusoidal 10 MR microporous channel present in 

the inner of each individual MWW layer. 

In addition, mass loses detected in the temperature range 

between 480-800 °C were due to residual long chain ammonium 

surfactants and HMI molecules which were not previously removed, 

as well as dihydroxylation water produced by condensation 

phenomenon of surface silanol groups. In the case of swollen 16-A-

10 sample, a great amount of organic contribution is detected, even 

present in the temperature range oscillating between 110-180°C. 

Probably, the aggressive swelling treatment favored the partial 

rupture of MWW layers, facilitating that confinement and 

interaction of swelling agents and HMI molecules with the zeolitic 

framework was weaker. As consequence, the weight loses from TGA 

curves were observed at lower temperatures than in the samples 

swollen through soft conditions, as previously confirmed by XRD and 

similarly described in literature.33 

On the opposite, C12TA+ did not exhibit similar mass loses 

compared with solids swollen with C16TA+ and C18TA+ surfactants. 

From DTG curves, it is observed that 12-S-10 sample contained only 

reduced amount of swelling agents intercalated in the interlayer 

region. In addition, its loss mass is 18% higher than precursor (P) 

which corroborates with a lateral monolayer conformation of 

surfactant, as previously confirmed by XRD. For this sample, the 

mass loss being of 17% in 110-340 °C temperature range. Aggressive 

swelling treatment for 12-A-10 sample showed a loss mass 27% 

higher than MWW precursor (P). Furthermore, the total loss mass in 

12-A-10 sample is 14% higher than 12-S-10 and may suggests a 

pseudotri-layer conformation of surfactant as previously showed in 

XRD results. In the case of 18-S-10 sample, TGA and corresponding 

DTG are similar to those obtained for 16-S-type materials. 

Specifically, main weight loss was detected in 180-340 °C 

temperature range, indicating that large amount of stabilized 

swelling agents was located in the interlayer region, providing a 

strong interaction between surface of MWW layers and surfactant 

molecules which favored well-ordered MWW materials, such as was 

confirmed from above discussed XRD results. For 18-A-10 sample, 

this main loss mass associated with the swelling agents was greater 

than those detected from soft swelling treatments (36%).  

In Figure 4, XRD patterns of the MWW derivative materials after 

pillaring process are shown. For 16-S-10-P material, intense (001) 

(002) and (003) diffraction peaks are clearly observed, indicating the 

formation of well-ordered pillared solids with basal spacing of 4.2  

 
Figure 4. XRD of pillared materials swollen with C12TA+, C16TA+, C18TA+ with soft 
and aggressive procedure.  
 
nm.  XRD diffractogram of pillared 16-A-10-P sample, obtained 

through aggressive swelling treatment, exhibited (001) basal spacing 

of 4.1 nm. In addition, the (220) and (310) reflections are slight 

suppressed after pillaring which is attributed to amorphous silica 

deposited into material  leading to increase the intensity of 

diffraction region between  15-30° 2ɵ and confirmed by the ICP 

analysis of Table 1. 

XRD patterns of 18-S-10-P shown a broad (001) diffraction peak 

with basal spacing centered at 3.8 nm which is characterized by 

absence of basal (002) and (003) peaks that indicates come 

inhomogeneity on distribution of silica pillars. For 18-A-10-P sample, 

a broad (001) diffraction band with basal spacing of 3.9 nm was 

observed. Furthermore, the increase of diffraction region between 

15-30° 2ɵ indicate silica incorporation after pillaring which is 

confirmed by ICP, Table 1.  

After pillaring process, XRD patterns of 12-S-10-P and 12-A-10-P 

samples did not show intense (001)  basal peaks, as it early expected 

by XRD and TGA results of corresponding swollen samples, because 

negligible amount of C12TA+  surfactant was intercalated between 

MWW layers associated to lateral monolayer and pseudotri-layer 

conformation, respectively. However, although with a small 

presence of surfactant molecules in the interlayer space, MWW 

materials showed partial disorganization level with small and 

inhomogeneous pillars, confirmed by broad (001) reflections and 

moderate coalescence observed between (101) and (102) diffraction 

peaks.  

Nitrogen adsorption isotherms of MWW modified materials are 

shown in Figure 5. 3D-MCM-22 (C) zeolite exhibited Type I isotherm 

with a high adsorbed amount of N2 at low relative pressures  
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Figure 5. Nitrogen adsorption isotherms and pore size distribution of pillared 
and modified materials. The isotherms are shifted vertically for the sake of 
clarity. 
 

