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Abstract

A novel method and software system for rational handling of time series of multi-channel measurements
is presented. This quantitative learning tool, the On-The-Fly Processing (OTFP), develops reduced-rank
bilinear subspace models that summarise massive streams of multivariate responses, capturing the evolving
covariation patterns among the many input variables over time and space. Thereby, a considerable data
compression can be achieved without significant loss of useful systematic information.
The underlying proprietary OTFP methodology is relatively fast and simple - it is linear/bilinear and does
not require a lot of raw data or huge cross-correlation matrices to be kept in memory. Unlike conventional
compression methods, the approach allows the high-dimensional data stream to be graphically interpreted
and quantitatively utilised - in its compressed state. Unlike adaptive moving-window methods, it allows all
past and recent time points to be reconstructed and displayed simultaneously.
This new approach is applied to four different case-studies: i) multi-channel Vis-NIR spectroscopy of the
Belousov-Zhabotinsky reaction, a complex, ill understood chemical process; ii) quality control of oranges
by hyperspectral imaging; iii) environmental monitoring by airborne hyperspectral imaging; iv) multi-
sensor process analysis in the petrochemical industry. These examples demonstrate that the OTFP can
automatically develop high-fidelity subspace data models, which simplify the storage/transmission and the
interpretation of more or less continuous time series of high-dimensional measurements - to the extent there
are covariations among the measured variables.
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1. Introduction

1.1. The modern data issue
Many modern measurement technologies generate massive amounts of data in a very short

time - e.g. continuous streams of high-dimensional data via one-step analytical proceduresi. For
instance:

• modern spectrometers can deliver hundreds of informative, high-dimensional spectra per
second;

• hyperspectral cameras produce multivariate spatially resolved images. In addition, when
configured in a time-lapse mode, they can yield continuous streams of high-dimensional
spatiotemporal recordings;

• industrial monitoring for condition-based maintenance, as well as the control of complex
dynamic processes, requires high-dimensional inputs to be sufficiently informative;

• computer experiments, needed in order to study the behaviour of complex mathematical
models, involve advanced workstations performing thousands of simulations, each one pos-
sibly characterised by just as many input and output properties.

Hence, a measurement revolution (recently termed data tsunami [1]) is currently taking place in
numerous fields of applied science, ranging from analytical chemistry and medicine to environ-
mental surveillance, informatics and industrial Internet of Things (IoT). However, these incredibly
quick advances run the risk of being practically useless for three reasons:

• the human ability to grasp content of interest from data remains fairly constant, and data
simplification is therefore desirable for interpretative purposes. Here, one possible solution
could be the removal of irrelevant descriptors among the available ones. Nevertheless, for
most applications their identification is not straightforward which makes such a simplifica-
tion risky and complicated;

• despite Moore’s first law [2], which predicts a continuous exponential increase for both
computer processing speed and storage capacity along time, it is estimated that in the near
future they will not be sufficient for coping with this ongoing data explosion. For instance,
IoT threatens to flood both communication channels and the users’ cognitive capacity with
overwhelming torrents of repetitive, more or less redundant data.

• traditional computing systems are generally not capable of performing analytics on con-
stantly streaming data, typical of today’s world of multimedia communication [3].

In a scenario like this, if it were possible to simultaneously compress and model high-dimensional
measurement series as they flow from e.g. an analytical platform and without significant loss of
useful information content, their storage, transfer, retrieval, visualisation and interpretation would
be radically eased. The present paper illustrates a feasible approach to achieve this goal.

iContrary to unstructured data from e.g. free text, they are systematically recorded and are here referred to as
quantitative data.
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1.2. Data compression strategies
Data compression plays a central role in telecommunications and many other scientific and

technological branches of interest [4]. According to the nature and features of the algorithmic
procedure through which it is performed, it can be defined as either lossless or lossy. Lossless
methods utilise statistical distribution properties and simple patterns in the data for compression,
converting the inputs into compressed bit seriesii.
Lossy compression techniques - e.g. the various dedicated versions of JPEG and MPEG methods
used for digital image, video and sound compression - approximate the main, perceptible varia-
tions in the input data by local ad hoc patterns, filtering out less perceptible variation types and
noise. Lossy approaches are commonly much more efficient (in terms of compression rate) than
lossless ones, like algebraic zipping, but allow the original input to be only roughly restored.
Moreover, when set to compress too much, they not only cause loss of valid information (resulting
in e.g. image blurring or loss of high-frequency sound), but can also introduce undesired decoding
artefacts (e.g. visible block effects or audible errors).
Whether lossless or lossy compression methods are used, the compressed data are represented by
per se meaningless streams that cannot be directly used for quantitative calculations, mathematical
modelling or graphical representation.
The novelty of the developed On-The-Fly Processing (OTFP) tool is represented by the fact that
a hitherto under-utilised source of redundancy (the intercorrelation usually evolving in multi-
channel data streams) is mathematically modelled to prevent significant loss of useful systematic
information carried by the original measurements. Based on the model’s automatically estimated
parameters the data stream may be interpreted and utilised for prediction, forecasting and fault
detection in the compressed state. The idea behind this strategy was recently outlined in [5]. Here,
more algorithmic details will be given and its applicability to different types of high-dimensional
data streams demonstrated.
Conceptually, the OTFP system may be motivated by the following thought experiment: assume
that a space probe should be constructed and sent out to explore - for the first time - the un-
known geological properties of the hidden back side of a remote planet, using a multi-wavelength
camera. Prior to the launch, scarce knowledge about this planet is available to design the ideal
instrument, and after the probe has landed, it is too late to change anything. Which wavelength
should be chosen, and how should the imaging data be transmitted back to Earth? Some individ-
ual wavelengths distinguishing between already known, earthly rock types might be included. But
possible geological surprises should also be taken into account. Therefore, it is decided to equip
the probe camera with a wide spectral range detector, capable of measuring e.g. 1000 different
wavelength channels. However, the limited communication bandwidth then becomes a problem:
the probe cannot transmit all those measurements for every point in time and space. What would
be the best way to send spectral data back to Earth? Perhaps, could that be automatically settled
on-the-fly by the space probe’s computer itself, based on what its camera measures? The on-
board computer could be programmed to discover, compress and transmit the essence of all the
recorded images, in a continuous learning-and-communicating process that never sends the same

iiMost of the lossless compression approaches, such as standard file zipping, recodes the original input by using
shorter bit sequences for probable (e.g. often encountered) data and larger ones for improbable (e.g. rare) data.
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information twice. But how to quantify this compact spectral essence comprehensively? To under-
stand the unknown geological landscape, a reliable approximation of the spectral profile of every
pixel in every image, with as many spectral and spatial details and as few artefacts as possible,
is needed. A lossless multivariate spectral preprocessing followed by a continuously developing
bilinear compression/classification model could deliver a compact summary of the sequence of hy-
perspectral image data, which would yield maximal insight here on Earth from the limited quantity
of received data. The first three application examples described below will illustrate this, albeit in
more mundane settings.

