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We present new high-order optimal iterative methods for solving a nonlinear equation, 𝑓(𝑥) = 0, by using Padé-like approximants.
We compose optimal methods of order 4 with Newton’s step and substitute the derivative by using an appropriate rational
approximant, getting optimal methods of order 8. In the same way, increasing the degree of the approximant, we obtain optimal
methods of order 16. We also perform different numerical tests that confirm the theoretical results.

1. Introduction

Many applied problems in different fields of science and tech-
nology require to find the solution of a nonlinear equation.
Iterative methods are used to approximate its solutions. The
performance of an iterative method can be measured by the
efficiency index introduced by Ostrowski in [1]. In this sense,
Kung and Traub conjectured in [2] that a multistep method
without memory performing 𝑛 + 1 functional evaluations per
iteration can have atmost convergence order 2𝑛, inwhich case
it is said to be optimal.

Recently, different optimal eighth-order methods, with
4 functional evaluations per step, have been published. A
very interesting survey can be found in [3]. Some of them
are a generalization of the well-known Ostrowski’s optimal
method of order four [4–7]. In [8] the authors start from a
third-order method due to Potra-Pták, combine this scheme
withNewton’smethodusing “frozen” derivative, and estimate
the new functional evaluation. The procedure designed in
[9] uses weight-functions and “frozen” derivative for the
development of the schemes. As far as we know, beyond the
family described by Kung and Traub in [2], only in [10] a
general technique to obtain new optimal methods has been
presented; the authors use inverse interpolation andmethods
of sixteenth order have also been obtained.

While computational engineering has achieved signifi-
cant maturity, computational costs can be extremely large

when high accuracy simulations are required. The devel-
opment of a practical high-order solution method could
diminish this problem by significantly decreasing the com-
putational time required to achieve an acceptable error level
(see, e.g., [11]).

The existence of an extensive literature on higher order
methods (see, e.g., [3, 12] and the references therein) reveals
that they are only limited by the nature of the problem to
be solved: in particular, the numerical solutions of non-
linear equations and systems are needed in the study of
dynamical models of chemical reactors [13], or in radioactive
transfer [14]. Moreover, many of numerical applications use
high precision in their computations; in [15], high-precision
calculations are used to solve interpolation problems in
Astronomy; in [16] the authors describe the use of arbitrary
precision computations to improve the results obtained in
climate simulations; the results of these numerical exper-
iments show that the high-order methods associated with
a multiprecision arithmetic floating point are very useful,
because it yields a clear reduction in iterations. A motivation
for an arbitrary precision in interval methods can be found
in [17], in particular for the calculation of zeros of nonlinear
functions.

The objective of this paper is to present a general proce-
dure to obtain optimal order methods for 𝑛 = 3, 4 starting
from optimal order methods for 𝑛 = 2. The procedure
consists in composing optimal methods of order 4 that use
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two evaluations of the function and one of the derivative,
with Newton’s step and approximating the derivative in this
last step by using an adequate rational function which allows
duplicating the convergence order, introducing only one new
functional evaluation per iteration.

In Section 2, we describe the process to generate the new
eighth-order methods and establish their convergence order.
In Section 3, the same procedure is used to obtain sixteenth-
ordermethods by increasing the approximant degree. Finally,
in Section 4, we collect several optimal methods of order 4
that are the starting point for our new methods and present
numerical experiments that confirm the theoretical results.

2. Optimal Methods of Order 8

In this section, we describe a procedure that allows us to
obtain newoptimalmethods of order 8, starting fromoptimal
schemes of order 4. Let us denote by Ψ2𝑚 the set of iteration
functions corresponding to optimal methods of order 2𝑚.

Consider the three-step method given by

𝜙1 (𝑥𝑘) = 𝑥𝑘 − 𝑓 (𝑥𝑘)𝑓󸀠 (𝑥𝑘) ,
𝜙2 (𝑥𝑘) = 𝜓𝑓 (𝑥𝑘) ,
𝜙3 (𝑥𝑘) = 𝜙2 (𝑥𝑘) − 𝑓 (𝜙2 (𝑥𝑘))

𝑓󸀠 (𝜙2 (𝑥𝑘)) ,
(1)

where 𝜓𝑓 ∈ Ψ4.
In order to simplify the notation, we will omit the

argument 𝑥𝑘 in the iterative process, so that we will write𝜙𝑖(𝑥𝑘) as 𝜙𝑖, 𝑖 = 1, 2, 3 and 𝜙0 = 𝑥𝑘.
Obviously, this three-step method has order 8, being

a composition of schemes of orders 4 and 2, respectively
(see [2], Th. 2.4), but the method is not optimal because it
introduces two new functional evaluations in the last step.