(p/p0 < 0.1) confirmed thus its microporous nature. In prominence, 

the MWW pillared materials and previously swollen with C18TA+ and 

C16TA+ swelling agents, showed isotherms with high quantity of N2 

adsorption at low p/p0 (due to strong adsorbate-adsorbent 

interactions and/or filling micropores), and a step adsorption 

between 0.12 and 0.4 of p/p0 corresponding to the capillary 

condensation phenomena occurred in the mesoporous region 

created by pillaring. In the case of isotherms of the 12-A-10-P and 

12-S-10-P samples, the  N2 adsorption at low pressures is due to 

mainly to the presence of micropores in these materials. In addition, 

the isotherm of the 12-A-10-P sample exhibit a progressive increase 

of the quantity of N2 adsorption at relative pressures higher than 

0.35, which is associated to mesoporosity present in MWW structure 

caused by desilication phenomenon. Pore size distribution (Figure 5, 

right side), of the samples under study showed pore sizes (PS) 

ranging between supermicropores and small mesopores. In the case 

of 12-S-10-P sample PS between 1.5-2.2 nm were found, on the 

contrary, the 12-A-10-P sample did not show pores in the pillar sizes 

range. For the 18-S-10-P and 18-A-10-P samples PSD ranges between 

1.6-2.5 nm and 2.1-4.0 nm were found, respectively. Instead, for 16-

S-10-P and 16-A-10 pillared samples the PS ranges between 1.8-2.5 

nm and 1.8-2.8 nm were found. In a general form, it was observed 

aggressive swelling treatment and subsequent pillaring generate 

materials with broader pore size distributions. 

Textural properties results are shown in Table 1 for the MWW-

type samples obtained after pillaring procedure, being observed a 

significant increase in the specific surface area and pore volume of 

all pillared samples compared with standard 3D-MWW zeolite (C). 

Firstly, solids swollen with longer hydrocarbon length chain agents 

exhibited higher surface area and accessibility. The pillared MWW 

materials prepared after swelling process using C12TA+ surfactants 

showed a certain increase in the specific surface area and partial 

disruption along c-stacking direction compared with 3D-MWW (C) 

zeolite and a modest pillaring for 12-S-10-P sample. For pillared 

MWW materials previously swollen with C16TA+ molecules through 

soft or aggressive swelling treatments marked an increase in the 

specific surface area of approximately 54% compared with 3D-MCM-

22 (C) zeolite. Similarly, for 18-S-10-P and 18-A-10-P pillared 

materials, an increase in the specific surface area of ~62% front of 

MCM-22 (C) was observed. This fact clearly evidenced that pillaring 

process was successful after soft and aggressive swelling treatments. 

Respect to micropores, the sample obtained with aggressive swelling 

and pillaring with C18TA+  showed the absence of micropores and 

followed by C16TA+ which presents small quantity of micropores 

(0.01 cm3g-1). This indicates aggressive treatment may obstruct the 

microporous structure of individual MWW layers due to silicon 

(deposit on MWW layers) from pillaring process may block the 

micropores. This effect is supported when 18-A-10-P is compared to 

aggressive swelling and pillaring sample 12-A-10-P which is 

desilicated (no silica was incorporated from pillaring) which 

maintains significant microporosity and increased the interparticle 

pore volume (Vint) compared with 3D-MWW zeolite (C). The 

possibility of formation of competing mesophases (type M41S, 

MCM-41) in swelling medium of 18-A-10 was also take into account. 

It well know that basic medium with surfactant, silicon and 

aluminum sources (which would be supplied from MWW layers) are 

the mean reactants to M41S formation. However, if a mesophase 

was formed, the presence of diffraction bands in low angle XRD 

pattern should be maintained after direct calcination of swollen 18-

A-10 sample. The swollen 18-A-10 sample was calcined and no XRD 

diffraction bands characteristics of mesophases were found (see 

Figure S5). Moreover, diffraction bands characteristic of MWW 

zeolite are present in 18-A-10-P and the catalytic activity showed 

that microporosity still existing.  

In Table 1, Si/Al molar ratios of materials after swelling (in 

parenthesis) and pillarization post-synthesis treatments is shown. 

The starting zeolitic precursor MCM-22(P) presented Si/Al molar 

ration of 22, decreasing after swelling process which indicated that 

partial dissolution of some silica units from individual MWW layers.  
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Table 1. Textural properties of pillared and modified materials with different surfactant sizes and swelling procedures. 
Material Si/Al 

(ICP) 

XRD 
2ɵ (°)                d001 (nm)           

SBET 
(m2g-1) 

Sext 
(m2g-1) 

VTP 
(cm3g-1) 

Vmicro 
(cm3g-

1) 

Vint** 

(cm3g-1) 

C (22) 21 (3.3) (2.7) 520 140 0.63 0.15 0.39 
12-S-10-P (18) 28 (3.9) 2.3 (3.0) 3.8 685 440 0.67 0.10 0.34 
12-A-10-P (8)  9 (2.7) 2.4 (3.2) 3.5 710 460 0.77 0.11 0.43 
16-S-10-P (18) 34 (1.9) 2.1 (4.5) 4.2 795 670 0.76 0.05 0.33 
16-A-10-P (10) 39 (1.9) 2.1 (4.5) 4.1 800 760 0.73 0.01 0.29 
18-S-10-P (18) 26 (2.0) 2.2 (4.3) 3.8 840 750 0.61 0.04 0.20 
18-A-10-P 34 (1.8; 2.3) 2.3 (4.8; 3.9) 3.9 850 850 0.65 -- 0.13 

* Values in parenthesis correspond to the swollen materials. 
** The interparticle pore volume (Vint) was obtained from the difference between VTP (obtained at 0.99 of p/p0) and the pore volume 
obtained at 0.6 of p/p0. This value correspond to pore volume of sizes from 4 to 100 nm. 

