Document downloaded from:

http://hdl.handle.net/10251/105807
This paper must be cited as:

Marin Mateos-Aparicio, J.; Mas Mari, J.; Guerrero-Flores, DJ.; Hayami, K. (2017). Updating
preconditioners for modified least squares problems. Numerical Algorithms. 75(2):491-508.
doi:10.1007/s11075-017-0315-z

The final publication is available at

http://doi.org/10.1007/s11075-017-0315-z

Copyright - gpringer-Verlag

Additional Information

Updating preconditioners for modified least
squares problems *

J. Marin
Instituto de Matematica Multidisciplinar
Universitat Politecnica de Valencia
Valencia, Espaiia
jmarinma@imm.upv.es

J. Mas
Instituto de Matemética Multidisciplinar
Universitat Politeécnica de Valéncia
Valéncia, Espafia
jmasm@imm.upv.es

D. Guerrero
Departamento de Ciencias Matematicas
Universidad Pedagogica Nacional Francisco Morazan
Tegucigalpa, Honduras
danguefl@doctor.upv.es

K. Hayami
National Institute of Informatics,
SOKENDAI (The Graduate University for Advanced Studies)
Tokyo, Japan
hayami@nii.ac. jp

April, 2017

Abstract

In this paper we analyze how to update incomplete Cholesky preconditioners
to solve least squares problems using iterative methods when the set of linear rela-
tions is updated with some new information, a new variable is added or, contrarily,
some information or variable is removed from the set. Our proposed method com-
putes a low-rank update of the preconditioner using a bordering method which is
inexpensive compared with the cost of computing a new preconditioner. More-
over the numerical experiments presented show that this strategy gives, in many

*Partially supported by Spanish Grants MTM2014-58159-P and MTM2015-68805-REDT.

cases, a better preconditioner than other choices, including the computation of a
new preconditioner from scratch or reusing an existing one.

Keywords: Least squares problems, Iterative methods, Preconditioners, Low-
rank updates, Sparse matrices

Mathematics Subject Classification: 93E24, 65F08, 65F10, 65F50

1 Introduction

Iterative methods are used for solving large and sparse linear least squares (LS) prob-
lems because they often require much less storage than their direct counterparts. One
of the most used iterative methods for LS problems is CGLS [5]. CGLS is equivalent
to applying the Conjugate Gradient method (CG) to the normal equations. To improve
the convergence of the iterative method very often a preconditioner is needed. Among
other choices like Incomplete QR factorizations preconditioners, we will focus on In-
complete Cholesky (IC) preconditioners. These preconditioners have been successfully
employed in different applications, see [18, 19], and allow for the computation of ro-
bust preconditioners for full rank overdetermined least squares problems [3, 6].

The problem of updating a preconditioner arise in some applications from statistics
and optimization, where it is necessary to solve a sequence of modified least squares
problems. An example can be found in [8], where an efficient and stable method for
adding and deleting equations to a regression model is required. In signal processing
applications near real-time solutions are required. Thus, methods that allow to modify
LS problems with few operations and little storage requirements are needed, see [1].
The same problem is present if some information is added to or deleted from the data
set. On some occasions it may be convenient to add or to remove some variables. Such
situations are usually referred to as updating or downdating least squares problems.
Chapter 3 of the reference text [5] is devoted to analyzing how to deal with these
modifications when the least squares problem is solved by a direct method, including
full and rank revealing QR decomposition, Cholesky factorization and singular value
decomposition. More recently other algorithms to update Cholesky factorizations have
been proposed, see [10, 11, 12]. More efforts seem to be addressed to updating the QR
factorization, see [2, 14, 15].

In this paper we present a method to modify an existing incomplete factorization
with low computational cost. We note that when some columns are removed from an
overdetermined system, obtaining a preconditioner for the modified LS problem can be
done without additional cost by taking a block from the existing one. A similar situa-
tion occurs when some columns are added to an overdetermined system, or when new
relations are added to an underdetermined one. In both cases the old preconditioner is
the top left block of the new one. Thus, it is a preconditioner completion problem. The
final result is equivalent to computing a new preconditioner from scratch. These trivial
cases are not considered in this paper.

The cases in which we are interested correspond to LS modified problems whose
normal equations have a coefficient matrix that does not change in size but their entries
do. These problems can be formulated as a low-rank update of the original normal
equations and we propose updating the preconditioner following the ideas presented in

[7]. The goal is computing the update with smaller cost than obtaining a new precon-
ditioner from scratch, but with comparable performance.

The paper is organized as follows. In Section 2 we describe the bordering technique
used to update an existing preconditioner by using an equivalent augmented system. In
Section 3 we consider adding or deleting equations to an overdetermined least squares
problem. The opposite case, that is when the system is underdetermined, is analyzed
in Section 4. We will see that there is a duality between both groups of problems.
In Section 5 we present the results of the numerical experiments that show that the
proposed strategy is effective.

