

TESIS DOCTORAL

POSTPROCESAMIENTO CAM-ROBOTICA ORIENTADO

AL PROTOTIPADO Y MECANIZADO EN CELULAS

ROBOTIZADAS COMPLEJAS

(CAM-ROB Postprocessing aimed at Prototyping and Machining in
complex robotic workcells)

Presentada por: Javier Andrés de la Esperanza

Dirigida por: Josep Tornero i Montserrat
 Luis Gracia Calandín

Valencia, Marzo de 2011

Quiero agradecer al director de la tesis Dr. D. Josep Tornero i Montserrat la
oportunidad de desarrollar la tesis en las instalaciones del Instituto de Diseño
y Fabricación (IDF). Al también director de la tesis Dr. D. Luis Gracia
Calandín quiero reconocer su valioso, continuado y efectivo asesoramiento, su
estímulo y su paciencia.

También quiero agradecer su motivación y consejos al Dr. D. Juan Antonio
García Manrique, ya desde los tiempos en que empecé a cursar Ingeniería en
la UPV. Además, los profesores Dr. D. Carlos Gracia Calandín y Dr. D.
Francisco González Contreras me han aconsejado certeramente en los
coletazos finales de esta tesis. A D. Guillermo Bruixola Casani por su
desinteresada asistencia en el manejo del NXTM, cada vez que lo he requerido.

A Marta Gallart Penalva por aguantar y animarme en los momentos arduos. A
mis amigos Miguel García Ponce, Alejandro Cerdá Dols, Antonio Astorgano
Lozano, Isaac Suárez Alvarez y Gilberto González Parra por los momentos de
evasión deportiva.

Finalmente, vaya mi más sincero agradecimiento a mis compañeros y
excompañeros en el IDF.

A mi familia

Abstract 1

RESUMEN
El principal interés de la presente tesis consiste en el estudio e implementación
de postprocesadores para adaptar las trayectorias generadas por sistemas de
Fabricación Asistida por Computador (generalmente conocidos como
plataformas CAM, Computer Aided Manufacturing) hacia una célula robotizada
de ocho articulaciones, la cual está destinada al prototipado de piezas 3D
diseñadas desde plataformas CAD (Computer Aided Design). Dicha célula la
conforma un robot manipulador industrial de seis articulaciones rotativas, el cual
está montado sobre un rail y sincronizado con una mesa giratoria. Para alcanzar
el objetivo principal expuesto inicialmente, sucesivas tareas son llevadas a cabo.
Cada una de éstas conlleva una metodología, objetivo y resultados parciales que
se conjugan y complementan, a saber:

- Se describe la arquitectura de la célula a niveles de posición y velocidad
articulares para las resoluciones directa e inversa en ambos casos. El
condicionamiento numérico de la matriz Jacobiana se describe como
indice kinetostatico para evaluar la cercanía a configuraciones singulares.
Éstas son analizadas desde un punto de vista geométrico.

- Previo a cualquier mecanizado, las articulaciones externas adicionales
requieren de una calibración realizada in situ, generalmente en el lugar
de trabajo. Se ha desarrollado un novedoso método de Calibración sin
contacto en base a restricciones planares para estimar los parámetros de
configuración de las articulaciones externas, por medio de un sensor
láser de desplazamiento.

- Un primer control, a nivel de desplazamiento por medio de un motor de
inferencia borrosa, es integrado en el postprocesador del sistema CAM.

- Varios Esquemas de Resolución de Redundancias a nivel de velocidad
articular son comparados para la configuración de un postprocesador.
Estos esquemas tratan no solo con las articulaciones adicionales
(redundancia intrínseca) sino también con la redundancia debida a la
simetría de la herramienta de corte (redundancia funcional).

- El uso de estos esquemas es optimizado mediante el ajuste de dos
vectores de criterio de comportamiento (performance criterion vectors)
relacionados con la evitación de singularidades y el mantenimiento de
una postura de referencia preferente. Dos novedosos motores de
inferencia borrosa ajustan activamente el peso (o relevancia) de cada
articulación en estas tareas.

El sistema completo resultante es validado en el prototipado real de un modelo
orográfico y de una Falla Valenciana.

Abstract 3

ABSTRACT
The main interest of this thesis consists of the study and implementation of
postprocessors to adapt the toolpath generated by a Computer Aided
Manufacturing (CAM) system to a complex robotic workcell of eight joints,
devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R
industrial manipulator mounted on a linear track and synchronized with a rotary
table. To accomplish this main objective, previous work is required. Each task
carried out entails a methodology, objective and partial results that complement
each other, namely:

- It is described the architecture of the workcell in depth, at both
displacement and joint-rate levels, for both direct and inverse
resolutions. The conditioning of the Jacobian matrix is described as
kinetostatic performance index to evaluate the vicinity to singular
postures. These ones are analysed from a geometric point of view.

- Prior to any machining, the additional external joints require a calibration
done in situ, usually in an industrial environment. A novel Non-contact
Planar Constraint Calibration method is developed to estimate the
external joints configuration parameters by means of a laser
displacement sensor.

- A first control is originally done by means of a fuzzy inference engine at
the displacement level, which is integrated within the postprocessor of
the CAM software.

- Several Redundancy Resolution Schemes (RRS) at the joint-rate level
are compared for the configuration of the postprocessor, dealing not only
with the additional joints (intrinsic redundancy) but also with the
redundancy due to the symmetry on the milling tool (functional
redundancy).

- The use of these schemes is optimized by adjusting two performance
criterion vectors related to both singularity avoidance and maintenance
of a preferred reference posture, as secondary tasks to be done during the
path tracking. Two innovative fuzzy inference engines actively adjust the
weight of each joint in these tasks.

The resulting whole system is validated in a real prototyping of an orographic
model and a Valencian Falla.

Abstract 5

RESUM
El principal interés de la present tesi consistix en l’estudi i implementació de
postprocesadors per a adaptar les trajectòries generades per sistemes de
Fabricació Assistida per Computador (normalment conegudes com a plataformes
CAM, Computer Aided Manufacturing) cap a una cèl·lula robotitzada de huit
articulacions, la qual està destinada al prototipat ràpid de peces 3D dissenyades
des de plataformes CAD (Computer Aided Design). Aquesta cèl·lula la conforma
un robot manipulador industrial de sis articulacions rotatives, el qual està muntat
sobre un rail i sincronitzat amb una taula giratòria. Per a aconseguir l'objectiu
principal exposat inicialment, successives tasques són dutes a terme. Cadascuna
d'estes comporta una metodologia, objectiu i resultats parcials que es conjuguen i
complementen, a saber:

- Es descriu en profunditat l’arquitectura de la cèl·lula, a nivells de posició
i velocitat articulars, per a les resolucions directa i inversa en ambdós
casos. El condicionament numèric de la matriu Jacobiana es descriu com
índex kinetostatic per a avaluar la proximitat a configuracions singulars.
Estes són analitzades des d’un punt de vista geomètric.