 

This decrease was more marked for aggressive than for soft swelling 

treatments. After pillaring process, Si/Al molar ration increased due 

to intercalation in the interlayer space of silica pillars, being more 

pronounced when C16TA+ and  C18TA+ surfactants were used as 

swelling agents (see XRD in Figure 4). For 18-A-10-P sample, Si/Al 

molar ratio of 34 presents similar value with the pillared samples 16-

S-10-P and 16-A-10-P and 18-A-10-P indicate the participation of 

silica into product. MWW swollen material obtained through soft 

swelling treatment using C12TA+ surfactant exhibited Si/Al molar 

ration of 18, being similar to others MWW swollen solids also 

prepared through soft swelling treatments. After pillaring this 

sample, 12-S-10, the lowest swelling agent amount finally 

incorporated (see TGA results) was involved with TEOS in the 

interlayer region, leading to increase Si/Al molar ration up to 28.  

        In contrast, aggressive swelling treatment (12-A-10) drastically 

dissolved part of the silica from MWW layers, achieving Si/Al=8 

which was maintained after pillaring process (Si/Al=9). Indeed, a 

decrease of 55% yield was founded after aggressive swelling 

procedure. However, in the pillared sample (12-A-10-P), 

microporous volume was not effectiveness altered, being close to 

calcined 3D-MCM-22 zeolite. This fact would be explained by lower 

amount of quaternary ammonium surfactant present in the 

interlayer space together with shorter terminal hydrocarbon chain, 

which prevented the effective intercalation of TEOS units to form 

ordering silica pillars. The fact by swelling with C12TA+ not be as 

effective with other swelling agents as C18TA+ and C16TA+ may lie in 

its lower capacity to form rod-like micelles, which is less favored for 

shorter surfactant lengths. Moreover, the instability to form of 

C12TA+ rod-like micelles increase above 70 °C.34 This may be 

associated to desilication phenomenon occurred in 12-A-10-P 

sample. 

In Figure 6, morphology of 2D zeolitic precursor of MCM-22 (P) 

(image a) and 3D calcined MCM-22 (C) (image b) are shown from 

SEM microscopy. In both cases, hexagonal disk-shaped crystals of 

average sizes of ~1.4 µm were observed by successive vertical 

stacking growth of MWW layers. Comparing images 6a and 6b, flat 

plates were observed after calcination process due to surface silanol 

condensation phenomenon. 

 
Figure 6. SEM analysis of precursor P(a) and MCM-22 zeolite C (b). Images (c) 
and (d) corresponding to 12-S-10-P and 12-A-10-P materials, respectively. 
         

SEM micrographs of pillared MWW material, previously swollen 

with C16TA+ and C18TA+ surfactant molecules, are shown in Figure 7. 

In the case of samples obtained from soft swelling process, MWW 

layers integrity was maintained (images a and c). In addition, 

analyzing the c-stacking of disk-shaped crystals (see insets in Figure 

7), both samples showed more expanded particles than 3D-MCM-22 

(Figure 6b). Disruption of some MWW crystals together with 
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particles sizes decrease, a partial amorphization being also 

observable. 

Pillared 18-A-10-P sample obtained after aggressive swelling 

process using C18TA+ surfactant, exhibited aggregation phenomena 

of curved disk-shaped crystals with presence of non-zeolitic 

component in form of amorphous silica which is attributed to 

dissolution of MWW layers after aggressive swelling and residual 

silica which may not participate of the pillars between MWW layers. 

Micrographs showed in Figure S5 confirms this hypothesis .  

TEM images in Figure 8a and b show the c-stacking phenomenon 

of zeolitic layers both in the MWW precursor (P) and in the 

corresponding calcined MCM-22 (C) zeolite. The measures of Figure 

7a correspond to sizes of one (2.82 nm), two (5.64 nm), or five (14.1 

nm) consecutive MWW layers (see insets in Figure 8a). After 

calcination process of MWW precursor, elimination of interlamelar 

and intracrystalline structural directing agent molecules together 

with external silanol condensation between contiguous MWW 

layers was also observed, being measured the stacking of four (10 

nm) connected MWW layers (Figure 8b). Furthermore, microporous 

10 MR channels (~0.6 nm) present between the individual layers, 

detected by white regions in the TEM micrographs, were clearly 

observed.  

 
Figure 7. SEM analysis of 16-S-10-P (a) and 16-A-10-P (b). Images (c) and (d) 
corresponding to 18-S-10-P and 18-A-10-P materials respectively. 
 

