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Abstract

Generalized polynomial chaos (gPC) is a spectral technique in random space to represent ran-
dom variables and stochastic processes in terms of orthogonal polynomials of the Askey scheme.
One of its most fruitful applications consists of solving random differential equations. With gPC,
stochastic solutions are expressed as orthogonal polynomials of the input random parameters.
Different types of orthogonal polynomials can be chosen to achieve better convergence. This
choice is dictated by the key correspondence between the weight function associated to orthog-
onal polynomials in the Askey scheme and the probability density functions of standard random
variables. Otherwise, adaptive gPC constitutes a complementary spectral method to deal with
arbitrary random variables in random differential equations. In its original formulation, adaptive
gPC requires that both the unknowns and input random parameters enter polynomially in ran-
dom differential equations. Regarding the inputs, if they appear as non-polynomial mappings
of themselves, polynomial approximations are required and, as a consequence, loss of accuracy
will be carried out in computations. In this paper an extended version of adaptive gPC is devel-
oped to circumvent these limitations of adaptive gPC by taking advantage of the random variable
transformation method. A number of illustrative examples show the superiority of the extended
adaptive gPC for solving nonlinear random differential equations. In addition, for the sake of
completeness, in all examples randomness is tackled by nonlinear expressions.

Keywords: Nonlinear uncertainty, nonlinear random differential equations, adaptive
generalized polynomial chaos, random variable transformation technique

1. Introduction1

The consideration of uncertainty in modelling has experienced a significant increase over2

the last few years. Numerous researchers, with completely different backgrounds, are consid-3

ering randomness in continuous models formulated by random differential equations (RDE’s)4
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to account for uncertainty quantification, and therefore providing more accurate and reliable5

mathematical models. The generalized polynomial chaos (gPC) method [1, 2], an extension of6

the classical PC method [3, 4], is one of the most adopted approaches to deal with uncertainty7

in RDE’s. In its standard formulation, the application of gPC requires that every model input8

random parameter (coefficients, forcing terms, initial/boundary conditions) belongs to standard9

probabilistic distributions such as Gaussian, gamma, beta, exponential, etc., a hypothesis which10

often is not met in practice. With gPC, stochastic solutions are expressed as orthogonal polyno-11

mials of the input random parameters. Different types of orthogonal polynomials can be chosen12

to achieve better convergence. This choice is dictated by the key correspondence between the13

weight function associated to complete orthogonal polynomials in the Askey scheme and the14

probability density functions of standard random variables. However it is important to point15

out that, not all probability distributions yield a complete system of orthogonal polynomials. In16

[5], sufficient conditions are derived such that the polynomials are dense in the Hilbert space17

of square integrable functions. Also a counterexample is given, where the polynomials are not18

dense and thus some functions cannot be represented in a gPC expansion.19

Recently, the authors, in collaboration with other colleagues, have developed a step-by-step20

computational technique to implement a version of gPC, termed adaptive gPC, for solving RDE’s21

whose random inputs can have any probability distribution including the standard ones as well,22

[6]. It is important to clarify that the term adaptive is used to emphasize the weighting functions23

of the orthogonal polynomials are chosen to match the probability density of the individual ran-24

dom parameters. Adaptive gPC technique is aimed to provide researchers, who do not know the25

foundations of gPC, an easy guide to implement adaptive gPC in order to quantify uncertainty26

in models based on RDE’s. In the context of standard gPC all model input parameters are as-27

sumed to be independent random variables (RV’s), a hypothesis which is also kept in adaptive28

gPC method [1, 6]. In [6], a number of examples illustrates the competitiveness of adaptive29

gPC method to deal with linear and nonlinear RDE’s, where random inputs have standard prob-30

ability distributions, such as beta, uniform and Gaussian (see Examples 1–3 and 5), as well as,31

non-standard probability distributions generated by kernel distributions from sampled data (see32

Example 4). The examples include scalar and systems of RDE’s (see Examples 1–4 and Example33

5, respectively).34

Adaptive gPC belongs to the class of Galerkin-type methods. It consists of projecting weighted35

residuals onto a finite-dimensional subspace spanned by appropriate basis functions to obtain the36

constraints required to solve for the deterministic coefficients. This projection requires the con-37

struction of inner products defined by the expectations of input parameters. If F(t, y, ẏ; ζ1, . . . , ζs) =38

0 denotes the RDE, with unknown stochastic process (SP) y = y(t), and input random parameters39