1.3. Subspace compression
The OTFP is based on evolving bilinear subspace modelling. The software automatically de-

tects systematic patterns of covariation in the data and use these to model the data mathematically.
Subspace projection and dimensionality reduction techniques based on bilinear models, e.g. Prin-
cipal Component Analysis (PCA), constitute one of the possible ways to compress and approxi-
mate a certain set of data, removing simultaneously both statistical redundancy and uninformative
noise. Their basic principles can be summarised as follows: let j = 1, 2, . . . , J be the number of
input channels (e.g. J wavelengths of light per pixel in a hyperspectral camera, J sensor variables
monitored during a dynamic industrial process or J metabolites quantified in biological samples)
recorded for each of n = 1, 2, . . . ,N measurements performed, for instance, on N objects on a
conveyor belt, at N spatial locations, N time steps or N different experimental conditions. In the
present-day instrumental context, outlined in Section 1.1, where J might be very large, the use-
ful information carried by such data structures (N × J matrices) is usually intercorrelated among
various input channels over the continuously growing set of registered measurements. In these
circumstances, for a chosen degree of acceptable accuracy (e.g. depending on the amount of data
variance explained), it is possible to reduce the J-dimensional space of the original descriptors to
an A-dimensional subspace, onto which all the N objects under study can be projected and rep-
resented as new points. Prima facie, as A < J, this projection can be regarded as a compression
operation, whose efficiency is related to the ratio A

J .

1.4. PCA bilinear structure model
The well known PCA bilinear approximation of a generic N × J matrix of observed data, X,

can be described by the following structure model:

X = 1mT + TPT + E (1)

where 1 (N × 1) is a vector of ones, m (J × 1) contains a typical profile, e.g. the mean values of
the J input variables in X, P (J × A) is a matrix of loadings associated to such input variables,
which determine the A basis vectors or components of the PCA subspace, T (N × A) defines
the projection coordinates or scores of all the N considered objects (locations, time points or
experimental conditions) on this lower-dimensional space and E (N × J) represents the matrix of
unmodelled residuals, i.e. the portion of X not explained by the model at the chosen rank, A [6].
The PCA solution may be formulated in different, equivalent ways. Here, it is assumed to show
the following properties:

PTP = I (2)
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TTT = diag(λA) (3)

where I is an identity matrix of dimensions A×A, while the a-th element of λA (A×1) corresponds
to the eigenvalue of the a-th PCA component.
One of the most critical point when deriving the PCA approximation of a set of data is how to
choose the A components of its subspace to prevent losing important portions of useful informa-
tion and to filter out uniquely statistical redundancy and uninteresting noise. Some of these A
dimensions may sometimes be defined according to prior knowledge of the investigated system.
For instance, the number of known chemical constituents of mixtures characterised by spectro-
scopic methods might be appealed to for this purpose. However, in cases like this, also more or
less unexpected constituents and/or physical phenomena may affect the performed measurements,
generating new patterns of variation and thus new subspace dimensions which need to be retained
for a proper data approximation and interpretation. Therefore, at least to a certain extent, the iden-
tification of the new basis vectors associated to these unforeseen sources of variability has to be
carried out through a preliminary exploratory analysis of the available empirical records.
If a continuous data stream is dealt with and N rapidly grows over time, correctly determining new
possible subspace dimensions is even more complex: new, unexpected patterns of covariation may
spring up in the information flow. Therefore, in such situations, it becomes crucial to automati-
cally recognise when the set of initial basis vectors needs to be reestimated and extended, and to
address this task in a statistically valid and computationally efficient way.

1.5. PCA as a multivariate series expansion of the underlying data generation mechanism
As outlined in [7–9], the bilinear PCA model can be thought of as a Taylor expansion of the

function f defining how the measurement descriptors are jointly related to their common struc-
ture. For instance, for each of the J aforementioned input channels, one can envision a local linear
approximation of the underlying (unknown) causal phenomena driving their evolution. Mathemat-
ical summary modelling of such J local approximations (achieved by PCA or related methods e.g.
Partial Least Squares Regression - PLSR - Independent Component Analysis - ICA - or non-linear
versions of these) can detect and display their main patterns of covariation. This can unveil the
underlying causalities of the data generation mechanism.

1.6. Algorithms for PCA decomposition
The PCA approximation of a certain dataset can be efficiently attained by a variety of algo-

rithms, among which the most widespread and popular one is certainly Singular Value Decompo-
sition (SVD) [10]. However, if N is very high, standard SVD may be very demanding in terms of
both CPU load and memory requirements. In the last few years, several variants of classical SVD
have been proposed for performing PCA on very large matrices without entirely keeping them
in the computer memory (out-of-core) [11–15]. Out-of-core PCA can be carried out by different
procedures e.g.:

• a J × 1 cumulative sum vector and a J × J cross-product matrix may be accumulated over
time, combined and used for eigen-analysis of the covariance in X, which yields the PCA
loadings. That is appropriate for parallelisation but then the scores for the past time or space
samples are lost;
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• if also J is very high (e.g. thousands of wavelengths in an hyperspectral camera monitoring
a certain scene or process), the J × J covariance matrix cannot be easily handled. Evolving
moving-window/recursive PCA approaches may then be used instead, working on the most
recent subset of observations. But that gives problems when comparing past and present
records, e.g. in graphical scores plots.

