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We discuss some growth rates of composite entire functions on the basis of the definition of relative (𝑝, 𝑞)th order (relative (𝑝, 𝑞)th
lower order) with respect to another entire function which improve some earlier results of Roy (2010) where 𝑝 and 𝑞 are any two
positive integers.

1. Introduction, Definitions, and Notations

Let𝑓 be an entire function defined in the open complex plane
and let

𝑀𝑓 (𝑟) = max {󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 : |𝑧| = 𝑟} (1)

be its maximum modulus function. If 𝑓 is nonconstant then
𝑀𝑓(𝑟) is strictly increasing and continuous and its inverse
𝑀−1𝑓 (𝑟) : (|𝑓(0)|,∞) → (0,∞) exists and is such that

lim
𝑠→∞

𝑀−1𝑓 (𝑠) = ∞. (2)

We use the standard notations and definitions in the theory
of entire functions which are available in [1]. In the sequel we
use the following notation:

log[0]𝑥 = 𝑥, log[𝑘]𝑥 = log (log[𝑘−1]𝑥)

for 𝑘 = 1, 2, 3, . . . ,

exp[0]𝑥 = 𝑥, exp[𝑘]𝑥 = exp (exp[𝑘−1]𝑥)

for 𝑘 = 1, 2, 3, . . . .

(3)

The following definitions are well known.

Definition 1. The order 𝜌𝑓 and the lower order 𝜆𝑓 of an entire
function 𝑓 are defined as

𝜌𝑓 = lim sup
𝑟→∞

log[2]𝑀𝑓 (𝑟)
log 𝑟

,

𝜆𝑓 = lim inf
𝑟→∞

log[2]𝑀𝑓 (𝑟)
log 𝑟

.

(4)

Juneja et al. [2] defined the (𝑝, 𝑞)th order and (𝑝, 𝑞)th
lower order of an entire function 𝑓, respectively, as follows:

𝜌𝑓 (𝑝, 𝑞) = lim sup
𝑟→∞

log[𝑝]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

𝜆𝑓 (𝑝, 𝑞) = lim inf
𝑟→∞

log[𝑝]𝑀𝑓 (𝑟)

log[𝑞]𝑟
,

(5)

where 𝑝, 𝑞 are any two positive integers with 𝑝 ≥ 𝑞.
If 𝑝 = 𝑙 and 𝑞 = 1 then we write 𝜌𝑓(𝑙, 1) = 𝜌[𝑙]

𝑓
and

𝜆𝑓(𝑙, 1) = 𝜆[𝑙]
𝑓
.

Also for 𝑝 = 2 and 𝑞 = 1 we, respectively, denote 𝜌𝑓(2, 1)
and 𝜆𝑓(2, 1) by 𝜌𝑓 and 𝜆𝑓.
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In this connection we just recall the following definition.

Definition 2 (see [2]). An entire function 𝑓 is said to have
index-pair (𝑝, 𝑞), 𝑝 ≥ 𝑞 ≥ 1, if 𝑏 < 𝜌𝑓(𝑝, 𝑞) < ∞ and
𝜌𝑓(𝑝 − 1, 𝑞 − 1) is not a nonzero finite number, where 𝑏 = 1 if
𝑝 = 𝑞 and 𝑏 = 0 if 𝑝 > 𝑞. Moreover if 0 < 𝜌𝑓(𝑝, 𝑞) < ∞, then

𝜌𝑓 (𝑝 − 𝑛, 𝑞) = ∞ for 𝑛 < 𝑝,

𝜌𝑓 (𝑝, 𝑞 − 𝑛) = 0 for 𝑛 < 𝑞,

𝜌𝑓 (𝑝 + 𝑛, 𝑞 + 𝑛) = 1 for 𝑛 = 1, 2, . . . .

(6)

Similarly for 0 < 𝜆𝑓(𝑝, 𝑞) < ∞, one can easily verify that

𝜆𝑓 (𝑝 − 𝑛, 𝑞) = ∞ for 𝑛 < 𝑝,

𝜆𝑓 (𝑝, 𝑞 − 𝑛) = 0 for 𝑛 < 𝑞,

𝜆𝑓 (𝑝 + 𝑛, 𝑞 + 𝑛) = 1 for 𝑛 = 1, 2, . . . .

