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Abstract

Optical tomography has found many medical applications that need to know
how the photons interact with the different tissues. The majority of the photon
transport simulations are done using the diffusion approximation, but this ap-
proximation has a limited validity when optical properties of the different tissues
present large gradients, when structures near the photons source are studied or
when anisotropic scattering has to be taken into account. As an alternative
to the diffusion model, the PL equations for the radiative transfer problem are
studied. These equations are discretized in a rectangular mesh using a nodal
collocation method. The performance of this model is studied by solving differ-
ent 1D and 2D benchmark problems of light propagation in tissue having media
with isotropic and anisotropic scattering.

Keywords: radiative transfer equation, light propagation in tissue,
multidimensional PL equations, spherical harmonics, nodal collocation method
PACS: 02.60.Lj, 05.60.Cd, 87.57.-s, 87.90.+y

1. Introduction

Optical tomography, also referred to as diffuse optical tomography, has made
considerable advances in recent years [1, 2]. This field is concerned with the use
of visible and near-infrared light for diagnosis and treatment of biological tissues.
Examples include optical monitoring of blood oxygenation, detection of cerebral
hemorrhages, functional imaging of brain activity, diagnosis of Alzheimer’s dis-
ease, breast cancer, etc. [3].

The use of optical techniques for medical imaging is an attractive alternative
to other methods using ionizing radiation [4]. Optical imaging of the breast has
undergone an important growth [5] as an imaging technique for the detection and
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diagnosis of cancer. Optical techniques have also been applied to the detection
and diagnosis of brain cancer, Alzheimer and other pathologies [6, 7, 8, 9]. These
methods are different from other imaging techniques based on ionizing radiation
because the light at the intensities used for diagnostic is not carcinogenic. A
further motivation for using optical techniques based on photons is that these
are sensitive to information related to metabolic processes and blood flow [3, 8],
identifying different types of soft tissues. However, optical photons created in
the near-infrared light spectrum suffer from scattering by heterogeneous bodies
giving significant amount of blurring.

Having an efficient model to describe photon transport in tissue is fundamen-
tal in the medical application of optical radiation. Modeling of light propagation
in tissue is largely done through the use of the diffusion approximation to the
radiative transfer equation. But the diffusion approximation is only valid in
optically thick media (the system must be large compared to the photon mean
free path), far from any boundary layer, and when the absorption coefficient is
small compared to the scattering coefficient. Since most biological tissues obey
this condition, the diffusion approximation is often a good approximation and
is frequently solved using finite elements techniques [10]. However, this model
is not applicable to non-scattering void-like layers where the scattering and ab-
sorption are very low [11], and to regions where optical properties change a lot
from the surrounding region [12]. Also, structures near to boundary source [13],
clear regions, and anisotropic scattering cannot be fully taken into account with
the diffusion approximation [14].

Providing solutions to the radiative transfer equation (RTE) remains a chal-
lenging task in the fields of tissue optics and radiological sciences. Limits of dif-
fusion approximation have been investigated and compared with other methods
by several researchers. Thus, in [9] the authors use a time-independent, discrete
ordinates (SN ), finite difference transport code called DANTSYS that was devel-
oped by Alcouffe and co-workers and present the comparison of finite-difference
transport and diffusion calculations for photon migration in homogeneous and
heterogeneous tissues. To overcome known problems of the discrete ordinates
method as the ray effect, the angular discretization of the RTE can be performed
using spherical harmonics series. If the series is truncated at the Lth moment,
the PL approximation is obtained [12]. To try to overcome the complexity of
the full PL theory, an approximation based on simplified spherical harmonics,
SPL, has been successfully applied to 2D electron-photon problems [15], and
to tissue optics [16]. Although the SPL equations are fewer equations to solve
than the full PL equations, the SPL solutions do not converge to exact transport
solutions. On the other hand, the diffusive spherical harmonics PL equations
have several advantages regarding the SN or SPL equations. First, the diffusive
PL equations approximates the RTE equations by a set of coupled diffusion-like
equations, which can be solved with standard diffusion solvers. Also, they do
not suffer from ray effects, as the SN method does. Yet, PL equations can lead
to highly oscillatory behavior and even negative particle concentrations [17, 18].
In the work of [6, 19] the authors developed a finite element spherical harmonics
radiation transport model that is applied to this type of problems. All these
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issues strongly suggest that the diffusive PL spherical-harmonics equations can
be applied to optical tomography, hence our interest in revisiting this field of
medical imaging research.

In this paper, a spherical harmonics-nodal collocation method for the solu-
tion of the diffusive (second order) PL equations is proposed. The angular PL
approximation is computed for arbitrary odd L. The spatial discretization is
based on a nodal collocation method and the use of Legendre polynomials series
on a coarse spatial mesh. The method has a rapid convergence with the number
of Legendre polynomials, and the size of the discretized problem is smaller than
the one obtained with other techniques as the finite difference method, when
the same accuracy is required.

The present work is organized as follows: In Section 2, we introduce the
radiative transfer equation for light propagation in tissue, and we review the
multi-dimensional spherical harmonics PL equations for arbitrary angular order
L, that will be formulated as a vector-valued diffusive second order differential
equation. Surface source and vacuum boundary conditions are approximated
using Marshak’s conditions and will be computed for arbitrary order L. The
spatial discretization is then carried out using a nodal collocation method. In
Section 3, several photon propagation problems are analyzed and used to val-
idate the numerical accuracy of the PL method described in Section 2. We
examine the transport of photons through 1D and 2D homogeneous media, and
also through 2D heterogeneous media with void-like regions and channels. In
both types of media, cases with isotropic and anisotropic scattering are studied,
considering in the last cases the Henyey-Greenstein and simplified approximated
Mie phase functions. Finally the main conclusions of the study are summarized
in Section 4.