In the attempt of overcoming all these limitations, the OTFP tool is here proposed. The purpose of
the OTFP is to identify systematic trends and patterns in high-dimensional data flows, compress
these and display them graphically, in addition to automatically detect outliers - key points to be
addressed when continuous quantitative data streams are dealt with [16]. Based on what detailed
before, it rather represents an extension of classical bilinear PCA, specifically developed for pro-
cessing multi-channel records as soon as they are collected. It extracts patterns of covariation
between the input variables by comparing previous and new observations and thereby identifying
and modelling new variation phenomena, without needing large amounts of data or parameters to
be retained in memory. Given for instance a continuously growing stream of high-dimensional
data, the OTFP modelling system gradually develops a minimal bilinear summary model of the
input data stream. For each point in space and/or time, already established components are quan-
tified as spatiotemporal scores by projection of their multi-channel loadings. Furthermore, new,
unmodelled patterns of covariation are automatically detected, refined and quantified in terms of
additional spatiotemporal scores and multi-channel loadings, then appended to the OTFP model.
Hence, unlike bilinear moving-window solutions, this dynamic model extension is executed so
that the system preserves the quantitative connection between all past and present records. Yet it
does not need to retain all past inputs or bilinear scores in memory - for long-lasting processes the
memory usage would grow prohibitively high. Besides, the OTFP system does not require to hold
and update a huge J × J covariance matrix - for many applications that would also be of a pro-
hibitive size. Instead, it repeatedly stores the necessary scores and loadings, avoiding an excessive
memory consumption during the process.

2. System overview

The present OTFP algorithm (schematically outlined in Figure 1) is characterised by three
fundamental aspects: i) its self-learning and ii) adaptive nature and iii) its stabilising modelling
principles. It allows massive amounts of data collected along time to be compressed and modelled
with minimal loss of significant information content. The algorithm is initiated with the prelimi-
nary choice of a typical input vector, m, and the best guess of which weights to give to the different
input channels for balancing their variances, c. In addition, a set of predefined component load-
ings, P, derived for instance from an initial exploratory investigation of the system under study
and representing systematic variation patterns expected to affect the incoming data stream, may or
may not be supplied. Then, various system parameters such as the desired modelling fidelity (e.g.
the fraction of data variance the OTFP model has to capture, also known as amount of explained
data variance) need to be specified. As the multi-channel data starts to flow it may deliver a more
or less continuous stream of individual J-dimensional input records, e.g. a set of measurements
collected by the same set of J simple channels or sensors during the evolution of an industrial
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Figure 1 - Schematic representation of the OTFP algorithm: a first set of data (black block) is input to 1) a pretreatment
and 2) a PCA-based dimensionality reduction stage. As new measurements are recorded (grey block), they can be
either 3a) exploited for the reparametrisation of the compression model, if it is found to be outdated, or 3b) just
approximated by its latest version. 4) Bilinear approximation loadings and preprocessing parameters are saved by
keeping track of how they have been initially defined and/or changed during model updating. The time series of
bilinear approximation scores are more or less continuously stored and deleted from memory to subsequently process
new input data

process. Alternatively, it may deliver a sequence of input data blocks, each containing Ng records
(g = 1, 2, . . . ,G) and the same set of J channels, e.g. Ng spectral profiles, constituted of absorbance
values measured at J wavelengths and associated to individual pixels of an hyperspectral image.
Such records are then treated by the following procedure:

1. The J-dimensional data are (optionally) submitted to a lossless preprocessing, linearising
the responses and balancing the variable variances to ease the subsequent bilinear modelling.
This step is domain-specific and the way it is executed has to be set a priori. For this reason,
the best pretreatment strategy should always be selected based on both the nature of the
handled instrumental equipment and technical knowledge;

2. The preprocessed data are projected onto the subspace defined by the bilinear loadings, P,
already established at this point in time, to estimate the scores for the respective components;

3. The residuals left in the data after the projection on known components are input to a bilinear
(here PCA-like) modelling stage to detect new unknown components and isolate outliers.
If new components are found, they are quantified in terms of new scores and loadings.
Thus, the statistically redundant J original variables are replaced by a smaller number (A)
of principal components (PCs). The number of such components determines the degree of
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fidelity initially specified by the user. The algorithm automatically learns to identify and
quantify all the systematic types of covariation in the data stream as it flows, while most of
the random measurement errors and individual or irrelevant outliers are removed, provided
the latter do not constitute a new pattern of variation. This compressed representation is
suitable for graphical interpretation and quantitative use, and from it the pretreated data can
be reconstructed at any time;

4. At regular intervals, the OTFP model may be refined and reorthogonalised in a linear updat-
ing stage;

5. The pretreatment information associated to the different blocks is stored as output together
with the approximation model scores and loadings.

As specified before, the OTFP algorithm detects all the systematic types of covariation in the data
stream - be it from the flow of observed objects (expected information) or from the measuring pro-
cess itself (unexpected information, anyway needed for reliable interpretation and quantitative use
of the data). Phenomena considered irrelevant during preprocessing, as well as individual outliers
discovered by the OTFP algorithm, are noted and then excluded from the self-modelling process.
So is much of the random, independent measurement error, since it does not represent a systematic
pattern of covariation.
At any time, the systematic part of the data stream can be reconstructed from the data model, e.g.
for visualisation. But this reconstruction is not mandatory; the compressed data model parame-
ters, representing the known and/or unknown types of systematic phenomena in the data stream,
are themselves suitable for efficient storage and transmission, human graphical interpretation and
applied quantitative usage.
These steps will now be described. For further details, the reader may contact either the corre-
sponding or the last author.

2.1. Input
The ever-lasting raw data stream, X, divided into a sequence of blocks, Xg (Ng × J, g =

1, 2, . . . ,G), is submitted to the optional preprocessing stage, which includes a linearisation and a
signal-conditioning step, and then to the OTFP self-modelling. The number of observations en-
compassed by these blocks can be freely set by the user. Unless the preprocessing parameters and
the OTFP centre and scaling vectors (m and c) are established a priori, the start of the modelling
process (i.e. for X1) requires sufficient observations to enable a precise and relevant initialisation
of them.

2.1.1. Linearisation
The linearisation of the input data in Xg is domain-specific. For instance, non-linearities in

light spectroscopy data may be reduced by transformation of the recorded light intensity, I, at
each wavelength, first to transmittance, T = I

I0
, where I0 represent the blank signal, and then to

absorbance, A = log 1
T , to better conform to Beer’s law of linear chemical responses.

Another aspect of the linearisation is to convert non-additive variation types (e.g. multiplicative
light scattering in absorbance spectra, motions in RGB or hyperspectral videos, etc.) into additive
signal contributions or preprocessing parameters. For instance, multi-channel pretreatments such
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as Standard Normal Variate (SNV) [17], Multiplicative Scatter Correction (MSC) [18, 19] and
Extended Multiplicative Signal Correction (EMSC) [20] can reparametrise multiplicative effects.
Two-domain IDLE modelling [5] can convert confusing motion effects into nicely additive mo-
tion flow fields. Domain transforms, like Fast Fourier Transform (FFT) and wavelet analysis can
change data locally from time to frequency domain. Such a more or less lossless, model-based
preprocessing may produce additional parameters, which may be highly informative and must be
stored for later data reconstruction.