2 Preconditioner update computation and application
Suppose that the least squares solution of the overdetermined linear system
Ax=b, ey

where A is a large and sparse m X n matrix, m > n, has been computed using a pre-
conditioned iterative method. We assume that A has full rank, n, that is, its columns
are linearly independent. As it is well known, the LS solution is given by the vector
x that minimizes || » — Ax ||, and can be obtained by solving the normal equations
corresponding to (1) given by

ATAx=ATb.)

We are interested in computing the least squares solution of a new linear system ob-
tained after the original system has been modified by adding or removing k equations.
As it is shown in the next section, the normal equations for the modified linear system
can be written in these cases as

(ATA+B"B)x=c. 3

where B is a k X n matrix.
Observe that the solution of (3) can be obtained from the solution of the equivalent
linear system

ATA BT x c
= : “
B FI +Bx 0
One has the following relations between the linear operators in (3) and (4),
ATA BT 1
T Tp_
ATAxB'B=|1 0}{3 ¥I}[iB} ©)

and their inverses

(©)

ATALETE = [1 O][ATA BT]l[1}

B FI o

The preconditioner update technique consists in computing an incomplete factorization
for the augmented matrix in (4) that is used to approximate the inverse linear operator in

(6) by direct preconditioning, i.e., solving the corresponding upper and lower triangular
systems. Therefore we avoid the computation of a new preconditioner for the updated
matrix AT A + BT B from scratch.

To be precise, let ATA ~ RT R be an IC factorization of AT A, where R is an upper
triangular matrix. Then one gets a block LDL” (almost Cholesky) factorization of the
augmented matrix in (5) given by

ATA BT] [RT O I 0 R Rp» .
{B ?I}_{RQIHO ﬂFSHO I}’ "
where R = R TBT is a n x k matrix and S = Ij:RszRlz is a k X k matrix. To main-
tain sparsity in these factors some dropping strategy can be used when computing R,
and an incomplete factorization of the Schur complement S ~ RgRS as well, but if &
is small enough this block can be factorized exactly. Note that although the (approx-
imate) inverse operator in the form of (6) is symmetric and positive definite (spd), it
is not stored nor can it be applied in factorized form. Therefore, only left or right
preconditioning can be used when applying the conjugate gradient method to the nor-
mal equations (or the mathematically equivalent CGLS method). The preconditioning
step for a Krylov subspace iterative method typically consists of obtaining the pre-
conditioned vector s = M~ 'r where M~! is the preconditioner and r is the residual.
M~ should be a good sparse approximation of the inverse of the coefficient matrix of
the linear system (3). Thus, the preconditioning strategy proposed computes the pre-
conditioned residual by applying equation (6) with an incomplete factorization of the
augmented matrix. That is, the preconditioned residual s is given by
ATA BT][0
el 5] o)

and it is computed from the solution of

RO

The preconditioning is done in three steps as Algorithm 1 shows.

1,

Algorithm 1 Preconditioner update application
Input: Matrices R, Ri», Rs and residual vector r.
Qutput: Preconditioned vector s
1. Solve the linear system R” 7 = r.

2. Update 7 + #F Ri2(RERs) ~'RI 7.
3. Solve the linear system Rs = 7.

Step 2 in Algorithm 1 represents the extra cost in the application of the precon-
ditioner with respect to the case of non-updating an existing one. If Ry, and Ry are
kept sparse and the number of added or removed equations is small compared with the
problem size, this overhead is small and can be amortized even for moderate reductions
on the number of iterations, see [7].

3 Updating preconditioners: Overdetermined case

In this section we consider the modification of the overdetermined linear system (1)
adding and/or removing equations. We analyze and propose strategies to get a precon-
ditioner for the new normal equations when adding or/and removing equations.

3.1 Adding equations to an overdetermined system

It may happen that some new relations among the unknowns are considered. If these
relations are given as the system of k linear equations

Bx=c,

then we have the m 4 k system of linear equations

A | b
' REEPE
If A has full rank, the new coefficient matrix 4] has also full rank, and the corre-
sponding normal equations are

(ATA+B"B)x=A"b+Bc.)

That is, the new normal equations are the result of a low-rank update of the ini-
tial ones. If we put f = ATb+ B ¢, the preconditioner update technique proposed in
Section 2 can be applied with the augmented linear system

WIS

3.2 Removing equations from an overdetermined system

This is just the opposite case. Suppose that instead of adding new information, some
linear equations are removed from the initial linear system Ax = b. After a suitable row
permutation, the new system can be written as

Al [b
=] a0
where A; € RI"0%n 3 k> 5 and B € R*", and it is assumed that rank [/};] =n.

Assume the information corresponding to the bottom block must be removed. The
normal equations corresponding to (10) are

(ATA,+B"B)x=ATb, + B bs. (11)

Observe that the row permutation is irrelevant when forming the normal equations.
In fact if M is a matrix and P is a permutation matrix, (PM)T (PM) = M (PTP)M =
M™M.