- Previ a qualsevol mecanitzat, les articulacions externes addicionals
requerixen d’una calibració realitzada in situ, generalment en el lloc de
treball. S’ha desenrotllat un nou mètode de Calibració sense contacte
amb restriccions planars per a estimar els paràmetres de configuració de
les articulacions externes, per mitjà d’un sensor làser de desplaçament.

- Un primer control, desenrotllat originàriament a nivell de desplaçament
per mitjà d’un motor d’inferència borrosa (fuzzy), és integrat en el
postprocesador del sistema CAM.

- Diversos Esquemes de Resolució de Redundàncies a nivell de velocitat
articular són comparats per a la configuració d’un postprocesador.
Aquests esquemes tracten no sols amb les articulacions addicionals
(redundància intrínseca) sinó també amb la redundància deguda a la
simetria de la ferramenta de tall (redundància funcional).

- L’ús d’aquests esquemes és optimitzat per mitjà de l’ajust de dos vectors
de criteri de comportament (performance criterion vectors) relacionats
amb l’evitació de singularitats i el manteniment d’una postura de
referència preferent. Dos nous motors d’inferència borrosa ajusten
activament el pes (o relevancia) de cada articulació en aquestes tasques.

El sistema complet resultant és validat en el prototipat real d’un model orogràfic i
d’una Falla Valenciana.

Contents 7

CONTENTS

CHAPTER 1. INTRODUCTION ... 29
1.1. INTRODUCTION.. 29
1.2 STATE OF ART AND CURRENT TENDENCIES 31
1.3 OBJETIVES.. 32
1.4 METHODOLOGY.. 33
1.5 STRUCTURE.. 34
References (Ch. 1)... 36

CHAPTER 2. WORKCELL KINEMATIC CHARACTERIZATION..... 39
2.1. CONCEPTS ON MANIPULATOR KINEMATICS......................... 39
2.1.1. Joint variables (generalized coordinates) .. 40
2.1.2. Operational coordinates... 41
2.2. LEVEL OF KINEMATIC ANALYSIS... 42
2.2.1. Direct and Inverse Kinematic Problem at the displacement level. . 43
2.2.2. Kinematic analysis at joint-rate level. ... 46
i) DKP at joint-rate level. .. 46
ii) IKP at joint-rate level.. 46
iii) The Jacobian matrix... 48
2.2.3. Singular configurations. .. 51
i) Consideration to wrist-partitioned manipulator singularities 52
2.3. KINETOSTATIC PERFORMANCE INDICES. POSTURE-

DEPENDENT INDICES... 56
2.3.1. Manipulability ... 57
2.3.2. Condition number of J... 60
i) Inhomogeneity of J, and Characteristic length 60
ii) Formula for the condition number of J ... 61
iii) Consideration to wrist-partitioned manipulator singularities 62
2.4. KINEMATIC CHARACTERIZATION OF AN INDUSTRIAL

WORKCELL... 63
2.4.1. Components of the numerically controlled KUKA workcell.......... 64

Contents 8

i) KUKA KRC2 controller.. 64
ii) KUKA KR15/2 manipulator .. 65
iii) Additional linear axis .. 66
iv) Additional rotary table... 66
2.4.2. Direct Kinematic model of position.. 67
2.4.3. Inverse Kinematic Problem (IKP) of position 71
i) Geometric approach for the IKP of position ... 72
ii) Resolution of the gross positioning .. 73
iii) Resolution of the fine positioning ... 74
2.4.4. Workcell Jacobian... 78
2.4.5. Tool-holder characterization... 80
2.4.6. Characteristic length L of the KUKA KR-15/2 83
References (Ch. 2) .. 86

CHAPTER 3. WORKCELL CALIBRATION... 91
3.1. CONCEPTS ON ACCURACY CRITERIA AND ERROR SOURCES

..
 91
3.2. CALIBRATION. MATHEMATICAL BACKGROUND................. 96
3.2.1. Problem statement... 96
3.2.2. Solving the least-squares problem .. 97
i) Linear least-squares ... 98
ii) Non-Linear Least-Squares (NLSQ).. 99
3.2.3. Gauss-Newton algorithm and its application to calibration

algorithms ... 100
i) Description of the iterative method ... 101
ii) Outline of the NLSQ Model-based calibration methods. 2D planar

calibration example... 103
3.3. CALIBRATION OF THE ADDITIONAL JOINTS OF THE KUKA

WORKCELL .. 111
3.3.1. Non-contact Planar Constraint Calibration procedure. Material and

method .. 111
i) Laser displacement sensor... 113
3.3.2. Formulations ... 115
i) Formulation of the Kinematic Identification Model 115
3.3.3. Results... 119
References (Ch. 3) .. 121

CHAPTER 4. CAM TO WORKCELL POSTPROCESSING 127

Contents 9

4.1. INTEGRATED PRODUCTION SYSTEMS................................... 127
4.1.1. Benefits of the integrated production systems 128
4.2. COMPUTER NUMERICAL CONTROL (CNC)............................ 130
4.2.1. Definition .. 131
4.2.2. Classification of the Numerical Control systems.......................... 131
i) Interpolation... 133
4.3. CAM SYSTEMS FOR TOOLPATH generaTiOn........................... 134
4.4. POSTPROCESSING.. 134
4.4.1. Concept of postprocessing .. 135
4.4.2. Literature review in CNC Postprocessing..................................... 137
4.4.3. CAM-ROB postprocessing ... 143
4.5. NX-CAM TOOLPATH GENERATION... 144
4.5.1. NX-CAM module characteristics.. 144
i) Trajectory generation (CL-File). Linear and circular path tracking 144
ii) NXTM-Post .. 147
4.6. INDUSTRIAL NXTM TO KUKATM WORKCELL

POSTPROCESSING... 149
4.6.1. KUKATM Workcell programming... 149
4.6.2. KRL for PTP motions (synchronous PTP).................................... 150
4.6.3. KUKA KRL for Continuous Path Tracking.................................. 151
4.6.4. Post programming ... 153
References (Ch. 4)... 154