2.1.2. Weighing the variables for better signal conditioning
In general, for an optimal data approximation, the J originally measured descriptors in Xg are

approximately centred, e.g. by subtraction of their mean values estimated from the data flowed up
to the current step. They may then be weighed to ensure a better balance among their variances so
that:

Xg,p = (Xg − 1mT) ◦ 1cT (4)

where 1 (Ng × 1) is a vector of ones, m (J × 1) and c (J × 1) contain the model centre and the
input weighing factors (these weighing factors could e.g. be defined as the inverse of the standard
deviation values of the J recorded variables at the current step), respectively, while ◦ identifies
the element-wise (Hadamard) product. The same pretreatment is applied to all consecutive data
blocks until m and/or c are readjusted as part of the model updating operation (see below).

2.2. Fit to already established model subspace
The linearised, centred and weighed records in Xg,p are now projected onto the already estab-

lished loadings P (if they exist at the current step), according to the linear structure model:

Xg,p = Tg,pPT + Eg,p (5)

Clearly, the frequency at which such a projection step is carried out depends on the number of
observations in Xg,p, that is, as aforementioned, a user-defined parameteriii.

2.3. Bilinear model expansion
In the present implementation of the OTFP, once calculated, the residual vectors in Eg,p are

examined: if they are deemed small enough to be considered uninteresting noise, the respective
original records are simply discarded and their scores gathered in Tg,p. If this is not the case such
residual vectors are introduced into a temporary repository to check whether they represent a new
systematic trend in the data stream or not. At regular intervals or when its size or variance exceeds
a specific user-defined threshold, this temporary repository is used for the estimation of a new set
of loadings and scores. If their respective factors are found to explain a sufficiently high amount
of the repository variationiv, these new scores and loadings are appended to those of the already

iiiIn the case-studies described in Section 4, the projection frequency was found to affect only the computational
time of the algorithmic procedure (as it increases, the number of data blocks the OTFP has to consecutively handle
becomes larger) but not its final outcomes.

ivThe scores for these new PCs are - implicitly - defined to be zero for all the previous observations.
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established PCs in P and Tg,p, respectively. Otherwise, if leverage analysis of the new scores
points out that only scattered objects have contributed to them, these are dismissed as incidental
outliers, their scores are stored, and the original model is retained.
Since the size of the entire scores matrix can become very large as the information flows, the
scores are saved to the local disk at regular intervals and then deleted from memory along with
Xg,p and Eg,p

v.

2.4. Model updating
Whenever necessary (e.g. if the model is characterised by a relatively high bias), preprocess-

ing parameters, loadings and scores for both old and new observations are readjusted to ensure
PCA-like orthogonality and thus a more efficient compression of the data. For such an updating,
the OTFP does not need to recall the whole array of scores stored on the local disk, but directly
operates on two summary indices of such an array, which are kept in memory in place of it (namely
its column-wise cumulative sum vector and its cross-product matrix). The dimensionality of the
reestimated model is automatically established according to the user’s desired optimisation crite-
rion. Here, for simplicity, the percentage of data variance that has to be captured is used. This
allows the original information stream to be retrieved with a predetermined reconstruction accu-
racy. Other criteria, based on e.g. the statistical significance of the eigenvalues associated to the
single components [21, 22], may also be exploited.

3. Datasets

To evaluate the potential of the proposed method, 4 different sets of time series data were
compressed and modelled as detailed before and reconstructed afterwards:

• High-speed multi-channel monitoring of a chemical reaction: 4329 multi-channel Vis-NIR
spectra were measured in-line between 400 and 1098 nm (350 wavelengths) via a NIRS
6500 spectrophotometer, equipped with a fibre-optic bundle, during several replicates of the
self-oscillating Belousov-Zabhotinsky (B-Z) reaction [23]. The final matrix had dimensions
4329×350. This example is intended to illustrate a new way to handle more or less continu-
ous, high-dimensional measurements of a complex dynamic system not yet fully understood
from a scientific point of view;

• Detailed remote characterisation of a set of related, complex objects: three 245 × 210-sized
hyperspectral NIR images of three oranges were registered within the near-infrared spec-
tral range 898-1690 nm (247 wavelengths) by a XEVA-FPA-1.7-320 line-scanner camera
(Xenics, Belgium). To enable their handling, such three-way arrays needed to be unfolded
into a unique matrix, so that a single pixel spectrum was contained in each one of its rows.
After background removal, its dimensions were 72365 × 247. This example was chosen to
illustrate how non-invasive bio-spectroscopy can reveal hidden aspects of related complex
biological samples;

vIn the case-studies described in Section 4, the storage of the scores on the local disk proved not to constitute a
limiting step for the execution of the OTFP algorithm.
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• Airborne environmental surveillance: an hyperspectral image was recorded by a push-broom
device installed on an Unmanned Aerial Vehicle (DroneSpex, Norut AS - University Centre
in Svalbard - Norwegian University of Science and Technology, Norway [24]), flying over
Faial (Azorean Islands, Portugal). At each accumulation step, the optical sensor collected
the absorbance values at 450 wavelengths in the visible light range between 420 and 640
nm for a strip of 245 pixels. A total number of 1000 consecutive snapshots were captured,
which led to a three-way array of dimensions 1000 × 245 × 450. Also in this case, it was
unfolded into a 245000 × 450 matrix. This example is intended to show how data from a
modern environmental monitoring instrument, a drone, can be automatically compressed for
efficient storage and transmission and interpreted in the compressed state;

• Traditional industrial process analysis: 76 engineering variables, mainly including temper-
atures, pressures and flow rates, were recorded at hourly intervals to follow the evolution of
a continuous industrial process. The complete data structure had dimensions 14561 × 76.
This example illustrates the application of the OTFP to records measured over time by a
relatively small set of conventional sensors.

4. Results and discussion

The power of the OTFP approach and the quality of the initial data retrieval were assessed in
all the case-studies at hand according to the following indices:

• A: number of extracted PCs;

• EVraw: percentage of explained raw data variance;

• EVp: percentage of explained preprocessed data variance;

• RMS RE: Root Mean Square Reconstruction Error defined as
√∑N

n=1
∑J

j=1(xn, j−x̂n, j)2

NJ , where xn, j

is the (n, j)-th element of X and x̂n, j refers to its respective reconstructed value;

• tc: compression time expressed in secondsvi;

• CR: compression ratiovii.