After deleting the bottom block, one gets the linear system A x = b{, whose normal
equations, ATAjx = AT b, can be related to (11) by

(ATA—B"B)x=A{b.

This system is again the result of a rank k modification of the initial normal equations,
and it has the same solution as component x in the solution of the augmented linear

system
ATA BT x| [Alb
NI

which allows for the application of the preconditioner update strategy described in Sec-
tion 2, provided that A; has full rank. Otherwise, the singularity of AlTAl may produce
poor preconditioners or even a breakdown during the computation of the precondi-
tioner. Since the new coefficient matrix has less rows than the original one, it may
happen that the remaining set of equations has rank less than ». In this case the square
matrix [AZA BIT} is singular. To prove it, let rankA; = r < n. Then, rankATA; = r < n,
and let B € R of rank k. Let us do a symmetric permutation, [¢ /], to the matrix

so that the permuted matrix is [BIT A? A]. After eliminating the left bottom block by

Gaussian elimination obtaining {(I) Af A }, which has rank k+r < k+n. Of course,

computing a new preconditioner from scratch in this case can be difficult for the same
reasons. This is illustrated with an example with the matrix ASH219 in the numerical
experiments section, see Figures 2, 3 and 4.

3.3 Adding and removing equations from an overdetermined sys-
tem

Now suppose that both things occur simultaneously, that is, some equations are added
and some others are deleted. To fix the notation, starting with the linear system Ax = b

written as
Al o by
5 =[] &

one wants to solve the linear system obtained after removing the bottom equations
Bx = by, and then adding some new equations Cx = ¢, such that the new linear system
is

Ay || b
(#]-[2]
The normal equations for systems (12) and (13) are
(ATA, +B"B)x=ATb, +B"b, (14)
and
(ATA +CTC)x=ATh 4+ e, (15)
respectively. If we consider the augmented system
ATA ¢t BT x ATp +CTe
c -1 0 y | = 0 (16)
B 0 I z 0

we obtain

ATAx+CTy+ BT z=ATh +CTc

Cx—y=0
Bx+z=0.
Hence, y = Cx and z = —Bx and substituting in the first equation we obtain

(ATA+C"C—B"B)x= (ATA; +CTC)x=ATh +CTc.

Therefore, problem (15) is a low-rank update of the initial problem (14) and the pro-

posed strategy can be used provided that [AC'] has full rank. Note that the new coeffi-

cient matrix can have full rank even when A; has not, depending on C. Observe also
that the coefficient matrix in (16) is nonsingular if and only if the matrix [AC‘] has full

rank since the Schur complement of the (1, 1) block is ATA; +CTC.

4 Updating preconditioners: Underdetermined case
Consider now the LS problem
min||x||2 subject to Ax = b, (17

where A € R™ " is a large and sparse full rank matrix with m < n. Problem (17) is
solved using the second kind normal equations

AATz=b, y=ATz (18)

Since y = AT (AAT)~!b, y belongs to the row subspace of A which is orthogonal to the
Kernel of A. Thus, y is the solution of (17).

As in the overdetermined case, it is assumed that an incomplete Cholesky factor-
ization of the symmetric positive definite matrix AA” has been computed. Then, new
unknowns are added to the linear system or some of them are deleted, or both. In the
following, we will see that the preconditioner can be updated under the same conditions
and with similar techniques as for the cases studied in Section 3.

4.1 Adding columns

Now we consider the problem of adding unknowns to (17), so that the new LS problem
is

min||x|l subjectto [A B Jx=b. (19)
The normal equations of the second kind in this case are

(AAT +BBT)z =b, (20)

that corresponds to a low-rank update similar to the one described in subsection 3.1
since the augmented linear system

wRIHNN

provides the solution for (20). Therefore, the updating strategy proposed in Section 2
can be applied.

4.2 Removing columns
Assume that the linear system Ax = b is splitted as
[A B]x =b,

where B represents the block of columns to be removed. The corresponding normal
equations of the second kind are

(A1AT +-BBT)z =b.
To solve the new normal equations A 1A]Tz = b, one can consider the augmented system
AAT B z | _| b
BT 1 w | 0]

This is similar to the situation in subsection 3.2. Then, the proposed strategy to update
the preconditioner can be applied.

4.3 Adding and removing columns

The last problem that we study in this section corresponds to the case of removing the
last set of columns in the underdetermined linear system Ax = b given by

[A B}{xl}:b 1)

X2

and adding a new block C to get a new underdetermined problem given by
X1 _
[Ay C][x3]_b. (22)
The normal equations of the second kind for (22) are

(A1AT +-cc)z = b,

that can be written as
(AAT —BB" +-cCT)z=b.

The solution of these equations, z, can be obtained from the solution of the augmented
system

AAT B C z b
BT I 0 v =10
cr 0 -1 w 0

Observe that the coefficient matrix of this system is similar to the one in (16). Then,
the same comments and strategies used in subsection 3.3 apply to this case.