CHAPTER 5. Redundancy resolution schemes 159
5.1. KINEMATIC REDUNDANCY .. 159
5.1.1. Definition of Kinematic Redundancy ... 159
i) Intrinsic redundancy .. 161
ii) Functional redundancy.. 161
5.2. CONTINUOUS PATH PLANNING AND TRACKING................ 163
5.3. REDUNDANCY RESOLUTION SCHEMES (RRS) 167
5.3.1. Local Optimization Algorithms for intrinsically-redundant

manipulators (rI) .. 169
i) Schemes with the Moore-Penrose Pseudo-Inverse.............................. 169
ii) Schemes using the Weighted Pseudo-Inverse 172
iii) Schemes using Householder Reflection .. 173
iv) Schemes using the damped least-squares (DLS-) inverse 175
5.3.2. Solution of functionally-redundant manipulators (rF) 177
i) Virtual Joint Method (VJM) .. 178
ii) Twist Decomposition Method (TDM).. 179

Contents 10

5.3.3. Consideration for functionally-redundant (rF) and intrinsically-
redundant (rI) manipulators... 180

5.3.4. Redundant manipulator controlling process 183
5.4. INTELLIGENT CONTROL IN REDUNDANCY RESOLUTION 183
5.4.1. Fuzzy-Based Redundancy-Resolution Approaches...................... 185
5.4.2. Fuzzy Logic Overview.. 186
i) Fuzzy sets and membership functions... 187
ii) Logical Operations ... 188
iii) If-Then Rules .. 189
iv) Fuzzy Inference Process .. 189
References (Ch. 5) .. 192

CHAPTER 6. ANALYSIS AND RESULTS ... 199
6.1. INTRODUCTION ... 199
6.2. FUZZY LOGIC FOR IK POSITIONING (IKP) PROBLEM 200
6.2.1. Development of the fuzzy controller .. 202
i) Variable definition... 202
ii) Clusterization of input and output spaces... 203
iii) Fuzzification of the input variables... 203
iv) Knowledge base... 203
v) Inference engine ... 204
vi) Defuzzification .. 205
vii) Interactivity with fuzzy controller module....................................... 206
6.2.2. Analysis and results .. 207
6.3. IK PROBLEM IMPLEMENTATION AT RATE LEVEL 208
6.3.1. Discussion... 208
6.3.2. TDM and VJM test implementation ... 209
i) Method... 209
ii) Performance criterion vector, h .. 212
iii) Algorithm for the VJM.. 215
iv) Algorithm for the TDM... 216
6.3.3. Analysis and results. ... 218
i) Constant weighting vector for the combined performance criterion... 218
ii) Adapted Fuzzy weighting vector for the combined performance

criterion. .. 226
6.3.4. Periodic revision by fuzzified IK analysis. 234
6.3.5. Comparison of the previous VJM improvements 237
References (Ch. 6) .. 239

Contents 11

CHAPTER 7. APPLICATIONS ... 243
7.1. INTRODUCTION.. 243
7.2. MATERIAL AND METHODS ... 243
7.2.1. Material ... 243
i) Software ... 243
ii) Hardware... 245
7.2.2. Methods... 246
7.3. CASES STUDIED ... 248
7.3.1. Orographic model.. 249
7.3.2. Valencian Ninot... 243
References (Ch. 7)... 262

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 265
8.1. CONCLUSIONS.. 265
8.2. FUTURE WORK ... 267

List of tables 13

LIST OF TABLES

Table 2.1. Range of motion referred to the mechanical zero of the robot axis
concerned. It is limited by means of software switches on all axes. 65

Figure 2.20. and Table 2.2. Frame assignments and parameters for the KUKA
KR15/2 with the standard DH. The posture shown corresponds to a commonly
used HOME position (θi ={0, -π/2, 0, 0, π/2, 0} in this model, for i=1,…, 6) 69

Figure 2.21. and Table 2.3. Frame assignments and parameters for the complete
milling workcell at the IDF, formed by the KR15/2 manipulator mounted on the
linear track and synchronized with the rotary table. The posture shown
corresponds to a commonly used HOME position (in this model, θi ={ π, π, -π/2,
0, 0, π/2, 0} for i=M, 1, 2,…, 6; and dL=0) ... 70

Table 2.4. Position and orientation measured for the tool-holder regarding the
robot flange frame. .. 81

Figure 2.28. and Table 2.5. Robot {EE} frame assignments and parameters for
the complete DH model of the IDF workcell, with the tool holder designed for
milling purposes. ... 82

Table 3.1. DH parameters for the mechanical system simulating the manipulator
gross positioning. .. 104

Table 3.2. MDH Matrix simulating the manipulator gross positioning............ 110

Table 3.3. MDH Matrix simulating the manipulator gross positioning............ 111

Table 4.1. Offset between the mechanical and the DH modelled joint values . 151

Table 4.2. NX Event Handler variables for circular movements...................... 153

Table 5.1. Table summarizing the parameters for both standard DH-models. 182

14 List of tables

Table 6.1. Knowledge base for M ... 204

Table 6.2. Knowledge base for Ld .. 204

Table 6.3. Case studied .. 207

Table 6.4. From left (element (1,1)) to right (element (8,8)), diagonal weighting
matrixes for the combined performance criterion. ... 218

Table 6.5. Experimental results for the simulation in the studied workcell of the
VJM and TDM algorithms. In the TDM, two variations including a projection in

()J are studied, according to case (c). .. 221

Table 6.6. From left (element (1,1)) to right (element (8,8)), diagonal weighting
matrixes for the combined performance criterion. ... 222

Table 6.7. Experimental results for the simulation in the studied workcell of the
VJM and TDM algorithms, with the constant weights of Table 6.6. In the TDM,
two variations including a projection in ()J are studied, according to case (c).
.. 225

Table 6.8. From left (element (1,1)) to right (element (8,8)), diagonal weighting
matrixes for the combined performance criterion. The fuzzyfied weights are
assigned to the most significant joints according to experience. 227

Table 6.9. Experimental results for the simulation in the studied workcell of the
VJM and TDM algorithms, with the adapted weights of Table 6.8 via fuzzy
inference. In the TDM, two variations including a projection in ()J are studied,
according to case (c). .. 233

Table 6.10. Experimental results for the simulation in the studied workcell of the
VJM with the implementation of the adapted fuzzy weighting vector and a
periodic IKP position analysis as depicted in Figure 6.16................................ 236

Table 7.1. Range of motion and conditioning of the manipulator while the
execution of the task. ... 252

Table 7.2. Range of motion and conditioning of the manipulator while the
execution of the task. ... 259

List of figures 15

LIST OF FIGURES

Figure 2.1 Left, Prismatic (P) and Revolute (R) joints at an industrial workcell.
Right, detail of the construction of a revolute joint 39

Figure 2.2. Generalized coordinates in a planar manipulator.............................. 40

Figure 2.3. Left, coordinate system {E} referred to {B} by means of B
ET . Right,

conventionalism in the specific case of the terminal organ of the
robot.. 42

Figure 2.4. Mapping between Joint Space () and Operational Space () done
by the robot controller... 43