ζ1, . . . , ζs, whose probability density functions (PDF’s) are fζ1 (ζ1), . . . , fζs (ζs), respectively, then,40

a basic tenet assumed in the development of the adaptive gPC presented in [6] is the polynomial41

dependence of the right-hand side of the RDE, F, upon the input random parameters ζ1, . . . , ζs42

and the unknown process y(t). This permits to construct the required inner products directly in43

terms of the PDF’s of input random parameters. As it was pointed out in [6] (see last paragraph44

in Section 3.1), the previous hypothesis limits the application of adaptive gPC since, if for ex-45

ample an input random parameter, say ζ, appears in the RDE by means of a non-polynomial46

transformation of itself, say r(ζ), then adaptive gPC will require the polynomial approximation47

of mapping r and, as a consequence, a loss of accuracy will be carried out in computations.48

Throughout this paper the triplet (Ω,F ,P) will denote the common complete probability49

space where all real RV’s are defined. In this contribution, we propose to overcome the above50

mentioned drawback by taking advantage of the random variable transformation (RVT) method51
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[7, 8]. RVT technique is a probabilistic method that permits determining the PDF fξ(ξ) of an ab-52

solutely continuous real RV ξ = r(ζ) which results from mapping another absolutely continuous53

real RV ζ : Ω 7−→ Dζ , defined on the domain Dζ = {ζ ≡ ζ(ω) : ζ1 ≤ ζ(ω) ≤ ζ2, ω ∈ Ω} and54

whose PDF fζ(ζ) is given. Assuming that the domain of mapping r contains the entire range or55

codomain of RV and that r : Dζ 7−→ R is monotone and continuously differentiable, then56

fξ(ξ) = fζ(s(ξ))
∣∣∣∣∣ds(ξ)

dξ

∣∣∣∣∣ , Dξ = { ξ : ξ1 ≤ ξ ≤ ξ2} , (1)

where s(ξ) = ζ is the inverse mapping of r on Dζ , and
∣∣∣∣ ds(ξ)

dξ

∣∣∣∣ denotes the absolute value of the57

derivative of s(ξ). If r is increasing (decreasing) onDζ , the domainDξ of ξ = r(ζ) is determined58

by Dξ = { ξ : ξ1 = r(ζ1) ≤ ξ ≤ r(ζ2) = ξ2} (Dξ = { ξ : ξ1 = r(ζ2) ≤ ξ ≤ r(ζ1) = ξ2}), where for59

the sake of simplicity, as usual, the ω-notation has been omitted. In the case that mapping r is60

not monotone on its whole domain Dζ , this can be split in several pieces where monotony is61

guaranteed. Indeed, if r′(ζ) , 0 for allDζ except at a finite number of points and for each ξ ∈ R,62

there exist m(ξ) ≥ 1 points: ζ1(ξ), ζ2(ξ), . . . , ζm(ξ)(ξ) ∈ Dζ such that63

r(ζd(ξ)) = ξ, r′(ζd(ξ)) , 0, d = 1, 2, . . . ,m(ξ), (2)

then64

fξ(ξ) =


m(ξ)∑
d=1

fζ(ζd(ξ))
∣∣∣r′(ζd(ξ))

∣∣∣−1
if m(ξ) > 0,

0 if m(ξ) = 0.

(3)

Throughout this paper, mappings playing the role of r in the above context will be assumed65

monotone for the sake of clarity in the presentation. We underline that in the context of solving66

random ordinary and partial differential and difference equations, RVT method has been suc-67

cessfully applied to compute both analytically and numerically, the first PDF associated to the68

solution SP (see for example, [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]).69

Finally, we recall a result that will be required later. If X is an absolutely continuous RV70

defined on the domainD(X) and with PDF fX(x), and from it one constructs a new RV Y = M(X),71

whereM is a continuous mapping, then the expectation of Y can be obtained as follows72

E[Y] =

∫
D(X)
M(x) fX(x) dx . (4)

This paper is organized as follows. In Section 2, an extended version of adaptive gPC method73

which is able to solve RDE’s when its input random parameters appear by non-polynomial trans-74

formations of themselves is presented. In Section 3, several examples illustrating the improve-75

ment of the extended version of adaptive gPC against standard gPC method are presented. Con-76

clusions are drawn in Section 4.77

2. Development78

In this section, we will develop an extended version of adaptive gPC based on [6]. For the79

sake of clarity in the presentation, we will keep the same notation used in [6].80

