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Abstract

The spatial-temporal spreading of a new invasive species in a habitat has interest

in ecology and is modeled by a moving boundary diffusion logistic partial differ-

ential problem, where the moving boundary represents the unknown expanding

front of the species. In this paper a front-fixing approach is applied in order

to transform the original moving boundary problem into a fixed boundary one.

A finite difference method preserving qualitative properties of the theoretical

solution is proposed. Results are illustrated with numerical experiments.

Keywords: Diffusive logistic population model, moving boundary, Stefan

condition, finite difference, numerical analysis, computing simulation.

1. Introduction

For the sake of clarity in the terminology and as many authors undistinguish

the terms free boundary and moving boundary, we recall these concepts follow-

ing Crank approach [9]. A moving boundary problem is characterized by the

fact that the boundary of the domain is not known in advance but it has to be5

determined as a part of the solution. These problems are often called Stefan

problems due to the Stefan condition that links the behavior of the boundary

with the unknown solution, see [9, 22]. The term free-boundary problem is
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commonly used when the boundary is independent of the time and typically

related to elliptic problems. Moving boundary problems have their origins in10

physical and engineering problems [9, 14], and more recently in biological and

physiological sciences [5], decision and control theory and ecology [13].

Prior to [13] the modelling of biological invasions has been widely studied

in [15, 16, 24, 1, 2, 23, 27, 28, 19] under the crucial restriction that in the pre-

vious papers the spatial domain is not constrained by the population behavior,15

that is the essence of the Stefan condition. The first diffusive logistic model

related to biological invasions was initiated in 1937, of course without boundary

restrictions, independently by Fisher [15] and Kolmogorov-Petrovsky-Piskunov

(KPP) [16]. Very recent papers have treated numerically these nonlinear models

focusing on the stability and the preservation of the qualitative properties of the20

theoretical solution [4, 20, 21].

To our knowledge the seminal paper [13] by Du and Lin is the first contribu-

tion in the field of spreading of populations where a Stefan condition is used and

managing a moving boundary problem of parabolic type. Further developments

of this problem have been treated in [11, 12, 26]. The diffusive logistic model25

of [13] for the density of population of the invasive species U(t, x) depending on

time t and spatial variable x states as follows:

∂U

∂t
−D∂

2U

∂x2
= U(a− bU), t > 0, 0 < x < H(t), (1)

together with the boundary conditions

∂U

∂x
(t, 0) = 0, U(t,H(t)) = 0, t > 0, (2)

the Stefan condition

H ′(t) = −µ∂U
∂x

(t,H(t)), t > 0, (3)

and the initial conditions

H(0) = H0, U(0, x) = U0(x), 0 ≤ x ≤ H0. (4)
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The initial function U0(x) satisfies the following properties:

U0(x) ∈ C2([0, H0]), U ′0(0) = U0(H0) = 0, U0(x) > 0, 0 ≤ x < H0. (5)

Here H(t) is the unknown moving boundary such that the population is dis-

tributed in the interval [0, H(t)], D > 0 is the dispersal rate and the positive

parameters a and b are the intrinsic growth rate and the intraspecific competi-30

tion, respectively. The parameter µ > 0 involved in the Stefan condition (3) is

the proportionality constant between the population gradient at the front and

the speed of the moving boundary. Unlike to the previous models, where only

spreading behaviour was admissible, the authors of [13] show by the very first

time a dichotomic alternative behavior, vanishing or spreading approach to the35

habitat carrying capacity a/b, depending on the initial front and population

density and the value of the parameter µ appearing in Stefan condition. Ac-

cording to [13] there is a threshold value µ∗ whose value is not known in advance

splitting the vanishing-spreading behavior.

This paper aims to be a continuation and numerical completion of [13] with40

the conviction that the best model may be wasted with a careless numerical

treatment. Apart from the computation of the population density solution of

problem (1)-(4) and the numerical analysis detailed below, this paper has the

potential advantage that allows us the computation of the expanding front of

the species population as well as the approximation of the crucial parameter µ∗45

whose existence is guaranteed in [13], but whose value is not known in terms

of data problem. A brief numerical treatment of the problem may be found in

Section 3.6 of [3].