Figure 8c shows TEM imagens of pillared 16-S-10-P sample, 

being detected eight MWW layers separated by silica pillars. The 

measure with approximately 4.4 nm comprises the sum of the 

thickness of one MWW layer (2.5 nm) added to interlayer spacing 

created by pillars (~1.9 nm). The measure with ~1.8 nm comprises 

the interlayer spacing between two MWW layers which are 

consistent with basal spacing of XRD patterns of pillared 16-S-10-P. 

TEM micrographs of pillared 16-A-10-P is shown in Figure S6, being 

difficult to observe separated MWW layers by silica pillars due to 

aggressive swelling process carried out which produced partial 

damage of zeolitic crystals added the fact of amorphous silica is 

present  by pillaring process. For the sample 12-A-10-P desilication 

phenomena were observed by TEM of Figure S7 where mesoporous 

regions are opened in particle crystals. 

The 18-A-10-P sample obtained through aggressive swelling and 

pillaring treatments in presence of C18TA+ surfactant and TEOS, 

showed aggregation phenomena (see inset Figure 8d) being difficult 

to find separated layers by silica pillars. However, it is observed  

single curved, separated and disordered zeolitic MWW layers. TEM 

analysis of Figure S8 compares the morphology of 3D-MCM-22 (C) 

which has flat, clean and smooth crystals with the coarse aspect of 

both 18-S-10-P and 18-A-10-P samples to confirm the change of 

morphology and the presence of amorphous silica into pillared 

products being this effect more visible in 18-A-10-P sample. 

Figure 9 shows a general scheme summarizing the dimensions 

influence of swelling agents used during soft or aggressive 

conditions on the final MWW pillared materials. It was observed that 

behavior surfactants between MWW layers directly depends of the 

length of surfactant alkyl-chain and the type of swelling treatment 

(soft or aggressive) which conducts to four different surfactant type-

accommodations. Soft swelling with C12TA+ conducts to lateral type 

monolayer accommodation of surfactant confirmed by XRD and TGA 

analysis.  After pillaring it was observed a gently and almost 

negligible increase of basal spacing together with a moderate 

coalescence of (101) and (102) diffraction bands by partial loss of 

vertical alignment order in the stacking direction along axis c. This 

features added with moderate increase of silica after pillaring, the 

be of specific surface maintaining its microporous surface and pore 

size ranging close to small mesopores region conducts a 

disordered/pillaring material. Aggressive swelling C12TA+ exhibited 

lateral bilayer conformation together with desilication phenomenon 

attributed to temperature of swelling and C12TA+ micelle instability 

at 80 °C. The decrease of Si/Al ratio = 9 of swollen maintaining similar 

value after pillaring indicates large mesopores created not by robust  

pillars between MWW layers but for removal some MWW units from 

particle crystals as observed by TEM and isotherm analysis.  
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Figure 8. TEM of MWW precursor (P) (a), MCM-22 (b) and pillaring samples 
16-S-10-P (c) and 18-A-10-P (d). 
 

Swelling with C16TA+ surfactant lead to paraffin-type monolayer 

accommodation both soft and aggressive swelling formed pillared 

materials with basal spacing of centered at 4.2 and 4.1 nm, 

respectively. Soft swelling and pillaring material possesses more 

ordering as observed by presence of (002) and (003) diffraction 

bands.  

Swelling with C18TA+ lead to paraffin-type monolayer 

accommodation with aggressive swelling with a portion of swollen 

with pseudotri-layer conformation between layers which may 

attributed to coiling and flexibility effect of C18TA+. The pillared form 

showed a decrease of basal spacing (5.0 nm to swollen going to 3.9 

nm after pillaring) with a broad  (001) diffraction band may 

associated to inhomogeneous pillar distributions which conducts of 

more mesoporous formation in a broad range. Moreover, the 

microporosity of MWW layers was drastically affected by aggressive 

swelling where no values of microporous surface and volume are 

presented together with a considerable quantity of amorphous silica 

into material as observed by TEM analysis. Soft swelling with C18TA+ 

presents pseudotri-layer surfactant accommodation between MWW 

layers which is attributed to coiling and flexibility behavior of C18TA+. 

Its pillared form showed a basal spacing centered at 3.8 nm.  

Alternatively, surface properties of pillared MWW materials 

were investigated by FTIR spectroscopy through adsorption-

desorption of pyridine. Figure 10 shows the FTIR spectra in the 

hydroxyl region of MWW pillared materials, being detectable 

vibration bands at ~3620 cm-1 and 3670 cm-1 which correspond to 

surface bridged hydroxyl groups associated to framework  Al–OH–Si 

and extra-framework aluminum species generated upon calcination 

process, respectively. Furthermore, the vibration bands centered at 

~3730 and ~3748 cm-1 were assigned to internal and external silanol 

groups, respectively.35 

In detail, vibration band at ~3620 cm-1 (BAS) is clearly detectable 

in the spectra of calcined 3D-MCM-22 and pillared 16-S-10-P 

samples, confirming that bridged hydroxyl groups (Al-OH-Si) are 

preserved after soft swelling and consecutive pillaring processes.36  

At the meantime, vibration band intensity located at 3748 cm-1, 

assigned to the presence of external silanol groups, was notably 

increased for 16-S-10-P and 16-A-10-P samples due to intercalated 

silica pillars placed in the interlayer space. Moreover, vibration 

bands centered at ~3729 cm-1, associated to surface silanol groups, 

decreased after pillaring process, indicating that silica pillars 

interacted with external silanol groups present in the MWW layers.  