5 Numerical experiments

In this section we study the numerical performance of the preconditioner update method
proposed. We present results obtained with matrices arising in different areas of sci-
entific computing. The performance of the method is compared with other precon-
ditioning strategies. The first one is reusing the initial preconditioner computed for
the normal equations of the unmodified matrix. The second strategy corresponds to
the computation of a new almost Cholesky preconditioner for the updated matrix from
scratch. In addition, non-preconditioned iterations are also reported.

We present results for the modifications described in Sections 3 and 4 that corre-
spond to adding and removing equations or columns.

Matrix name rows cols nnz Application
PHOTOGRAMMETRY?2 4472 936 37056 | Computer graphics/vision problem
TESTBIG 17613 31223 61639 | Linear programming problem
CAT_EARS 4 4 19020 44448 132888 | Combinatorial problem

DELTAX 68600 21961 247424 | High fillin with exact partial pivoting
FOMEI13 48568 97840 285046 | Linear programming problem
LP_KEN_18 105127 154699 358171 | Linear programming problem
FLOWER_8_4 55081 125361 375266 | Combinatorial problem

FXM3_16 41340 85575 392252 | Linear programming problem
LP_OSA_30 4350 104375 604488 | Linear programming problem
MESH_DEFORM 234023 9393 853829 | Image mesh deformation problem
WATSON_1 201155 386992 1055093 | Linear programming problem
TS-PALKO 22002 47235 1076903 | Linear programming problem
LP_NUG30 52260 | 379350 | 1567800 | Linear programming problem
LARGEREGFILE 2111154 | 801374 | 4944201 | Circuit simulation problem

SLS 1748122 62729 | 6804304 | Statistics

TP-6 142752 | 1014301 | 11537419 | Linear programming problem

Table 1: Set of test matrices

The tested matrices are shown in Table 1. All the matrices can be downloaded from
the University of Florida Sparse Matrix Collection [9]. For each matrix we provide
its number of rows and columns, the number of its nonzero entries, nnz, and the ap-
plication field. The matrices with more rows than columns were used to obtain the
numerical results corresponding to the overdetermined case, while the rest, mainly ma-
trices arising from linear programming problems, were used for the undetermined one.

The preconditioned CGLS [5] or CGNR [19] for the over determined problem:s,
and the preconditioned (CGNE [19]) were used for a relative initial residual norm de-
crease of 1078, allowing a maximum number of 3,000 iterations. The right hand side
vector was computed as a random vector. The initial approximation to the solution
x was the vector of all zeros. The experiments where done with MATLAB version
2016a running on an Intel 5 CPU with 8 Gb of RAM in a Windows operating system.
We used MATLAB’s function ilu() to compute the incomplete factorizations since,
for some matrices, the computation of a Cholesky factorization with the MATLAB’s
function ichol() stopped with a breakdown. Moreover, we found that permuting the
coefficient matrix to block triangular form before computing the normal equations im-
proved the quality of the preconditioner. Thus, all the matrices were permuted using the
MATLAB’s function dmperm() that obtains the Dulmage-Mendelsohn decomposition

[17]. Symmetric diagonal scaling was applied to the matrices. The dropping parameter
for managing the fill-in of the preconditioners was set to 0.1 except for the matrices
DELTAX and MESH_DEFORM for which a value of 0.01 was used. We avoided fine
tuning of the drop tolerance and with these values we computed very sparse precondi-
tioners.

Tables 2 and 3 report the results for the cases of adding and removing equations
or columns, depending of the problem. In these tables, k represents the rank of the
update, i.e., the number of equations added or removed. This parameter is given in
absolute number and also in percentage compared with the largest dimension of the
matrix. We tested several values, but in the Tables we only report three results for
each matrix that correspond to small, medium and large modifications up to a max-
imum of five percent. The relative density of the preconditioner with respect to the
updated matrix is indicated in the column p. For simplicity the minimum and maxi-
mum density values observed for the preconditioners considered are shown. Normally,
the minimum value corresponds to the non-updated preconditioner while the maximum
was achieved for either, the recomputed or the updated preconditioner. The number of
iterations and CPU solution time, measured in seconds, are indicated with Its. and
Time, respectively. We recall that the application of the updated and the recomputed
preconditioners have, with respect to the two other strategies, an extra cost due to the
computation of the preconditioner update or the computation of the full preconditioner
from scratch, respectively. Therefore, in the tables the value Time reports the total CPU
time corresponding to the preconditioner computation and the iterative solution spent
by these two strategies. As recommended in MATLAB’s documentation, CPU times
reported are the mean value of 10 successive runs of the experiment performed after 3
initial runs that were discarded. The maximum standard deviation observed relative to
the mean value was 3 percent, and frequently less than 1 percent.