This paper is organized as follows. In Section 2, and following the trajectory

of the authors in the study of finance problems (see [7, 8]), we use the well-known50

Landau transformation (see [9, 18]), in order to convert the problem (1)-(4) into

a fixed spatial domain one, where the moving boundary is included as another

variable to solve apart from the population density. We also include in Section

2 the discretization of the transformed problem achieving an explicit finite dif-

ference scheme allowing the computation not only of the population but also of55
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the expanding front. Section 3 deals with the study of the consistency of the

scheme with the transformed problem. Dealing with population problems it is

important to guarantee the positivity of the numerical solution; this qualitative

property together with the stability of the numerical solution and the positivity

and monotone behavior of the numerical expanding front are studied in Section60

4. Section 5 illustrates with numerical examples the dichotomic behavior of the

numerical solution of the problem.

2. Transformation and discretization of the continuous problem

Let us begin this section by transforming the moving front problem (1)-

(4) into a problem with a fixed domain [0, 1]. Let us consider the Landau

transformation, [9, 18],

z(t, x) =
x

H(t)
, W (t, z) = U(t, x). (6)

Under substitution (6) problem (1)-(4) takes the form:

G(t)
∂W

∂t
−G′(t)z

2

∂W

∂z
−D∂

2W

∂z2
= G(t)W (a− bW ), t > 0, 0 < z < 1, (7)

where:

G(t) = H2(t), t ≥ 0. (8)

Boundary conditions (2) and Stefan condition (3) take the form:

∂W

∂z
(t, 0) = 0, W (t, 1) = 0, t > 0, (9)

and

G′(t) = −2µ
∂W

∂z
(t, 1), t > 0, (10)

respectively, while the initial conditions (4) become:

G(0) = H2
0 , W (0, z) = W0(z) = U0(zH0), 0 ≤ z ≤ 1. (11)

Conditions (5) for the initial function U0(x) are translated to W0(z) as fol-

lows:

W0(z) ∈ C2([0, 1]), W ′0(0) = W0(1) = 0, W0(z) > 0, 0 ≤ z < 1. (12)
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After the transformation, the new problem lies in solving the nonlinear65

parabolic partial differential equation (7) in the unbounded fixed domain (0,∞)×

(0, 1) for the variables (t, z). Let us consider the step size discretization k = ∆t,

h = ∆z = 1/M , and the mesh points (tn, zj), with tn = kn, n ≥ 0, zj = jh,

0 ≤ j ≤ M and M positive integer. Let us denote the approximate value of

W (tn, zj) at the mesh point (tn, zj),70

wnj ≈W (tn, zj), (13)

and let gn be the approximation of G(tn). Let us consider the forward approx-

imation of the time derivatives,

wn+1
j − wnj

k
≈ ∂W

∂t
(tn, zj),

gn+1 − gn

k
≈ G′(tn), (14)

and the central approximation of the spatial derivatives,

wnj+1 − wnj−1
2h

≈ ∂W

∂z
(tn, zj),

wnj−1 − 2wnj + wnj+1

h2
≈ ∂2W

∂z2
(tn, zj). (15)

From (14) and (15) the equation (7) is approximated by:

gn
wn+1
j − wnj

k
− zj

2

wnj+1 − wnj−1
2h

(
gn+1 − gn

k

)
−D

wnj−1 − 2wnj + wnj+1

h2

= gnwnj (a− bwnj ), n ≥ 0, 0 ≤ j ≤M − 1, (16)

that can be written as:

wn+1
j =

[
Dk

h2gn
− zj

4h

(
gn+1

gn
− 1

)]
wnj−1 +

[
1 + k(a− bwnj )− 2Dk

h2gn

]
wnj

+

[
Dk

h2gn
+
zj
4h

(
gn+1

gn
− 1

)]
wnj+1, n ≥ 0, 0 < j ≤M − 1. (17)

As it is usual in numerics we assume that equation (7) can be also approximated

at zj = 0. Equation (17) written for j = 0 involves the fictitious value wn−1 at

the point (tn,−h). This value wn−1 is eliminated from the discretization of the75

boundary and initial conditions (9) and (11),

wn1 − wn−1
2h

= 0, wnM = 0, n ≥ 0. (18)
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Transformed Stefan condition (10) is discretized using first order forward

approximation for G′(t) and three points backward spatial approximation of

∂W
∂z (t, 1):

gn+1 − gn

k
= −µ

h
(3wnM − 4wnM−1 + wnM−2), n ≥ 0, (19)

to preserve accuracy of order O(k) + O(h2). From (18) equation (19) can be

rewritten as:

gn+1 = gn +
kµ

h
(4wnM−1 − wnM−2), n ≥ 0. (20)

