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Abstract

The most important factor in planning and operating water distribution sys-

tems is satisfying consumer demand. This means continuously providing users

with quality water in adequate volumes at reasonable pressure, thus ensuring

reliable water distribution. During the last years, the application of Statistical,

Machine Learning and Artificial Intelligence methodologies has been fostered

for water demand forecasting. However, there is still room for improvement

and new challenges concerning to on-line predictive models for water demand

have aroused. This work proposes applying support vector regression, as one

of the currently better Machine Learning options for short-term water demand

forecasting, to build a base prediction. Over this model, a Fourier time series

process is built to improve the base prediction. This addition produces a tool

able to get rid of part of the errors and bias inherent to a fixed regression struc-

ture in response to new incoming time series data. The final hybrid process is

validated using demand data from a water utility in Franca, Brazil. Our model,

being a near real-time model for water demand, may be directly exploited in

water management decision-making processes.
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1. Introduction

Long-term water demand forecasting is required for planning and designing

new water distribution systems (WDSs) [1]. However, to satisfy safe operation

and management of their systems and make right decisions about valve and

pump manoeuvres, water utilities need to be acquainted with real (or near real)5

time end-users behaviour regarding water consumption. In addition, having a

deep knowledge on water demand helps identify and control possible leakages

in the network, when observed consumption and demand prediction diverge far

from the expected uncertainty [2, 3].

Auto regressive integrated moving average (ARIMA) based models [4] have10

been traditionally considered for understanding and modelling urban water de-

mand [5]. ARIMA approach models usually treat the problem as a linear corre-

lation among variables and according to Voitcu and Wong (2006) [6] this tech-

nique does not always produce predictions with sufficient accuracy, which can

harm other processes, such as the control of the system. To cope with this sit-15

uation, a number of data analysis models have been considered more recently.

For instance, several authors [7, 8, 9] have applied artificial neural networks

(ANNs) architectures to both long and short term demand forecasting. The use

of other Machine Learning tools has also increased during the last years. [10]

has performed a comprehensible comparison of various predictive methods for20

hourly water demand forecasting, suggesting the use of support vector regres-

sion (SVR) as one of the models through which it is possible to reach better

results. These results were in agreement with the ones previously obtained by

Msiza et al. (2007) [11], just comparing SVR against ANNs architectures for

daily water demand prediction. However, the straightforward use of SVR with-25

out any internal adaptation when new data arrives (off-line SVR) has two main

drawbacks: the computational complexity of the training and validation phases,

necessary for parameter tuning, and the selection of the best model among the
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validated proposals [12, 13]. These two phases are highly time-consuming and

lead to slow down the whole process, since it is strongly dependent on its as-30

sociate database size. In addition, for off-line predictive models is likely the

existence of certain growing bias, if models are not updated with the arrival of

new data. The model can also become rapidly obsolete in the case of abrupt

changes occurring in the forecasting framework. These are the models known

as intervened [14], and are a consequence of unexpected changes in the scenario35

in which the demand is computed. For example, opening and closing valves, ex-

treme variation of weather conditions, existence of new leakages or celebration

of a social events, among others, may change the end-user response regarding

water demand.

The majority of hydraulic models proposed in the literature are off-line, ad-40

dressing a number of purposes such as network design optimisation [15], strategy

planning [16], and setting optimal pumping schedule to reduce energy [17]. How-

ever, off-line models do not represent well the current state of the water supply

system for operational purposes, especially in emergency events [18, 16]. The

new paradigm of on-line modelling in WDSs is a topic of growing interest with45

the high amount of data information with which water utilities operate nowa-

days, aiming at making decisions in a very short time [15]. On-line predictive

models for water demand forecasting [19, 20] emerge to bridge the gap between

this constant flow of available information and off-line models, which are not

optimised to be updated in near real-time. Through on-line models for water50

demand, it is possible to improve predictions of water demand and to have bet-

ter control of such system state variables as flow and pressure [19], by suitable

valve operation.