(7)

An entire function for which (𝑝, 𝑞)th order and (𝑝, 𝑞)th
lower order are the same is said to be of regular (𝑝, 𝑞)-growth.
Functions which are not of regular (𝑝, 𝑞)-growth are said to
be of irregular (𝑝, 𝑞)-growth.

Bernal [3] introduced the definition of relative order of 𝑓
with respect to 𝑔, denoted by 𝜌𝑔(𝑓) as follows:

𝜌𝑔 (𝑓)

= inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (𝑟𝜇) ∀𝑟 > 𝑟0 (𝜇) > 0}

= lim sup
𝑟→∞

log𝑀−1𝑔 𝑀𝑓 (𝑟)

log 𝑟
.

(8)

The definition coincides with the classical one [4] if 𝑔 =
exp.

Similarly one can define the relative lower order of𝑓with
respect to 𝑔 denoted by 𝜆𝑔(𝑓) as follows:

𝜆𝑔 (𝑓) = lim inf
𝑟→∞

log𝑀−1𝑔 𝑀𝑓 (𝑟)

log 𝑟
. (9)

In the case of relative order, it therefore seems reasonable
to define suitably the relative (𝑝, 𝑞)th order of entire func-
tions. Lahiri and Banerjee [5] also introduced such definition
in the following manner.

Definition 3 (see [5]). Let 𝑝 and 𝑞 be any two positive integers
with 𝑝 > 𝑞. The relative (𝑝, 𝑞)th order of 𝑓 with respect to 𝑔
is defined by

𝜌(𝑝,𝑞)𝑔 (𝑓)

= inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (exp
[𝑝−1] (𝜇log[𝑞]𝑟))

∀𝑟 > 𝑟0 (𝜇) > 0}

= lim sup
𝑟→∞

log[𝑝−1]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
.

(10)

If 𝑞 = 1, 𝑘 ≥ 1, and 𝑝 = 𝑘 + 1 then 𝜌(𝑝,𝑞)𝑔 (𝑓) = 𝜌𝑘𝑔(𝑓). If
𝑔 = exp 𝑧 then 𝜌(𝑝,𝑞)𝑔 (𝑓) = 𝜌𝑓(𝑝, 𝑞).

Sánchez Ruiz et al. [6] gave a more natural definition of
relative (𝑝, 𝑞)th order of an entire function in light of index-
pair which is as follows.

Definition 4. Let 𝑓 and 𝑔 be any two entire functions with
index-pairs (𝑚1, 𝑞) and (𝑚2, 𝑝), respectively, where 𝑚1 =
𝑚2 = 𝑚 and 𝑝, 𝑞, and 𝑚 are all positive integers such that
𝑚 ≥ 𝑝 and 𝑚 ≥ 𝑞. Then the relative (𝑝, 𝑞)th order of 𝑓 with
respect to 𝑔 is defined as

𝜌(𝑝,𝑞)𝑔 (𝑓)

= inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔

× [exp[𝑝] {log[𝑚2]exp[𝑚1] (𝜇log[𝑞]𝑟)}]

∀𝑟 > 𝑟0 (𝜇) > 0}

= inf {𝜇 > 0 : 𝑀𝑓 (𝑟) < 𝑀𝑔 (exp
[𝑝] (𝜇log[𝑞]𝑟))

∀𝑟 > 𝑟0 (𝜇) > 0}

= lim sup
𝑟→∞

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
.

(11)

Similarly one can define the relative (𝑝, 𝑞)th lower order
of an entire function𝑓with respect to another entire function
𝑔 denoted by 𝜆(𝑝,𝑞)𝑔 (𝑓) where 𝑝 and 𝑞 are any two positive
integers in the following way:

𝜆(𝑝,𝑞)𝑔 (𝑓) = lim inf
𝑟→∞

log[𝑝]𝑀−1𝑔 𝑀𝑓 (𝑟)

log[𝑞]𝑟
. (12)

In fact Definition 4 improves Definition 3 ignoring the
restriction 𝑝 ≥ 𝑞.