We start analyzing the results for the case of adding equations or columns that are
shown in Table 2. The equations added were obtained by selecting at random k rows of
the original matrix, and ordering in reverse order their column entries to avoid dupli-
cated rows. In the case of adding columns, the modification was obtained similarly but
with the columns of the matrix. The preconditioner density is very small for most of
the preconditioners and always below one. It is important to note that in our algorithm,
to compute an update with moderate fill-in, element dropping was applied in three dif-
ferent steps. First, a sparsification of the new block of rows (equations) added to the
matrix was done before computing the block column Rj; in equation (7). Then, the
computation of the block Ry, itself was done incompletely by dropping small entries.
Finally, an incomplete factorization was computed for the Schur-complement block S,
see equation (7). The respective tolerances were 1.0, 1.0 and 0.1 for all the matrices.
Although for small values of k exact factorization of the Shur complement S could be
done, we avoided fine tuning and performed incomplete factorization with the same
drop tolerance used for the normal equations. We note that, with this aggressive drop-
ping the total solution time was reduced, because the application of the preconditioner
is cheaper, and also in some cases the number of iterations needed to converge was
reduced. We recall that adding fill-in is not directly correlated with fewer number of
iterations and, actually an increment is possible as is reported for instance in [6] for
incomplete Cholesky factorizations for LS problems, see also [4].

10

== Nou-preconditioned =ff}= Non-updated =fll= Recomputed [} L'pdmed‘

PHOTOGRAMMETRY2

400 T T T T - -
SSD./I\.___./—-—L

300 r

250

Iterations

o O O $
100 - ' - ' - '

50 100 150 200 250 300 350 400
Number of rows added

Figure 1: Effect of the number of equations added on the number of iterations for the
matrix PHOTOGRAMMETRY?2.

From the number of iterations we see that the updated preconditioner performed
better than the non-updated one, and similar to the case of recomputing the precondi-
tioner. Taking into account the overall time, our strategy performed similarly to the
best of the other strategies in most of the cases, and it was the best in several cases.
For example, Figure 1 shows the evolution of the number of iterations when the num-
ber of added rows increases, for the matrix PHOTOGRAMMETRY?2. In this case the
proposed strategy performed better than the others with almost constant number of
iterations.

Analyzing the results in Table 3 we observe that, if instead of adding equations
(columns) the modification consists of removing a block of them, the situation changes
in favor of the proposed algorithm. In this case, when the number of equations re-
moved increases, sometimes the preconditioner can not be computed or it is very poor.
Therefore, the application of the recomputed preconditioner can even lead to a diver-
gence of the iterative solution method. Recall that, after removing equations, it is not
warranted that the new matrix keeps its full rank. This can explain the big increment in
the number of iterations needed to converge, and even the failure to converge in some
cases. Under these conditions the proposed updating strategy performed nicely, and
surprisingly it kept an almost constant performance independently of the number of
equations or columns removed.

To illustrate the comments above we did an experiment with the matrix ASH219,
also from the University of Florida Sparse Matrix Collection [9]. Its size is 219 x 85
and has full rank. Figure 2 illustrates the condition numbers of the normal equations,
of the bordered matrix and the Schur complement block S, when successive rows are
deleted from the end of the matrix. We observe that when a small number of rows are
deleted all condition numbers remain low and have the same order up to some point
where all them increase similarly. But eventually as more rows are deleted the condi-

11

10%° r r - - - - - -
Normal eq.
Aug
30 | 1
10 Schur
105 | 1
g
G
g 4020 L]
g 10
g
= |
10| | 1
g)
&) |
|
100 1 | i
I
|
105 " 1
|
;
WOD i i L L L L L L
0 5 10 15 20 25 30 35 40 45

Number of rows deleted

Figure 2: Condition numbers of the normal equations, equivalent bordered matrix and
Schur complement matrix S for matrix ASH219 when removing rows from bottom.

1010 . . - - - - - -

(=]
Cl

10-10 L

10-20 b

10730 L

Smaller singular values of the normal equations

1040 L L L L L L i L
5 10 15 20 25 30 35 40 45
Number of rows deleted

Figure 3: Decay evolution of the smallest 9 singular values of the normal equation
matrix when removing rows from the bottom for matrix ASH219.

12

108

’ %ﬁ"—_ S

10—10 L

107 ¢ EL:

Smaller singnlar values of the borcered matrix

1020 . . .
0 5 10 15 20 25 30 35 40 45

Number of rows deleted

Figure 4: Decay evolution of the smallest 9 singular values of the augmented matrix
when removing rows from the bottom for matrix ASH219.

tion number of the normal equations rises quickly while the other condition numbers
remain almost constant. Figure 3 shows the decay evolution of the smallest singular
values of the matrix when rows are deleted. It is observed that the increment of the
condition number is acompanied by a progressive increment of the number of singular
values that are clustered closer and closer to zero, while the decay in the singular val-
ues for the augmented system is less pronounced as Figure 4 shows. This may explain
the convergence’s degradation of the iterative method and why the updating technique
gives better results than recomputing the preconditioner from scratch for some prob-
lems.