Figure 2.5. General architecture of a 6R decoupled manipulator [1], and the
equivalent representation (with the mechanical sense of rotation) for
the KUKA KR15/2 manipulator. .. 45

Figure 2.6. Left, eight significant solutions for a decoupled 6R manipulator;
Right, view of a KUKA KR 15/2 adopting several of these postures.
.. 45

Figure 2.7. Vector assignment to calculate the Jacobian matrix in a standard 6R
industrial manipulator (only r1 and r2 shown for clarity). 49

Figure 2.8. Vector assignment to calculate the Jacobian matrix in a wrist-
partitioned 6R industrial manipulator, taking into account the
decoupling... 50

Figure 2.9. Up, boundary singularity achieved by fully extension of the robot;
down, internal singularity consequence of the alignment of qi and qj
motion axes. .. 52

Figure 2.10. From left to right, elbow, shoulder and wrist singularities. 56

Figure 2.11 Unusable orientation workspace (or degeneracy cone) due to
singularity in a spherical wrist [23]. This cone, exaggerated in scale,
is generated by the axis of the last joint at the limit of eq. (2.31). .. 57

16 List of figures

Figure 2.12. Highlights of the two mappings U and R, between spaces of dim=3.
The axis of the sphere are oriented along the three eigenvectors of
U.. 59

Figure 2.13. Best orientation conditioning in an orthogonal wrist, as used at
many industrial wrist-partitioned manipulators. 63

Figure 2.14. Left, complete view of the KUKA robotic workcell at the IDF-UPV
(Robot A, left; Robot B, right); Right, top view of the robot B
synchronizaed with the rotary table. ... 64

Figure 2.16. Parts of the KR15/2 manipulator and main dimensions.................. 65

Figure 2.17. Linear unit as an additional axis (External Axis 1 or E1), with which
the robot can be moved translationally (Ld). 66

Figure 2.18. Rotary (M) table CR250 (External Axis 2 or E2).......................... 67

Figure 2.19. Spatial relative position of two consecutive links and their
associated coordinate frames according to the DH criterion........... 68

Figure 2.20. and Table 2.2 Frame assignments and parameters for the KUKA
KR15/2 with the standard DH. The posture shown corresponds to a
commonly used HOME position (θi ={0, -π/2, 0, 0, π/2, 0} in this
model, for i=1,…, 6) ... 69

Figure 2.21. and Table 2.3. Frame assignments and parameters for the complete
milling workcell at the IDF, formed by the KR15/2 manipulator
mounted on the linear track and synchronized with the rotary table.
.. 70

Figure 2.22. Workcell simulation in Matlab’s Toolbox HEMERO [37]............. 71

Figure 2.23. Design parameters of the workcell (hM , dM) and additional external
joint values (θM , dL). Significant position vectors in the workspace
are shown. ... 74

Figure 2.24. The resolution by triangulation in the plane defined by {θ1, θ2, θ3}.
Measurements in millimetres. ... 75

Figure 2.25. Obtaining the coordinate system {R’’’W} linked to W 77

Figure 2.26. Location of the robot flange frame on delivery............................... 80

Figure 2.27. Tool holder designed for milling tasks at the IDF. 81

Figure 2.28. and Table 2.5. Robot {EE} frame assignments and parameters for
the complete DH model of the IDF workcell, with the tool holder
designed for milling purposes. .. 82

List of figures 17

Figure 2.29. Algorithm in Matlab to find the characteristic length (L) of a
manipulator. In this particular case, table 2.2 refers to the KR 15/2
without any tool attached, giving a value of L=350.6 mm. 85

Figure 2.30. Left, best conditioned poture for the 6R KR 15/2 manipulator
without any tool attached to the robot flange. Right, same result
obtained with the RSV4W [48]. ... 85

Figure 3.1. Repeteability and accuracy issues for a commanded target.............. 91

Figure 3.2. Several open (up) and closed (down) loop methods for robot
calibration. .. 93

Figure 3.3. Generic procedure in a robot calibration using an open-loop method
[6].. 94

Figure 3.4. Generic procedure in a robot calibration using a closed-loop method
[6].. 94

Figure 3.5. 2D planar manipulator of two links simulating the gross positioning
in the KUKA KR 15/2 manipulator. ... 104

Figure 3.6. 30 observed points in the workspace .. 106

Figure 3.7. Mechanized squared corner with high tolerance degree, placed on the
base frame of the workspace {B} .. 112

Figure 3.8. Open-loop procedure proposed for the workcell calibration. 113

Figure 3.9. Left, view of the laser displacement sensor. Right, the site of the light
spot on the PSD detector is dependent on the distance of the
detected object. The signals A and B change depending on the
position of the light spot. The calculation of the signals in the
microcontroller then gives a linear output signal depending on the
distance of the object. ... 114

Figure 3.10. Left, highlight of the DH model introduced in Chapter 2. Right,
three commanded meshes on the three respective planes. 116

Figure 3.11. Coordinate i
S yp approximated by the distance

Y

iD to Y 117

Figure 3.12. Sweeping the reference planes with two configurations of Ld and

M . .. 119

Figure 3.13. Left, the values of the increment  show a final stable value;
Right, the stop criterion is achieved after 18th iterations............... 120

18 List of figures

Figure 4.1. The scope of CAD/CAM and CIM [2].. 127

Figure 4.2. View of the main window of NXTM while covering a complete
CAD/CAM process. .. 128

Figure 4.3. CAD/CAM/CNC-ROB flow process: the quality of the CAD-model
determines the efficiency of the results obtained in the following
steps of the manufacturing process. .. 129

Figure 4.4. CAD/CAM/ROB systems offer the possibility of producing very
complex pieces.. 131

Figure 4.5. Left, the path followed by PTP positioning to reach various
programmed points (machining locations) on the XY axis. Right,
complex contour tracking.. 132

Figure 4.6. Left, resistance welding in the industry of automotion (PTP
operation). Right, continuous path (CP) tracking to cut a stone
(courtesy of Pedra Navas). ... 133

Figure 4.7. Compared with a linear controller (left), circular interpolation has
greatly simplified the process of programming arcs and circles, and
consequently the length of the codes. ... 134

Figure 4.8. Input parameters prior to the generation of the toolpath (NXTM)... 136

Figure 4.9. Concept of postprocessing as link between CAD/CAM and the
production sytem at the shopfloor... 137

Figure 4.10. Three different configurations in a 5-axis machine tool [14]........ 139

Figure 4.11. Generic B-Y-Z-X-C milling center Huron KX8-Five, and view of
the CAM software CATIA.. 140