Finally, replacing (20) in the explicit scheme (17), we have:

wn+1
j = anjw

n
j−1 + bnjw

n
j + cnjw

n
j+1, n ≥ 0, 0 ≤ j ≤M − 1, (21)

where the coefficients are given by:

anj =
k

h2

(
D

gn
−
zjµ(4wnM−1 − wnM−2)

4gn

)
,

bnj = 1 + k(a− bwnj )− k

h2
2D

gn
,

cnj =
k

h2

(
D

gn
+
zjµ(4wnM−1 − wnM−2)

4gn

)
,

n ≥ 0, 0 ≤ j ≤M − 1. (22)

3. Consistency

Consistency of a numerical scheme with a PDE problem means that the80

theoretical solution of the problem approximates well the numerical scheme

when the step size discretizations tend to zero. So, a numerical scheme can be

consistent with an equation and not with another one, see [25], chap. 2. Thus,

it is important to address the consistency of a numerical scheme with a problem.

Let us consider the problem (7)-(11), denoted in vector form as L(W,G) =85

(L1(W,G),L2(W,G),L3(W,G)) where equations (7),(9), (10) are written in the

form:

L1(W,G) =
∂W

∂t
−G

′(t)

G(t)

z

2

∂W

∂z
− D

G(t)

∂2W

∂z2
−W (a−bW ) = 0, t > 0, 0 < z < 1,

(23)
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L2(W,G) =
∂W

∂z
(t, 0) = 0, t > 0, (24)

L3(W,G) = G′(t) + 2µ
∂W

∂z
(t, 1) = 0, t > 0, (25)

and the finite difference scheme (16), (18), (20), written together as L(w, g) =

(L1(w, g), L2(w, g), L3(w, g)) where:

L1(w, g) =
wn+1
j − wnj

k
− zj

2

wnj+1 − wnj−1
2h

(
gn+1 − gn

gnk

)
−D
gn
wnj−1 − 2wnj + wnj+1

h2
− wnj (a− bwnj ) = 0, n ≥ 0, 0 ≤ j ≤M − 1,

(26)

L2(w, g) =
wn1 − wn−1

2h
= 0, n ≥ 0, (27)

L3(w, g) =
gn+1 − gn

k
− µ

h
(4wnM−1 − wnM−2) = 0, n ≥ 0. (28)

In accordance with [25], scheme L(w, g) is said to be consistent with problem

L(W,G) if local truncation error Tnj (W,G) = (T (1)nj , T (2)nj , T (3)nj ),

T (1)nj (W,G) = L1(Wn
j , G

n)− L1(Wn
j , G

n), (29)

T (2)nj (W,G) = L2(W j
n, G

n)− L2(Wn
j , G

n), (30)

T (3)nj (W,G) = L3(Wn
j , G

n)− L3(Wn
j , G

n), (31)

tend to zero as k → 0, h → 0, where Wn
j = W (tn, zj) and Gn = G(tn) are

the values of the exact solution of problem (7)-(11) of both the PDE and the

free boundary respectively at the point (tn, zj) . Now let us consider the local

truncation error T (1)nj assuming that the exact solution W (t, z) is continuously

partial differentiable four times with respect to z and two times with respect to

t. We also assume that G(t) is two times continuously differentiable. By using
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Taylor’s expansion about (tn, zj) one gets:

T (1)nj (W,G) = Enj (1)k − zj
2Gn

G′(tn)Enj (3)h2 − zj
2Gn

En(2)Enj (3)kh2

− zj
2Gn

∂W

∂z
(tn, zj)E

n(2)k − D

Gn
Enj (4)h2,

(32)

where:

Enj (1) =
1

2

∂2W

∂t2
(τ, zj), tn < τ < tn+1. (33)

En(2) =
1

2

d2G

dt2
(δ), tn < δ < tn+1. (34)