The aim of on-line prediction is to update the current model to a more ac-

curate one, avoiding the computational burden associated with re-calculating55

the whole process each time new data are available. Vaerenbergh et al. [21]

propose a sliding windows methodology for kernel regression together with a

fast optimisation of its associate parameters. Other approaches are based on

a fusion of methods for model updating [22]. In this sense, a number of hy-
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brid methodologies for predictive models have been introduced in the literature.60

These are usually based on ARIMA models combined with alternative models

attempting to capture forecasting non-linearities [23]. In general, this fusion

of models increases model accuracy and reduces overfitting problems. For ex-

ample, Aladag et al. (2009) [24] proposed a hybrid model linking ARIMA and

ANN models; this hybrid model was applied to yearly demand forecast provid-65

ing accurate results. A similar approach is used in [14] modelling water demand

intervened (e.g. by open/close valve manoeuvres). In [25] a hybrid Particle

swarm optimisation - Support vector machine (PSO-SVM) based model is built

as a predictive model of chemical components concentration in water.

Our working proposal starts by choosing a suitable methodology among the70

standard Machine Learning options for regression analysis and run it for short-

term water demand forecasting. In this case, we have selected SVR as one of

the models that provides better results for water demand forecasting [11, 26].

Built on this model, an on-line process based on Fourier time series is launched

to improve the predictions.75

The time series error associated with the SVR model is subsequently inves-

tigated through and adaptive Fourier series (AFS) technique, enabling to model

any possible variation on the original pattern that could arise with the arrival

of new data. The combination of these two perspectives endows the model

with enough flexibility to be efficiently adapted before any unexpected scenario80

comes up. Working with a near-real time predictive model for water demand

forecasting speeds up decision-making processes on water supply operation and

management; in particular, it is useful in water disruption scenarios.

The roadmap for the rest of the paper is as follows: Section 2 describes the

hybrid forecasting method where the SVR and AFS equations, together with85

the hybridization process, are presented. Section 3 presents the water supply

case study, the variables involved in the forecasting process, and the evaluation

methodology. The results obtained at each step of the method are presented in

Section 3.2, where results from SVR and SVR+AFS are analysed separately to

give strong support to the hybrid model through clear improvement of results.90
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The efficiency evaluation is also presented in this section. Section 4 presents a

discussion on the results and conclusions about this work.

2. Hybrid method: Support Vector Regression+Adaptive Fourier Se-

ries

This Section introduces our hybrid methodology proposal for near real-time95

water demand prediction. Firstly, both the off-line model (using SVR) and its

corresponding on-line adjustments (via AFS) are briefly explained. After that,

we focus on its combination through modelling the historic record of errors

produced by just using the basis off-line model, and justify the use of AFS to

adjust those errors. Finally, statistical parameters for evaluation the accuracy100

of proposed model is presented. Also an efficiency parameter is presented to

define a period of retuning for SVR model.

2.1. Support Vector Regression

Common kernel-based learning methods [27, 28] use an implicit mapping,

φ, of the input data into a high dimensional feature. Then, a kernel function,105

K, is used to return the inner product 〈φ(x), φ(x′)〉 between the images of two

data points x, x′ in the feature space. The choice of the map φ aims to convert

the non-linear relations into linear ones. The learning then takes place in the

feature space, while the learning algorithm can be expressed so that the data

points only appear inside dot products with other points, readily calculated via110

the kernel. This is often referred to as the “kernel trick” [27, 29].