All pillared MWW materials contained acid sites with different 

strength which were detected using pyridine as adsorbed probed 

molecules (values in Table S10). Specifically, vibration bands at 1610 

cm-1 (also 1453 cm-1) and 1544 cm-1 (also and 1635 cm-1) are 

characteristics of pyridine adsorbed on Lewis (LAS) and Brönsted 

(BAS) acid sites, respectively. In addition, vibration band observed at 

1447 cm-1 is assigned to hydrogen bonded species by interaction 

with hydroxyl groups on the zeolite surface.36  

 
Figure 9. General scheme of surfactant accommodation between layers of 
swelling and pillaring MWW materials. Red or green thermometers 
(aggressive or soft swelling). The colored arrows represents the surfactant 
sizes. Pink/blue (C18TA+), red/green (C16TA+) and orange/mustard (C12TA+). 
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Figure 10.  FTIR after outgassing at 400 °C for 2 hours and spectra after 
pyridine adsorption at 150°C. Spectra are normalized to 11.3 mg sample. 
The IR spectra showed that the intensity band focused on 1544 cm-1  

 

decreased after pillaring process which indicated that the number of 

BAS was “diluted” by insertion of silica pillars. This decreasing is 

pronounced in materials obtained through aggressive swelling 

treatment 16-A-10-P and more significantly to 18-A-10-P sample 

that possesses more disordered pillar and favored partial 

amorphization of the MWW layers which suggests considerable non-

zeolitic component. On the other hand, LAS estimated by the 

vibration band intensity centered at 1454 cm-1 was higher for 16-A-

10-P sample due to aluminum extra-framework present in the solid 

after aggressive swelling and consecutive pillarization post-synthesis 

treatments.  

The characterization results showed that through the combined 

action of swelling conditions (soft or aggressive) and interlamelar 

agents, with different molecular dimensions, modulation of physico-

chemical and morphological nature of derivative MWW-type 

materials is possible. Different accessibility level achieved together 

with preserved acidity in the obtained MWW pillared zeolites open 

the possibility to analyze and evaluate these materials from catalytic 

point of view. 

 

Catalytic activity 

Recently, great efforts has been made on effective 

routes for the synthesis of 5-HMF from C6-based carbohydrates. This 

demand comes from the necessity to obtain new sustainable fuels 

sources and chemicals through inexpensive and renewable materials 

with high added-value, proposing alternative efficient industry 

processes which could replace the limited fossil fuels.37,38  

Specifically, 5-HMF is a valuable biomass-derived platform 

intermediate, which is potentially used as fuel and additives in fine 

chemicals, pharmaceuticals and polymers.39,40,41,42 

 The use of solid acid catalyst for dehydration carbohydrates has 

several advantages over liquid acid catalyst, such as easier 

separation, being recoverable and recyclable for successive reuses. 

Moreover, adjusting surface acidity of heterogeneous solid catalyst, 

selectivity to desired product can be achieved at shorter times, 

working with higher temperatures, voiding corrosion and safety 

problems.43,44 Acid H-Y, H-ZSM-5, H-mordenite, H-β, β-dealuminated 

has been used to produce 5-HMF from carbohydrates.45,46,47,48 In 

addition, layered zeolites are one the most potential and promising 

materials to replace current used catalysts and advancement areas 

of study on porous and hierarchical materials.49   Take into account, 

acid pillared MWW materials, previously described, with different 

porosity levels and morphology in function of surfactant agents 

dimensions and swelling conditions (soft or aggressive) were 

evaluated as active catalysts for dehydration carbohydrates to 5-

HMF production. In addition, has been demonstrated that the 

combined action between Brønsted and Lewis acid sites were highly  

beneficial to 5-HMF production.50 Thus, fructose dehydration would 

be a priori an ideal model substrate to evaluate the performance of 

pillared MWW catalytic materials for biomass conversion.51 

In fact, molecular size of fructose (0.85 nm) and 5-HMF (0.59 nm) 

limits their access and diffusion through internal two-dimensional 10 

MR sinusoidal channels of MWW zeolite (0.40 x 0.55 nm), the 

reaction being presumably carried out in external active sites located 

in the surface of MWW individual layers. Figure 10 shows fructose 

conversion and 5-HMF yield using MWW materials as 

heterogeneous catalysts. Blank test reaction (without solid catalyst) 

led 8% and 15% of yield for 5-HMF after 1 and 3 h, respectively, 

similarly to those reported in the bibliography for the same reaction 

conditions.52 In our case, all MWW materials were active to fructose  

dehydration, reaching conversions close to 100% after 3 h.  