2. The radiative transfer equation

The propagation of light in scattering media can be described by the ra-
diative transfer equation (RTE), that is, the linearized one-speed, steady-state
form of the Boltzmann transport equation [20]:

~Ω ~∇Φ(~r, ~Ω) + µt(~r) Φ(~r, ~Ω) =

∫
d~Ω′ µs(~r; ~Ω

′ → ~Ω) Φ(~r, ~Ω′) + S(~r, ~Ω) , (1)

where Φ(~r, ~Ω) is the photon angular flux at the spatial point ~r = (x1, x2, x3)

and unit direction-of-flight ~Ω = (cosϕ sin θ , sinϕ sin θ , cos θ), 0 < ϕ < 2π,
0 < θ < π; µt is the total macroscopic cross-section (attenuation coefficient),

µs is the scattering cross-section from direction ~Ω′ to direction ~Ω and finally
S(~r, ~Ω) is the internal fixed source term.

In the spherical harmonics method the angular dependence of the photon
flux Φ(~r, ~Ω) and the source term S(~r, ~Ω) are expanded in terms of the (com-

plex) spherical harmonics Y ml (~Ω) =
√

(2l+1)
4π

(l−m)!
(l+m)! P

m
l (cos θ)eimϕ [21] (where

Pml (cos θ) are the associated Legendre polynomials), that form a complete set
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of orthonormal functions, that is, they satisfy the orthonormality property∫
d~ΩY lm

∗
Y l
′

m′ = δll′δmm′ , where δij is the Kronecker delta and d~Ω = sin θ dϕdθ,
0 < ϕ < 2π, 0 < θ < π. Thus,

Φ(~r, ~Ω) =

∞∑
l=0

+l∑
m=−l

φlm(~r)Y ml (~Ω) ,

S(~r, ~Ω) =

∞∑
l=0

+l∑
m=−l

slm(~r)Y ml (~Ω) ,

(2)

where φlm(~r) and slm(~r) are the (spherical harmonics) moments. Complex
spherical harmonics will provide a more concise theoretical description of the
method. The isotropic photon flux is then φ(~r) = 1

4π

∫
d~Ω Φ(~r, ~Ω) = (4π)−1/2φ00(~r).

It will also be assumed that scattering depends only on the relative angle
between the incident and the scattered photons, ~Ω ~Ω′, and that the scattering
cross-section may be expanded as the following series of Legendre polynomials

µs(~r, ~Ω ~Ω′) =

∞∑
l=0

2l + 1

4π
µs,l(~r)Pl(~Ω ~Ω′) . (3)

In the process of light scattering in tissues the scattering cross-section is factor-
ized as [22]

µs(~r, ~Ω ~Ω′) = µs(~r) p(~Ω ~Ω′) ,

where the phase function p is given by theoretical models and provides a con-
venient description of anisotropic scattering in terms of a unique parameter,
the anisotropy factor g. Due to its simplicity, the most widely adopted is the
Henyey-Greenstein (H-G) function [23]:

pHG(~Ω ~Ω′) =
1− g2

4π(1 + g2 − 2g~Ω ~Ω′)3/2
=

∞∑
l=0

2l + 1

4π
gl Pl(~Ω ~Ω′) (4)

(g = 0 corresponds to isotropic scattering). From (3) it is straightforward that
the expansion coefficients are

µHG
s,l (~r) = µs(~r) g

l , l = 0, 1, . . .

This model is inefficient in the forward peaked range (g > 0.8) due to the
high number of Legendre expansion coefficients required [6]. So recently a new
scattering phase function, the simplified approximate Mie (SAM), has been
proposed [24] that requires less coefficients:

pSAM(~Ω ~Ω′) = KS(1 + ~Ω ~Ω′)np , (5)

where np = 2g
1−g is the anisotropic index and KS = 1

2π
np+1

2np+1 is the normalization

factor. Now, the expansion coefficients in (3) are given by

µSAM
s,l (~r) = µs(~r)

np + 1

2np+1

∫ 1

−1

(1 + ω)npPl(ω) dω , l = 0, 1, . . .
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Expansions (2) and (3) and the orthogonality properties of Y ml are then used
into (1). Let us consider the first term in (1), that accounts for photons removed

by leakage in direction ~Ω. If ~Ω ~∇Φ(~r, ~Ω) =
∑∞
l′=0

∑+l′

m′=−l′ Al′m′(~r)Y
m′

l′ (~Ω) then
(for simplicity, we omit the arguments of Y ml and Φ)

Al′m′ =

∫
d~ΩY m

′

l′
∗
(~Ω ~∇Φ)

=

∞∑
l=0

−l≤m≤+l

[∫
d~ΩY m

′

l′
∗

cosϕ sin θ Y ml
∂φlm
∂x1

+

∫
d~ΩY m

′

l′
∗

sinϕ sin θ Y ml
∂φlm
∂x2

+

∫
d~ΩY m

′

l′
∗

cos θ Y ml
∂φlm
∂x3

]
.

If we have into account the following formulas∫
d~ΩY m

′

l′
∗

sin θ e−iϕ Y ml =
(
−C1(l,m)δl−1,l′ + C2(l′,m′)δl′−1,l

)
δm′+1,m ,∫

d~ΩY m
′

l′
∗

sin θ eiϕ Y ml =
(
−C1(l′,m′)δl′−1,l + C2(l,m)δl−1,l′

)
δm+1,m′ ,∫

d~ΩY m
′

l′
∗

cos θ Y ml =
(
C3(l,m)δl−1,l′ + C3(l′,m′)δl′−1,l

)
δm′,m ,

where

C1(l,m) =

(
(l +m)(l +m− 1)

(2l + 1)(2l − 1)

)1/2

,

C2(l,m) = C1(l,−m) ,

C3(l,m) =

(
(l +m)(l −m)

(2l + 1)(2l − 1)

)1/2

,

it follows that

Al′m′ =

∞∑
l=0

−l≤m≤+l

{
1

2

[(
−C1(l,m)δl−1,l′ + C2(l′,m′)δl′−1,l

)
δm′+1,m

+
(
−C1(l′,m′)δl′−1,l + C2(l,m)δl−1,l′

)
δm+1,m′

]∂φlm
∂x1

+
1

2i

[(
−C1(l,m)δl−1,l′ + C2(l′,m′)δl′−1,l

)
δm′+1,m

+
(
−C1(l′,m′)δl′−1,l + C2(l,m)δl−1,l′

)
δm+1,m′

]∂φlm
∂x2

+
(
C3(l,m)δl−1,l′ + C3(l′,m′)δl′−1,l

)
δm′,m

∂φlm
∂x3

}
. (6)

Let us now consider the scattering source term in the equation (1). Knowing
that the Legendre polynomials of a scalar product of unit vectors can be ex-
panded as Pl(~Ω ~Ω′) = 4π

2l+1

∑l
m=−l Y

m
l (~Ω)Y ml

∗(~Ω′), and using the assumption
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(3), we get

∫
d~Ω′

∞∑
l=0

2l + 1

4π
µs,l(~r)Pl(~Ω ~Ω′)Φ(~r, ~Ω′)

=

∫
d~Ω′

∞∑
l=0

l∑
m=−l

µs,l(~r)Y
m
l (~Ω)Y ml

∗(~Ω′)Φ(~r, ~Ω′) =

∞∑
l=0

−l≤m≤+l

µs,l Y
m
l (~Ω)φlm(~r) .