Let us consider the initial value problem (IVP)81 {
F(t, y, ẏ) = 0,

y(t0) = ŷ0,
F : R2q+1 −→ Rq, (5)
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where t is the independent variable, and let82

y = y(t) = (y1(t), y2(t), . . . , yq(t))>, ŷ0 = (y1(t0), y2(t0), . . . , yq(t0))>, (6)

be the vector of unknown functions and the initial condition, respectively. As usual, 0 = (0, 0, . . . , 0)>83

stands for the zero vector of dimension q, being > the transpose operator for vectors and matri-84

ces. We will assume that ζ = (ζ1, . . . , ζs) are the model input random parameters in the IVP85

defined by (5)–(6). These are assumed to be mutually independent RV’s with univariate PDF86

fζl (ζl), 1 ≤ l ≤ s. The value s is usually referred to as the order of the chaos. For the sake of clar-87

ity in the presentation and, without loss of generality, hereinafter we will assume that ζ1, . . . , ζh,88

1 ≤ h ≤ s, appear both in the RDE as in the initial condition in (5), by means of non-polynomial89

transformations, say ξi = ri(ζi), 1 ≤ i ≤ h, of themselves. As it was pointed out, in the following90

the mappings ri, 1 ≤ i ≤ h, will be assumed monotone; otherwise formula (3) would be ap-91

plied. To fix ideas, this means that terms of the form ln(ζ1), exp(ζ2), . . . , arctan (ζh), for example,92

could appear in the IVP (5), whereas the rest of input random parameters are ζh+1, . . . , ζs. The93

unknowns y1(t), y2(t), . . . , yq(t) are assumed to appear polynomially in the RDE (5).94

For every RV ξi, 1 ≤ i ≤ h, which results from the non-polynomial transformation of input95

random parameter ζi by the mapping ri, let us define the following inner product96

〈g1(ξi), g2(ξi)〉ξi
=

∫
supp(ξi)

g1(ξi)g2(ξi) fζi (si(ξi))
∣∣∣∣∣dsi(ξi)

dξi

∣∣∣∣∣ dξi, 1 ≤ i ≤ h, (7)

being, g1, g2 deterministic functions such that the above integrals exist; si, the inverse mapping97

of ri; and supp(ξi) the domain or support of RV ξi, 1 ≤ i ≤ h. For each one of the rest of the input98

random parameters ζ j, h + 1 ≤ j ≤ s, we define the following inner product99 〈
g1(ζ j), g2(ζ j)

〉
ζ j

=

∫
supp(ζ j)

g1(ζ j)g2(ζ j) fζ j (ζ j) dζ j, h + 1 ≤ j ≤ s. (8)

Now, for each type of input random parameter, either {ξi : 1 ≤ i ≤ h} or {ζ j : h + 1 ≤ j ≤ s},100

we will construct an orthogonal polynomial basis using the Gram-Schmidt method from the101

canonical basis truncated at a common degree p:102

C
p
ξi

= {1, ξi, (ξi)2, . . . , (ξi)p}, 1 ≤ i ≤ h,
C

p
ζ j

= {1, ζ j, (ζ j)2, . . . , (ζ j)p}, h + 1 ≤ j ≤ s, (9)

respectively. In this manner, two sets of orthogonal polynomials are constructed, say103

Ξ
p
ξi

= {φi
0(ξi), φi

1(ξi), . . . , φi
p(ξi)}, 1 ≤ i ≤ h,

Ξ
p
ζ j

= {φ
j
0(ζ j), φ

j
1(ζ j), . . . , φ

j
p(ζ j)}, h + 1 ≤ j ≤ s,

(10)

where, without loss of generality, we will assume that φi
0(ξi) = 1, 1 ≤ i ≤ h, and, φ j

0(ζ j) = 1,104

h + 1 ≤ j ≤ s. The degree of polynomials {φi
0(ξi), φ

j
0(ζ j)}; {φi

1(ξi), φ
j
1(ζ j)}; . . .; {φi

p(ξi), φ
j
p(ζ j)}105

is 0, 1, . . . , p, respectively. If the first-order polynomials φi
1(ξi) and φ

j
1(ζ j) have the following106

representation107

φi
1(ξi) = ai + biξi, φ

j
1(ζ j) = c j + d jζ j, bi, d j , 0, (11)

4



where the coefficients ai, bi, c j and d j are determined by Gram-Schmidt orthogonalization pro-108

cess, then, notice that both type of input random parameters, ξi and ζ j, have the following sim-109

plest representations in terms of the bases Ξ
p
ξi

and Ξ
p
ζ j

, respectively110

ξi = −
ai

bi
φi

0(ξi) +
1
bi
φi

1(ξi) , 1 ≤ i ≤ h,

ζ j = −
c j

d j
φ

j
0(ζ j) +

1
d j
φ

j
1(ζ j) , h + 1 ≤ j ≤ s.