Table 2. Rates of 5-HMF production over various MWW-type derivative 
materials. 

Catalyst Rate of HMF production, 
 (µmol min-1)a 

Catalyst loading, 
(µmol H+)b 

TOF, 
 (min-1) 

C 23 72.7 0.31 
12-S-10-P 23.8 - - 
16-S-10-P 37.7 56 0.67 
16-A-10-P 19.9 59.2 0.33 
18-A-10-P 37.2 21.2 0.56 

a rates of HMF production were taken from Supplementary Information, 
Figure S11. b acidity values  at 150 °C (BAS + LAS) were taken from 
Supplementary Information, Table S10.  
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Figure 11.  Fructose conversion, selectivity and 5-HMF-5 yield over C (MCM-
22), 12-S-10-P, 16-S-10-P, 16-A-10-P and 18-A-10-P MWW-derivative 
materials. 
 

Conventional 3D MCM-22 zeolite (C) showed 61% of yield for 5-

HMF in 2 h, confirming that probably certain diffusional problems 

limit the reaction process, being performed in the external surface 

of zeolite crystals. However, the obtained yield was higher compared 

with other microporous commercial β zeolite and similar to hollow 

microspherical β zeolites (63%).46,53 After 3 hours of reaction, 5-HMF 

yield progressively decreased up to 57% after 5 h (not shown). This 

tendency was due to cocking formation on active sites or secondary 

reactions which rehydrate final product, forming presumably 

insoluble humins (brown products were visible at final of reaction), 

formic acid and levulinic acid. Indeed, levulinic acid was identified 

between 2-5 h of reaction process.  

Specifically, disordered/pillared 12-S-10-P material showed a 

yield of 68% for 5-HMF within 3 h of reaction. The high activity 

achieved can be due to order absence of MWW layers 

perpendicularly aligned to axis c which partially opened external 

surface of 12 MR supercages, previously inaccessible in the 3D 

calcined MCM-22 (C). This effect increased external surface and 

accessibility of the pillared material, being preserved the starting 

MWW structure and the Si/Al molar ration (Si/Al= 28). However, 

levulinic acid was identified, as well as a decrease of 7% in the 5-HMF 

yield after 1 h and 3 h of reaction, respectively. 

In the case of pillared 16-S-10-P, 16-A-10-P and 18-A-10-P 

materials, maximum conversion and yield were reached within 2 h 

of reaction because swelling, pillaring improved catalyst accessibility 

and reactant diffusion of reactant and products to active sites.  In 

detail, higher conversion and yield was achieved for pillared 16-S-10-

P sample and 18-A-10-P samples within 45 min of reaction. Indeed, 

turnover frequencies (TOF, Table 2) showed highest activities for 

both materials. Even, 16-S-10-P material which exhibited lower 

specific surface area, achieved higher performance (78% for fructose 

conversion and 51% for 5-HMF yield) than 16-A-10-P sample (46% 

and 30%, respectively). This difference may due to higher MWW 

layer integrity obtained in the pillared materials swollen through soft 

conditions that avoided structure amorphization. Hence, soft 

swelling treatment favored the formation of more robust (without 

amorphous phases), accessible and active pillared MWW catalysts. 

The highly disordered pillared 18-A-10-P sample showed best 

performance within 1 h of reaction, reaching 85% and 65% for 

fructose conversion and 5-HMF yield, respectively. Even, although 

acidity decreased (Table S10), 18-A-10-P material showed higher 
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catalytic activity associated to larger pore size distribution (2.1 – 4.0 

nm) formed by pillaring (layers which increased the access to active 

sites located in the external supercages. As result, dehydration was 

favored, facilitating products diffusion and achieving higher 5-HMF 

yield (67%) than 16-S-10-P within 2 h of reaction and maximal yield 

within 3h (69%). The DTG (see Figure S12) for pillared MWW 

materials used as catalysts and recovered after 5 h of reaction 

showed total weight loses of 25, 20, 20, 23 and 28% for 3D calcined 

MCM-22, 12-S10-P, 16-S-10-P, 16-A-10P and 18-A-10 samples, 

respectively. These values confirmed that partial deactivation of the 

catalysts could occur, being associated to cocking formation and 

consequent coke deposition on active sites, this effect being more 

acute for highly disordered pillared 18-A-10-P sample where active 

sites were more accessible. 

 

Conclusions 

We have demonstrated that surfactant molecular dimensions 

play a key role during the swelling of MWW precursors, generating 

a valid alternative route to obtain derivative MWW-type zeolites 

with controlled physico-chemical and morphological nature, being 

possible to establish both accessibility level and associated acidity 

through desilication effect. Soft and aggressive treatments, using 

C12TA+ as swelling agent, produce partial disordered/pillared 

materials, and in the case of aggressive methodology, even 

desilication. Swelling with C16TA+ surfactant leads pillared materials 

with minimal structure damage by soft swelling. Aggressive swelling 

with C16TA+ and C18TA+ create pillared MWW with more 

mesoporosity range and structure damage. The MWW materials 

demonstrate potential use for fructose conversion, especially highly 

disordered pillared MWW-type zeolites which exhibited higher 5-

HMF yield in just 45 min of reaction. 