We note than as more rows (columns) are removed the matrix may loose its full
rank, we observed this situation for example in the case of the matrix FXM3_16. CGLS
then converges to the pseudo-inverse solution if the initial approximation x° is in the
range of AT as in our choice of x¥ as the vector of all zeros [5, p. 291]. In practice
this convergence can be very slow, or even can stagnate. Also it may be very diffi-
cult to compute the preconditioner due to breakdowns, as happen in some cases when
recomputing it from scratch. Using our strategy the preconditioner was computed suc-
cessfully in all cases and preconditioned CGLS converged quite fast.

Although for some matrices, for example TESTBIG and LP_OSA_30, the results
are comparable in terms of time, we recall that the reduction of the number of iterations
spent by the iterative method may have a bigger impact in the overall solution time
when increasing the problem size, as the matrix SLS shows, see Figure 5.

Overall, we can conclude that the proposed algorithm is competitive and robust
since it was able to successfully solve all the problems. The number of iterations and
time spent was the best, or close to it, for the majority of cases. Another conclusion
is that, in general, it is better to apply the update or recompute a new preconditioner
from scratch instead of reusing the original one. In any case, these three strategies

13

Iterations

5 6 T 5 6 7
Number of rows deleted ~10% Number of rows deleted «10?

Figure 5: Effect of the number of equations deleted in the number of iterations (left)
and in the total time to get the solution (right) for the matrix SLS.

are better than non-preconditioned iterations. Computing a new preconditioner from
scratch may have two drawbacks. The first one is an increment on the set-up time that
usually only pays off in the case of adding equations when the size of the update is quite
large. The second one is that when removing equations, the preconditioner computation
may become unstable probably due to an increment of the condition number of the
coefficient matrix of the normal equations.

6 Conclusions and future work

The main conclusion of this work is that adding equations, or removing them or both,
as well as adding or removing or simply changing some variables is feasible when
solving least squares problems with preconditioned iterative methods, provided that
the resulting coefficient matrix has full rank.

In the most difficult cases, that is, when the coefficient matrix of the normal equa-
tions are modified by a low-rank matrix, we have introduced a technique, based on bor-
dering, that allows to update the preconditioner in an inexpensive way. This technique
has moderate memory and computational requirements, as demanded in [1]. Moreover,
it is effective and robust as our numerical experiments show.

In the future we plan to combine the proposed strategy with other regularization
techniques to compute the least squares solution of rank deficient linear systems.

ACKNOWLEDGEMENTS We would like to acknowledge the anonymous referees
for their helpful comments that substantially contributed to improve this paper.

References

[1] Alexander, S.T., Pan, C.T., Plemmons, R.J.: Analysis of a recursive least squares
hyperbolic rotation algorithm for signal processing. Linear Algebra Appl. 98,
3-40 (1988)

14

[2] Andrew, R., Dingle, N.: Implementing QR factorization up-

dating algorithms on GPUs. Parallel Comput. 40(7), 161 -
172 (2014). DOI http://dx.doi.org/10.1016/j.parco.2014.03.003.
http://www.sciencedirect.com/science/article/pii/S0167819114000337. 7th

Workshop on Parallel Matrix Algorithms and Applications

[3] Benzi, M., Tima, M.: A robust incomplete factorization preconditioner for posi-
tive definite matrices. Numer. Linear Algebra Appl. 10(5-6), 385—400 (2003)

[4] Benzi, M., Szyld, D. B., Van Duin, A.: Orderings for Incomplete Factorization
Preconditioning of Nonsymmetric Problems. SIAM J. Sci. Comput. 20(5), 1652—
1670 (1999)

[5] Bjorck, A.: Numerical methods for Least Squares Problems. STAM, Philadelphia
(1996)

[6] Bru, R., Marin, J., Mas, J., Tima, M.: Preconditioned iterative methods for solv-
ing linear least squares problems. SIAM J. Sci. Comput. 36(4), A2002-A2022
(2014)

[7]1 Cerdan, J., Marin, J., Mas, J.: Low-rank updates of balanced incom-
plete factorization preconditioners. = Numer. Algorithms (2016). DOI
http://dx.doi.org/10.1007/s11075-016-0151-6

[8] Chambers, J.M.: Regression updating. J. Amer. Statist. Assoc. 66, 744-748
(1971)

[9] Davis T. A. and Hu Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Software, 38(1), 1-25 (2011)

[10] Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J.
Matrix Anal. Appl. 20, 606—-627 (1999)

[11] Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky fac-
torization. SIAM J. Matrix Anal. Appl. 22, 997-1013 (2001)

[12] Davis, T.A., Hager, W.W.: Row modification of a sparse Cholesky factorization.
SIAM J. Matrix Anal. Appl. 26, 621-639 (2005)

[13] Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University
Press, Baltimore, Maryland (1983)

[14] Hammarling, S., Lucas, C.: Updating the QR factorization and the
least squares problem. Tech. rep., The University of Manchester,
http://www.manchester.ac.uk/mims/eprints (2008)