Figure 4.12. Guo et al. implemented a postprocessor for the NX system (Siemens
Corp.) and to convert CL-data to PKM control data. 140

Figure 4.13. Huang and Lin converted five-axis CL-data into robot control data
readable by the unique controller of a dual-robot ABB workcell . 141

Figure 4.14. Post Builder interface that allows a simple managing of
postprocessors for different standard machine-tools (within a range).
.. 142

Figure 4.15. General structure of a CAM-ROB postprocessing........................ 144

Figure 4.16. Trajectory tolerances, intol and outol, in the NX-CAM system. .. 145

Figure 4.17. NX-CAM dialog window to determine the sort of CN inputs
generated. Those inputs must describe linear and circular motions
for most current industrial manipulators. 146

List of figures 19

Figure 4.18. Influence of the tolerances (intol and outol) on the number of linear
interpolations required to track a toolpath [38]............................. 146

Figure 4.19. Toolpath interpolated with arcs and lines. 147

Figure 4.20. Integrated postprocessing in the NX-CAM system. The Definition
File and the Event Handler are programmed in TCL to adapt NX's
CAM to the KUKA KRC2 controller. The Event Handler is able to
interact with executable modules programmed in C++. 148

Figure 4.21. The actual end position (PACTUAL END) on the arc is determined by the
programmed CA sign and value, and not by the destination point
(PPROGRAMED END).. 152

Figure 4.22. Left, Arc of circumference and arc plane. Right, definition points.
.. 153

Figure 5.1. Anatomical studies of the arm showing the movements, by Leonardo
Da Vinci (1510) .. 160

Figure 5.2. Left, decoupled 6R manipulator. Right, the same manipulator
combined with two additional joints (linear track and rotary table)
.. 161

Figure 5.3. Irrelevant axis of symmetry of the tool at milling tasks.................. 162

Figure 5.4. Intrinsic and functional redundancies of serial robotic tasks, with
references to the studied workcell. ... 163

Figure 5.5. Milling toolpath with Frenet-Serret frames (tangent t, normal n and
binormal b) indicating the required pose at each point in the
toolpath. Again, it can be appreciated the irrelevant axis of
symmetry of the milling tool. ... 164

Figure 5.6. Relation between the desired and the current pose. 166

Figure 5.7. Highlight of the loop leading from an initial current pose (k) to a
desired final pose. ... 167

Figure 5.9. Additional virtual joint allowing a rotation around the symmetry axis
of the tool. ... 178

Figure 5.10. Decomposition of the angular velocity vector  into two orthogonal
parts: one lying on the task subspace () and another one lying on

the orthogonal task subspace ( ).. 179

Figure 5.11. In the TDM, the motion of the secondary task is always constant in
the EE frame (the rotation around the symmetry axis of EE)....... 181

20 List of figures

Figure 5.12. Comparison of the DH frame assignment for the VJM (left) and the
TDM (right). ... 182

Figure 5.13. Usual flowchart for a redundant manipulator controlling process.183

Figure 5.14. Proposed flowchart for a redundant manipulator controlling process.
.. 184

Figure 5.15. Block diagram of a fuzzy control. The inference mechanism
interprets the values in the input vector and, based on some set of
rules, assigns values to the system inputs. 186

Figure 5.16. Types of Membership Functions: triangular MF, trapezoidal MF,
Gaussian MF and Sigmoidal MF. ... 187

Figure 5.17. Standard truth tables adapted to FL reasoning: because there is a
function behind the truth table rather than just the truth table itself,
values between 1 and 0 can be considered now............................ 188

Figure 5.18. The upper fuzzy sets (A, B) are managed with the fuzzy operations
defined, to get the result displayed below..................................... 188

Figure 5.19. Fuzzification, application of the fuzzy operator (OR) and implication
processes for a single if-then rule.. 190

Figure 5.20. Aggregation of the consequents across the rules a single output
fuzzy set, and final defuzzification by means of the centroid method.
In summary, information flows through the fuzzy inference process
as shown.. 191

Figure 6.1. Wrist singularity (top) and widespread position singularity (bottom)
concerning the milling processes on the rotary table. 200

Figure 6.2. Overview of the Matlab’s Fuzzy Logic Toolbox, which allows the
design and testing of a fuzzy controller. 201

Figure 6.3. Flow of the heuristic reasoning in the control of the automated cell
and its interaction with the expert system implemented in NXTM.203

Figure 6.4. Min-Max inference process for two rules: two discrete input values
(3 , 5) are fuzzificated (3 , 5) by the corresponding clusters
involved in both rule. The minimum degree of membership in each
case is taken as output membership value in the implied output
clusters (red), and then aggregated (blue) into a single fuzzy set for
the overall output. .. 205

Figure 6.5. The centroid calculation returns the center of area under the
aggregated curve as crisp output value. 206

List of figures 21

Figure 6.6. Integrated postprocessing in NX. The Definition File and the Event
Handler are programmed in TCL to adapt NX's CAM to the KUKA
KRC2 controller. The Event Handler is able to interact with
executable modules programmed in C++. 207

Figure 6.7. Matlab simulation of the readjustment of the workcell after the
actuation of the implemented fuzzy controller for Case A (left) and
B (right). .. 208

Figure 6.8.Workcell at HOME posture and main parameters of the experimental
toolpath. ... 210

Figure 6.9. Left, best conditioned posture for the 6R KR 15/2 manipulator
deduced in Section 2.4.6. Right, mechanical mid-joint posture. . 213

Figure 6.10. Additional virtual joint, associated with a rotation in Z9. 215

Figure 6.11. Represetation of the EE in the TDM test. The transformation matrix
towards the tool tip is expressed as a displacement on Z9 in mm. 217

Figure 6.12. Left, graphical representation of the fuzzy engine determining the
weights for the reference posture manteinance criterion. Right, the
fuzzy engine giving the weights for the singularity avoidance
criterion.. 227

Figure 6.13. From left to right, representation of the peak posture of each of the
three clusters in which the input spaces are divided. 228

Figure 6.14. Output spaces for the weight assignment: left, for the reference
posture criterion; right, for the singularity avoidance criterion. .. 229

Figure 6.15. MATLAB’s Fuzzy Toolbox has a Rule Editor to easily manage the
if-then rules relating the input and output spaces. Four rules were
created for the reference posture criterion (up), and two for the
singularity avoidance criterion (down). 230

Figure 6.16. Proposed Fuzzy revision for the studied workcell. 234

Figure 6.17. Comparison of the conditioning achieved with the different VJM
trials: blue, with constant weighting vector (w=0.01); green, with
fuzzy adapted weighting vector; and red with fuzzy adapted
weighting vector and a periodic revision of the IKP. 237