Thus, tomaintain the optimality, we substitute 𝑓󸀠(𝜙2(𝑥𝑘))
with the derivative ℎ󸀠2(𝜙2(𝑥𝑘)) of the second-degree approxi-
mant

ℎ2 (𝑡) = 𝑎(2)0 + 𝑎(2)1 (𝑡 − 𝜙0) + 𝑎(2)2 (𝑡 − 𝜙0)21 + 𝑏(2)1 (𝑡 − 𝜙0) , (2)

verifying the conditions
ℎ2 (𝜙0) = 𝑓 (𝜙0) , (3)

ℎ󸀠2 (𝜙0) = 𝑓󸀠 (𝜙0) , (4)

ℎ2 (𝜙1) = 𝑓 (𝜙1) , (5)

ℎ2 (𝜙2) = 𝑓 (𝜙2) . (6)

From the first condition one has 𝑎(2)0 = 𝑓(𝜙0). Substitut-
ing in (4)–(6) we obtain the following linear system:

𝑎(2)1 − 𝑏(2)1 𝑓 (𝜙0) = 𝑓󸀠 (𝜙0)
𝑎(2)1 + 𝑎(2)2 (𝜙1 − 𝜙0) − 𝑏(2)1 𝑓 (𝜙1) = 𝑓 [𝜙0, 𝜙1]
𝑎(2)1 + 𝑎(2)2 (𝜙2 − 𝜙0) − 𝑏(2)1 𝑓 (𝜙2) = 𝑓 [𝜙0, 𝜙2] ,

(7)

where, as usual, 𝑓[𝑥, 𝑦] denotes the divided difference of
order 1, (𝑓(𝑦)−𝑓(𝑥))/(𝑦−𝑥). Applying Gaussian elimination
the following reduced system is obtained

𝑎(2)1 − 𝑏(2)1 𝑓 (𝜙0) = 𝑓󸀠 (𝜙0)
𝑎(2)2 − 𝑏(2)1 𝑓 [𝜙0, 𝜙1] = 𝑓 [𝜙0, 𝜙0, 𝜙1]

−𝑏(2)1 𝑓 [𝜙0, 𝜙1, 𝜙2] = 𝑓 [𝜙0, 𝜙0, 𝜙1, 𝜙2] .
(8)

In the divided differences with a repeated argument, one
places the derivative instead of an undetermined quotient.
The coefficients of the approximant are obtained by backward
substitution. Then, the derivative of the approximant in 𝜙2 is

ℎ󸀠2 (𝜙2)
= 𝑎(2)1 − 𝑎(2)0 𝑏(2)1 + 2𝑎(2)2 (𝜙2 − 𝜙0) + 𝑎(2)2 𝑏(2)1 (𝜙2 − 𝜙0)2

(1 + 𝑏(2)1 (𝜙2 − 𝜙0))2 . (9)

Substituting 𝑓󸀠(𝜙2) by this value, we obtain an iterative
method, 𝑀3, defined by

𝑥𝑘+1 = 𝜙3 (𝑥𝑘) , (10)

where

𝜙1 (𝑥𝑘) = 𝑥𝑘 − 𝑓 (𝑥𝑘)𝑓󸀠 (𝑥𝑘) , (11)

𝜙2 (𝑥𝑘) = 𝜓𝑓 (𝑥𝑘) , (12)

𝜙3 (𝑥𝑘) = 𝜙2 (𝑥𝑘) − 𝑓 (𝜙2 (𝑥𝑘))
ℎ󸀠2 (𝜙2 (𝑥𝑘)) . (13)

This method only uses 4 functional evaluations per
iteration. Showing that it is of order 8 we will prove that it
is optimal in Kung-Traub’s sense.