[15] Olsson, O., Ivarsson, T.: Using the QR factorization to swiftly update least
squares problems. Thesis report, Centre for Mathematical Sciences. The Faculty
of Engineering at Lund University, LTH (2014)

15

[16] Ortega, J.M.: Introduction to Parallel and Vector Computing. Plenum Press, New
York (1988)

[17] Pothen, A., Fan, C.J.: Computing the block triangular form of a sparse matrix.
ACM Trans. Math. Software 16, 303-324 (1990)

[18] Saad, Y.: ILUT: a dual threshold incomplete LU factorization. Numer. Linear
Algebra Appl. 1(4), 387-402 (1994)

[19] Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Co.,
Boston (1996)

16

Matrix k p non-prec | non-updated | recomputed | updated
Its./Time Its./Time Its./Time* | Its./Time*
300/0.96 86/0.1 72/0.1 66/0.2 70/0.1
TESTBIG 600/1.92 | [0.54,0.57] | 89/0.1 73/0.1 69/0.2 67/0.1
1200/3.84 87/0.1 72/0.1 66/0.2 72/0.1
400/0.90 151/0.2 83/0.3 82/0.4 82/0.2
CAT_EARS 4 4 1100/2.47 | [0.70,0.77] | 158/0.2 87/0.3 87/0.3 86/0.3
2200/4.95 149/0.2 81/0.3 81/0.4 81/0.3
300/0.44 768/1.4 919/3.3 920/3.8 873/3.0
DELTAX 1200/1.75 | [0.95,0.98] | 787/1.6 914/3.1 829/3.6 788/2.8
3400/4.96 903/1.8 899/3.1 894/3.7 863/2.9
200/0.20 457/1.5 272/1.5 289/1.9 270/1.4
FOME13 1000/1.02 | [0.74,0.78] | 494/1.6 303/1.6 301/2.0 297/1.6
4000/4.08 527/1.8 309/1.8 304/2.0 306/1.7
500/0.32 511/2.6 167/1.4 167/1.4 152/1.2
LP_KEN_18 1000/0.65 | [0.75,0.78] | 509/2.6 154/1.3 155/1.4 154/1.2
5000/3.23 519/2.6 169/1.4 168/1.5 169/1.4
500/0.40 177/0.6 104/0.7 103/1.2 103/0.7
FLOWER 8 4 1000/0.80 | [0.77,0.80] | 190/0.7 94/0.7 99/1.2 93/0.7
6000/4.79 182/0.8 102/0.8 97/1.2 101/0.8
100/0.12 1995/4.9 616/2.9 605/2.4 608/2.4
FXM3_16 1000/1.17 | [0.34,0.38] | 2870/7.1 754/2.8 712/2.8 714/2.8
4000/4.68 T 781/3.1 802/3.1 794/3.1
500/0.48 132/0.4 66/0.2 55/0.2 60/0.2
LP_OSA_30 1000/0.96 | [0.01,0.02] | 134/0.4 67/0.2 57/0.2 57/0.2
5000/4.79 142/0.4 98/0.4 57/0.3 56/0.3
230/0.10 473/2.9 228/1.7 228/1.8 196/1.3
MESH_DEFORM | 2300/0.98 | [0.07,0.11] | 474/2.9 230/1.7 229/1.8 200/1.3
9200/3.94 462/2.9 236/1.8 217/1.8 207/1.4
500/0.13 638/7.0 342/6.4 420/7.7 342/6.5
WATSON_1 5000/1.29 | [0.45,0.48] | 622/6.9 343/6.8 576/9.8 342/6.8
15000/3.88 627/7.1 333/6.7 612/11.1 332/6.6
500/1.06 48/0.3 48/0.3 47/0.3 44/0.3
TS-PALKO 1000/2.12 | [0.02,0.03] | 49/0.2 48/0.3 48/0.4 44/0.3
2000/4.23 48/0.2 48/0.3 48/0.4 44/0.3
500/0.13 13/0.3 13/0.3 13/0.4 13/0.3
LP_NUG30 5000/1.32 | [0.13,0.15] 14/0.3 14/0.3 14/0.4 16/0.3
10000/2.64 16/0.3 16/0.3 16/0.4 16/0.3
5000/0.24 68/5.2 48/5.7 48/6.6 42/4.9
LARGEREGFILE | 10000/0.47 | [0.42,0.45] | 68/5.0 49/5.3 50/5.5 44/5.3
50000/2.37 69/5.3 51/5.9 51/5.7 48/5.5
1750/0.10 149/12.1 118/9.7 118/9.8 114/9.1
SLS 17500/1.00 | [0.01,0.02] | 125/10.2 101/8.4 101/8.6 103/7.9
70000/4.00 124/10.3 100/8.4 100/8.6 101/7.9
1400/0.14 20/1.7 17/1.6 17/1.7 16/1.6
TP-6 14000/1.38 | [0.02,0.03] | 21/1.8 18/1.7 18/1.8 19/1.7
28000/2.76 21/1.8 18/1.7 18/1.7 19/1.8

Table 2: Effect of the rank of the update when adding equations or columns. k is the
rank of the update in absolute number and percentage, p is the density range for all

the preconditioners.