From these expressions it is straightforward to obtain the following (infinite) set
of (complex) equations for the spherical harmonics moments φlm:

1

2

(
−C1(l + 1,m+ 1)

∂φl+1,m+1

∂x1
+ C2(l,m)

∂φl−1,m+1

∂x1

− C1(l,m)
∂φl−1,m−1

∂x1
+ C2(l + 1,m− 1)

∂φl+1,m−1

∂x1

)
+

1

2i

(
−C1(l + 1,m+ 1)

∂φl+1,m+1

∂x2
+ C2(l,m)

∂φl−1,m+1

∂x2

− C1(l,m)
∂φl−1,m−1

∂x2
+ C2(l + 1,m− 1)

∂φl+1,m−1

∂x2

)
+ C3(l + 1,m)

∂φl+1,m

∂x3
+ C3(l,m)

∂φl−1,m

∂x3
+ µt φlm

= µs,l φlm + slm , l = 0, 1, . . . , m = −l, . . . ,+l .

(7)

It is understood that terms involving moments φlm with invalid indices l and
m are zero. To obtain a finite approximation, the series in expansions (2) and
(3) are truncated at some finite order l = L and the resulting equations (7) are
known as the PL equations. In the following, we will only consider L to be an
odd integer.

We observe that the radiative transfer equation (1) is a real equation and,
as we are interested (for physical reasons) on real solutions, then Φ = Φ∗,
that is, φlm

∗ = (−1)mφl,−m and not all complex moments are independent
so there are only 2l + 1 real independent moments for each l > 0, that is,
{φl0,Reφlm, Imφlm,m = 1, . . . , l}. We will now obtain the real form of PL
equations (7). Taking real and imaginary part in (7) and defining the real
moments

ξlm = Reφlm =
1

2
(φlm + (−1)mφl,−m) ,

ηlm = Imφlm =
1

2i
(φlm − (−1)mφl,−m) ,

(8)
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we obtain the corresponding 2l + 1 real equations:

1

2

(
−C1(l + 1,m+ 1)

∂ξl+1,m+1

∂x1
+ C2(l,m)

∂ξl−1,m+1

∂x1

− C1(l,m)
∂ξl−1,m−1

∂x1
+ C2(l + 1,m− 1)

∂ξl+1,m−1

∂x1

)
+

1

2

(
−C1(l + 1,m+ 1)

∂ηl+1,m+1

∂x2
+ C2(l,m)

∂ηl−1,m+1

∂x2

− C1(l,m)
∂ηl−1,m−1

∂x2
+ C2(l + 1,m− 1)

∂ηl+1,m−1

∂x2

)
+ C3(l + 1,m)

∂ξl+1,m

∂x3
+ C3(l,m)

∂ξl−1,m

∂x3
+ µt ξlm

= µs,l ξlm + Re slm , m = 0, 1, . . . , l ,

(9)

and

1

2

(
−C1(l + 1,m+ 1)

∂ηl+1,m+1

∂x1
+ C2(l,m)

∂ηl−1,m+1

∂x1

− C1(l,m)
∂ηl−1,m−1

∂x1
+ C2(l + 1,m− 1)

∂ηl+1,m−1

∂x1

)
− 1

2

(
−C1(l + 1,m+ 1)

∂ξl+1,m+1

∂x2
+ C2(l,m)

∂ξl−1,m+1

∂x2

− C1(l,m)
∂ξl−1,m−1

∂x2
+ C2(l + 1,m− 1)

∂ξl+1,m−1

∂x2

)
+ C3(l + 1,m)

∂ηl+1,m

∂x3
+ C3(l,m)

∂ηl−1,m

∂x3
+ µt ηlm

= µs,l ηlm + Im slm , m = 1, . . . , l ,

(10)

From the index structure of the equations (9) and (10), it is convenient to gather
even l moments into vectors

X = (ξl,m≥0, ηl,m>0)l=even , S = (Re sl,m≥0, Im sl,m>0)l=even , (11)

with ne = L(L+ 1)/2 components, and odd l moments into vectors

X̄ = (ξl,m≥0, ηl,m>0)l=odd , S̄ = (Re sl,m≥0, Im sl,m>0)l=odd , (12)

with no = (L+ 1)(L+ 2)/2 components (for example, if L = 1 then X = (ξ00)
and X̄ = (ξ10, ξ11, η11)T ). Then (9) and (10) can be rewritten as

3∑
j=1

Mj
∂X̄

∂xj
+ diag(µt − µsl)l=evenX = S , (13)

3∑
j=1

M̄j
∂X

∂xj
+ diag(µt − µsl)l=oddX̄ = S̄ , (14)
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where Mj and M̄j are rectangular matrices of dimensions ne × no and no × ne
respectively, defined from the coefficients of (9) and (10). Eq. (14) relates X̄
with derivatives of X so it corresponds to a generalization of “Fick’s law”:

X̄ = −D
3∑
j=1

M̄j
∂X

∂xj
+D S̄ , (15)

where D = diag(µt − µsl)−1
l=odd is a square matrix. Replacing (15) into (13) we

obtain the “diffusive form of PL equations”:

−
3∑

i,j=1

∂

∂xi

(
MiDM̄j

∂X

∂xj

)
+ µaX = Seff , (16)

where µa = diag(µt − µsl)l=even is the absorption coefficient and the “effective

source term” is Seff = S −
∑3
j=1

∂
∂xj

(MjDS̄). The square “effective diffusion

matrices” MiDM̄j generalize the diffusion coefficient 1/(3(µt−µs1)) of P1 equa-
tion to PL equations for L > 1. Notice that the equation (16) will encounter
difficulties when dealing with problems that involve void regions, where matrix
D is (near) singular.