Theorem 1. Let 𝛼 ∈ 𝐼 be a simple root of a function 𝑓 : 𝐼 ⊆
R → R sufficiently differentiable in an open interval 𝐼. For
an 𝑥0 close enough to 𝛼, the method defined by (11)–(13) has
optimal convergence order 23.
Proof. Let 𝜖𝑚,𝑘 be the error of 𝜙𝑚(𝑥𝑘); that is, 𝜖𝑚,𝑘 = 𝜙𝑚(𝑥𝑘) −𝛼, 𝑚 = 0, 1, 2, 3, for 𝑘 = 0, 1, . . .. Then, by the definition of
each step of the iterative method, we have

𝜖0,𝑘 = 𝜖𝑘 = 𝑥𝑘 − 𝛼, (14)

𝜖1,𝑘 = 𝜙1 (𝑥𝑘) − 𝛼 = 𝑂 (𝜖2𝑘) , (15)

𝜖2,𝑘 = 𝜙2 (𝑥𝑘) − 𝛼 = 𝑂 (𝜖4𝑘) , (since 𝜓𝑓 ∈ Ψ4) . (16)

Consider the expansion of 𝑓(𝜙0) around 𝛼
𝑓 (𝜙0) = 𝑐1𝜖𝑘 + 𝑐2𝜖2𝑘 + 𝑐3𝜖3𝑘 + 𝑐4𝜖4𝑘 + 𝑐5𝜖5𝑘 + 𝑐6𝜖6𝑘 + 𝑐7𝜖7𝑘

+ 𝑐8𝜖8𝑘 + 𝑂 (𝜖𝑘)9 , (17)
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where 𝑐𝑗 = 𝑓(𝑗)(𝛼)/𝑗!, for 𝑗 = 1, 2, . . .; then,
𝑓󸀠 (𝜙0) = 𝑐1 + 2𝑐2𝜖𝑘 + 3𝑐3𝜖2𝑘 + 4𝑐4𝜖3𝑘 + 5𝑐5𝜖4𝑘 + 6𝑐6𝜖5𝑘

+ 7𝑐7𝜖6𝑘 + 8𝑐8𝜖7𝑘 + 𝑂 (𝜖𝑘)8 , (18)

so that using (11) and (14)

𝜖1,𝑘 = 𝜖𝑘 − 𝑓 (𝑥𝑘)𝑓󸀠 (𝑥𝑘)
= 𝑐2𝑐1 𝜖

2
𝑘 + 2 (−𝑐22 + 𝑐1𝑐3)𝑐21 𝜖3𝑘

+ 4𝑐32 − 7𝑐1𝑐2𝑐3 + 3𝑐21 𝑐4𝑐31 𝜖4𝑘 + ⋅ ⋅ ⋅ .

(19)

Substituting (19) in the expansion of 𝑓(𝜙1) around 𝛼 we
get

𝑓 (𝜙1) = 𝑐2𝜖2𝑘 + (− 2𝑐22𝑐1 + 2𝑐3) 𝜖3𝑘
+ ( 5𝑐32𝑐21 − 7𝑐2𝑐3𝑐1 + 3𝑐4) 𝜖4𝑘 + ⋅ ⋅ ⋅ .

(20)

Using in (15) that 𝜓𝑓 ∈ Ψ4, we write
𝜖2,𝑘 = 𝑖4𝜖4𝑘 + 𝑖5𝜖5𝑘 + 𝑖6𝜖6𝑘 + 𝑖7𝜖7𝑘 + 𝑖8𝜖8𝑘 + 𝑂 (𝜖𝑘)9 , (21)

for some 𝑖𝑗 constants, 𝑗 = 4, 5, . . .. Substituting (21) in Taylor’s
expansion of 𝑓(𝜙2), we obtain

𝑓 (𝜙2) = 𝑐1𝑖4𝜖4𝑘 + 𝑐1𝑖5𝜖5𝑘 + 𝑐1𝑖6𝜖6𝑘 + 𝑐1𝑖7𝜖7𝑘
+ (𝑐2𝑖24 + 𝑐1𝑖8) 𝜖8𝑘 + 𝑂 (𝜖𝑘)9 . (22)

Using (17), (18), (20), and (22) in the determination of the
coefficients of the rational approximant and in the expression
of its derivative (9) gives

ℎ󸀠2 (𝜙2) = 𝑐1 + −𝑐23 + 𝑐2 (𝑐4 + 2𝑐1𝑖4)𝑐1 𝜖4𝑘 + ⋅ ⋅ ⋅
= 𝑓󸀠 (𝛼) + 𝑂 (𝜖4𝑘) .