EVraw, EVp and RMS RE are strictly related to the OTFP approximation accuracy degree, while A,
tc and CR can be considered measures of computational speed and efficiency.
Calculations were executed by using Idletechs’ prototype software in a Matlab R2012b environ-
ment (The MathWorks, Inc., Natick, Massachusetts, United States), set up on a MacBook Pro
equipped with a 2.3 GHz Intel Core i7 and 8 GB 1600 MHz DDR3 RAM.

vitc is computed as the time needed to compress the entire concerned dataset.
viiCR is computed as the ratio between the memory usage of the uncompressed and compressed (preprocessing

parameters, scores and loadings matrices) data structures, both saved as double precision .mat files.
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4.1. High-speed multi-channel monitoring of the Belousov-Zhabotinsky reaction
Table 1 lists the values of the aforementioned parameters related to the Vis-NIR data com-

pression. The initialisation measurements were centred and weighed (c = 1
m+0.05 ) after baseline

correctionviii. The model centre vector, m, was updated at regular intervals as new spectroscopic
details were encountered in the process, while the variable weighing vector, c, was kept constant
for simplicity.

Table 1 - Vis-NIR light absorbance spectra from the B-Z reaction: values of the compression quality indices. The
number of original measured variables is reported in the first column

J A EVraw EVp RMS RE tc CR

350 10 99.93 99.61 0.0019 12.5
26.81

( 9768173 bytes
364370 bytes )

In order to more clearly appreciate the performance of the OTFP, 3 uncompressed and recon-
structed spectra associated to different reaction stages are displayed in Figure 2. The full approxi-
mation model is sketched in Figure 3, in terms of final model mean (Figure 3a), chosen weighing
factors (Figure 3b), de-weighed and scaled loadings (Figure 3c) and lack-of-fit residuals (Fig-
ure 3d). This example has shown that the OTFP automatically discovered and quantified various
systematic variation patterns in the complex, ill understood B-Z reaction. At our chosen fidelity

Figure 2 - Vis-NIR light absorbance spectra from the B-Z reaction at three different points in time: input (black solid
lines) and OTFP modelled and reconstructed (red dotted lines) spectra

viiiThe reported results refer to the baseline-subtracted spectra for better illustration.
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fraction (relative reconstruction error variance < 0.01%, resulting in 10 PCs), only very slight dif-
ferences between the original and reconstructed profiles are detectable to the naked eye. Had we
demanded higher fidelity fractions, more PCs would have been included. Conversely, had we de-
manded fewer PCs, that would have given higher reconstruction error variance. When submitting
this high-dimensional data stream to the automatic model-based data compression, the main pat-
terns of systematic variability in the data were automatically found and extracted. In this example,
each high-dimensional spectrum was measured at a single space point only. The next example
will show how an overwhelming data stream that arises when thousands of such high-dimensional
spectra are measured in parallel by a hyperspectral camera can be dealt with by the OTFP.

Figure 3 - Vis-NIR light absorbance spectra from the B-Z reaction: representation of the full compression model. a)
Final mean vectorix, b) variable weighing factors (kept constant throughout the algorithmic procedure), c) loadings
profiles (divided by the channel weights, c, and scaled by their respective singular values) and d) input absorbance
spectra (black solid lines) and lack-of-fit residuals (blue dotted lines)

4.2. Detailed remote characterisation of orange samples
This example concerns efficient quality control of physical objects - in this case oranges. The

individual pixel NIR spectra were submitted to a model-based pretreatment, MSC, to remove the
undesired light scattering effects and prevent actual chemical signals, often of lesser magnitude
[25], from being overlooked. They were subsequently centred and weighed to down-scale noisy

ixThe mean vector closely resembles the lower-absorbance spectral profiles, due to their high abundance in the
Vis-NIR dataset.
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Figure 4 - Hyperspectral NIR images: a-c) Uncompressed and d-f) OTFP modelled and reconstructed grey-scale
orange image #1, #2 and #3 at 1675 nm
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Figure 5 - Hyperspectral NIR images - Modelling of orange image #2: a) baseline variations and b) amplification
variations, estimated by MSC preprocessing and used to correct the spectra of the individual pixels, c) summary of the
unmodelled residuals (root Residuals Sum-of-Squares, RSS, of the weighed wavelength channels after the extraction
of 5 OTFP PCs), d) PC #1, e) PC #2 and f) PC #3 grey-scale scores distribution maps, g) final wavelength mean vector
and h) wavelength weighing factors (kept constant throughout the algorithmic procedure) i) PC #1, j) PC #2 and k)
PC #3 loadings profiles (divided by the channel weights, c, and scaled by their respective singular values). The white
circle in e) highlights a particular defect on the surface of the orange sample

spectral regions. Here, the model centre was continuously updated, the variable weighing factors
kept constant all over the processing and the MSC parameters additionally stored along with all
the other retained information.
As indicated in Table 2, the compression of the orange hyperspectral images also yielded satisfac-
tory outcomes. In addition to a very precise data retrieval, since noise is partly filtered out, various
imperfections, probably due to instrumental problems, are apparently removed (see Figure 4).
As an example of the added value the bilinear modelling offers unlike conventional compression
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Table 2 - Hyperspectral NIR images: values of the compression quality indices. The number of original measured
variables is reported in the first column

J A EVraw EVp RMS RE tc CR

247 5 99.93 93.27 0.0096 43.8
33.29

( 129235545 bytes
3882254 bytes )

methods in terms of understanding and interpretability, the scores distribution mapsx (or scores
plots) of image #2 related to the first three extracted PCs and their corresponding loadings profiles
are displayed in Figure 5 along with the MSC preprocessing parameters used to correct the spectra
of the individual pixels, the corresponding root weighed Residuals Sum-of-Squares (RSS) image
(after the extraction of five PCs), the final mean vector and the variable weighing factors resulting
from the OTFP. PC #1 seems to reflect an overall lighting variation on the 3D orange. The tex-
ture of the orange peel is partly captured by PC #2, along with a particular defect located on the
bottom-left area of its surface and a 3D illumination and/or penetration effect generating a gradual
decrease in the scores values from the border to the centre of the sample. PC #3 seems to represent
a purely textural component.
This example has shown that the self-modelling process simplified the interpretation and usage of
the enormous amounts of data from a hyperspectral camera recording a series of similar objects.
The model parameters gave high compression as well as interesting graphical insights. The next
case-study will illustrate an even more overwhelming data stream from a continuously measuring
hyperspectral camera installed on a flying drone.