*

indicates total CPU time corresponding to the preconditioner

computation and the iterative solution. A ¥ means that the iterative method was unable

to converge.

17

Matrix k p non-prec | non-updated | recomputed | updated
Its./Time Its./Time Its./Time* | Its./Time*
50/1.12 357/0.04 143/0.02 142/0.02 70/0.01
PHOTOGRAMMETRY2 | 100/2.24 | [0.03,0.05] | 461/0.05 182/0.03 191/0.03 70/0.01
200/4.47 859/0.11 495/0.07 497/0.12 70/0.01
300/0.96 142/0.1 112/0.1 101/0.2 56/0.1
TESTBIG 600/1.92 | [0.55,0.59] 141/0.1 113/0.1 99/0.2 56/0.1
1200/3.84 149/0.1 112/0.1 104/0.2 57/0.1
400/0.9 146/0.2 78/0.2 78/0.9 87/0.3
CAT_EARS 4 4 1100/2.47 | [0.78,0.84] 163/0.3 92/0.3 88/0.9 87/0.3
2200/4.95 369/0.5 213/0.5 144/0.9 109/0.4
200/0.20 460/1.5 276/1.5 272/1.9 230/1.3
FOMEI13 1000/1.02 [0.79] 512/1.8 306/1.6 296/2.0 239/1.4
4000/4.08 712/3.8 612/1.9 604/2.4 237/1.3
500/0.32 531/2.6 217/11.7 216/1.8 132/1.1
LP_KEN_18 1000/0.65 | [0.77,0.81] | 532/2.6 231/1.8 229/1.9 132/1.1
5000/3.23 573/2.7 227/1.7 216/1.8 134/1.1
500/0.40 175/0.7 102/0.7 101/1.2 107/0.8
FLOWER 8 4 1000/0.80 | [0.80,0.86] 181/0.7 93/0.7 92/1.4 95/0.7
6000/4.79 315/1.2 186/1.3 144/1.7 104/0.8
100/0.12 2115/5.3 1200/4.7 668/3.1 462/1.9
FXM3_16 1000/1.17 | [0.38,0.42] | 2212/5.4 1974/7.2 2228/8.5 470/1.8
4000/4.68 2670/6.3 2067/7.4 1592/6.7 473/1.8
500/0.48 132/0.4 60/0.2 55/0.2 56/0.2
LP_OSA_30 1000/0.96 | [0.01,0.02] 134/0.4 68/0.2 61/0.3 56/0.2
5000/4.79 142/0.4 111/0.4 68/0.3 56/0.2
230/0.10 482/2.9 261/1.9 230/1.9 198/1.3
MESH_DEFORM 2300/0.98 | [0.09,0.19] | 518/3.3 508/3.6 680/5.1 192/1.2
9200/3.94 1554/9.1 2464/17.1 T 197/1.4
500/0.13 1136/12.4 705/13.0 332/7.0 330/6.5
WATSON_I 5000/1.29 | [0.48,0.56] T ¥ 414/7.9 315/6.4
15000/3.88 T ¥ 381/7.1 331/6.5
500/1.06 75/0.4 73/0.4 72/0.8 44/0.3
TS-PALKO 1000/2.12 | [0.03,0.04] | 842/3.7 831/3.8 744/3.7 44/0.3
2000/4.23 2665/10.6 | 2620/12.3 2346/11.8 44/0.3
500/0.13 20/0.3 32/0.4 18/0.7 17/0.3
LP_NUG30 5000/1.32 | [0.13,0.15] 40/0.6 57/0.9 22/0.8 18/0.3
10000/2.64 62/1.1 91/1.3 27/1.0 19/0.3
5000/0.24 91/6.7 53/5.7 48/6.6 50/5.4
LARGEREGFILE 10000/0.47 | [0.44,0.48] 93/6.7 53/5.7 47/6.2 56/6.2
50000/2.37 98/7.0 57/6.2 46/6.4 60/6.3
175/0.01 209/17.8 154/12.9 155/13.5 129/10.1
SLS 17500/1.00 473/38.5 260/21.7 252/21.9 129/10.0
70000/4.00 455/36.7 244/20.2 244/20.3 130/10.2
1400/0.14 191/15.3 182/16.0 137/12.3 18/1.7
TP-6 14000/1.38 | [0.02,0.03] T ¥ F 20/1.8
28000/2.76 T T T 21/1.9

Table 3: Effect of the rank of the update when removing equations or columns. k is
the rank of the update in absolute number and percentage, p is the density range for
all the preconditioners. * indicates total CPU time corresponding to the preconditioner
computation and the iterative solution. A means that the iterative method was unable

to converge.

18