(23)

Now, Taylor’s expansion of 𝑓󸀠(𝜙2) in 𝑥 = 𝛼 gives

𝑓󸀠 (𝜙2) = 𝑓󸀠 (𝛼) + 𝑓󸀠󸀠 (𝛼) (𝜙2 − 𝛼) + 𝑂 (𝜙2 − 𝛼)2 , (24)

and the fact that 𝜙2(𝑥) is of fourth order allows us to establish
𝑓󸀠 (𝜙2) = 𝑓󸀠 (𝛼) + 𝑂 (𝜖4𝑘) . (25)

Using this expression and (23) one can write

𝑓󸀠 (𝜙2) = ℎ󸀠2 (𝜙2) (1 + 𝑂 (𝜖4𝑘)) . (26)

The order of the method 𝑀3 is obtained by computing

𝜖3,𝑘 = 𝜙3 (𝑥𝑘) − 𝛼 = 𝜙2 (𝑥𝑘) − 𝛼 − 𝑓 (𝜙2 (𝑥𝑘))
ℎ󸀠2 (𝜙2 (𝑥𝑘)) . (27)

Using (26) we have

𝜖3,𝑘 = 𝜙3 (𝑥𝑘) − 𝛼
= 𝜙2 (𝑥𝑘) − 𝛼 − 𝑓 (𝜙2 (𝑥𝑘)) (1 + 𝑂 (𝜖4𝑘))

𝑓󸀠 (𝜙2 (𝑥𝑘))
= 𝜙2 (𝑥𝑘) − 𝛼 − 𝑓 (𝜙2 (𝑥𝑘))

𝑓󸀠 (𝜙2 (𝑥𝑘))
− 𝑓 (𝜙2 (𝑥𝑘))

𝑓󸀠 (𝜙2 (𝑥𝑘)) 𝑂 (𝜖4𝑘) .

(28)

From (19) it can be deduced that

𝑓 (𝑥𝑘)𝑓󸀠 (𝑥𝑘) = 𝜖𝑘 − 𝜖1,𝑘 = (𝑥𝑘 − 𝛼) − 𝑐2𝑐1 (𝑥𝑘 − 𝛼)2 − ⋅ ⋅ ⋅ . (29)

So, it is clear that

𝑓 (𝜙2 (𝑥𝑘))
𝑓󸀠 (𝜙2 (𝑥𝑘)) = (𝜙2 (𝑥𝑘) − 𝛼) − 𝑐2𝑐1 (𝜙2 (𝑥𝑘) − 𝛼)2

− ⋅ ⋅ ⋅ .
(30)

By substituting (30) in (28) and using that 𝜓𝑓 ∈ Ψ4 one
has

𝜖3,𝑘 = 𝑐2𝑐1 (𝜙2 (𝑥𝑘) − 𝛼)2 + ⋅ ⋅ ⋅ + (𝜙2 (𝑥𝑘) − 𝛼) 𝑂 (𝜖4𝑘)
+ ⋅ ⋅ ⋅ = 𝑂 (𝜖8𝑘) ,

(31)

which proves that method 𝑀3 has optimal order 23.
3. Optimal Methods of Order 16

The idea of this section is to extend the former process
performing a new step to obtain optimal methods of order2𝑛 starting from optimal methods of order 2𝑛−1. For 𝑛 = 4 the
method 𝑀4 can be defined as follows:

𝑥𝑘+1 = 𝜙4 (𝑥𝑘) , 𝑘 = 0, 1, . . . (32)

with

𝜙1 (𝑥) = 𝑥 − 𝑓 (𝑥)𝑓󸀠 (𝑥) ,
𝜙2 (𝑥) = 𝜓𝑓 (𝑥) ,
𝜙3 (𝑥) = 𝜑𝑓 (𝑥) ,
𝜙4 (𝑥) = 𝜙3 (𝑥) − 𝑓 (𝜙3 (𝑥))

ℎ󸀠3 (𝜙3 (𝑥)) ,

(33)
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where 𝜓𝑓 ∈ Ψ4 and 𝜑𝑓 ∈ Ψ8. (See [2, 5, 6, 8, 14, 16, 18] for
some optimal eighth-order methods.)