In this paper we wish to prove some results related to
the growth rates of entire functions on the basis of relative
(𝑝, 𝑞)th order and relative (𝑝, 𝑞)th lower order with respect
to another entire function extending some earlier results for
any two positive integers 𝑝 and 𝑞.

2. Lemmas

In this section we present some lemmas which will be needed
in the sequel.

Lemma 1 (see [7]). If 𝑓 and 𝑔 are any two entire functions
with 𝑔(0) = 0. then

𝑀𝑓∘𝑔 (𝑟) ≥ 𝑀𝑔 (
𝑟

2
)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 V𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟 ⩾ 𝑟0.

(13)
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Lemma 2 (see [7]). Let𝑓 be entire and let 𝑔 be a transcenden-
tal entire function of finite lower order. Then, for any 𝛿 > 0,

𝑀𝑓∘𝑔 (𝑟
1+𝛿) ≥ 𝑀𝑓 (𝑀𝑔 (𝑟))

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 V𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟 ⩾ 𝑟0.
(14)

Lemma 3 (see [8]). If 𝑓 and 𝑔 are any two entire functions
with 𝑔(0) = 0. then, for any 0 < 𝑐 < 1,

𝑀𝑓∘𝑔 (𝑟) ≥ 𝑀𝑓 (𝑐𝑀𝑔 (
𝑟

2
))

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 V𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑟 ⩾ 𝑟0,

(15)

Lemma 4 (see [9]). If 𝑓 and 𝑔 are any two entire functions
then for all sufficiently large values of 𝑟 ⩾ 𝑟0

𝑀𝑓∘𝑔 (𝑟) ≤ 𝑀𝑓 (𝑀𝑔 (𝑟)) . (16)

3. Theorems

In this section we present the main results of the paper.

Theorem 5. Let 𝑓 be an entire function and let 𝑔 be any
polynomial such that 𝑓 ∘ 𝑔 has got finite relative (𝑝, 𝑞)th order
with respect to ℎ where ℎ is a transcendental entire function
and 𝑝, 𝑞 are any two positive integers. Then 𝜌(𝑝,𝑞)

ℎ
(𝑓) < ∞.

Proof. Given that 𝑓 ∘ 𝑔 is of finite relative (𝑝, 𝑞)th order with
respect to ℎ, we have from Definition 4, for a suitable finite
number 𝜇 > 0 and for all sufficiently large values of 𝑟, that

𝑀𝑓∘𝑔 (𝑟) < 𝑀ℎ (exp
[𝑝] (𝜇log[𝑞]𝑟)) . (17)

Now let 𝑚 be the order of the polynomial 𝑔 so that

𝑔 (𝑧) = 𝑐1𝑧 + 𝑐2𝑧
2 + ⋅ ⋅ ⋅ + 𝑐𝑚𝑧

𝑚, 𝑐𝑚 ̸= 0. (18)

Then by Cauchy’s inequality we get from (18) that
󵄨󵄨󵄨󵄨𝑐𝑚

󵄨󵄨󵄨󵄨 𝑟
𝑚 ≤ 𝑀𝑔 (𝑟) , |𝑧| = 𝑟. (19)

Now given 0 < 𝑐 < 1, in view of Lemma 3 and from (17) it
follows for all sufficiently large values of 𝑟 that

𝑀𝑓 (𝑐
󵄨󵄨󵄨󵄨𝑐𝑚

󵄨󵄨󵄨󵄨 (
𝑟

2
)
𝑚

) ≤ 𝑀𝑓∘𝑔 (𝑟) ≤ 𝑀ℎ (exp
[𝑝] (𝜇log[𝑞]𝑟)) .