The key characteristic of SVR is that it allows to specify a margin, ε, within

which we are willing to accept errors in the sample data without they affect-

ing the prediction quality. The SVR predictor is defined by those points or

vectors which lie outside the region formed by the band of size ±ε around115

the regression. These vectors are the so-called support vectors. Giving data

{(x1, y1), . . . , (xn, yn)} = {(x,y)} ⊂ X × IR, where X denotes the space of the
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input patterns, the goal is to find a function

f̂(x) = 〈w, φ(x)〉+ b, (1)

that at most deviates ε from the observed output, yi, for all pairs (xi, yi) with

i = 1, . . . , n; at the same time that minimizes the so-called model complexity,120

which depends on the support vectors (see Eq. (2)).

min
w,b

1

2
||w||2

s. to |yi − 〈w, φ(xi)〉 − b| ≤ ε
(2)

The constraints of Eq. (2) assume that f̂(x) exists for all yi with precision

±ε. Nevertheless, the solution may actually not exist or, interestingly, it would

be possible to achieve better predictions if outliers were allowed. The inclusion

of slack variables on the regression penalizes deviations larger than ±ε but leaves125

room for both supporting approaches with possible infeasibilities and exploring

a wider set of models. Thus we consider ξ+ and ξ− such that:

ξ+ = f̂(xi)− y(xi) > ε (3)

ξ− = y(xi)− f̂(xi) > ε, (4)

so that the objective function and constraints for SVR is finally stated as

min
w,b

1

2
||w||2 + C

1

n

n∑
i=1

(ξ+i + ξ−i )

s. to yi − 〈w, φ(xi)〉 − b ≤ ε+ ξ+i ,

〈w, φ(xi)〉+ b− yi ≤ ε+ ξ−i ,

ξ+i , ξ
−
i ≥ 0 i = 1, . . . , n,

(5)

where n is the number of training patterns and C is a trade-off parameter

between model complexity and training error. As said, ξ+ and ξ− are slack130

variables for exceeding the target value by more than ε and for being below the

target value by less than ε, respectively. This method of tolerating errors is said

to be ε-insensitive [27].
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2.2. Adaptive Fourier series

A Fourier series is an expansion of a periodic signal or function into the sum135

of a set of simple oscillating functions. It is a fact that water demand follows

a quasi-periodic behaviour, with different periodic components (corresponding

mainly to daily, weekly and seasonal demands). As a consequence, Fourier series

are ideal candidates to model such variations. The Fourier series set of equations

presented here is based on [30], where trigonometric adjustment is applied to140

data coming from both equally and not-equally spaced measurements.

Taking equally spaced values of t in the period of interest, Eq. (6) normalizes

the times to the interval [0 , 2π].

ti =
2πi

N
, (6)

where ti is the normalized time, 0 ≤ ti ≤ 2π, i is the position of the point in the

interval of evaluation and N is the total number of time intervals in the period145

of interest.

The Fourier series approximation for a general function f∗ at a point ti is

written according to Eq. (7),

f∗(ti) = a0 +

M∑
j=1

(ajcos(jti) + bjsin(jti)), (7)

where M is the length of the Fourier polynomial, and a0, aj and bj are the

adjustable Fourier coefficients.150

The differences between the real (measured, in our case) values of the func-

tion f and the estimated values , calculated by Eq. (7) enables us to obtain the

square deviation s, given by Eq. (8).

s =

N−1∑
i=0

{f(ti)− [a0 +

M∑
j=1

aj · cos(jti) +

M∑
j=1

bj · sin(jti)]}2. (8)

The least square method to minimize s usually takes into account orthogo-

nality conditions and the parameters: a0, aj and bj [30]. It may be written as:
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a0 =

N−1∑
i=0

f(ti)

N
,

aj =2

N−1∑
i=0

f(ti)cos(jti)

N
,

bj =2

N−1∑
i=0

f(ti)sin(jti)

N
.