Enj (3) =
1

6

∂3W

∂z3
(tn, ξ1), zj−1 < ξ1 < zj+1. (35)

Enj (4) =
1

12

∂4W

∂z4
(tn, ξ2), zj−1 < ξ2 < zj+1. (36)

Hence, the local truncation error satisfies:

T (1)nj (W,G) = O(k) +O(h2). (37)

From (24), (27) and (30) one gets that T (2)nj (W,G) = O(h2) while from (25),

(28) and (31) it follows that T (3)nj (W,G) = O(k) + O(h2). Summarizing the

following result has been established:90

Theorem 1. With previous notation, the scheme L(w, g) is consistent with the

problem L(W,G) and the local truncation error behaves as:

Tnj (W,G) = O(k) +O(h2). (38)

4. Positivity and Stability

4.1. Positivity

Dealing with population models it is necessary to guarantee that the numer-

ical solution is nonnegative. In this section we show that the numerical solution

of the scheme (21)-(22) is nonnegative for small enough values of the step size

discretization. We also prove that the numerical solution preserves qualitative
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properties of the exact theoretical solution of the problem obtained by Du and

Lin in [13].

We prove the nonnegativity of the solution wnj of (21)-(22) as well as the posi-

tivity and monotonicity of the free boundary gn using the induction principle on

the index n. For n = 0, from the initial conditions (12) w0
j > 0, 0 ≤ j ≤M − 1

and particularly w0
M−1 > 0. From (12) we also have that the left hand side

derivative W ′0(1−) at z = 1 and hence the corresponding difference approxi-

mation (3w0
M − 4w0

M−1 + w0
M−2)/(2h) = (w0

M−2 − 4w0
M−1)/(2h) < 0 for small

enough values of h. As g0 > 0, from (19) one gets:

g1 > g0 > 0. (39)

Let us suppose that wlj > 0 and gl > gl−1 > ... > g0 > 0, 1 ≤ l ≤ n. We will

prove that wn+1
j > 0 and gn+1 > gn. By using Taylor’s expansion on the left

about zM = 1 one gets:

wnM−2 = 2wnM−1 +O(h2), n ≥ 0. (40)

Note that from (20), (40) and using that wnM = 0 and wnM−1 = O(h), one gets:

gn+1 = gn+
kµ

h
(4wnM−1−wnM−2) = gn+

kµ

h
(2wnM−1+O(h2)) = gn+O(k), (41)

as it is expected from the differentiability of function g(t), [13].

Coming back to the positivity issues, let us consider the equation (21) for j =

M − 1. From (22) and (40) one gets:

wn+1
M−1 =

(
1 + k(a− bwnM−1)− k

h2
zM−1
gn

µwnM−1

)
wnM−1 +O(h2). (42)

As gn > g0 from the hypothesis and zM−1 < 1, from (42) we can write:

wn+1
M−1 >

(
1 + k(a− bwnM−1)− k

h2
1

g0
µwnM−1

)
wnM−1 = ϕnM−1w

n
M−1, (43)

for small enough values of h. As we are interested in showing that ϕnM−1 > 0, let

us start bounding wnM−1. From the expression of (42), for small enough values

of h we have that wl+1
M−1 < wlM−1(1 + ka), 0 ≤ l ≤ n− 1. Recursively one gets:

wl+1
M−1 < w0

M−1(1 + ka)l ≤ eaTw0
M−1, 0 ≤ l ≤ n ≤ N − 1; kN = T, (44)

9



for a time reference T > 0.

From (44) and the definition of ϕnM−1 given in (43) it is easy to show that

wn+1
M−1 > 0 under the condition:

k <
h2

µC
g0 + h2(bC − a)

, (45)

where:

C = eaTw0
M−1. (46)

Once the positivity of wnM−1 is established, it is necessary to show that wnj > 0

for 0 ≤ j ≤ M − 2. From (21) and the induction hypothesis, this occurs when

coefficients of the scheme are nonnegative. Note that from (22) and (40) every

coefficient cnj > 0 for small enough values of h. From (22), and taking into

account that 0 ≤ zj < 1, coefficient anj > 0 if µwnM−1 < 2D, and thus from (46)

one concludes that anj > 0 holds true under the condition:

wnM−1 <
2De−aT

µ
. (47)