(12)

At this point, we want to represent the solution SP y(t) and the initial condition ŷ0 in terms of111

a basis, say Ξ = {Φk}, constructed from the previous bases Ξ
p
ξi

, 1 ≤ i ≤ h, and, Ξ
p
ζ j

, h + 1 ≤ j ≤ s.112

The elements of this basis Ξ represent multidimensional expansion polynomials which depend113

on RV’s ξi, 1 ≤ i ≤ h, and ζ j, h + 1 ≤ j ≤ s. They are constructed by the tensor product114

Φk(ν) = φ1
p1

(ξ1) × · · · × φh
ph

(ξh) × φh+1
ph+1

(ζh+1) × · · · × φs
ps

(ζs), (13)

where ν = (ξ1, . . . , ξh, ζh+1, . . . , ζs) and the multi-index p = (p1, . . . , ph, ph+1, . . . , ps) can be115

reformulated by means of a single index k using the graded lexicographic order, i.e., p > q116

if and only if |p| ≥ |q| and the first nonzero entry in the difference p − q is positive, being117

|p| = p1 + · · · + ph + ph+1 + · · · + ps [2, p.66]. This permits the following representations of the118

solution SP, its derivative and the initial condition119

y(t) =

P∑
k=0

yk(t)Φk(ν), ẏ(t) =

P∑
k=0

ẏk(t)Φk(ν), ŷ0 =

P∑
k=0

y0,k(t0)Φk(ν). (14)

In practice, the order of truncation P in the above sums remains completely determined once120

the common degree p of the sets Cp
ξi

and Cp
ζ j

introduced in (9) and, an specific degree of the121

multidimensional polynomials (13) to be contained in the expansions (14), have been fixed.122

On account of the previous development, substituting (14) in (5), one gets the following123

representation of the IVP124

F

t, P∑
k=0

yk(t)Φk(ν),
P∑

k=0

ẏk(t)Φk(ν)

 = 0, (15)

125

ŷ0 =

P∑
k=0

y0,k(t0)Φk(ν), (16)

which involves both, transformed model input random parameter ξ1, . . . , ξh and the rest of inputs126

ζh+1, . . . , ζs, since ν = (ξ1, . . . , ξh, ζh+1, . . . , ζs).127

In order to solve this IVP, the coefficients yk(t), 0 ≤ k ≤ P, must be determined. For that, we128

define the following inner product, that represents an ensemble average of RV’s g1(ν) and g2(ν),129

〈g1(ν), g2(ν)〉ν =

∫
supp(ν)

g1(ν)g2(ν) fν(ν) dν, (17)

where130

fν(ν) =

 h∏
i=1

fζi (si(ξi))
∣∣∣∣∣dsi(ξi)

dξi

∣∣∣∣∣

 s∏

j=h+1

fζ j (ζ j)

 , ν = (ξ1, . . . , ξh, ζh+1, . . . , ζs) . (18)
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Notice that by [19, Th.3, p.92], mutually independence of RV’s ζl, 1 ≤ l ≤ s, entails mutually131

independence of RV’s ξi = ri(ζi), 1 ≤ i ≤ h, and, ζ j, h + 1 ≤ j ≤ s, and hence the above132

factorization of the weighting function fν(ν) through the PDF’s of each ζl, fζl (ζl), 1 ≤ l ≤ s, is133

legitimated.134

Coefficients yk(t), 0 ≤ k ≤ P are determined by setting a deterministic IVP based on a system135

of P + 1 differential equations whose unknowns are just yk(t). This system, usually referred to136

as auxiliary system, is built by multiplying each equation of random differential system (15) by137

elements of the orthonormal basis Ξ = {Φk} defined by (13) and then, taking the ensemble aver-138

age 〈 〉ν defined by (17)–(18). This permits simplifying the deterministic system of differential139

equations taking advantage of orthogonality. In order to establish the initial condition associated140

to this system, we first multiply (16) by {Φk} and then, the ensemble average 〈 〉ν is taken again.141

This yields the computation of coefficients y0,k(t0) as follows142

y0,k(t0) =
〈̂
y0,Φk(ν)

〉
ν , 0 ≤ k ≤ P. (19)

In practice, numerical integration schemes are required to solve the auxiliary system together143

with the initial conditions (19), i.e., to compute yk(t) , 0 ≤ k ≤ P. From them, approximations144

for the mean, E[y(t)], and the variance-covariance matrix, Σy(t), can be obtained on account of145

the following relationships:146

E[y(t)] = 〈y(t)〉ν = y0(t), Σy(t) =

P∑
k=1

yk(t)(yk(t))>
〈
(Φk(ν))2

〉
ν
. (20)

The diagonal elements of Σy(t) are the variance of each component yi(t), 1 ≤ i ≤ q of y(t).147