Finally, (16) corresponds to 3D geometry. Lower dimensional geometries are
obtained by imposing restrictions to the angular flux. The XY (2D) geometry
is obtained considering that the angular flux does not depend on the third
coordinate, Φ = Φ(x1, x2, ~Ω), so ∂Φ

∂x3
= 0, and also must satisfy the symmetry

relation Φ(θ) = Φ(π − θ), so the moments φlm = 0 if l +m is odd. The planar
(1D) geometry is obtained by imposing that the photon flux Φ = Φ(x3, θ) so
the only non-zero moments are φl,m=0 = ξl0 and they are also real.

2.1. Boundary conditions

When an external surface source is located at the boundary of the region de-
scribed by (1), the angular photon flux is specified by T (r, ~Ω) for every incoming
direction,

Φ(~r, ~Ω) = T (r, ~Ω) , for all ~Ω~n ≤ 0 , (17)

where ~n is the outwardly directed unitary normal vector to the external sur-
face. Vacuum boundary conditions, in particular, correspond to T = 0. This
condition can be approximated by setting Marshak’s conditions [25]∫

~Ω ~n≤0

d~Ω Y ml
∗(~Ω)

(
Φ(~r, ~Ω)− T (~r, ~Ω)

)
= 0 , (18)

for l = 1, 3, 5, . . . , L (odd) and m = 0, 1, . . . , l (the conditions with negative m
index are redundant because the photon flux Φ is a real function). Notice that
(18) is complex so there are 2l + 1 real conditions for each odd index l.

We will only consider regions with prismatic geometry; we can then use the
symmetry Y ml (−~Ω) = (−1)lY ml (~Ω) obtaining that, for l + l′ even,∫

~Ω ~n≤0

d~Ω Y ml
∗(~Ω)Y m

′

l′ (~Ω) =
1

2

∫
~Ω

d~Ω Y ml
∗(~Ω)Y m

′

l′ (~Ω) =
1

2
δll′ δmm′ . (19)
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Inserting the expansion given by the equation (2) for Φ and also for the external
source,

T (~r, ~Ω) =

∞∑
l=0

+l∑
m=−l

Tlm(~r)Y ml (~Ω) ,

truncated up to a finite odd order L, into Marshak’s conditions (18) and using
(19), it results into the conditions

1

2
(φlm − Tlm) +

L−1∑
l′ even

−l′≤m′≤l′

(∫
~Ω ~n≤0

d~Ω Y ml
∗(~Ω)Y m

′

l′ (~Ω)
)

(φl′m′ − Fl′m′) = 0 , (20)

for l = 1, 3, 5, . . . , L and m = 0, 1, . . . , l. Taking real and imaginary part in (20),
Marshak’s conditions can be written as

(X̄ − T̄ ) +NV (X − T ) = 0 , (21)

that is,
X̄ +NVX = T̄ +NV T , (22)

where real vectors X and X̄ were defined in (11) and (12), also

T = (ReTl,m≥0, ImTl,m>0)l=even , T̄ = (ReTl,m≥0, ImTl,m>0)l=odd ,

and NV is a real rectangular matrix (of dimensions no × ne) whose numerical
values depend on the geometry of the boundary surface, that is, the spatial axis
normal to the boundary surface.

2.2. The nodal collocation method for an isotropic source

Since PL equations (16) have a diffusive form, their spatial discretization
can be done using a nodal collocation method, previously used for the neutron
diffusion equation [26, 27] and generalized for eigenvalue problems in multidi-
mensional rectangular geometries [28, 29]. For simplicity, in this work we will

only apply the method when the internal source S(~r, ~Ω) in (1) is isotropic. This
implies that S̄ = 0 and no source term appears in Fick’s law (15). This situation
was studied in [29] so we will only briefly describe the method for 3D geometry.

Given an structured rectilinear mesh with vertex coordinates {x1,i1 , x2,i2 , x3,i3},
where ij = 0, 1, . . . ,mj (j = 1, 2, 3) are vertex indices, we only consider a do-
main that can be divided into N (≤ m1m2m3) adjacent rectangular prisms, or
nodes, of the form Ne = [x1,i1 , x1,i1+1] × [x2,i2 , x2,i2+1] × [x3,i3 , x3,i3+1], being
e = 1, . . . , N the index that enumerates the nodes, once an appropriate node
ordering has been chosen, see Fig. 1.

For a generic node Ne the following change of variables

uj =
1

∆xej

(
xj −

1

2
(xj,ij + xj,ij+1)

)
, j = 1, 2, 3 , (23)
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Figure 1: Sample rectilinear mesh covering the domain for 2D geometry. A natural ordering
for spatial nodes Ne has been chosen.

where ∆xej = xj,ij+1 − xj,ij , transforms the node Ne into the cubic node of

volume one Ne
u = [− 1

2 ,+
1
2 ]3.

The nodal collocation method assumes that on each node the cross-sections
and the internal source term in (1) are constant. For each node Ne, the PL
equations (16) are transformed by means of the change of variables (23). Fur-
thermore, if Xe(u1, u2, u3) denotes the previously defined vector of l even mo-
ments that appears in (16) for node Ne, it is assumed that spatial dependence
of vector Xe can be expanded in terms of (orthonormal) Legendre polynomials
Pk(u) [28] up to a certain finite order M ,

Xe(u1, u2, u3) =
M∑

k1,k2,k3=0

xek1k2k3Pk1(u1)Pk2(u2)Pk2(u3) , (24)

where uj ∈ [− 1
2 ,+

1
2 ], j = 1, 2, 3, and the Legendre coefficients xek1k2k3 are the

unknowns to be determined. Notice that polynomial expansion of the source
term Seeff at node Ne reduces to the constant term. The series (24) is then
inserted into (16) and equations for xek1k2k3 are derived using the orthonormality
properties of Pk(u).