Acknowledgements 

We are grateful to CAPES Foundation and PDSE program (process 
number 99999.004779/2014-02) from Ministry of Education of 
Brazil. U.D and A.C acknowledge to the Spanish Government (Severo 
Ochoa program SEV-2012-0267 and MAT2014-52085-C2-1-P) and to 
the Generalitat Valenciana (Prometeo) by the funding. The European 
Union is also acknowledged by ERC-AdG-2014-671093 – 
SynCatMatch. 

References 

1. T. Maesen, in Studies in Surface Science and 
Catalysis, eds. H. v. B. A. C. Jiří Čejka and S. Ferdi, 
Elsevier, 2007, vol. Volume 168, pp. 1-12. 

2. A. Corma, Chemical Reviews, 1997, 97, 2373-
2420. 

3. C. S. Cundy and P. A. Cox, Chemical Reviews, 
2003, 103, 663-702. 

4. M. E. Davis, Nature, 2002, 417, 813-821. 
5. K. Li, J. Valla and J. Garcia-Martinez, 

ChemCatChem, 2014, 6, 46-66. 
6. J. Perez-Ramirez, C. H. Christensen, K. Egeblad, 

C. H. Christensen and J. C. Groen, Chemical 
Society Reviews, 2008, 37, 2530-2542. 

7. K. Na, M. Choi and R. Ryoo, Microporous and 
Mesoporous Materials, 2013, 166, 3-19. 

8. Y. Yan, X. Guo, Y. Zhang and Y. Tang, Catalysis 
Science & Technology, 2015, 5, 772-785. 

9. A. Corma, U. Díaz, T. García, G. Sastre and A. 
Velty, Journal of the American Chemical Society, 
2010, 132, 15011-15021. 

10. U. Díaz, Á. Cantín and A. Corma, Chemistry of 
Materials, 2007, 19, 3686-3693. 

11. W. J. Roth, C. T. Kresge, J. C. Vartuli, M. E. 
Leonowicz, A. S. Fung and S. B. McCullen, in 
Studies in Surface Science and Catalysis, eds. H. 
G. K. I. K. H.K. Beyer and J. B. Nagy, Elsevier, 
1995, vol. Volume 94, pp. 301-308. 

12. A. Corma, V. Fornés, A. Chica and U. Diaz, EP 
Spanish Patent 9802283, 1999. 

13. K. Na, M. Choi, W. Park, Y. Sakamoto, O. 
Terasaki and R. Ryoo, Journal of the American 
Chemical Society, 2010, 132, 4169-4177. 

14. X. Zhang, D. Liu, D. Xu, S. Asahina, K. A. Cychosz, 
K. V. Agrawal, Y. Al Wahedi, A. Bhan, S. Al 
Hashimi, O. Terasaki, M. Thommes and M. 
Tsapatsis, Science, 2012, 336, 1684-1687. 

15. W. J. Roth and J. Cejka, Catalysis Science & 
Technology, 2011, 1, 43-53. 

16. S. Maheshwari, E. Jordan, S. Kumar, F. S. Bates, 
R. L. Penn, D. F. Shantz and M. Tsapatsis, Journal 
of the American Chemical Society, 2008, 130, 
1507-1516. 

17. S. Maheshwari, C. Martínez, M. Teresa Portilla, 
F. J. Llopis, A. Corma and M. Tsapatsis, Journal 
of Catalysis, 2010, 272, 298-308. 

18. W. J. Roth and J. C. Vartuli, in Studies in Surface 
Science and Catalysis, eds. A. Sayari and M. 
Jaroniec, Elsevier, 2002, vol. Volume 141, pp. 
273-279. 



ARTICLE Journal Of Materials Chemistry A 

14 | Journal of Materials Chemistry A, 2016, 00, 1-3 This journal is © The Royal Society of Chemistry 2016 

Please do not adjust margins 

Please do not adjust margins 

19. W. J. Roth, J. Čejka, R. Millini, E. Montanari, B. 
Gil and M. Kubu, Chemistry of Materials, 2015, 
27, 4620-4629. 

20. M. Mazur, P. Chlubná-Eliášová, W. J. Roth and J. 
Čejka, Catalysis Today, 2014, 227, 37-44. 

21. M. Shamzhy, M. Mazur, M. Opanasenko, W. J. 
Roth and J. Cejka, Dalton Transactions, 2014, 
43, 10548-10557. 

22. V. J. Margarit, M. E. Martínez-Armero, M. T. 
Navarro, C. Martínez and A. Corma, 
Angewandte Chemie International Edition, 
2015, 54, 13724-13728. 