Let B(n) be defined by B(n) = max{wnj ; , 0 ≤ j ≤M}. Using that gn > g0 > 0

by induction hypothesis bnj > 0 if

k <
h2

2D
g0 + h2(bB(n)− a)

. (48)

In order to get an explicit expression of B(n) independent of the discretization,

note that from positivity of coefficients anj , b
n
j , c

n
j and (21):

wn+1
j ≤ (1 + k(a− bwnj ))B(n) ≤ (1 + ka)B(n) ≤ (1 + ka)2B(n− 1)

≤ ... ≤ (1 + ka)nB(0) < eaTB(0),
(49)

where B(0) = max{W (0, z)}, 0 ≤ z ≤ 1. In order to prove the monotonicity

of the free boundary gn, from (40) and (20) one gets that gn+1 > gn.

Summarizing, the following results have been established:95

Theorem 2. With previous notation, let k0 be:

k0 = min

{
k1 =

h2

µC
g0 + h2(bC − a)

, k2 =
h2

2D
g0 + h2(beaTB(0)− a)

}
. (50)
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Under condition k < k0 for small enough values of h the solution {wnj , gn} of

scheme (18), (20) and (21) verifies that gn is positive monotone increasing and:

0 ≤ wnj ≤ B(0)eaT ; 0 ≤ j ≤M, 0 ≤ n ≤ N, Nk = T. (51)

4.2. Stability

As the concept of stability is somewhat plural in the literature, for the sake

of clarity in the presentation we specify the concept of stability we use below

(see page 92 of [17], [6]). We recall the definition of the supremum norm of a

vector x = (x1, x2, ..., xn)T in Rn as ‖x‖∞ = max(|x1|, |x2|, ..., |xn|).100

Definition 1. The numerical scheme (19)-(21) is said to be ‖ · ‖∞-stable in the

domain [0, T ]× [0, 1], if for every partition with k = ∆t, h = ∆z, Nk = T and

Mh = 1 it holds true that:

‖wn‖∞ ≤ K‖w0‖∞, 0 ≤ n ≤ N, (52)

where wn = [wn0 , w
n
1 , ..., w

n
M ]T is the vector solution of the scheme and K is

independent of h, k, and n.

From (51), using thatB(n) = ‖wn‖∞ and from Theorem 2 one gets ‖wn‖∞ ≤

K‖w0‖∞ with K = eaT . Thus the following result has been established:

Theorem 3. With previous notation, under the condition k < k0 where k0 is105

given by (50) and small enough values of h the numerical scheme (19)-(21) is

conditionally ‖ · ‖∞-stable in the domain [0, T ]× [0, 1].

In the following examples we show that the stability and positivity condi-

tion of Theorems 2 and 3 can not be disregarded and that in fact this is a tight

condition. In Example 1 the condition is satisfied, however in Example 2 the110

stability and positivity condition is broken and results become unstable.

Example 1. Consider the logistic diffusion model (1)-(4) with parameters

(D,µ, a, b,H0) = (5, 5, 5, 1, 2) and U0 = cos(πx/4). For h = 0.05 one gets

11



k1 = 0.0076 and k2 = 0.001. Taking k = 0.00091 stability is guaranteed as can115

be seen in Figure 1.

0 0.05 0.1 0.15
0.65

0.7

0.75

0.8

0.85

0.9

t

U
 (

t, 
x)

Fig. 1. Numerical solution of Example 1 for z = 0.5 under stability condition.
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Example 2. With the same parameters and value of h = 0.05 as in Example

1, with k = 0.001179, the stability condition is broken because k > k2 and Figure

2 shows unstable results.120

0 0.05 0.1 0.15
0.65

0.7

0.75

0.8

0.85

0.9

t

U
 (

t, 
x)

Fig. 2. Numerical solution of Example 2 for z = 0.5 when the stability condition is broken.

5. Numerical dichotomy: spreading versus vanishing

Theoretical results in [13] establish that for H0 ≥ L where L = π
2

√
D
a

spreading of the species is guaranteed. Even if H0 < L, spreading occurs un-

der condition µ > µ∗ where µ∗ is an unknown threshold depending on U0, see125

Theorem 3.9 of [13]. In the spreading case the population density tends to the

habitat carrying capacity limit a/b as time tends to infinity, see Lemma 3.2 of

[13]. For H0 < L and µ ≤ µ∗ vanishing happens, satisfying that L is an upper

bound of H(t), i.e., H(t) ≤ L, t > 0. The following example is devoted to

spreading case showing that the numerical solution of problem (7)-(11) com-130

puted by the proposed scheme (21)-(22) converges to a/b confirming that the

numerical spreading occurs.