Double derivative terms in (16) will involve coupling with neighboring nodes.
When node Ne is an interior node, adjacent nodes are related imposing continu-
ity of the photon angular flux Φ(~r, ~Ω) (or, equivalently, of all moments Xe and
X̄e) at the interface between nodes. In the case that the node Ne is adjacent
to a boundary, then Marshak’s boundary conditions (22) are used. See [28, 29]
for further details.
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Finally, once an appropriate ordering of the indices is chosen, the previous
procedure approximates the equations (16) by an algebraic problem that can be
casted in the form

AV = S , (25)

where V is a real vector of components (ξel,m≥0;k1k2k3
, ηel,m>0;k1k2k3

), S is the
independent term associated with the source term and the external surface
source and A is a matrix of dimension

N ×NLeg × ne = N ×Md × L(L+ 1)

2
, (26)

where N is the number of nodes; NLeg is the number of Legendre moments,
being M the order in Legendre series (24) and d the spatial dimension; and
finally ne is the number of components of vector X in (11), being L the order of
the PL approximation. Problem (25) is a system of linear equations that is large
and sparse. The linear system is then iteratively solved using the bi-conjugate
gradient stabilized method BICGSTAB, with an incomplete LU factorization,
ILUT, as preconditioner, from the FORTRAN library SPARSKIT [30].

In previous works [28, 29] we investigated the convergence of the nodal col-
location method, with different number of discretization nodes and different
order M of Legendre polynomials used in the expansion (24). We observed that
the convergence is largely improved increasing the degree of the polynomials
considered (for M = 1, there is a slow spatial convergence). Also, we observed
that, from the computational point of view, it is more favorable increasing the
polynomial order M than increasing the number of discretization nodes [29].

3. Numerical results

In this Section, we present some numerical results in order to evaluate the
performance and numerical accuracy of the nodal collocation method. The
method has been already tested with neutron transport problems that are driven
by internal sources [31] and also with eigenvalue problems [29]. The formulation
described above has been implemented in the multi-group radiation transport
code SHNC (Spherical Harmonics-Nodal Collocation), written in FORTRAN
90, which solves the external fixed source problem for an arbitrary PL approx-
imation for odd L, and we show its application as a light propagation model
for biological homogeneous and heterogeneous tissues by choosing appropriate
numerical examples.

We present results for a one-dimensional problem, comparing the numerical
PL results to the analytical solution. Also we present several two-dimensional
cases where we compare the PL photon fluxes to SN results obtained from the
code DANTSYS [32], taken as reference. In some cases our solutions are also
compared to solutions from the literature. Computation times vary from several
seconds to several minutes, depending on the size of the spatial mesh and the
order of the PL approximation, on a workstation with AMD Phenom II 1055T
processor and 16Gb of memory, using only one processor for each computation.
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Since the primary purpose of this work is to verify the capability of the SHNC
code to solve the photon propagation problems with accuracy with respect to
reference results, providing details of the numerical PL approximations, the
computational efficiency in solving the PL equations was not the priority of this
study.

3.1. One-dimensional homogeneous medium

To validate our code, we first analyze a test example consisting of a simple
homogeneous one-dimensional region of finite length, where analytical solution
exists.

We obtain the 1D transport equation for plane symmetry when the medium
is transversely infinite (in the x1x2 plane) with cross sections and source varia-
tion only in the x3 direction. For this case, the radiative transfer equation (1)
becomes

ω
dΦ

dz
(z, ω) + µt Φ(z, ω) = 0 , 0 < z < l , (27)

where we have defined z = x3, ω = cos θ ∈ [−1, 1], then the photon flux Φ =
Φ(z, ω); the scattering and absorption coefficients considered for this region are
µs = 0 and µa 6= 0, far away from a diffusive (P1) regime. Finally, we set an
external source T at z = 0 and vacuum boundary condition at the other side:

Φ(0, ω) = T (0, ω) , if 0 < ω ≤ +1 ,

Φ(l, ω) = 0 , if − 1 ≤ ω < 0 .
(28)

If ω 6= 0 is kept fixed, the general solution of the first order ordinary differential
equation (27) is Φ(z, ω) = C(ω)e−

µt
ω z, where C(ω) is a function only of ω. If

we impose the boundary conditions (28) we get

Φ(z, ω) =

{
T (0, ω) e−

µt
ω z if 0 < ω ≤ +1 ,

0 if − 1 ≤ ω < 0 .
(29)

Then the isotropic photon flux is

φ(z) =
1

2

∫ +1

−1

dωΦ(z, ω) =
1

2

∫ +1

0

dω T (0, ω) e−
µt
ω z . (30)

For the numerical calculations a slab of length 10 mm is considered, with
an isotropic external source T (0, ω) = 1 photons/mm located at z = 0 mm and
vacuum boundary condition applied at the right boundary, as shown in Fig. 2.
The absorption coefficient considered is µa = 0.1 mm−1.

�����������������������
�����������������������
�����������������������
�����������������������

Source

z=0.0

Vacuum

z (mm)
z=10

Figure 2: Geometry of the one-dimensional slab problem.
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We have performed the numerical PL solutions for the photon fluxes with
the SHNC code. We have used for the calculations a mesh consisting of 10 nodes
with size 1 mm and the order of the Legendre polynomials expansion considered
in (24) is M = 4.

Fig. 3 shows the photon flux as function of the distance z from the external
source, calculated with the PL approximations for L = 1, 3, 7, 9, together with
the analytical solution (29), obtained by numerical integration using Quadpack
[33]. The figure also shows the S24 solution obtained with the discrete-ordinates
code ONEDANT [32], with 1000 mesh points.
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Figure 3: Photon fluxes for the homogeneous one-dimensional problem.

As can be seen from this figure, the P1 approximation, as expected, fails to
describe the light propagation correctly, whereas higher order PL approxima-
tions (P7, P9) show accurate results in comparison to the exact solution.

3.2. Two-dimensional homogeneous media

A second example to study the application of the nodal collocation method
in homogeneous media is a two-dimensional 10 mm ×10 mm square. The simu-
lation geometry of this problem is shown in Fig. 4. From now on we will consider
x = x1 and y = x2. A single isotropic light source with spatial size of 2 mm is
symmetrically localized on the left boundary near y = 5 mm, at x = 0 mm, and
4 mm < y < 6 mm. Vacuum boundary conditions are applied on all the other
boundaries.