4.3. Environmental surveillance by airborne hyperspectral imaging
The high compression of the hyperspectral push-broom image is proven by both Table 3 and

Figures 6a and 6b. In this case the spectrum of each pixel at each point in time was just centred.
Specifically, the model centre was continuously updated, while the variable weighing factors were
set to 1 and kept constant all over the processing.
Despite the notable reduction in the memory usage, the uncompressed and reconstructed pseudo-
RGB pictures, constructed by selecting only three of the available wavelength channelsxi, exhibit
barely perceptible discrepancies.
It is well known that while bilinear models from orthogonal subspace estimation methods (includ-
ing PCA and the present OTFP) capture the essential variation information in data, the individual
components are not intended to be meaningful from a physicochemical perspective, due to their
mutual orthogonality (see Equations 2 and 3). Relaxing these orthogonality constraints and possi-
bly adding other criteria, such as non-negativity in loadings and scores, may give more meaningful
individual component plots. For example, Figure 6 also includes three different component scores
distribution maps and loadings profiles (Figures 6c, 6d, 6e, 6f, 6g and 6h), obtained by a Multi-
variate Curve Resolution-Alternating Least Squares (MCR-ALS) [26] transformation of the global

xThe darkness of the pixels is proportional to the value of their scores on the respective components.
xiAround 445 nm, 535 nm and 575 nm, where the eye cones have their maximum sensitivity to blue, green and red

light, respectively.
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Figure 6 - Hyperspectral image from a push-broom camera installed on a flying drone: a) uncompressed and b) OTFP
modelled and reconstructed images in pseudo-RGB colours, c) MCR-ALS component #1, d) MCR-ALS component
#2 and e) MCR-ALS component #3 grey-scale scores distribution maps, f) MCR-ALS component #1, g) MCR-ALS
component #2 and h) MCR-ALS component #3 loadings profiles

OTFP model. MCR-ALS is a soft bilinear-modelling technique, analogous to PCA, originally
conceived for the resolution of multicomponent evolving chemical systems into pure individual
contributions, not necessarily completely uncorrelated. It is based on an iterative sequence of op-
timisation steps, but requires appropriate initial guesses of these contributions to achieve a reliable
solution. Here, the scores and the loadings represented in Figures 6c, 6d, 6e, 6f, 6g and 6h were
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Table 3 - Hyperspectral image from a push-broom camera installed on a flying drone: values of the compression
quality indices. The number of original measured variables is reported in the first column

J A EVraw EVp RMS RE tc CR

450 3 99.82 99.02 0.015 300.2
45.02

( 241451269 bytes
5363455 bytes )

reestimated by executing MCR-ALS on the OTFP reconstructed data, appealing to the final OTFP
loadings as input.
Although MCR-ALS components #1 and #3 are seemingly dominated by the sea foam pixels
(whose corresponding signal was found to be saturated in a large spectral range), three distinct
patterns are visibly recognisable: the field pixels in the first scores distribution map, the pixels sur-
rounding the sea foam in the second scores distribution map and those capturing several animals
grazing at the centre of the image in the third scores distribution map. Therefore, ça va sans dire,
the OTFP may be employed for preliminary image treatment before further handling or segmen-
tation.
Independent Component Analysis (ICA) [27, 28] or Parallel Factor Analysis (PARAFAC) [29, 30]
and extensions of these coupled with various pixel clustering methods also belong to the rich flora
of post-processing methods that can be applied to bilinear models like those coming from the
OTFP.
The three first illustrations have shown how broad data stream from multi-channel sensors can be
handled by the OTFP. The last example concerns a very different kind of data - a more or less
random collection of individual, single-channel sensors. Traditional process industry is often ex-
tensively equipped with temperature-and-pressure sensors. Often, each new sensor gets its own
display screen with its own alarm limits. How can the burden for the process operators be reduced
as well as the number of false alarms? Perhaps by finding common patterns of covariation among
the many sensors?

4.4. Analysis of an industrial manufacturing process
This example illustrates how the OTFP may be used for more rational handling of traditional

industrial process data.
According to the quality indices reported in Table 4, the general performance of the OTFP when
applied to this rather low-dimensional stream of industrial process data was found to be slightly
worse than in the previous case-studies. This is not unexpected, given the low number of variables
under study and their widely varying nature, and is a consequence of the fact that their correlation
structure is not so strong that just few PCs can practically summarise all their significant variation.
Nevertheless, for most of them an acceptable reconstruction was achieved, as Figure 7 confirms.
Besides, examining both scores and loadings can provide remarkable insights into the process be-
haviour, particularly if meaning can be ascribed to the input records - or at least to some of them
- by human expert characterisation. This is illustrated by the scores plot in Figure 8a. PC #1
separates two groups of observations: blue dots and red squares refer in fact to Normal Operat-
ing Conditions (NOC) and shut-down time samples, respectively. As the latter present negative
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Figure 7 - Industrial process data: Uncompressed (black solid line) and OTFP modelled and reconstructed (red dotted
line) temporal evolution of a) variable #57 and b) variable #60

Figure 8 - Industrial process data: a) PC #1/PC #2 scores (blue dots and red squares refer to Normal Operating
Conditions and shut-down time samples, respectively) and b) loadings plots (the numbers correspond to the #IDs of
the original variables and are represented according to their respective PC #1/PC #2 loadings values)

projection coordinates on this component, they will be characterised by lower-than-average values
of all the measured variables featuring a relatively large positive PC #1 loading (which actually
assumed a nearly 0-level during shut-down periods) and vice versa (see Figure 8b). On the other
hand, within-cluster differences seem to be mainly spotted by PC #2.