Figure 6.18. While the condition number is almost the same (kF=0.4), the worst
posture achieved with the periodically revised method (right) has a
better performance for continuous milling purposes. 238

22 List of figures

Figure 7.1. Up, different views of the workcell simulated in NXTM MOTION;
down, two views of the simulation done with RobomoveTM. 244

Figure 7.2. Left, real tool: an air turbine moves a 20 mm diameter spherical-tip
tool; right, revolute model in NXTM. ... 245

Figure 7.3. A pressurized air system (right) pushes the pistons against the
opposite angle (left) to fix the workpiece. 246

Figure 7.4. Left, EPS blanks; right, machining process of one piece in EPS. ... 246

Figure 7.5. Flow process for the cases studied .. 247

Figure 7.6. Up, sketch of the scaled model (factor 1:75) of the reservoir used to
simulate flows, refluxes and water retentions; down, Valencian
Falla. ... 248

Figure 7.7. The model is obtained by assembling 120 blocks of 1x1x0.5 meters of
EPS, after fixing the contour lines and interpolating mesh for each
block.. 249

Figure 7.8. CAM/Rob process for the construction of each block, validating the
postprocessor for 3-axis milling operations. 250

Figure 7.9. Trajectories for Cavity Milling and Finish Milling are generated in
NX... 250

Figure 7.10. With the programmed algorithm, the additional joints are moved to
reach the complete toolpath while maintaining a well conditioned
posture... 251

Figure 7.11. Final model in EPS with scaled factor 1:75 for flowing simulation
(real dimensions of 8x13 m). .. 253

Figure 7.12. Valencian Falla composed of fanciful ninots in outrageous poses
arranged in a gravity-defying architecture. 254

Figure 7.13. From left to right, the effects of the softening operation are shown. It
has great relevance as it determines the rest of operations until the
final milling... 255

Figure 7.14. For the cavity milling, the workpiece is necessarily divided in
different cutting areas (upper and lower zones). This treatment
optimizes the use of the additional joints, and is strongly dependent
on the tool’s lenght.. 256

Figure 7.15. The successive cavity mill operations will be carried out with
variable orientation of the tool, in order to reach all the parts of the
ninot. ... 256

List of figures 23

Figure 7.16. The attachment of the blank directly over the table makes the access
to the lower parts difficult. Therefore, the blank is fixed by means of
an intermediate piece which raises the height............................... 257

Figure 7.17. A 5-axes toolpath is planned on the eyes to test the postprocessor.
.. 257

Figure 7.18. With the programmed algorithm, the additional joints are moved to
obtain a better performance while maintaining a well conditioned
posture... 258

Figure 7.19. In some regions, where the orientation of the surfaces changes
rapidly, the orientation of the tool associated to them can be
problematic not only for the fast reaction of the posture required but
also for the collision of the tool itself. .. 260

Figure 7.20. After estimating the most convenient ZTOOL axis (left), the full
surface could be machined almost completely (right) with a 3+2
milling operation... 261

Abbreviations and acronyms 25

ABBREVIATIONS AND
ACRONYMS

At each chapter, the notation used is introduced in its respective context.
Nevertheless, common acronyms and abbreviations along the present document
are listed below for shake of clarity.

AP, Accuracy of pose
{B}, Base coordinate system
CA, Circular Angle
CAD, Computer Aided Design
CAM, Computer Aided Manufacturing
CIM, Computer Integrated Manufacturing
CL-data, Cutter Location data
CNC, Computer Numerical Control or Computer Numerically Controlled
CP, Continuous Path
DH, Denavit-Hartenberg
DK, Direct Kinematics
DKP, Direct Kinematic Problem
DLS-inverse, Damped Least-Squares inverse
DOF, Degree of Freedom
EE, or {E}, End-Effector
FL, Fuzzy Logics
FLC, Fuzzy Logic Controller
GAs, Genetic Algorithms
GPM, Gradient Projection Method
h, Optimized performance criterion vector or Performance vector
H, Homogeneous Jacobian matrix
HSM, High Speed Machining
IDF, Design and Manufacturing Institute – Instituto de Diseño y Fabricación
IK, Inverse Kinematics
 , Joint Space
J , Jacobian matrix

26 Abbreviations and acronyms

aJ , Analytical Jacobian

gJ , Geometric Jacobian

KRC, KUKA Robot Controller
KRL, KUKA Robot Language
L, Characteristic Length
MF, Membership Function
N, links of a manipulator
NC, Numerical Control
NLSQ, Non-Linear least squares
NN, Neural Networks
PKM, Parallel Kinematic Machines
PTP, Point to Point
rF, Functional Redundancy
rI, Intrinsic Redundancy
rK, Kinematic Redundancy
ROB, Robotics
RP, Rapid prototyping (Repeatability of Pose, at Chapter 3)
RPY, Roll-Pitch-Yaw
RRS, Redundancy Resolution Schemes
SVD, Singular Value Decomposition
T, Task Space
{T}, Tool coordinate system
TCL, Tool Command Language
TCP, Tool Center Point
TDM, Twist Decomposition Method
UPV, Universidad Politécnica de Valencia
VJM, Virtual Joint Method
W, Wrist
WPI, Weighted Pseudo-Inverse
 , Operational Space
6R, six revolute joints

Chapter 1. Introduction 27

CHAPTER 1

INTRODUCTION

Chapter 1. Introduction 29

CHAPTER 1. INTRODUCTION

1.1 INTRODUCTION

Initiated the 21st century, it is practically unbelievable the revolution
experienced by the manufacturing technologies especially on last 10-15 years.
The evolution of the computers, the machinery and the new communication
technologies are revolutionizing the World in general, and especially the
industry.

In the field of milling concerning this thesis, the revolution has already
come with terms such as High Speed Machining (HSM) or Rapid Prototyping
(RP), which many factories start discovering right now. Nowadays, the HSM
may have some different interpretations, but it does not necessarily mean to
machine with a high spindle speed. For example, some HSM applications are
carried out with moderate spindle speeds (3.000-6.000 rpm) but with tools of
great diameter (25-30 mm) with more global depth per cut or step-over (see
Chapter 4). Clearly, the triangle material-cutter-machine conditions the cutting
parameters, the milling strategies, the volume of material removed per unit of
time, etc. Thus, the speeds and feeds in the process will generally depend on the
material to machine. Rapid Prototyping in industrial design and in mechanical
design engineering is of increasing importance in order to get physical replicas of
CAD (Computer Aided Design) defined models and to support the product
development process, specially when the emphasis of the design is on the surface
of the product more than the replication of an inner structure. Therefore, the RP
referred here is done with soft materials, such as foams.