This small model with area of 100 mm2 enables us to analyze the accuracy
of the PL solutions in problems with small tissue geometries, where boundary
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Figure 4: Geometry of the two-dimensional homogeneous medium.

effects would dominate the light propagation. These cases simulate the scat-
tering and absorption physics of a 2D transverse tissue slice of small animals
[16].

We consider three numerical examples with the same geometry (see Fig. 4) by
varying the absorption coefficient, the scattering coefficient, and the anisotropy
factor. In the first test, we will consider a model with µs = 0, then we will
expect large deviations between P1 and PL (for L > 1) solutions. Also, we
will study the influence of the optical parameters on the accuracy of the PL
solutions in media with a difussive regime where µa � µ′s, where a good match
between all the PL solutions is expected, and also we will analyze the impact of
the anisotropic scattering in these types of media.

The PL calculations were performed using a mesh consisting of 10×10 nodes
with side length 1 mm and the order of the Legendre polynomials considered
in (24) is M = 4. We observe that in all the problems, the convergence of
the nodal collocation method is already achieved when a moderate number of
polynomials is considered.

In each case, the PL results are compared with the solution obtained with
the SN code TWODANT [32] taken as reference, with a 500 × 500 grid and a
convergence criterion of 10−7.

3.2.1. 2D homogeneous test case A

In this case the absorption coefficient considered is µa = 0.1 mm−1 and
there is no scattering. We present the PL photon flux solutions for odd L and
1 ≤ L ≤ 9. As µs = 0, we anticipate discrepancies between P1 and PL (L > 1)
solutions. We also calculate the SN photon flux with TWODANT code and,
in order to minimize the well known ray effect, we have set N = 24 (S24) in
the calculations. In low scattering regions or strong absorbers the discretization
schemes based on the discrete ordinates solution often exhibit rays along the
discrete directions when solving the RTE [34]. The solution is highly oscillatory,
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and this effect is exacerbated by singular type sources, such as spatially localized
sources. Ray effects can cause large errors in pointwise quantities such as the
photon flux. The PL approximation does not suffer from the ray effect.

In this test case the PL results will be closer to the S24 transport solution as
the order L increases, although one cannot draw conclusions about the accuracy
of the PL results in comparison with the S24 solution due to the presence of large
ray effects in this latter.

The photon flux results are plotted in Fig. 5 along the horizontal line y = 5
mm passing through the source. The figure shows the PL (L = 1, . . . , 9) and
S24 solutions.
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Figure 5: Photon fluxes for the homogeneous 2D case A along y = 5 mm.

As it was expected, large deviations between P1 and PL (for L > 1) can
be observed in Fig. 5, and the PL photon flux increases for large values of L.
Along y = 5 mm, the P9 flux does not reach the S24 solution. To illustrate the
analysis of these results, the contour plots of the P9 and S24 flux distributions
are given in Fig. 6, where we can see clearly that the S24 contour map shows
rays emanating from the source.

In the following sections, some tests will be treated to further analyze the
accuracy of the PL solutions.

3.2.2. 2D isotropic scattering test case B

This test case is based on a work presented in [16]. We consider an isotrop-
ically scattering tissue-like medium with µs = 1 mm−1 and µa = 0.1 mm−1

(⇒ µt = 1.1 mm−1), then it holds that µa � µs which means that good agree-
ment between P1, PL (L > 1) and S24 solutions is expected.
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Figure 6: Contour map of the photon flux distribution, obtained with P9 approximation (left)
and S24 (right), for the homogeneous 2D case A.

Fig. 7 shows the photon fluxes along X-axis through medium center (y = 5
mm), modeled by PL (L = 1, 3, 7) together with the S24 solution. The figure
includes a detail of the zone for 0.8 < x < 1.2 mm, where we observe that the
S24 solution presents very slight oscillations due to the ray effect.
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Figure 7: Photon fluxes for the homogeneous 2D case B along y = 5 mm.

In order to quantify the difference of each PL photon flux with respect to the
S24 solution, we use the model error of the flux inside the medium at an interior
grid point xi along the X-axis [16]. The model error σφMi is given by the relative
percentage difference at the point xi of the flux φi of the PL approximation with
respect to the flux φ̃i of the S24 method. We also define the total model error
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σφM of the flux at N interior grid points as the root-mean-square percentage
deviation error:

σφMi =
φi − φ̃i
φ̃i

× 100% ; σφM =

√√√√ 1

N

N∑
i

(
φi − φ̃i
φ̃i

)2

× 100% . (31)

The model error of each PL solution, for L = 1, 3, 5, 7, with respect to S24 result
for this problem along the line y = 5 mm is shown in Fig. 8. The ray effect causes
the model error oscillations, which are larger near the source. The total model
errors of the flux with respect to S24 transport solution are σφM (P1) = 4.32% and

σφM (P7) = 1.43%, for the P1 and P7 approximations respectively. The P1 model
error is higher than the P7 model error, then the P7 approximation performs
better that the diffusion (P1) approximation.
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Figure 8: Relative differences of PL photon fluxes with respect to S24 solution through medium
center (y = 5 mm), for 2D case B.

In Fig. 9 contour maps of photon fluxes calculated with P1 and P9 approxi-
mations are shown in logarithmic scale. The S24 log10 flux distribution is shown
in Fig. 10. Although P1 approximation does not behave so badly in this prob-
lem, the results confirm that it is necessary to use high order PL approximations
to obtain accurate solutions.

3.2.3. 2D anisotropic scattering test case C

In this case, we define an anisotropically scattering medium whose optical
properties are µs = 5 mm−1 and µa = 0.001 mm−1. The anisotropy factor is
g = 0.8 and the reduced scattering coefficient is µ′s = (1 − g)µs = 1 mm−1,
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Figure 9: Log10 of the photon flux distributions, obtained with P1 (left), and P9 (right)
approximations, for 2D case B.
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Figure 10: Contour map of the S24 (log10) photon flux for 2D case B.

thus we have that µa � µ′s. This problem is also inspired in a case presented
in [16]. As g ≤ 0.8, the scattering cross-section has been modelled according to
the Henyey-Greenstein phase function (4).