Table 4 - Industrial process data: values of the compression quality indices. The number of original measured variables
is reported in the first column

J A EVraw EVp RMS RE tc CR

76 13 99.47 81.33 0.4640xii 49.5
3.35

( 4895674 bytes
1459315 bytes )

xiiAs the original variables were characterised by different units of measurements, the reported RMSRE value
concerns the final centred and weighed data array.
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5. Comparison with classical PCA

To what extent does the OTFP mimic the corresponding traditional data modelling strategy?
The present implementation of the OTFP employs similar criteria in the model updating stage to
those of standard PCA, so it is natural to compare both the approaches. While the OTFP needs to
hold only a small part of the data in memory at a time, traditional PCA requires all the data to be
held in memory at the same time, at least if both loadings and scores are to be assessed. The time
span of the hyperspectral drone imaging example (Figure 6 and Table 3) was chosen short enough
to allow conventional PCA to be run and its solution to be compared to the final OTFP model.
Figure 9 permits to appraise the performance of the two methods for the same dataset. Figure

Figure 9 - Hyperspectral image from a push-broom camera installed on a flying drone - Classical PCA (black solid
line) vs. OTFP (grey dotted line): a) Mean vectors, b) cumulative percentages of explained preprocessed data variance,
c) lack-of-fit (root mean square error) for the individual variables after the extraction of 3 OTFP PCs (negligible if
compared with the original signal magnitude) d) PC #1, e) PC #2 and f) PC #3 loadings. Variable weighing factors
(not shown) were set to 1 for all the spectral wavelengths and kept constant all over the OTFP

9a shows that the mean spectrum used for model centring in PCA is more or less identical to the
model centre vector, m, gradually developed by the OTFP. The outcomes of the two techniques
are also virtually indistinguishable if looking at the plot of the cumulative percentage of explained
preprocessed data variance (Figure 9b) and the variable-wise RMSRE (after the extraction of three
PCs, Figure 9c) as well as at the loadings profiles of PC #1 (Figure 9d), PC #2 (Figure 9e) and
PC #3 (Figure 9f). The corresponding spatiotemporal OTFP scores (not displayed due to the
high number of data points) were also found to be very similar to the PCA ones. Consequently,
both PCA and the OTFP led to practically identical values of the diagnostic indices listed at the
beginning of Section 4 except for tc. The decomposition was in fact achieved faster by PCA,
which had simultaneous access to all the available information. On the other hand, the OTFP
had to handle it by evolving its bilinear model on-the-fly as the data flowed. Nevertheless, the
comparison highlighted the OTFP can be considered a feasible alternative to standard PCA, when
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this latter is not applicable (e.g. when the measurements are collected in real time or the size of
the analysed matrix is prohibitively large).

6. Discussion

The OTFP treats the incoming data one record or one batch of records at a time, and gradually
develops a compact quantitative model of this data stream from the covariation patterns that it
discovers. Still, Figure 9 illustrates the OTFP behaved quite similarly - at least for the first three
components - to the corresponding conventional global multivariate data modelling method (in
this case PCA), which analyses all the data simultaneously. Their results are almost identical even
if the OTFP repeatedly has to make sense out of small chunks of data as they arrive. So it has
to make many temporary decisions about what to throw away as random noise, while the global
PCA has access to all the data at once. On the other hand, this is precisely the motivation behind
the development of the OTFP tool, that is to always maintain an updated, compact summary of
all the systematic changes, which have taken place in an otherwise overwhelming, ever-lasting
high-dimensional data stream, with low computational or memory requirements.
The OTFP uses a multivariate data driven approximation model (here, PCA-like) as a generic
Taylor expansion around a chosen set point or model centre, to summarise whatever known or
unknown phenomena has caused the systematic covariation patterns in the input data stream. The
OTFP data model has a linear, additive structure and therefore gives the best approximation per-
formance when non-additive and/or non-linear effects in the input data have been corrected for in
the preprocessing step. Preprocessing is then helpful for reducing response curvature and other
types of non-linearitiesxiii. Response linearity was improved in the first example (Figures 2 and 3)
by converting the fibre-optic transflection data to absorbance values. Patterns known to be non-
interesting may be removed during preprocessing, as illustrated by the simple baseline correction
in the same case-study. In the second example (see Figure 4), unknown additive baseline variations
and multiplicative amplification variations were estimated, parametrised and removed jointly by
MSC. On the other hand, when the input variables are given in very different units, preprocessing
should also scale them to balance their uncertainty levels - or, if that is unknown, to balance their
total variances as shown for the industrial process data (Figures 7 and 8).
The OTFP components are mathematical basis vectors that characterise the data stream. When
plotted in combination they give useful insights into the main patterns of data variation, as illus-
trated in Figure 8. But such orthogonal basis vectors are not meant to be interpreted individually.
Therefore, the OTFP solution may be at any time readjusted for better visualisation and more
causal interpretation. This was shown by the conversion of the orthogonal, PCA-like OTFP com-
ponent profiles into more graphically distinct ones by requiring non-negative scores and loadings
in an MCR-ALS-based post-processing.

xiiiIn case preprocessing is not of help, complex non-linearities and system heterogeneities may be handled by e.g.
automatically splitting the data stream under study into two or more disjoint OTFP models (in a similar way as for the
well-known static Soft Independent Modelling of Class Analogy - SIMCA - approach [31, 32]).
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7. Conclusions and perspectives

In the near future, a drastic increase in the collection and use of high-dimensional, continuous
measurements is expected. Rational use of such data streams requires generic data modelling tools
that not only give good predictions and classifications as the information flow evolves, but that also
reveal its essential structure for human interpretation and efficient compression. In this article the
On-The-Fly Processing (OTFP) tool for the on-the-fly gradual modelling and compression of con-
tinuous quantitative data streams was proposed. It is based on an evolving implementation of PCA
that updates on-line, when necessary, both preprocessing parameters and principal component
structure (whose changes and possible expansion can be optionally monitored in real time through
intuitive graphical displays). It combines the advantages of three different ways of attaining PCA
or PCA-like bilinear decompositions, while avoiding their disadvantages:

• repeated use of conventional PCA, each time bringing increasing amounts of data into
memory for simultaneous analysis, which yields bilinear models relevant for both past
and present observations, but becomes prohibitively slow and memory-demanding for ever-
lasting data streams;

• moving-window PCA, which repeatedly merges new observations with a bilinear subspace
loading summarising past observations, ensuring that the bilinear model is up-to-date and
thus relevant for the latest observations at any given moment, while losing relevance for
older observations;

• eigen-analysis of the cumulative J×J cross-product matrix, a simple and fast computation as
long as J is not too large, which is suitable for parallelisation and out-of-core estimation of
the PCA loadings with relevance also for past observations, but without quantitative scores
for them.