(20)

We rewrite the above to the equivalent for all sufficiently large
values of 𝑟 that

𝑀𝑓 (𝑟) ≤ 𝑀ℎ (exp
[𝑝] (𝜇log[𝑞] ((𝑐 󵄨󵄨󵄨󵄨𝑐𝑚

󵄨󵄨󵄨󵄨)
−1
2𝑚𝑟1/𝑚))) . (21)

Therefore from (21) we get for all sufficiently large values of 𝑟
that

𝑀−1ℎ 𝑀𝑓 (𝑟) ≤ exp[𝑝] (𝜇log[𝑞] ((𝑐 󵄨󵄨󵄨󵄨𝑐𝑚
󵄨󵄨󵄨󵄨)
−1
2𝑚𝑟1/𝑚)) ,

i.e., log[𝑝]𝑀−1ℎ 𝑀𝑓 (𝑟) ≤ 𝜇log[𝑞] ((𝑐 󵄨󵄨󵄨󵄨𝑐𝑚
󵄨󵄨󵄨󵄨)
−1
2𝑚𝑟1/𝑚) .

(22)

Case I. Assume 𝑞 = 1. Then we have from (22) for all
sufficiently large values of 𝑟 that

log[𝑝]𝑀−1ℎ 𝑀𝑓 (𝑟)

log 𝑟
≤

𝜇

𝑚

log 𝑟 + |𝑂 (1)|

log 𝑟
, (23)

where 𝑂(1) stands for the constant expression,
𝑚 log((𝑐|𝑐𝑚|)

−12𝑚). Then

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓 (𝑟)

log 𝑟
≤

𝜇

𝑚
lim sup
𝑟→∞

log 𝑟 + |𝑂 (1)|

log 𝑟
,

i.e., 𝜌𝑝
ℎ
(𝑓) ≤

𝜇

𝑚
< ∞.

(24)

Case II. Let us now assume 𝑞 > 1. Then we obtain from (22)
for all sufficiently large values of 𝑟 that

log[𝑝]𝑀−1ℎ 𝑀𝑓 (𝑟)

log[𝑞]𝑟
≤ 𝜇

log[𝑞]𝑟 + |𝑂 (1)|

log[𝑞]𝑟
, (25)

where 𝑂(1) stands for a bounded quantity. Then

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓 (𝑟)

log[𝑞]𝑟
≤ 𝜇 lim sup

𝑟→∞

log[𝑞]𝑟 + |𝑂 (1)|

log[𝑞]𝑟
,

i.e., 𝜌(𝑝,𝑞)
ℎ

(𝑓) ≤ 𝜇 < ∞.
(26)

Thus the theorem follows from (24) and (26).

In the forthcoming proofs we will assume the natural
number 𝑞 to be 𝑞 > 1, the reasonings being easily adapted
for 𝑞 = 1.

Theorem 6. Let 𝑓, 𝑔, and ℎ be any three transcendental entire
functions and let 𝑝 and 𝑞 be two positive integers. If, for any
𝛼, 𝛽 with 0 < 𝛼 < 1, 𝛽 > 0, and 𝛼(𝛽 + 1) > 1, it holds that the
two limits 𝐴, 𝐵 ∈ R+ of some of either

(i) lim sup𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑔(𝑟))/(log

[𝑞]𝑟)
𝛼
) = 𝐴,

lim inf𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/(log

[𝑝]𝑀−1ℎ (𝑟))
𝛽+1

) =
𝐵,

(ii) lim inf𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑔(𝑟))/(log

[𝑞]𝑟)
𝛼
) = 𝐴,

lim sup𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/(log

[𝑝]𝑀−1ℎ (𝑟))
𝛽+1

) =
𝐵, or

(iii) lim inf𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑔(𝑟))/(log

[𝑞]𝑟)
𝛼
) = 𝐴,

lim inf𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/(log

[𝑝]𝑀−1ℎ (𝑟))
𝛽+1

) =
𝐵

exist, then 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) = ∞.
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Proof. (i) The existence of 𝐴 and 𝐵 implies that given any 𝜀 >
0, for sufficiently large values of 𝑟,

log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟)) ≥ (𝐴 − 𝜀) (log[𝑞]𝑟)
𝛼
,

log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑟)) ≥ (𝐵 − 𝜀) (log[𝑝]𝑀−1ℎ (𝑟))
𝛽+1

.
(27)

Since 𝑀𝑔(𝑟) is a continuous, increasing, and unbounded
function of 𝑟, we get from above for all sufficiently large values
of 𝑟 that

log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟)))

≥ (𝐵 − 𝜀) (log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟)))
𝛽+1

.
(28)