23. H. Y. Luo, V. K. Michaelis, S. Hodges, R. G. Griffin 
and Y. Roman-Leshkov, Chemical Science, 2015, 
6, 6320-6324. 

24. A. Corma, C. Corell and J. Pérez-Pariente, 
Zeolites, 1995, 15, 2-8. 

25. S. Brunauer, P. H. Emmett and E. Teller, Journal 
of the American Chemical Society, 1938, 60, 
309-319. 

26. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. 
Moscou, R. A. Pierotti, J. Rouquerol, T. 
Siemieniewska and Pure Appl. Chem, 1985, 57, 
603–619. 

27. M. Jaroniec, M. Kruk and J. P. Olivier, Langmuir, 
1999, 15, 5410-5413. 

28. J. Villarroel-Rocha, D. Barrera and K. Sapag, 
Microporous and Mesoporous Materials, 2014, 
200, 68-78. 

29. C. A. Emeis, Journal of Catalysis, 1993, 141, 347-
354. 

30. M. A. Camblor, A. Corma, M.-J. Díaz-Cabañas 
and C. Baerlocher, The Journal of Physical 
Chemistry B, 1998, 102, 44-51. 

31. M. Polozij, H. V. Thang, M. Rubes, P. Eliasova, J. 
Cejka and P. Nachtigall, Dalton Transactions, 
2014, 43, 10443-10450. 

32. M. J. Rosen, in Surfactants and Interfacial 
Phenomena, John Wiley & Sons, Inc., 2004, DOI: 
10.1002/0471670561.ch3, pp. 105-177. 

33. Y. J. He, G. S. Nivarthy, F. Eder, K. Seshan and J. 
A. Lercher, Microporous and Mesoporous 
Materials, 1998, 25, 207-224. 

34. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, 
P. Feng, T. E. Gier, P. Sieger, A. Firouzi and B. F. 
Chmelka, Chemistry of Materials, 1994, 6, 1176-
1191. 

35. P. Matias, J. M. Lopes, S. Laforge, P. Magnoux, 
P. A. Russo, M. M. L. Ribeiro Carrott, M. Guisnet 
and F. Ramôa Ribeiro, Journal of Catalysis, 2008, 
259, 190-202. 

36. S. Laforge, P. Ayrault, D. Martin and M. Guisnet, 
Applied Catalysis A: General, 2005, 279, 79-88. 

37. A. Corma, S. Iborra and A. Velty, Chemical 
Reviews, 2007, 107, 2411-2502. 

38. S. P. Teong, G. Yi and Y. Zhang, Green Chemistry, 
2014, 16, 2015-2026. 

39. Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu and J. 
A. Dumesic, Nature, 2007, 447, 982-985. 

40. A. A. Rosatella, S. P. Simeonov, R. F. M. Frade 
and C. A. M. Afonso, Green Chemistry, 2011, 13, 
754-793. 

41. M. J. Climent, A. Corma and S. Iborra, Green 
Chemistry, 2011, 13, 520-540. 

42. A. Gandini and M. N. Belgacem, Progress in 
Polymer Science, 1997, 22, 1203-1379. 

43. X. Tong, Y. Ma and Y. Li, Applied Catalysis A: 
General, 2010, 385, 1-13. 

44. J. J. Bozell and G. R. Petersen, Green Chemistry, 
2010, 12, 539-554. 

45. C. Moreau, R. Durand, S. Razigade, J. Duhamet, 
P. Faugeras, P. Rivalier, P. Ros and G. Avignon, 
Applied Catalysis A: General, 1996, 145, 211-
224. 

46. K.-i. Shimizu, R. Uozumi and A. Satsuma, 
Catalysis Communications, 2009, 10, 1849-
1853. 

47. R. O’Neill, M. N. Ahmad, L. Vanoye and F. 
Aiouache, Industrial & Engineering Chemistry 
Research, 2009, 48, 4300-4306. 

48. R. Otomo, T. Yokoi, J. N. Kondo and T. Tatsumi, 
Applied Catalysis A: General, 2014, 470, 318-
326. 

49. M. V. Opanasenko, W. J. Roth and J. Cejka, 
Catalysis Science & Technology, 2016, DOI: 
10.1039/C5CY02079D. 

50. E. Nikolla, Y. Román-Leshkov, M. Moliner and 
M. E. Davis, ACS Catalysis, 2011, 1, 408-410. 

51. R. Liu, J. Chen, X. Huang, L. Chen, L. Ma and X. 
Li, Green Chemistry, 2013, 15, 2895-2903. 

52. J. B. Joo, A. Vu, Q. Zhang, M. Dahl, M. Gu, F. 
Zaera and Y. Yin, ChemSusChem, 2013, 6, 2001-
2008. 

53. Y. Shi, X. Li, J. Hu, J. Lu, Y. Ma, Y. Zhang and Y. 
Tang, Journal of Materials Chemistry, 2011, 21, 
16223-16230. 

 

 

 