The OTFP discovers new systematic patterns of covariation in multi-channel data streams, and
thereby extends its current bilinear model with new dimensions in a computationally efficient way.
Over time, the observation scores are stored to disk in packets and then deleted from memory. The
model is continuously updated to be as PCA-like as possible, but in such a way that past scores
can always be recalled and compared to present ones.
The algorithmic procedure exhibited very satisfactory performance in terms of compression rate
and time and quality of the input reconstruction, especially if measurement series underlain by
strong correlation structures (e.g. Vis-NIR spectra or hyperspectral images) were dealt with. On
the other hand, in the industrial process example, its power was not as prominent, probably due to
a lower degree of intercorrelation in this data stream. Still, the retrieval of the temporal evolution
of the original variables was reasonably precise. This could represent an important cross-road for
manufacturing companies, whose modern information storage systems are commonly based on
univariate calculations, not taking into account the possible interdependences among various in-
strumental responses, destroying their essential multivariate nature and eliminating much of their
meaningful content [33]. Last but not least, the scores and loadings estimated through the PCA-
based dimensionality reduction feature distinctive interpretability properties, extremely helpful for
data understanding, utilisation and further exploration by complementary statistical approaches
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(e.g. MCR-ALS). As far as the authors are concerned, no available compressor guarantees such a
noteworthy added value.
In the near future, this strategy for continuous, automatic model development based on multi-
channel measurements, may become useful also for processing a wider range of data stream types.
For instance, Internet of Things (IoT) will result in an enormous increase of technical measure-
ments in many fields of interest (medicine, industry, communications etc.). Many of these IoT
sensors will be multi-channel (e.g. cameras, spectrometers). Others will be univariate, but even
these will generate multi-channel data: the time series from one single, more or less continuous
data source will lead to high-dimensional frequency spectra (spectrograms), after suitable domain
transforms (e.g. by FFT or wavelet analysis). Since the methodology here relies solely on linear
algebra, it is expected to work properly also within the more general BIG DATA context.
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Figure captions

• Figure 1: Schematic representation of the OTFP algorithm: a first set of data (black block)
is input to 1) a pretreatment and 2) a PCA-based dimensionality reduction stage. As new
measurements are recorded (grey block), they can be either 3a) exploited for the reparametri-
sation of the compression model, if it is found to be outdated, or 3b) just approximated by its
latest version. 4) Bilinear approximation loadings and preprocessing parameters are saved
by keeping track of how they have been initially defined and/or changed during model up-
dating. The time series of bilinear approximation scores are more or less continuously stored
and deleted from memory to subsequently process new input data

• Figure 2: Vis-NIR light absorbance spectra from the B-Z reaction at three different points
in time: input (black solid lines) and OTFP modelled and reconstructed (red dotted lines)
spectra

• Figure 3: Vis-NIR light absorbance spectra from the B-Z reaction: representation of the
full compression model. a) Final mean vector, b) variable weighing factors (kept constant
throughout the algorithmic procedure), c) loadings profiles (divided by the channel weights,
c, and scaled by their respective singular values) and d) input absorbance spectra (black solid
lines) and lack-of-fit residuals (blue dotted lines)

• Figure 4: Hyperspectral NIR images: a-c) Uncompressed and d-f) OTFP modelled and re-
constructed grey-scale orange image #1, #2 and #3 at 1675 nm

• Figure 5: Hyperspectral NIR images - Modelling of orange image #2: a) baseline varia-
tions and b) amplification variations, estimated by MSC preprocessing and used to correct
the spectra of the individual pixels, c) summary of the unmodelled residuals (root Resid-
uals Sum-of-Squares, RSS, of the weighed wavelength channels after the extraction of 5
OTFP PCs), d) PC #1, e) PC #2 and f) PC #3 grey-scale scores distribution maps, g) final
wavelength mean vector and h) wavelength weighing factors (kept constant throughout the
algorithmic procedure) i) PC #1, j) PC #2 and k) PC #3 loadings profiles (divided by the
channel weights, c, and scaled by their respective singular values). The white circle in e)
highlights a particular defect on the surface of the orange sample

• Figure 6: Hyperspectral image from a push-broom camera installed on a flying drone: a)
uncompressed and b) OTFP modelled and reconstructed images in pseudo-RGB colours, c)
MCR-ALS component #1, d) MCR-ALS component #2 and e) MCR-ALS component #3
grey-scale scores distribution maps, f) MCR-ALS component #1, g) MCR-ALS component
#2 and h) MCR-ALS component #3 loadings profiles
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• Figure 7: Industrial process data: Uncompressed (black solid line) and OTFP modelled and
reconstructed (red dotted line) temporal evolution of a) variable #57 and b) variable #60

• Figure 8: Industrial process data: a) PC #1/PC #2 scores (blue dots and red squares refer
to Normal Operating Conditions and shut-down time samples, respectively) and b) loadings
plots (the numbers correspond to the #IDs of the original variables and are represented ac-
cording to their respective PC #1/PC #2 loadings values)

• Figure 9: Hyperspectral image from a push-broom camera installed on a flying drone - Clas-
sical PCA (black solid line) vs. OTFP (grey dotted line): a) Mean vectors, b) cumulative
percentages of explained preprocessed data variance, c) lack-of-fit (root mean square error)
for the individual variables after the extraction of 3 OTFP PCs (negligible if compared with
the original signal magnitude) d) PC #1, e) PC #2 and f) PC #3 loadings. Variable weighing
factors (not shown) were set to 1 for all the spectral wavelengths and kept constant all over
the OTFP
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Table 1

J A EVraw EVp RMS RE tc CR

350 10 99.93 99.61 0.0019 12.5
26.81

( 9768173 bytes
364370 bytes )
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Table 2

J A EVraw EVp RMS RE tc CR

247 5 99.93 93.27 0.0096 43.8
33.29

( 129235545 bytes
3882254 bytes )
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Table 3

J A EVraw EVp RMS RE tc CR

450 3 99.82 99.02 0.015 300.2
45.02

( 241451269 bytes
5363455 bytes )
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Table 4

J A EVraw EVp RMS RE tc CR

76 13 99.47 81.33 0.4640 49.5
3.35

( 4895674 bytes
1459315 bytes )
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Table captions

• Table 1: Vis-NIR light absorbance spectra from the B-Z reaction: values of the compression
quality indices. The number of original measured variables is reported in the first column

• Table 2: Hyperspectral NIR images: values of the compression quality indices. The number
of original measured variables is reported in the first column

• Table 3: Hyperspectral image from a push-broom camera installed on a flying drone: values
of the compression quality indices. The number of original measured variables is reported
in the first column

• Table 4: Industrial process data: values of the compression quality indices. The number of
original measured variables is reported in the first column
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