At the same time, robotic arms are becoming more demanded in
manufacturing processes involving large volumes, due to their high flexibility
and large working areas. These properties are commonly increased with the use
of additional joints carrying the arm or the workpiece, making up what is know
as industrial robotic workcell. This holds in particular when the resulting
prototypes are relatively large (normally, more than 0.5 metres).

In this context, conventional Computer Numerical Control (CNC)
machining techniques can be adapted from being devoted to high precision metal
cutting to fast milling of soft material, thus making them suited for rapid
prototyping. In fact, with the implantation of more sophisticated
CAD/CAM/ROB integrated manufacturing systems, the time invested in

30 Chapter 1. Introduction

successive verifications, adjustments and translations in the machining process
up to the materialization of the product is to be reduced.

Leading commercial CAM (Computer Aided Manufacturing) softwares
plan off-line the cutting toolpaths in a Cartesian coordinate system. Therefore,
the tracking of the cutter is independent from the machine tool which will
manufacture the workpiece (also due to reasons of precision and universality).
These platforms are ready for the control and postprocessing of up to a maximum
of 5-axis CNC machines. These five parameters are, namely: three pose
coordinates of the tool center point (TCP) and two orientations of the milling tool
(considering it symmetrical along its revolute axis). It supposes no indecision in
tool positioning and orientation in conventional CNC machines but, in every
case, the toolpath has to be postprocessed (i.e., adapted) to the production system
that is going to be used.

This previous overview highlights that there is still tremendous scope for
improvement in the basic machine modelling and postprocessing fields.
Traditional CNCs are ill-suited to the demands of many of today's complex
robotic workcells. At the Design and Manufacturing Institute, in the Universidad
Politécnica de Valencia (IDF-UPV), a sculpturing robot system has been
configured in order to test and to apply milling methods for rapid prototyping. An
industrial arm with six revolute joints is mounted on a linear track, and it works
over a synchronized rotary table platform on which the initial blank of material is
fixed. This provides a wider effective workspace, which is needed for handling
large objects with complex shapes.

The main difficulty of postprocessing a toolpath generated by a CAM
platform for a complex robotic cell focuses on the treatment to give to the
redundant joints in order to avoid singularities and limits of range. With the
inherent redundancy stated previously, the aim is to reach the successive poses of
the toolpath in the Cartesian space. This postprocessing stage raises two
differentiated tasks referring to both cutter pose and manipulator posture:

 Translation of the cutter poses generated by the CAM platform in
agreement with the requirements of the robot language.

 Kinematic analysis of the cell for a certain requirement of the cutter pose,
in order to include the treatment of the robot posture with the additional joints.

The second task arises from the fact that, with the inherent capacity to
avoid non-desired postures, the set of possible configurations is now infinite.
Several robot manufacturers solve the problem only by means of graphic
interfaces as an intermediate step between the CAM platform and the robot
execution. In these interfaces, an expert technician fixes the additional joints and
checks the movements of the arm along the tracking, in order to know if a limit
of range or a singular configuration is reached at any point. Experience and

Chapter 1. Introduction 31

knowledge of the technician in charge of the manufacturing process allow
profiting from the employment of the additional joints in these cases. However, it
is a tedious job.

This thesis focuses on the application of industrial robotic workcells to
the rapid prototyping of 3D CAD-defined products. It revises diverse methods to
deal with the postprocessing stage from the CAM software to the redundant
workcell. It also presents an effective implementation of a CAM-ROB integrated
postprocessor for a fully automatic off-line generation of the robot instructions
based on both the posture and joint velocity analysis, attending to different
criteria.

1.2 STATE OF ART AND CURRENT TENDENCIES

The following lines mark the current trends in the context of this thesis,
on the basis of a reflection on the latter bibliographical references. Together with
others, they will be recounted in the thematic area of each Chapter.

On the employment of robotic worcells for robotic rapid prototyping
applications, Joe Campbell, director of strategic alliances of KUKA Robotics
Corp. (Clinton Township, MI), already affirmed a few years ago [1] that “we're
seeing this transition now where robots should plough being used for to lot of
machining processes, in softer materials and prototyping. This is an area that was
previously dominated by machine tools”. This trend has been supported in other
similar analyses, among which Fei et al. [2] (May 2010) can be highlighted in
view of its proximity to the core matter of this thesis. Nevertheless, the scope of
this thesis goes beyond the merely treated by the above-mentioned authors, since
it deals with other topics such as calibration and the underlying redundancies in
complex workcells. Due to the multidisciplinary character of the study, the
author has chosen to realize the state of the art and bibliography in relation to
each Chapter.

The reader will understand that certain topics of the mechanics, robotics
and classic mechatronics have been widely recorded and checked from the 50s.
Some of these concepts will be raised at Chapters 2 and 3. Obviously, the sources
to which the thesis will refer in those associate chapters can come from the above
mentioned years though the innovation lies in its application to the framework of
this thesis. For example, this is the case of the condition number of the Jacobian
matrix, proposed by Jorge Angeles in the early 90s, but which still maintains its
presence in the contemporary research. In this sense, a brief stay has been done in
the McGill’s Centre for Intelligent Machines (Montreal, Canada;
www.cim.mcgill.ca), where Jorge Angeles directs his scientific research. Also in
line with this, subsequent reviews of classic mechatronics applied to robot

32 Chapter 1. Introduction

milling can be found. It is the case of the recent publication of Xiao et al. [3]
(January 2011) meantime the publication of this thesis.

Directly from the previous topics, the optimization in the use of
mechanical complex systems has promoted numerous studies. This way, Pin et
al. [4] (2009) also uses the condition number for the control of a robot of seven
rotary joints. The profuse review documented by Chiaverini et al. [5] reflects the
fact that classical Jacobian formulations are still in the limelight. Some
researches even stem towards the empirical evaluation of different performance
indexes [6]. Also referred to optimization, and later used in this thesis, the use of
the fuzzy logics is a burning topic, as the recent review realized by [7] shows.

The recent studies on the optimal use of redundant robots in applications
closer to milling ones are of major interest. The works of Huo et al. [8] about
welding robots, Mitsi et al. [9] or Vosniakos and Matsas [10], Nemec and Lajpah
[11][10], and Olabi et al. [12] are the most outstanding.

As for future trends, attending to new demands that differ from the initial
scope of this thesis (though it can be a point of departure) the recent publications
of Neto et al. [13], Liu et al. [14] (about interfaces for the programming of
industrial robots), and Sugita et al. [15] (about the applicability of CN generated
robot toolpaths in surgery) are worth mentioning.