(9)

Once these parameters have been determined, Eq. (7) is used to estimate f

to functionally adjust the measured data.155

2.3. Hybrid Model SVR+AFS

Hourly water demand is not a simple phenomenon to describe. The non-

linear correlation between exogenous variables and the near periodical behaviour

of consumption is difficult to predict while maintaining a certain error thresh-

old. In addition, off-line models can not respond to incidences or anomalies160

that happen in water distribution along the time. The proposed hybrid model

provides a fast response to new weather or physical factors in the water demand

environment by adding up an on-line predictive layer to a prior off-line regular

predictor. The proposal is to use Fourier theory, as described in the last sec-

tion, to model and predict the deviation for the prediction obtained by SVR.165

That is to say, a Fourier series layer over the SVR output will adjust better

the minimum and maximum demand peaks and capture parts of the time se-

ries periodicity that SVR can not reproduce. As a Fourier time series model

has not special requirements to work out, it is also efficiently adapted to new

scenarios regarding the exogenous inputs affecting water demand. The hybrid170

model aims to improve as well the usual SVR results by enhancing the capac-

ity to capture, through Fourier series, other periodical features of the already

considered variables based on weather and calendar data.

The initial SVR model has to be well calibrated and trained before validation.

The corresponding parameters are the following:175
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• Parameter C, which gives a trade-off between model complexity and the

amount up to which deviations larger than ε are tolerated. Furthermore,

the robustness of the regression model depends on the choice of the C

value; this means that the choice of the C value influences the significance

of the individual data points in the training set.180

• Parameter ε regulates the radius of the ε tube around the regression func-

tion and thus the number of support vectors that finally will be selected

to construct the regression function (leading to a sparse solution). A too

large ε value results in less support vectors (more data points will be fit in

the ε tube) and, consequently, in a more smooth (less complex) regression185

function.

The training begins by creating a mesh with pairs of C and ε. The values used

in this work were based on [31], and have the following bounds: 0.05 ≤ ε ≤ 0.9

and 1 ≤ C ≤ 1500. This develops a Grid Search Method (GSM) as a classical

option to tune the parameters in which equispaced sampled points are used190

to represent all their possible combinations [32, 33]. After the model selection

process, consecutive runs of N demand observations are used to compute the

deviation, f , between predicted and observed values of demand. We typically

have that the SVR model error is larger at demand peaks and, as expected, has

periodical behaviour.195

Figure 1 shows the overall on-line process. As a novelty, we highlight the

embedding of an optimal cycle for model (SVR) regeneration. This cycle is

related with the model structure obsolescence. It does not need continuous

updating but only after a certain number of predictions. This cycle is determined

by controlling the model accuracy as Section 3.2 explains in the case study.200

Deviations between the observed demand and the demand predicted by the

SVR model are computed at every time interval. The Fourier Series coefficients

are updated using this new time series, modelling the on-line error of the model.

The final demand predicted by the on-line hybrid model combines the wa-

ter demand predicted by the SVR model, ySV R, and the predicted deviation205
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Figure 1: Flowchart of the on-line hybrid process SVR-AFS

estimated by the AFS model, fAFS . Eventually, the near-real time predicted

demand may be written following Eq. (10).

y = ySV R + fAFS . (10)

Figure 2 shows the on-line updating scheme using AFS. The predicted cor-

rection not only incorporates the on-line attribute to the entire model, but also

adds the last (more recent) measured water consumption as a new variable to210

the forecasting process sliding the window one time step further, this updating

the database. The last water consumption has also been adopted in previous

research as a way of incorporating the well-known inertial features of water

demand [34, 5].

2.4. Computational Efficiency215

The off-line water demand forecasting model must be regularly updated as

new demand events arrive. Despite the on-line model is able to respond fast to

new demands thus satisfying its main objective, namely contributing to the best
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Figure 2: Diagram of AFS update

operation and management of the system, as new data arrives, new correlations

between water demand and input variables may appear turning obsolete the220

current base model (even in the case one works with on-line corrections).