The results for the photon fluxes are displayed in Figs. 11 and 13. Fig. 11
shows the photon fluxes along X-axis through medium center (y = 5 mm),
modeled by PL (L = 1, 3, 5, 7) together with the S24 solution.

The model error of PL photon fluxes, for L = 1, 3, 5, 7, with respect to the
S24 transport solution is shown in Fig. 12.

The total model error of the flux with respect to S24 transport solution
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for the P1 approximation is σφM (P1) = 1.76%, and for the P7 approximation

is σφM (P7) = 1.20%. The model error σφM (P1) is very low in this simulation,
whereas it was higher in the isotropic scattering case of Section 3.2.2. Although
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in this case we have considered an anisotropic scattering medium, it is also a
more diffusive problem than the isotropic case of Section 3.2.2, because now the
ratio between µa and µ′s is lower (µa/µ

′
s = 0.001).

Fig. 13 shows the contour maps of log 10 photon fluxes calculated with P1

(left) and P9 (right) approximations.
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Figure 13: Contoured log10 of the P1 (left) and P9 (right) photon flux distributions, for the
anisotropic scattering case C.

The results confirm that the PL approximations are able to reproduce the
anisotropic scattering effects on the medium.

3.3. Two-dimensional heterogeneous media

We study the application of the spherical harmonics-nodal collocation method
in heterogeneous media whose geometry is a two-dimensional square. The first
two cases considered in this Section were presented in [19] and [9], and the
geometrical simulations consist of a square with an inner central squared void
and a square including a channel at the periphery. The third case is chosen to
analyze the effect of anisotropic scattering in heterogeneous media; in this latter
case we consider the geometry of the channeling problem. In all the heteroge-
neous cases the value of photon flux at the external source is taken to be 104

photons/mm2 [35]. The numerical results show the influence of void-like regions
on the transport of photons.

3.3.1. Simulation geometry for void-like spaces

A square region with dimensions 120 mm ×120 mm enclosing smaller square
region of 40 mm ×40 mm is considered [19]. The geometry is shown in Fig. 14.

We study the propagation of photons through void-like regions. Human
tissue usually consists of several layers having different absorption and scattering
properties. In this case, the small square region is assigned low-scattering and
absorption coefficients, in order to simulate void-like regions in the human body,
such as the scattering and absorption free regions in the brain, which are filled
with the cerebrospinal-fluid (CSF).
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The scattering and absorption coefficients for the outer square region are
µs = 0.5 mm−1 and µa = 0.005 mm−1, and for the inner square µs = 0.01
mm−1 and µa = 0.0001 mm−1, then µa � µs. An isotropic source with size 10
mm is symmetrically placed at x = 0 mm, 55 mm < y < 65 mm, and vacuum
boundary conditions are applied on the other boundaries.

We study the accuracy of the PL SHNC solutions to investigate the flux
distribution inside the inner square. For the PL calculations, a spatial dis-
cretization of the medium consisting of 24× 24 square nodes with side length 5
mm and an order M = 4 of Legendre polynomials has been used in the nodal
collocation method. Fig. 15 shows the log10 of the photon flux results along
the horizontal line y = 60 mm passing through the center of the inner square.
The figure shows a comparison between the P1, P7 and S24 solutions. The S24

solution was calculated with a 360× 360 mesh grid and a convergence criterion
of 10−7.

As can be seen in Fig. 15, P1 approximation predicts an almost constant
photon flux throughout the void, whereas the P7 and S24 calculations show
a slight attenuation of the flux inside the void. This confirms the results of
Aydin et al. [19]. The total model error of the P1 flux with respect to S24

transport solution is σφM (P1) = 4.45%. From the figure, we observe no significant
differences between the P7 and S24 solutions, being the total model error of the
P7 flux σφM (P7) = 0.56%, that confirms the capability of the high order PL
approximation to deal with this type of problems.

In Fig. 16 contour plots of the log 10 photon fluxes are shown for the void-
like region (40 mm < x < 80 mm). The differences observed between P1 and
P7 contour maps match those of Fig. 15.
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Figure 15: Log10 of the photon flux calculated with P1, P7 and S24, inside a low density
square region.
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Figure 16: Contoured log10 of the photon flux values, obtained with P1 (left), and P7 (right)
approximations, for the void-like region.

3.3.2. Simulation geometry for channeling problem

The brain is embedded in such an almost absorption and scattering-free
fluid, this layer of CSF forms a boundary between the outside tissues and the
brain [9, 19]. The geometry of this problem that simulates approximately this
situation is shown in Fig. 17. A 100 mm ×100 mm square region with µs = 0.5
mm−1 and µa = 0.005 mm−1 is considered (µa � µs). The void-like region
(CSF fluid) is represented by a structure of size 4 mm thick with µs = 0.01
mm−1 and µa = 0.0001 mm−1, which surrounds a 76 mm ×76 mm inner square.
An isotropic source with size 4 mm is centered at x = 0 mm, 48 mm < y < 52
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mm, and vacuum boundary conditions are applied on all the other boundaries.
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Figure 17: Geometry of two-dimensional channeling problem.

The P1, P7 and S24 photon flux results are displayed in Fig. 18, in logarithmic
scale, along the line y = 50 mm passing through the medium center. We
consider a spatial mesh of 25×25 square nodes with side length 4 mm in the PL
calculations with an order M = 4 of Legendre polynomials, and a 1250 × 1250
mesh grid for the S24 calculation, with a convergence criterion of 10−7.

Fig. 18 shows good agreement between the P7 and S24 solutions, being the
total model error of the P7 flux with respect to the S24 solution σφM (P7) =
5.97%. On the other hand, the P1 approximation shows significant discrepan-
cies. Through the first (8 mm < x < 12 mm) and the second (88 mm < x < 92
mm) void-like channels, P1 and P7 approximations predict an almost constant
photon intensity, but inside the first channel the P1 approximation underesti-
mates the flux, and through the second channel P1 flux values are higher than
the ones predicted by P7 approximation. We also observe that after the first
void-like channel, the P7 flux values show faster decay (x > 12 mm). Unlike the
P1 results, the P7 flux continues decreasing even behind the second channel.