Also 𝑀−1ℎ (𝑟) is an increasing function of 𝑟; it follows from
Lemma 2, (27), and (28) that given 𝛿 > 0, for a sequence of
values of 𝑟 tending to infinity, the following holds:

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

≥ log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟)))

≥ (𝐵 − 𝜀) (log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟)))
𝛽+1

≥ (𝐵 − 𝜀) [(𝐴 − 𝜀) (log[𝑞]𝑟) 𝛼]
𝛽+1

,

i.e.,
log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟

1+𝛿)

log[𝑞] (𝑟1+𝛿)

≥
(𝐵 − 𝜀) (𝐴 − 𝜀)𝛽+1(log[𝑞]𝑟)

𝛼(𝛽+1)

log[𝑞] (𝑟1+𝛿)
.

(29)

Hence

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

log[𝑞] (𝑟1+𝛿)

≥ lim inf
𝑟→∞

(𝐵 − 𝜀) (𝐴 − 𝜀)𝛽+1(log[𝑞]𝑟)
𝛼(𝛽+1)

log[𝑞]𝑟 + |𝑂 (1)|

(30)

for all sufficiently large values of 𝑟. Since 𝜀 > 0 is arbitrary and
𝛼(𝛽 + 1) > 1 it follows that

𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) = ∞. (31)

Under (ii) or (iii) a similar argument applies.

Theorem 7. Let 𝑓, 𝑔, and ℎ be any three transcendental entire
functions and let 𝑝 and 𝑞 be two positive integers. If, for any
𝛼, 𝛽 with 𝛼 > 1, 0 < 𝛽 < 1, and 𝛼𝛽 > 1, it holds that the two
limits 𝐴, 𝐵 ∈ R+ of either

(i) lim sup𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑔(𝑟))/(log

[𝑞+1]𝑟)
𝛼
) = 𝐴,

lim inf𝑟→∞(log[log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/log

[𝑝]𝑀−1ℎ (𝑟)]/

[log[𝑝]𝑀−1ℎ (𝑟)]
𝛽
) = 𝐵,

(ii) lim inf𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑔(𝑟))/(log

[𝑞+1]𝑟)
𝛼
) = 𝐴,

lim sup𝑟→∞(log[log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/log

[𝑝]𝑀−1ℎ (𝑟)]/

[log[𝑝]𝑀−1ℎ (𝑟)]
𝛽
) = 𝐵, or

(iii) lim inf𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑔(𝑟))/(log

[𝑞+1]𝑟)
𝛼
) = 𝐴,

lim inf𝑟→∞(log[log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/log

[𝑝]𝑀−1ℎ (𝑟)]/

[log[𝑝]𝑀−1ℎ (𝑟)]
𝛽
) = 𝐵

exist, then 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) = ∞.

Proof. (i) Given any 𝜀 > 0, for a sequence of values of 𝑟
tending to infinity, we get that

log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟)) ≥ (𝐴 − 𝜀) (log[𝑞+1]𝑟)
𝛼

(32)

and for all sufficiently large values of 𝑟 that

log[
log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑟))

log[𝑝]𝑀−1
ℎ (𝑟)

] ≥ (𝐵 − 𝜀) [log[𝑝]𝑀−1ℎ (𝑟)]
𝛽
,

i.e.,
log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑟))

log[𝑝]𝑀−1
ℎ (𝑟)

≥ exp [(𝐵 − 𝜀) [log[𝑝]𝑀−1ℎ (𝑟)]
𝛽
] .

(33)

Since 𝑀𝑔(𝑟) is a continuous, increasing, and unbounded
function of 𝑟, we get from above for all sufficiently large values
of 𝑟 that

log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟)))

log[𝑝]𝑀−1
ℎ

(𝑀𝑔 (𝑟))

≥ exp [(𝐵 − 𝜀) [log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))]
𝛽
] .