3. Examples148

In this section we will provide several examples with the aim of showing the higher accuracy149

of the extended adaptive gPC method than compared with the adaptive gPC method. As usual,150

comparison will be shown by computing the expectation and standard deviation of the solution.151

The two first examples act as tests since exact expressions for the mean and standard deviation152

functions are available, whereas approximations of these moments will be carried out applying153

both the extended adaptive gPC and gPC methods. We will highlight differences between both154

methods computing the relative error with respect to the exact value to the mean and the standard155

deviation. In the first example, only one model input parameter is assumed to be random, i.e.,156

the order of the chaos is s = 1. This randomness is considered by means of a non-polynomial157

mapping of itself. The second example is more elaborated; we will assume that three model input158

parameters are random being included by different non-polynomial mappings of themselves. The159

last example deals with a system of nonlinear random differential equations for which, an exact160

solution is not available, thus the usefulness of extended adaptive gPC is completely manifested.161

Example 1. Let us consider the random IVP162

ẏ(t) = eAy(t),
y(0) = 1,

}
(21)

where A is assumed to be a beta RV of parameters α = 2 and β = 5, A ∼ Be(2; 5). Hence,163

0 < A(ω) < 1, for every ω ∈ Ω. According to the notation introduced in the previous section164
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regarding extended adaptive gPC, now we have165

q = 1, h = s = 1, ζ1 = A, ξ1 = r1(ζ1) = eζ1 , ν = ξ1. (22)

Notice that mapping r1 is strictly increasing. We have taken p = 9 as the maximum degree of the166

polynomial canonical basis for the RV ξ1. Thus according to (9) one gets167

C9
ξ1

= {1, ξ1, (ξ1)2, . . . , (ξ1)9}. (23)

Using the inner product (7), which now has the following specific form168

〈g1(ξ1), g2(ξ1)〉ξ1
=

∫ e

0
g1(ξ1)g2(ξ1)

fζ1 (ln(ξ1))
ξ1

dξ1, fζ1 (ln(ξ1)) = 30(1 − ln(ξ1))4 ln(ξ1) ,

(24)
and, after applying the Gram-Schmidt process, one obtains the corresponding orthogonal basis169

Ξ9
ξ1

= {φ1
0(ξ1), φ1

1(ξ1), φ1
2(ξ1), . . . , φ1

9(ξ1)} . (25)

As h = s, orthogonal bases Ξ9
ξ1

and Ξ = {Φk}, where the solution y(t) of IVP (21) has been170

represented, coincide. As a consequence, the auxiliary system of differential equations has been171

constructed using the inner product (17)–(18) defined by (24).172

Notice that in this test example, the exact solution SP is given by y(t) = eeAt, thus taking into173

account (4) expressions for the mean and the standard deviation can be computed as follows:174

E[y(t)] = E[eeAt] = 30
∫ 1

0
eeata(1 − a)4 da , (26)

and175

σ[y(t)] = +

√
E

[
(y(t))2] − (E[y(t)])2 where E

[
(y(t))2

]
= E[e2eAt] = 30

∫ 1

0
e2eata(1 − a)4 da .

(27)
In Figures 1 and 2, the relative errors of the approximations obtained by gPC and the pro-176

posed extension of adaptive gPC for the mean and standard deviation of y(t) using, in both cases,177

different orders P with respect to the exact values are shown. For instance, the relative errors for178

the mean, RelErr (E[y(t)]), and the standard deviation, RelErr (σ[y(t)]), of the approximations179

for the mean, µP
gPC(t), and for the standard deviation, σP

gPC(t), by gPC method of order P, have180

been computed as follows181

RelErr (E[y(t)]) =

∣∣∣∣∣∣∣E[y(t)] − µP
gPC(t)

E[y(t)]

∣∣∣∣∣∣∣ , RelErr (σ[y(t)]) =

∣∣∣∣∣∣∣σ[y(t)] − σP
gPC(t)

σ[y(t)]

∣∣∣∣∣∣∣ . (28)

The graphs show that extended adaptive gPC provides more accurate results than gPC. The182

higher the order, the better the approximation. Notice that the relative error for extended adap-183

tive gPC with P = 9 has not been plotted because for P = 7 it provides better results than gPC184

for P = 9.185

Example 2. Let us consider the random IVP186

ẏ(t) = Cy(t) + e−B(y(t))2,

y(0) = − 1
100 sin(A),

}
(29)
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order 3 ext
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Figure 1: Comparison between relative errors for the mean using adaptive gPC (label: order P) and extended adaptive
gPC (label: order P ext) using different orders of truncation P = 1, 3, 5, 7, 9 in the Example 1.
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Figure 2: Comparison between relative errors for the standard deviation using gPC (label: order P) and extended adaptive
gPC (label: order P ext) using different orders of truncation P = 1, 3, 5, 7, 9 in the Example 1.
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where A is a beta RV of parameters α = 2 and β = 3, A ∼ Be(2; 3), B is an exponential RV of187

parameter λ = 1, B ∼ Exp(λ = 1) and, C is a uniform RV on the interval [1, 2], C ∼ Un([1, 2)).188