Then, we start from a method that, in its first three steps,
performs 4 functional evaluations and another additional
evaluation in the last step 𝑓(𝜙3(𝑥)) that allows us to construct
the following rational approximant:

ℎ3 (𝑡)
= 𝑎(3)0 + 𝑎(3)1 (𝑡 − 𝜙0) + 𝑎(3)2 (𝑡 − 𝜙0)2 + 𝑎(3)3 (𝑡 − 𝜙0)31 + 𝑏(3)1 (𝑡 − 𝜙0) . (34)

The coefficients are determined by imposing the follow-
ing conditions:

ℎ3 (𝜙0) = 𝑓 (𝜙0) , (35)

ℎ󸀠3 (𝜙0) = 𝑓󸀠 (𝜙0) , (36)

ℎ3 (𝜙1) = 𝑓 (𝜙1) , (37)

ℎ3 (𝜙2) = 𝑓 (𝜙2) , (38)

ℎ3 (𝜙3) = 𝑓 (𝜙3) . (39)

Similarly to the former case, 𝑎(3)0 = 𝑓(𝜙0). Substituting in
(36)–(39) we obtain the linear system

𝑎(3)1 − 𝑏(3)1 𝑓 (𝜙0) = 𝑓󸀠 (𝜙0)
𝑎(3)1 + 𝑎(3)2 (𝜙1 − 𝜙0) + 𝑎(3)2 (𝜙1 − 𝜙0)2 − 𝑏(3)1 𝑓 (𝜙1)

= 𝑓 [𝜙0, 𝜙1]
𝑎(3)1 + 𝑎(3)2 (𝜙2 − 𝜙0) + 𝑎(3)2 (𝜙2 − 𝜙0)2 − 𝑏(3)1 𝑓 (𝜙2)

= 𝑓 [𝜙0, 𝜙2]
𝑎(3)1 + 𝑎(3)2 (𝜙3 − 𝜙0) + 𝑎(3)2 (𝜙3 − 𝜙0)2 − 𝑏(3)1 𝑓 (𝜙3)

= 𝑓 [𝜙0, 𝜙3] .

(40)

The remaining coefficients are obtained by reducing
the system to triangular form and solving it by backward
substitution

𝑎(3)1 − 𝑏(3)1 𝑓 (𝜙0) = 𝑓󸀠 (𝜙0)
𝑎(3)2 + 𝑎(3)3 (𝜙1 − 𝜙0) − 𝑏(3)1 𝑓 [𝜙0, 𝜙1] = 𝑓 [𝜙0, 𝜙0, 𝜙1]
𝑎(3)3 − 𝑏(3)1 𝑓 [𝜙0, 𝜙0, 𝜙2] = 𝑓 [𝜙0, 𝜙0, 𝜙1, 𝜙2]
− 𝑏(3)1 𝑓 [𝜙0, 𝜙0, 𝜙2, 𝜙3] = 𝑓 [𝜙0, 𝜙0, 𝜙1, 𝜙2, 𝜙3] .

(41)

The derivative of the rational approximant in 𝜙3 is
ℎ󸀠3 (𝜙3) = 𝑎(3)1 − 𝑎(3)0 𝑏(3)1 + 2𝑎(3)2 (𝜙3 − 𝜙0)

(1 + 𝑏(3)1 (𝜙3 − 𝜙0))2

+ (3𝑎(3)3 + 𝑎(3)2 𝑏(3)1 ) (𝜙3 − 𝜙0)2 + 2𝑎(3)3 𝑏(3)1 (𝜙3 − 𝜙0)3
(1 + 𝑏(3)1 (𝜙3 − 𝜙0))2 .

(42)

As in the previous case, this expression allows us to
establish that

ℎ󸀠3 (𝜙3) = 𝑓󸀠 (𝛼) + 𝑂 (𝜖8𝑘) , (43)

and taking into account the fact that

𝑓󸀠 (𝜙3) = 𝑓󸀠 (𝛼) + 𝑂 (𝜖8𝑘) , (44)

we get

𝑓󸀠 (𝜙3) = ℎ󸀠3 (𝜙3) (1 + 𝑂 (𝜖8𝑘)) . (45)

Similarly to the eighth-order case, from this expression it
results that 𝑀4 has optimal convergence order 24.
4. Numerical Experiments

First of all, we consider some optimal four-order methods
that we have used for developing high-order methods with
the procedure described; all of them use Newton’s step as a
predictor and another evaluation of function 𝑓.