(34)

Also 𝑀−1ℎ (𝑟) is an increasing function of 𝑟; thus from
Lemma 2, (32), and (34) it follows that, given that 𝛿 > 0, for a
sequence of values of 𝑟 tending to infinity,

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

log[𝑞] (𝑟1+𝛿)

≥
log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟)))

log[𝑞] (𝑟1+𝛿)

≥
log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟)))

log[𝑝]𝑀−1
ℎ

(𝑀𝑔 (𝑟))
⋅
log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))

log[𝑞]𝑟 + |𝑂 (1)|
.

(35)
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Therefore

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

log[𝑞] (𝑟1+𝛿)

≥ exp [(𝐵 − 𝜀) [log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))]
𝛽
]

⋅
(𝐴 − 𝜀) (log[𝑞+1]𝑟)

𝛼

log[𝑞]𝑟 + |𝑂 (1)|

≥ exp [(𝐵 − 𝜀) (𝐴 − 𝜀)𝛽(log[𝑞+1]𝑟)
𝛼𝛽

]

⋅
(𝐴 − 𝜀) (log[𝑞+1]𝑟)

𝛼

log[𝑞]𝑟 + |𝑂 (1)|

= exp [(𝐵 − 𝜀) (𝐴 − 𝜀)𝛽(log[𝑞+1]𝑟)
𝛼𝛽−1

log[𝑞+1]𝑟]

⋅
(𝐴 − 𝜀) (log[𝑞+1]𝑟)

𝛼

log[𝑞]𝑟 + |𝑂 (1)|

≥ (log[𝑞]𝑟)
(𝐵−𝜀)(𝐴−𝜀)𝛽(log[𝑞+1]𝑟)

𝛼𝛽−1

⋅
(𝐴 − 𝜀) (log[𝑞+1]𝑟)

𝛼

log[𝑞]𝑟 + |𝑂 (1)|
.

(36)

Hence

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

log[𝑞] (𝑟1+𝛿)

≥ lim inf
𝑟→∞

(log[𝑞]𝑟)
(𝐵−𝜀)(𝐴−𝜀)𝛽(log[𝑞+1]𝑟)

𝛼𝛽−1

⋅
(𝐴 − 𝜀) (log[𝑞+1]𝑟)

𝛼

log[𝑞]𝑟 + |𝑂 (1)|
.

(37)

Since 𝜀 > 0 is arbitrary and 𝛼 > 1, 𝛼𝛽 > 1, it follows that

𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) = ∞. (38)

Under (ii) or (iii) a similar argument may be used.

Theorem 8. Let 𝑓, 𝑔, and ℎ be any three transcendental entire
functions such that 0 < 𝜆(𝑝,𝑞)

ℎ
(𝑔) ≤ 𝜌(𝑝,𝑞)

ℎ
(𝑔) < ∞ where 𝑝

and 𝑞 are any two positive integers. If the limit 𝐴 ∈ R exists in
either

(i) lim sup𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/log

[𝑝]𝑀−1ℎ (𝑟)) = 𝐴
or

(ii) lim inf𝑟→∞(log
[𝑝]𝑀−1ℎ (𝑀𝑓(𝑟))/log

[𝑝]𝑀−1ℎ (𝑟)) = 𝐴,

then

𝜆(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) ≤ 𝐴𝜆(𝑝,𝑞)
ℎ

(𝑔) ≤ 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) ≤ 𝐴𝜌(𝑝,𝑞)
ℎ

(𝑔) .
(39)

Proof. (i) Since 𝑀−1ℎ (𝑟) is an increasing function of 𝑟, it
follows from Lemmas 2 and 4, given 𝛿 > 0, for all sufficiently
large values of 𝑟, that

𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿) ≥ 𝑀−1ℎ {𝑀𝑓 (𝑀𝑔 (𝑟))} , (40)

𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟) ≤ 𝑀−1ℎ {𝑀𝑓 (𝑀𝑔 (𝑟))} , (41)

respectively.
Therefore from (40) we get for all sufficiently large values

of 𝑟 that

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

log[𝑞]𝑟1+𝛿
≥
log[𝑝]𝑀−1ℎ {𝑀𝑓 (𝑀𝑔 (𝑟))}

log[𝑞]𝑟1+𝛿

≥
log[𝑝]𝑀−1ℎ {𝑀𝑓 (𝑀𝑔 (𝑟))}

log[𝑝]𝑀−1
ℎ

(𝑀𝑔 (𝑟))

⋅
log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))

log[𝑞]𝑟 + |𝑂 (1)|
.