In Fig. 19 contour plots of photon fluxes obtained with P1 (left) and P7

(right) approximations are displayed. The differences observed between P1 and
P7 predictions in this figure just reflect the effects of the channel seen in Fig. 18.
Our results also confirm the necessity of using high order L, in order to obtain
accurate PL solutions of the photon fluxes especially in void-like regions.
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Figure 18: Log10 of the photon fluxes for the 2D CSF-layered problem.
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Figure 19: Contoured log10 of the photon flux values, obtained with P1 (left), and P7 (right)
approximations, for the CSF-layered problem.

3.3.3. Influence of anisotropic scattering in heterogeneous media

As a final example we consider again the CSF-layered problem whose geom-
etry is shown in Fig. 17. We investigate the effect of the anisotropy factor g
in modeling the propagation of photons through the same heterogeneous chan-
neling problem. We take the same scattering and absorption optical properties
as in Section 3.3.2 but, in this case, the anisotropy factor g is taken to be 0.92
in the region outside the void-like channel and in the 76 mm ×76 mm inner
square, so the reduced scattering coefficient is µ′s = (1 − g)µs = 0.04 mm−1,
and µa/µ

′
s = 0.0125 in this region.
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Fig. 20(a) shows log10 photon fluxes from PL (L = 1, 3, 5, 7) approximations
along the line y = 50 mm. For the media having anisotropy factor of g = 0.92,
we modeled the anisotropic scattering using the Henyey-Greenstein (H-G) phase
function (4) with 7 Legendre expansion coefficients. We consider a spatial mesh
of 25× 25 nodes with side length 4 mm.
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Figure 20: Influence of anisotropic scattering in heterogeneous media. In (a), P1 −P7 photon
fluxes. In (b), g = 0 and g = 0.92 P1 and P7 calculations for the same CSF-layered problem.

In Fig. 20(b) we compare the P1 and P7 solutions of the RTE for the case
with anisotropic scattering to the corresponding solutions taking g = 0 in both
regions. Then, in this latter case we have that µ′s = µs = 0.5 mm−1 and µa/µ

′
s =

0.01 in the region outside the channel. We observe significant differences between
isotropic and anisotropic scattering cases, and P1 and P7 differences are more
remarkable when isotropic scattering (g = 0) in all the media is considered.
Fig. 21 displays the contoured map of the P7 (log10) photon flux, for the same
anisotropic scattering problem.

Next we present calculations for this case using the simplified approximate
Mie (SAM) phase function (5) to model the anisotropic scattering. The P1 and
P7 log10 photon flux distributions calculated using the two phase functions, H-G
and SAM, are compared in Fig. 22 along the horizontal line y = 50 mm, for the
left half of the medium (0 mm < x < 50 mm). The location of the first channel
is marked in the figure.

For the P7 approximation, we used H-G function with 7 Legendre expansion
coefficients whereas only 3 Legendre coefficients were taken when the SAM func-
tion was employed. Due to the high value of the anisotropy factor (g > 0.8), a
high number of Legendre coefficients was required for the H-G function to accu-
rately compute the P7 approximation. On the contrary, we numerically observe
that, when dealing with SAM function, only the first 3 coefficients are required
to match the accuracy of the H-G P7 approximation.

From Fig. 22 we observe that the influence of the anisotropy is more impor-
tant with high order PL approximation, and the largest discrepancies between
H-G and SAM functions occur for P7 approximation around the void-like chan-

25



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

y
(m

m
)

x(mm)

"imagen.dat"

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

P
7 

 P
h
o
to

n
 f

lu
x
 v

a
lu

e
s

Figure 21: Contoured log10 of the P7 photon flux, for the anisotropic CSF-layered problem.
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4. Conclusions

We have reviewed the multi-dimensional spherical harmonics PL equations
when applied to optical tomography. The PL equations, for arbitrary angular
order L, have been formulated as a vector-valued diffusive second order dif-
ferential equation. Surface source and vacuum boundary conditions have been
approximated using Marshak’s conditions and computed for arbitrary order L.

We have applied a nodal collocation method for the spatial discretization
of the PL equations, based on the expansion of the angular neutronic moments
in terms of orthonormal Legendre polynomials. The main advantage of the
method is the lower dimension and good characteristics of the matrix associated
to the algebraic problem. The method is able to work with nodes of big size
using a moderate number of Legendre polynomials giving satisfactory results.
The computation using big size nodes reduces the dimension of the algebraic
problem in comparison to other methods like finite elements or finite differences.

As a first test of the method, we have examined the transport of photons
through 1D homogeneous media, comparing the results against the exact ana-
lytical solution and also with the results provided by ONEDANT (SN ) code,
showing that P1 approximation fails to describe the light propagation correctly,
whereas higher order PL approximations (P7, P9) show accurate results in com-
parison to the exact solution.

We have also tested several 2D homogeneous isotropic and anisotropic cases.
Again, the PL computations are compared with the transport approximation
obtained from the SN code TWODANT. The results confirm that the PL ap-
proximation is able to reproduce the isotropic and anisotropic scattering effects
on the medium without suffering from ray effect as SN approximation does.
Finally, we have studied 2D heterogeneous media with void-like regions such as
low-scattering and absorption channels. In both types of media, an isotropic
scattering model is studied, and in the latter case, which corresponds to the
channeling problem, we consider also the anisotropic model, comparing results
from the Henyey-Greenstein (H-G) and simplified approximated Mie (SAM)
phase functions. The largest discrepancies between H-G and SAM phase func-
tions occur for P7 approximation around the void-like channel. We remark the
necessity of using PL approximations for L > 1, even in cases where the diffu-
sion approximation does not fail completely. Due to the ill-posed nature of these
type of problems, even small errors in modeling can cause large errors in the
reconstructions. Therefore, it is important to have a computationally feasible
model that describes light propagation in the medium accurately.

In summary, in this work we have shown that the diffusive PL spherical har-
monics equations have several advantages if they are compared with SN or SPL
equations and that this model can be efficiently applied to optical tomography
obtaining good results.
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