𝑦𝑘 = 𝑥𝑘 − 𝑓 (𝑥𝑘)𝑓󸀠 (𝑥𝑘) . (46)

(1) Ostrowski’s method (see [1])

𝑥𝑘+1 = 𝑦𝑘 − 𝑓 (𝑦𝑘) (𝑥𝑘 − 𝑦𝑘)𝑓 (𝑥𝑘) − 2𝑓 (𝑦𝑘) . (47)

(2) The family of King’s method (see [18])

𝑥𝑘+1 = 𝑦𝑘 − 𝑓 (𝑦𝑘)𝑓󸀠 (𝑥𝑘)
𝑓 (𝑥𝑘) + 𝑏𝑓 (𝑦𝑘)𝑓 (𝑥𝑘) + (𝑏 − 2) 𝑓 (𝑦𝑘) . (48)

(3) An optimal variant of Potra-Pták’s method (see [8])

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘) + 𝑓 (𝑦𝑘)𝑓󸀠 (𝑥𝑘)
− 𝑓 (𝑦𝑘)2 (2𝑓 (𝑥𝑘) + 𝑓 (𝑦𝑘))

𝑓 (𝑥𝑘)2 𝑓󸀠 (𝑥𝑘) .
(49)

(4) Maheshwari method (see [19])

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘)𝑓󸀠 (𝑥𝑘) ( 𝑓 (𝑦𝑘)2
𝑓 (𝑥𝑘)2 − 𝑓 (𝑥𝑘)𝑓 (𝑦𝑘) − 𝑓 (𝑥𝑘) ) . (50)

Now we check the performance of the methods 𝑀3 and𝑀4 generated by (5) and (32), taking the different methods𝜓𝑓 ∈ Ψ4 described above.
We have chosen the following examples:

(a) 𝑓(𝑥) = (𝑥 − 2)(𝑥10 + 𝑥 + 1)𝑒−𝑥−1, 𝛼 = 2.
(b) 𝑓(𝑥) = 𝑒𝑥 sin(5𝑥) − 2, 𝛼 ≈ 1.36397318.
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Table 1: Numerical results for𝑓(𝑥) = (𝑥−2)(𝑥10+𝑥+1)𝑒−𝑥−1; 𝛼 = 2,
with 𝑥0 = 2.1.
𝑀3 with 𝜓𝑓 |𝑥1 − 𝛼| |𝑥2 − 𝛼| |𝑥3 − 𝛼| 𝑝
Ostrowski 9.5688(−6) 3.1934(−37) 4.9152(−289) 8
King𝛽=−1 7.25(−5) 2.62(−29) 7.68(−225) 8
King𝛽=1 7.34(−5) 8.65(−29) 3.23(−220) 8
Opt. Potra 3.17(−5) 3.48(−33) 7.34(−257) 7.99
Maheshwari 1.03(−4) 2.56(−27) 3.72(−208) 8
Table 2:Numerical results for𝑓(𝑥) = (𝑥−2)(𝑥10+𝑥+1)𝑒−𝑥−1; 𝛼 = 2,
with 𝑥0 = 2.1.
𝑀4 with 𝜓𝑓 |𝑥1 − 𝛼| |𝑥2 − 𝛼| |𝑥3 − 𝛼| 𝑝
Ostrowski 3.76(−10) 1.34(−143) 9.25(−2279) 15.8399
King𝛽=−1 2.08(−8) 5.55(−114) 3.83(−1803) 15.7977
King 𝛽=1 2.17(−8) 1.02(−112) 5.72(−1782) 15.6564
Opt. Potra 3.94(−9) 1.56(−127) 5.93(−2022) 15.9907
Maheshwari 4.28(−8) 2.03(−107) 1.29(−1696) 15.5962
Table 3: Numerical results for 𝑓(𝑥) = 𝑒𝑥 sin(5𝑥) − 2; 𝛼 ≈1.36397318 ⋅ ⋅ ⋅ , with 𝑥0 = 1.2.
𝑀3 with 𝜓𝑓 |𝑥1 − 𝑥0| |𝑥2 − 𝑥1| |𝑥3 − 𝑥2| 𝜌
Ostrowski 0.00363 3.13(−17) 2.43(−128) 8
King𝛽=−1 0.00228 4.44(−18) 4.81(−135) 8
King𝛽=1 −0.00544 1.72(−16) 1.64(−122) 8
Opt. Potra 0.00669 4.15(−16) 1.74(−119) 7.99
Maheshwari 0.00305 1.5(−17) 7.5(−131) 7.99

We have performed the computations in MATLAB in
variable precision arithmetic with 1000 digits of mantissa.