(42)

From here it follows that

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟)

log[𝑞]𝑟

≥ lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ {𝑀𝑓 (𝑀𝑔 (𝑟))}

log[𝑝]𝑀−1
ℎ

(𝑀𝑔 (𝑟))

× lim inf
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))

log[𝑞]𝑟 + |𝑂 (1)|

i.e., 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) ≥ 𝐴𝜆(𝑝,𝑞)
ℎ

(𝑔) .

(43)

Similarly from (41) it follows for all sufficiently large values of
𝑟 that

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟) ≤ log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟))) . (44)

Therefore

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟)

log[𝑞]𝑟

≤
log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟)))

log[𝑝]𝑀−1
ℎ

(𝑀𝑔 (𝑟))
⋅
log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))

log[𝑞]𝑟
.

(45)
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Hence

lim inf
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟)

log[𝑞]𝑟

≤ lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ {𝑀𝑓 (𝑀𝑔 (𝑟))}

log[𝑝]𝑀−1
ℎ

(𝑀𝑔 (𝑟))

× lim inf
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))

log[𝑞]𝑟
,

i.e., 𝜆(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) ≤ 𝐴𝜆(𝑝,𝑞)
ℎ

(𝑔) .

(46)

Also from (45) we obtain for all sufficiently large values of 𝑟
that

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟)

log[𝑞]𝑟

≤ lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ {𝑀𝑓 (𝑀𝑔 (𝑟))}

log[𝑝]𝑀−1
ℎ

(𝑀𝑔 (𝑟))

× lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟))

log[𝑞]𝑟
,

i.e., 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) ≤ 𝐴 ⋅ 𝜌(𝑝,𝑞)
ℎ

(𝑔) .

(47)

Then the thesis follows from (43), (46), and (47).
(ii) follows with a similar argument.

Theorem 9. Let 𝑓, 𝑔, and ℎ be any three transcendental entire
functions with 𝑔(0) = 0. If 𝑝, 𝑞, and 𝑚 are any three positive
integers with 𝑚 > 𝑞, then 𝜌(p,𝑞)

ℎ
(𝑓 ∘ 𝑔) = ∞ under any of the

following conditions:

(i) 𝜌(𝑝,𝑞)
ℎ

(𝑔) = ∞;

(ii) min(𝜌(𝑝,𝑞)
ℎ

(𝑓), 𝜆𝑔(𝑚, 𝑞)) > 0;

(iii) min(𝜌𝑔(𝑚, 𝑞), 𝜆(𝑝,𝑞)
ℎ

(𝑓)) > 0.

Proof. (i) If 𝜌(𝑝,𝑞)
ℎ

(𝑔) = ∞, since 𝑀−1ℎ (𝑟) is an increasing
function of 𝑟, it follows fromLemma 1, for all sufficiently large
values of 𝑟, that

log[𝑝]𝑀−1ℎ (𝑀𝑓∘𝑔 (𝑟)) ≥ log[𝑝]𝑀−1ℎ (𝑀𝑔 (
𝑟

2
)) . (48)

Therefore

log[𝑝]𝑀−1ℎ (𝑀𝑓∘𝑔 (𝑟))

log[𝑞]𝑟
≥
log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟/2))

log[𝑞]𝑟

≥
log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟/2))

log[𝑞] (𝑟/2) + |𝑂 (1)|
.

(49)

Then

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑓∘𝑔 (𝑟))

log[𝑞]

≥ lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑔 (𝑟/2))

log[𝑞] (𝑟/2) + |𝑂 (1)|
,

i.e., 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) ≥ 𝜌(𝑝,𝑞)
ℎ

(𝑔) = ∞.