Example 3. In the logistic diffusion model (1)-(4) with parameters values

(D,µ, a, b,H0) = (1, 1, 2, 1, 4) and U0 = cos(πx/8), Figure 3 shows the spreading135

behavior under condition H0 = 4.00 > L = 1.11. Note that as time increases

the numerical solution approaches to the habitat carrying capacity a/b.
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0 10 20 30 40 50 60 70
0

0.5

1

1.5
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2.5

3

3.5

4

4.5

x

U
 (

t, 
x)

 

 

t = 15
t = 10 
t = 4
t = 2
t = 1
t = 0
Habitat carrying capacity a/b = 2.00

Fig. 3. Numerical solution of Example 3 for several values of time in a spreading case.

The next example illustrates the vanishing behavior of the numerical solu-

tion according to the theoretical results of [13].140

Example 4. In this example we take (D,µ, a, b,H0) = (0.1, 0.2, 0.04, 0.04, 1),

with U0 = cos(πx/2). There is vanishing behavior with H0 = 1.00 < L = 2.48

and µ = 0.20. Figure 4 shows that numerical population density tends to zero

and the free boundary is always upper bounded by L. Besides, Table 1 exhibits145

CPU time for several values of the time horizon T considered in the simulation.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

x

U
 (

t, 
x)

 

 

t = 10
t = 8
t = 6
t = 4
t = 2
t = 0

Spreading barrier
       L = 2.48

Fig. 4. Numerical solution of Example 4 for several values of time in a vanishing case.
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T (years) CPU (seconds)

2 0.186687

4 0.490169

6 1.097099

8 6.850214

10 31.021795

Table 1: Associated CPU time for several values of T (Example 4).

One of the advantages of the proposed front-fixing numerical approach is to

forecast the magnitude of the parameter µ∗ whose existence is guaranteed in

the theory but whose value is not known. In addition, the numerical solution of150

the free boundary H(tn) is obtained explicitly by expression (20), noting that

H(tn) =
√
gn.

Next examples show the evolution of the free boundary (Example 5) and the

speed of spreading behavior (Example 6), taking into account that the fore-

casted value of the parameter µ∗ is the threshold where the solution transits155

from vanishing to spreading.

Example 5. Choosing the values (D,µ, a, b,H0) = (1, µ, 1, 1, 1) and U0 =

cos(πx/2), the evolution of the expanding front H(t) for different values of µ is

shown in Figure 5. The parameter µ∗ which separates spreading from vanishing160

behavior is estimated. In the vanishing cases, it can be seen that the “spreading

barrier” is an upper bound for the expanding front as the theoretical results

predict.
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Fig. 5. Expanding front H(t) of Example 5 for several values of µ.

Example 6. With the same values of the previous example, the speed of165

the front dH/dt is illustrated in Figure 6. In the long term, for the spreading

cases, the front speed tends to a nonzero constant value in accordance with [13],

Section 4, while in the vanishing case it tends to zero.
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µ = 0.47 ≈ µ*

µ = 0.30

Fig. 6. Expanding front speed dH/dt of Example 6 for several values of µ.

6. Conclusions170

In this paper, a front-fixing approach is introduced in such a way that the

expanding front becomes a new unknown variable of the transformed problem.

It has the advantage of achieving a fixed numerical domain and the availability

of computing explicitly the expanding front as well as the approximation of

the parameter µ∗, whose existence is guaranteed in [13] but its value is not175
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known. We provide a careful numerical analysis of theoretical results given in

[13]. Results and techniques are potentially applicable to problems in higher

dimensions proposed in [12], or to the presence of two fronts in one dimension

[13].
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[6] R. Company, L. Jódar, J.-R. Pintos, “A consistent stable numerical scheme

for a nonlinear option pricing model in illiquid markets”, Mathematics and

Computers in Simulation, vol. 82, no. 10, pp. 1972-1985, 2012.
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