Accordingly, the off-line model structure needs to be periodically updated

through new data. Thus, determining an optimal updating cycle is of paramount

importance, while it is strongly dependent on the on-line model efficiency. Let

T the total CPU time spent to run the calibrated hybrid model corresponding225

to SVR prediction and AFS deviation adjustment. We define the efficiency ϕ

by Eq. 11:

ϕ =
Ntr

e · T
, (11)

where e is the root mean square error (RMSE) and Ntr is the training data

size. The product of e and T in the denominator accounts for the accuracy and

the computational cost of the method. The training data endows the model of230

real data information; then, the higher the value of Ntr the lower the error, i.e.

the model augments its reliability. However, the time necessary to obtain the

new model structure will be higher for large values of Ntr. The value ϕ, thus

describes a trade-off between accuracy and computational cost, that is to say,

the behaviour of the model when it is trained using different sizes of training235

data.
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3. Experimental Study

This study uses water demand data collected from a real district metered

area (DMA) in Franca, Brazil. This DMA is mostly based on residential cus-

tomers. Water consumption data corresponds to metered data at the DMA’s240

inlet every 20 minutes from May 2012 until December 2013. These measures

are aggregated to handle an hourly demand rate data structure during the 570

days of this period. The analyses are conducted through a training window of

400 days. The next 140 days are taken to validate the model. New fresh 30

days are used to test the performance of the proposal.245

3.1. Exploratory Data Analysis

Previous studies found in the literature use variables taking into account

weather and calendar information for generating models to predict water de-

mand [35, 36]. Figure 3 visualizes the behaviour of water demand and different250

weather inputs; where each time series data for each variable is plotted along

with the box plot showing its individual distribution. Cross-correlation anal-

yses have been carried out to check the impact of weather variables in water

demand time series. As a result, the SVR model proposed for this paper uses

rain, temperature, humidity, and wind velocity as the most important physical255

variables to consider for further analysis.

While temperature and air humidity time series follow a regular distribu-

tion along all the time frame, wind velocity and rain present extreme values

as it is observed in the box plots of Figure 3. This figure also evidences direct

correlations between air humidity and rain as well as temperature and water260

consumption. Cross-correlations computed for these time series shows evidence

enough from which one cannot reject the existence of correlation between these

variables.

Calendar information is important to analyse water demand given that hu-

man behaviour is usually depending on the day of the week. Thus, week days265

12



Figure 3: Water demand and weather variables series

have a different water consumption when compared with weekend days. In addi-

tion, holidays follow different consumption patterns than regular days. Taking

this into account, we use markers for weekday/weekend and occurrence of hol-

iday, while the model also handles information of the time of the day and the

month of the year. Week day, hour and month attributes are enumerated with270

discrete variables while the occurrence of a holiday was classified with binary

variables. Figure 4a shows different patterns for water demand when comparing

days belonging to a typical week (no holiday).

Cyclical behaviours and possible differences between months are also con-

sidered. For instance, there is a difference between June and July, as Figure 4b275

shows. July is a typical Winter holiday month in Brazil with mild tempera-

tures in which water consumption is higher than in June, a month with similar

temperatures but not a vacation month.

Figure 5 shows a comparison between holidays and week days regarding

water consumption using two representative day for each category, common280

week day and holiday, respectively. We can observe that holiday water demand

pattern usually has a lower consumption peak and a lower oscillation level during

13
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3.2. SVR-AFS Results

To evaluate the final predicted demand by the hybrid use of SVR demand285

and AFS deviation correction, this work uses RMSE Eq. (12) , the mean absolute

percentage error (MAE%), Eq. (13) , and correlation coefficient (R2) [14, 10].

RMSE =

√√√√ 1

n
·

T∑
i=1

e2i , (12)

MAE% =
1

n
·

T∑
i=1

ei
µobs

· 100. (13)

where ei is the deviation between observed and final predicted demand and µobs

is the mean value for observed series. These statistical parameters allow model

accuracy assessment. While the RMSE shows the squared difference between290

real and predicted demand, the MAE % outcome is the deviation compared

with the mean value of the observed series.
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Regarding the training process, Table 1 shows the top 5 pairs of parameters.

The best values of C and ε are 50 and 0.05, respectively. The process to find

this best pair is based on computations with data for 20 weeks, and we work295

with the average values of the error, adding statistical robustness to the tuning

process.