(50)

(ii) Suppose 𝜌(𝑝,𝑞)
ℎ

(𝑓) > 0 and 𝜆𝑔(𝑚, 𝑞) > 0.
As 𝑀−1ℎ (𝑟) is an increasing function of 𝑟, we get from

Lemma 2 that given 𝛿 > 0 and any 𝜀 > 0, for all sufficiently
large values of 𝑟,

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

≥ log[𝑝]𝑀−1ℎ (𝑀𝑓 (𝑀𝑔 (𝑟)))

≥ (𝜌(𝑝,𝑞)
ℎ

(𝑓) − 𝜀) log[𝑞]𝑀𝑔 (𝑟)

≥ (𝜌(𝑝,𝑞)
ℎ

(𝑓) − 𝜀) exp[𝑚−𝑞−1](log[𝑞−1]𝑟)
(𝜆
𝑔
(𝑚,𝑞)−𝜀)

.

(51)

Thus

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

log[𝑞]𝑟1+𝛿

≥
(𝜌(𝑝,𝑞)
ℎ

(𝑓) − 𝜀) exp[𝑚−𝑞−1](log[𝑞−1]𝑟)
(𝜆
𝑔
(𝑚,𝑞)−𝜀)

log[𝑞]𝑟1+𝛿
.

(52)

Hence

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ 𝑀𝑓∘𝑔 (𝑟
1+𝛿)

log[𝑞]𝑟1+𝛿

≥ lim inf
𝑟→∞

(𝜌(𝑝,𝑞)
ℎ

(𝑓) − 𝜀) exp[𝑚−𝑞−1](log[𝑞−1]𝑟)
(𝜆
𝑔
(𝑚,𝑞)−𝜀)

log[𝑞]𝑟 + |𝑂 (1)|
,

i.e., 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔) = ∞.
(53)

Under (iii) a similar argument to (i) applies.

In the line ofTheorem 9one can easily prove the following
result.

Theorem 10. Let𝑓,𝑔, and ℎ be any three transcendental entire
functions with 𝑔(0) = 0. If 𝑝,𝑞, and 𝑚 are any three positive
integers with 𝑚 > 𝑞, then 𝜆(𝑝,𝑞)

ℎ
(𝑓 ∘ 𝑔) = ∞ if any of the

following facts happens:

(i) 𝜆(𝑝,𝑞)
ℎ

(𝑔) = ∞;

(ii) min(𝜆(𝑝,𝑞)
ℎ

(𝑓), 𝜆𝑔(𝑚, 𝑞)) > 0.
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Theorem 11. Let𝑓, 𝑔, and ℎ be any three transcendental entire
functions such that 𝑔(0) = 0. If 𝑝, 𝑞, and 𝑚 are any three
positive integers with 𝑚 > 𝑞 and any of the following two facts
happens

(i) min(𝜌(𝑝,𝑞)
ℎ

(𝑓), 𝜆𝑔(𝑚, 𝑞)) > 0 or

(ii) min(𝜆(𝑝,𝑞)
ℎ

(𝑓), 𝜆𝑔(𝑚, 𝑞)) > 0,

then

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑓∘𝑔 (𝑟))

log[𝑝]𝑀−1
ℎ

(𝑀𝑓 (𝑟))
= ∞. (54)

Proof . (i) Since

lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑓∘𝑔 (𝑟))

log[𝑝]𝑀−1
ℎ

(𝑀𝑓 (𝑟))

≥ lim sup
𝑟→∞

log[𝑝]𝑀−1ℎ (𝑀𝑓∘𝑔 (𝑟))

log[𝑞]𝑟

× lim inf
𝑟→∞

log[𝑞]𝑟
log[𝑝]𝑀−1

ℎ
(𝑀𝑓 (𝑟))

= 𝜌(𝑝,𝑞)
ℎ

(𝑓 ∘ 𝑔)
1

𝜌(𝑝,𝑞)
ℎ

(𝑓)

(55)

the result follows fromTheorem 9.
(ii) The proof can be carried out in the line of (i) and

Theorem 10.

4. Conclusion

After modifying the notion of relative order of higher dimen-
sions in case of entire functions in [6], where a number of
examples of relative order between functions were provided,
in this paper we have obtained some growth properties of
composite entire functions on the basis of relative (𝑝, 𝑞)th
order and relative (𝑝, 𝑞)th lower order. In this process,
Theorem 5 and the first part of Theorem 6 and Theorems 7
and 8 can be regarded as extensions of some results of [10].
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