Following the notation introduced in the theoretical development, in the current context one189

gets190

q = 1, h = 2, s = 3, ζ1 = A, ζ2 = B, ζ3 = C,

ξ1 = r1(ζ1) = sin(ζ1), ξ2 = r2(ζ2) = exp(−ζ2), ν = (ξ1, ξ2, ζ3).
(30)

We have taken p = 5 as the common maximum degree of the polynomial canonical bases for191

RV’s ξ1, ξ2 and ζ3, therefore according to (9) one gets192

C5
ξi

= {1, ξi, (ξi)2, . . . , (ξi)5} , i = 1, 2; C5
ζ3

= {1, ζ3, (ζ3)2, . . . , (ξ3)5} . (31)

In order to orthogonalize C5
ξi

, i = 1, 2, we define the following inner products in agreement193

with (7)194

〈g1(ξ1), g2(ξ1)〉ξ1
=

∫ sin(1)

0
g1(ξ1)g2(ξ1)

fζ1 (arcsin(ξ1))√
1 − (ξ1)2

dξ1,

〈g1(ξ2), g2(ξ2)〉ξ2
=

∫ 1

0
g1(ξ2)g2(ξ2)

fζ2 (− ln(ξ2))
ξ2

dξ2,

(32)

where195

fζ1 (arcsin(ξ1)) = 12 arcsin(ξ1)(1 − arcsin(ξ1))2 , fζ2 (− ln(ξ2)) = ξ2 . (33)

Whereas, set C5
ζ3

, is orthogonalized using the following inner product196

〈g1(ζ3), g2(ζ3)〉ζ3
=

∫ 2

1
g1(ζ3)g2(ζ3) dζ3 . (34)

The Gram-Schmidt orthogonalization method permits to obtain the orthogonal bases197

Ξ5
ξi

= {φi
0(ξi), φi

1(ξi), φi
2(ξi), . . . , φi

5(ξi)}, i = 1, 2; Ξ5
ζ3

= {φ3
0(ζ3), φ3

1(ζ3), φ3
2(ζ3), . . . , φ3

5(ζ3)} .
(35)

Finally, the polynomials of the basis Ξ = {Φk}, where the solution y(t) of IVP (29) has been198

represented are defined by the tensor product199

Φk(ν) = φ1
p1

(ξ1)φ2
p2

(ξ2)φ3
p3

(ζ3), ν = (ξ1, ξ2, ζ3) . (36)

In accordance to (17)–(18) and (32)–(34), the auxiliary system of differential equations has200

been constructed using the inner product201

〈g1(ν), g2(ν)〉ν =

∫ 2

1

∫ 1

0

∫ sin(1)

0
g1(ξ1, ξ2, ζ3)g2(ξ1, ξ2, ζ3)

fζ1 (arcsin(ξ1))√
1 − (ξ1)2

fζ2 (− ln(ξ2))
ξ2

dξ1 dξ2 dζ3.

(37)
The solution SP of random IVP (29) is given by202

y(t) = −
c sin(A)eB+Ct

sin(A)eCt − sin(A) + 100eBC
. (38)

By applying (4), the mean and the standard deviation of the exact solution can be computed203

in the same way that was shown in Example 1. These values have been used to compute the204

9



relative errors for the mean and the standard deviation of the approximations obtained by gPC205

and extended adaptive gPC methods using different orders P. The results have been plotted in206

Figure 3 (relative error for the mean) and Figure 4 (relative error for the standard deviation).207

From them, it is observed that the accuracy of extended adaptive gPC is higher than gPC.208

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

10-9

10-6

0.001

1
RelativeError E[y(t)]

order 1

order 2

order 1 ext

order 2 ext

order 3 ext

order 4 ext

order 5 ext

Figure 3: Comparison between relative errors for the mean using adaptive gPC (label: order P) and extended adaptive
gPC (label: order P ext) using different orders of truncation P = 1, 2, 3, 4, 5, in the Example 2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

10-9

10-6

0.001

1
RelativeError σ [y(t)]

order 1

order 2

order 1 ext

order 2 ext

order 3 ext

order 4 ext

order 5 ext

Figure 4: Comparison between relative errors for the standard deviation using adaptive gPC (label: order P) and extended
adaptive gPC (label: order P ext) using different orders of truncation P = 1, 2, 3, 4, 5, in the Example 2.