Table 1: Best values C and ε in the training process

C ε MSE

50 0.05 20.83

50 0.125 20.86

50 0.200 20.91

50 0.275 20.95

50 0.375 21.00

The predicted demand using the best validated model is presented in Fig-

ure 6. We can observe that the largest deviations occur at the maxima and

minima.300
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Figure 6: Water demand prediction using SVR compared with observed demand

Figure 7a shows the performance of the SVR model in terms of the deviation

respect to the observed data. The near-periodical deviation behaviour of this

error time series justifies the use of Fourier methods. Figure 7b shows the

correction of this deviation error adjusted by the AFS.

Finally, the SVR model prediction model for water demand with corrected305

deviation via the AFS model is presented in Figure 8a compared with the real
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water demand.

Table 2 shows the statistical parameters for both the single SVR and the

hybrid model.

Table 2: Model comparison

Model RMSE MAE% R2

SVR 4.767 12.91 0.745

SVR-AFS 1.318 3.45 0.974

Figure 8b presents the correlation between the observed demand and the310

SVR prediction and also between the observed demand and the SVR-AFS pre-

diction.
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The a posteriori application of AFS allows the use of a single off-line SVR
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as demand base model, since AFS is able to quickly adapt the predictions to the

new data available. The use of AFS is based on the quasi-periodic shape of the315

deviations between observed data and predicted by SVR (see Figure 6). AFS is

accurate in predicting these deviations and the results of the hybrid model have

been significantly improved regarding the off-line proposal. Figure 8a proves

that the maximum and minimum values are better described by the hybrid

model. The CPU time for the AFS model is constant, in this case equal to320

16.5s. This fact together with the agility of the algorithm allow near real-time

water demand prediction.

The evaluation of the model efficiency with respect to the size of the training

data enable us to find the best training cycle for completely updating the off-

line model. Figure 9 presents the evolution of the training cycle efficiency for a325

range of data sizes.
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Figure 9: Efficiency values for different training data sizes

In this case, the optimal data size to refresh the SVR model is, accordingly,

3000 registers, which corresponds to 125 days. With less than that number of

data the model does not reach its maximum efficiency, mainly because the error

is big (although the on-line model supplements the gap of new data). After this330

point the computational cost increases without a significant RMSE reduction.

All the computations for SVR and AFS models were performed within Mat-

Lab, on a 64 bit Linux Debian-based operating system, Ubuntu 15.04, installed

on a 2.4 GHz Intel R© Xeon(R) CPU E5-2665 0 with 16 Cores. It has been

used and adapted LibSVM Matlab toolbox [37] for relevant routines dealing with335

support vector machines regression.
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4. Conclusions

This article has presented a hybrid model for hourly water demand fore-

casting. The model builds over an off-line Support Vector Regression model,

constituting a base forecasting, an an on-line Adaptive Fourier Series responsible340

for forecasting deviation.

SVR accounts for physical and calendar information necessary for water

demand forecast, as these parameters are the SVR input. The prediction using a

SVR model is able to describe the shape or general pattern of the daily demand.

However, it is not able to capture well the extremes and, as a result, the accuracy345

diminishes at the demand peaks. In addition, the obsolescence of the model

is a common issue for any predictive model based on the straightforward use

of Machine Learning regression models. The use of Adaptive Fourier Series

aggregates to the SVR model a way to update the prediction in near-real time by

correcting the demand predicted by the off-line base model. A further advantage350

of AFS is the addition of another social variable involved in the problem: the

last water demand.

The paper also introduces a simple way to determine the optimum training

data size for the off-line model, which considers computational effort and error.

The ideal cycle of training can help water companies to organize interruptions of355

the model activity for update with new data. Updating the model is important

since new data supplement the model with new correlations among the demand

and input variables.

The proposed model can be an important tool for water utilities, since the on-

line feature supports operation and management of WDSs, allowing operators360

to programme efficient and right manoeuvres to save energy and water.
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