Tables 1 and 2 show the distance |𝑥𝑘 − 𝛼| for the first three
iterations of the neworder 8 and 16methods, respectively.The
last column, when we know the exact solution 𝛼, that is, for
example, (a), depicts the computational convergence order 𝑝
(see [20])

𝑝 = ln (󵄨󵄨󵄨󵄨𝑥𝑘+1 − 𝛼󵄨󵄨󵄨󵄨 / 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝛼󵄨󵄨󵄨󵄨)
ln (󵄨󵄨󵄨󵄨𝑥𝑘 − 𝛼󵄨󵄨󵄨󵄨 / 󵄨󵄨󵄨󵄨𝑥𝑘−1 − 𝛼󵄨󵄨󵄨󵄨) , (51)

and for example (b), we compute the approximated compu-
tational convergence order 𝜌 (see [21])

𝜌 = ln (󵄨󵄨󵄨󵄨𝑥𝑘+1 − 𝑥𝑘󵄨󵄨󵄨󵄨 / 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑥𝑘−1󵄨󵄨󵄨󵄨)
ln (󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑥𝑘−1󵄨󵄨󵄨󵄨 / 󵄨󵄨󵄨󵄨𝑥𝑘−1 − 𝑥𝑘−2󵄨󵄨󵄨󵄨) . (52)

The results fromTables 3 and 4 correspond to an equation
without exact solution, so that |𝑥𝑘+1 − 𝑥𝑘| is computed,
instead of the actual error. In both cases, the numerical results
support the optimality of the new methods, according to the
proven theoretical results.

5. Conclusions

In this paper, we develop high-order iterative methods to
solve nonlinear equations. The procedure to obtain the itera-
tion functions is rigorously deduced and can be generalized.

Table 4: Numerical results for 𝑓(𝑥) = 𝑒𝑥 sin(5𝑥) − 2; 𝛼 ≈1.36397318 ⋅ ⋅ ⋅ , with 𝑥0 = 1.2.
𝑀4 with 𝜓𝑓 |𝑥1 − 𝑥0| |𝑥2 − 𝑥1| |𝑥3 − 𝑥2| 𝜌
Ostrowski 6.45(−5) 7.08(−75) 5.13(−1188) 16.0342
King𝛽=−1 4.02(−5) −2.65(−78) 7.38(−1243) 15.9919
King𝛽=1 9.73(−5) −5.81(−72) 2.3(−1141) 16.0731
Opt. Potra 5.41(−5) 3.43(−76) 4.58(−1209) 16.0182
Maheshwari 1.2(−4) 2.11(−70) 2.25(−1116) 16.0957

There are numerous applications where these schemes are
needed because it is necessary to use high precision in their
computations, as occurs in dynamical models of chemical
reactors and in radioactive transfer and also high-precision
calculations are used to solve interpolation problems in
Astronomy and so forth. Moreover, the methods presented
are optimal in terms of efficiency; this fact makes them very
competitive.
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vol. 28, no. 1, pp. 23–35, 1999.

[15] Y. Zhang and P. Huang, “High-precision Time-interval Mea-
surement Techniques andMethods,” Progress in Astronomy, vol.
24, no. 1, pp. 1–15, 2006.

[16] Y. He and C. Ding, “Using accurate arithmetics to improve
numerical reproducibility and stability in parallel applications,”
The Journal of Supercomputing, vol. 18, no. 3, pp. 259–277, 2001.

[17] N. Revol and F. Rouillier, “Motivations for an arbitrary precision
interval arithmetic and the MPFI library,” Reliable Computing,
vol. 11, no. 4, pp. 275–290, 2005.

[18] R. F. King, “A family of fourth order methods for nonlinear
equations,” SIAM Journal on Numerical Analysis, vol. 10, pp.
876–879, 1973.

[19] A. K. Maheshwari, “A fourth order iterative method for solving
nonlinear equations,” Applied Mathematics and Computation,
vol. 211, no. 2, pp. 383–391, 2009.

[20] S.Weerakoon and T. G. Fernando, “A variant of Newton’s meth-
od with accelerated third-order convergence,” Applied Mathe-
matics Letters. An International Journal of Rapid Publication,
vol. 13, no. 8, pp. 87–93, 2000.

[21] A. Cordero and J. R. Torregrosa, “Variants of Newton’s method
using fifth-order quadrature formulas,” Applied Mathematics
and Computation, vol. 190, no. 1, pp. 686–698, 2007.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