Example 3. This last example is devised to test the accuracy of extended adaptive gPC method209

in dealing with RDE’s whose solution is highly oscillatory. In contrast to previous examples,210

where linear and nonlinear scalar RDE’s were considered, now we will apply the method to the211

following nonlinear system of differential equations212

ẋ1(t) = x2(t)x3(t), x1(0) = α + 0.01 cos(A),
ẋ2(t) = x1(t)x3(t), x2(0) = 1,
ẋ3(t) = −2x1(t)x2(t), x3(0) = 1,

 (39)
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where uncertainty is considered in the first initial condition x1(0). We will assume that A is a213

uniform RV on the interval [0, π], A ∼ U([0, π]), and α is a deterministic parameter. Depending214

on the values taken by α parameter, the solution of this system has very different (oscillatory)215

behaviour. Hereinafter, we will analyse the following values: α = 0.5 and α = 0.85.216

In accordance with the notation introduced in the previous section, we have217

q = 3, h = s = 1, ζ1 = A, ξ1 = r1(ζ1) = α + 0.01 cos(ζ1), ν = ξ1. (40)

In this case, the mapping r1 is strictly decreasing. We have taken p = 3 as the maximum degree218

of the polynomial canonical basis for the RV ξ1. Thus the basis is the set C3
ξ1

defined by (23).219

Whereas, the inner product (7), now takes the form220

〈g1(ξ1), g2(ξ1)〉ξ1
=

1
π

∫ 0.01+α

−0.01+α

g1(ξ1)g2(ξ1)
1√

0.012 − (ξ1 − α)2
dξ1 . (41)

This inner product permits to apply the Gram-Schmidt process in order to build an orthogonal221

basis, Ξ3
ξ1

= {φ1
i (ξ1), 0 ≤ i ≤ 3}. Since h = s, orthogonal bases Ξ3

ξ1
and Ξ = {Φk}, where222

the vector solution (x1(t), x2(t), x3(t)) of IVP (39) has been represented, coincide. This entails223

that the auxiliary system of differential equations has been constructed using the inner product224

(17)–(18) defined by (41).225

In contrast to what happens in the two previous examples, a closed-form solution to the non-226

linear system (39) is not available now. In order to analyse the quality of the approximations227

provided by extended adaptive gPC, we will take advantage of the fact that an invariant associ-228

ated to system (39) can be determined in an exact manner. This invariant will be also computed229

by extended adaptive gPC and then, compared against its exact value.230

Notice that multiplying the first equation of (39) by x1(t); the second one by x2(t); the third231

one by x3(t) and then, adding the three resulting equations one gets232

3∑
i=1

xi(t)ẋi(t) = x1(t)x2(t)x3(t) + x1(t)x2(t)x3(t) − 2x1(t)x2(t)x3(t) = 0, (42)

or equivalently233

3∑
i=1

d
dt

(
(xi(t))2

)
=

d
dt

 3∑
i=1

(xi(t))2

 = 0. (43)

Let us take the expectation operator in the above expression234

E

 d
dt

 3∑
i=1

(xi(t))2


 =

d
dt

 3∑
i=1

E
[
(xi(t))2

] = 0. (44)

Notice that interchange of time differentiation and expected value is allowed, since the domain235

of the random variable is compact and all involved functions are continuous. Then236

Iα =

3∑
i=1

E
[
(xi(t))2

]
, for all t, (45)

is an invariant to the system (39). Thus, the Iα value does not change over time t. In particular,237

as the initial conditions are known, Iα value can be calculated exactly from initial conditions238

Iα = E
[
(x1(0))2

]
+E

[
(x2(0))2

]
+E

[
(x3(0))2

]
=

1
π

∫ π

0
(α + 0.01 cos(a))2 da+1+1 = 2.00005+α2.

(46)
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In Figure 5 (top) we show the computation of the invariant Iα for α = 0.5 by extended239

adaptive gPC. Notice that, according to (46), its exact value is I0.5 = 2.25005. From this240

representation, we observe that the approximation obtained by extended adaptive gPC in the241

time interval t ∈ [0, 50] is very accurate. This can be confirmed in Figure 5 (bottom) where the242

relative error for the computation of I0.5 by extended adaptive gPC is represented in the interval243

t ∈ [0, 50]. Notice that the maximum error order is about 10−7. An analogous representation is244

presented in Figure 6 for the invariant I0.85 = 2.72255. We again observe that extended adaptive245

gPC provides very good approximations.246

Once extended adaptive gPC has been validated through the computation of the invariant Iα247

for α ∈ {0.5, 0.85}, we will construct approximations for the mean, E[x1(t)], E[x2(t)], E[x3(t)],248

and, the standard deviation, σ[x1(t)], σ[x2(t)], σ[x3(t)], of the solution SP of (39) for each one249

of these values of α parameter. Since standard deviation of each one of the components of the250

solution has small values, for the sake of clarity, in Figures 7–8, we show separately the results251

for the means and standard deviations, respectively, in the case α = 0.5. Whereas, in the case252

α = 0.85, Figures 9–11 show together the approximations of the mean plus/minus standard253

deviation, E[xi(t)] ± σ[xi(t)], for each one of the components of the solution, xi(t), 1 ≤ i ≤ 3.254

In all the cases we observe that the solution has highly oscillatory behaviour in average with255

variability increasing significantly as time increases.256

4. Conclusions257

Recently, a novel technique to solve systems of random differential equations, referred to as258

adaptive gPC (generalized polynomial chaos), has been developed by the authors, in collabo-259

ration with other colleagues, [6]. The application of adaptive gPC is limited to systems whose260

equations depend polynomially on unknowns and random input parameters. Although poly-261

nomial dependence is often found in many applications, specially in epidemiological models,262

generalizations of adaptive gPC are required to deal with another class of models. In this paper263

a new version of adaptive gPC has been developed taking advantage of RVT (random variable264

transformation) technique. Through several illustrative examples it is demonstrated the superi-265

ority of the extended adaptive gPC against the version presented in [6]. These examples cover266

a variety of situations including linear and nonlinear scalar random differential equations and a267

nonlinear system of random differential equations whose solution is highly oscillatory. In addi-268

tion, in all these examples uncertainty is assumed to be represented by nonlinear expressions. To269

validate the numerical approximations obtained for the mean and the standard deviation of the270

solution by extended adaptive gPC, in the first test examples they are compared with the ones271

corresponding to their exact results.272
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Figure 5: Computation of the invariant Iα for α = 0.5 by extended adaptive gPC (top). Relative error associated to the
computation of I0.5 by extended adaptive gPC (bottom). Both have been computed in the time interval t ∈ [0, 50] in the
context of Example 3.
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Figure 6: Computation of the invariant Iα for α = 0.85 by extended adaptive gPC (top). Relative error associated to the
computation of I0.85 by extended adaptive gPC (bottom). Both have been computed in the time interval t ∈ [0, 50] in the
context of Example 3.
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Figure 7: Approximations for the expectation of the solution (x1(t), x2(t), x3(t)) of nonlinear system (39) with α = 0.5 by
extended adaptive gPC on the interval 0 ≤ t ≤ 50 in the Example 3.
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Figure 8: Approximations for the standard deviation of the solution (x1(t), x2(t), x3(t)) of nonlinear system (39) with
α = 0.5 by extended adaptive gPC on the interval 0 ≤ t ≤ 50 in the Example 3.
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Figure 9: Approximations for the expectation plus/minus standard deviation of the first component x1(t) of the solution
for nonlinear system (39) with α = 0.85 by extended adaptive gPC on the interval 0 ≤ t ≤ 50 in the Example 3.
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Figure 10: Approximations for the expectation plus/minus standard deviation of the second component x2(t) of the
solution for nonlinear system (39) with α = 0.85 by extended adaptive gPC on the interval 0 ≤ t ≤ 50 in the Example 3.
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Figure 11: Approximations for the expectation plus/minus standard deviation of the third component x3(t) of the solution
for nonlinear system (39) with α = 0.85 by extended adaptive gPC on the interval 0 ≤ t ≤ 50 in the Example 3.
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[17] M. C. Casabán, J. C. Cortés, J. V. Romero, M. D. Roselló, Probabilistic solution of random SI-type epidemiological312

models using the random variable transformation technique, Commun. Nonlinear Sci. Numer. Simul. 24 (1–3)313

(2015) 86–97. doi:10.1016/j.cnsns.2014.12.016.314

[18] F. A. Dorini, M. S. Cecconello, L. B. Dorini, On the logistic equation subject to uncertainties in the environmental315

carrying capacity and initial population density, Commun. Nonlinear Sci. Numer. Simulat. 33 (2016) 160–173.316

doi:10.1016/j.cnsns.2015.09.009.317

[19] G. Grimmett, D. Stirzaker, Probability and Random Processes, 2nd Edition, Oxford University Press, Oxford, 1992.318

20