1.3 OBJETIVES

In 2006, the study of the CAM to robotics postprocessing with the IDF’s
industrial workcell was established as the main goal for this thesis. At the
beginning, as usual in research, the final objective seemed to be clear (i.e. be able
to mill with the redundant robots recently updated by KUKA with the two
additional joints). Later on, with the development of the study, further partial
objectives appeared as a continuous of steps.

The main objectives of this thesis are described as follows:

 Going into the knowledge of the architecture of the automated industrial
redundant workcells in depth, specifically about the:

- Establishment of a full kinematic model of the robotic workcell for
both direct and inverse, posture and velocity analysis (Chapter 2)

- Study of different criteria (namely, indices) to establish the better
performance of the robot posture (Chapter 2)

- Revision of the singularities concerning the work with this type of
wokcells (Chapter 2).

- Calibration of the external joints added to the main robotic arm to
form the industrial workcell (Chapter 3)

Chapter 1. Introduction 33

 Describing a complete postprocessing methodology from CAM systems
to NC controllers, improving (and unifying in some cases) previous works. Those
controllers manage machine tools or robots (Chapter 4).

 Giving a complete guide on the types of redundancy in industrial robots
devoted to milling tasks and the Redundancy Resolution Schemes (RRS)
associated (Chapter 5).

 Implementation and comparison of the most suitable RRS (Chapter 6).

 Raising solutions to two different applications: the milling of both an
orographic model and a valencian ninot, thus having a test and evaluation of the
implementation done (Chapter 7).

1.4 METHODOLOGY

As stated in the previous Section, the followed methodology arises from
the partial proposed aims. In turn, these ones have appeared in correspondence
with partial needs:

- The kinematic modelling of the workcell arises as direct subtask, for
the need to simulate the robot and to be able to establish an off-line path
planning in a PC. In short, a good model is what allows the required
abstraction in the in the theoretical workframe of this thesis.

- Without losing of sight the real aim of milling, the task of calibration
is carried out close to the real robot. Because of the production and
assembly, the true geometric parameters of an industrial robotic workcell
are different from the corresponding ones used by the robot kinematic
model. It results in errors in the tool poses. Model-based robot
calibration methods are studied to minimize those pose errors through
identifying the true geometric parameters of the workcell based on the
measurements of strategically planned toolpaths and the mathematical
solutions of non-linear least squares optimization.

Those previous works were the basis to keep working with the workcell,
and also to deep on the pros and cons of working with an industrial controller.
Nevertheless, the final aim toward obtaining a feasible implementation was
always kept in mind. At this point, the research was done in two parallel ways:
on one hand, the existing CAM postprocessors and their capabilities to be
reprogrammed were analyzed. In this sense, NX (licensed at the IDF) proved to
be one of the most user-friendly programmable commercial platforms. To get
expertise, technical advice was needed in some cases, as it is recognised in the
acknowledgements Section at the beginning of the thesis. On the other hand, the
mathematical models of the workcell found its uses in the Redundancy

34 Chapter 1. Introduction

Resolution Schemes that were to be integrated with the path tracking generated
by the CAM

After all this previous work, the evaluation of the implemented models
was carried out by means of a theoretical problem in 5-axis milling, i.e. the
machining of an spherical surface, prior to the practice with real cases.

From the author’s point of view, one of the strong points of the present
document is the complete troubleshooting through the multidisciplinary
approach done. Obviously, the structure of the thesis is conceived by chapters
approaching each of the above mentioned matters, as it is described in the
following Section,. This structure coincides with the temporary sequence of the
studies.

1.5 STRUCTURE

The current thesis is planned in eight chapters, including this one.

Chapter 2, Workcell Kinematics Characterization, can be considered as a
requirement prior to the development of the study. In summary, it consists of
going into the redundant workcell architecture and the related problematic facts
in depth. Therefore, this chapter also includes a state of art related to this.

In this sense, the state of art associated to each of the objectives tackled
in successive chapters is made, mainly, in the first pages of each one. This also
allows channelling their development.

At Chapter 3, Workcell calibration, a Non-Linear Least Squares (NLSQ)
identification model has been derived from the consistency conditions of three
orthogonal a pattern planes that are swept by a laser displacement sensor
mounted on the manipulator. This non-contact calibration scheme can be
implemented autonomously. It is expected to be suitable for on-site calibration in
an industrial environment of the external joints introduced in Chapter 2.

Chapter 4, CAM to Workcell postprocessing, lays the necessary
foundations for the knowledge of integrated production systems. In this chapter,
the fundamentals of CAM systems and CNC are described, to finally raise the
concept of postprocessing. This chapter ends with particular specifications
related to the system NX-CAM and the KUKA workcell used in the IDF.

On the scope of the thesis, due to the fact that the workcell is redundant,
Chapter 5 compiles and classifies different types of redundancy and describes the
different methods for redundancy resolution (namely, Redundancy Resolution
Schemes, RRS) that can be considered for postprocessing labours.

From the previous chapters, several implementations for the particular
IDF’s redundant workcell are done in Chapter 6. The first implementation

Chapter 1. Introduction 35

consists of a postprocessor based on the analysis with logic fuzzy of the inverse
kinematics (IK) of the robotic arm posture. This allows getting on in
postprocessor programming labours. Nevertheless, with the limitations found for
complex millings (large workpieces or milling with variable tool orientation), the
acquired practice is then invested in the implementation of the RRS based on the
control at joint rate level.

Chapter 7 applies the postprocessor implemented to two practical cases:
the machining of an orographic surface of big dimensions, and the one of a
valencian ninot with variable tool orientation.

Finally, the most relevant conclusions are outlined in Chapter 8. A series
of feasible future works departing from the current investigation is also proposed.

36 Chapter 1. Introduction

REFERENCES (Ch. 1)

[1] Waurzyniak P., Shop-Floor Productivity, Manufacturing Engineering July 2005

Vol. 135 No. 1
[2] Fei M., Haiou Z., Guilan W.; Application of industrial robot in rapid prototype

manufacturing technology, IEEE 2nd International Conference on Industrial
Mechatronics and Automation – ICIMA 2010, pp. 218-220, Wuhan, China, May
30-31, 2010.

[3] W. Xiao, H. Strauß, T. Loohß, H-W Hoffmeister, J. Hesselbach; Closed-form
inverse kinematics of 6R milling robot with singularity avoidance, Prod. Eng.
Res. Devel. (2011) 5:103–110

[4] W. Pin, W. Lili, L. Hong, D. Qian; An Optimization Algorithm for Redundant
7R Robot, 2009 First International Workshop on Education Technology and
Computer Science - IWETCS, China, 2009.

[5] S. Chiaverini, G. Oriolo, I. D. Walker; Kinematically redundant manipulators;
Springer Handbook of Robotics, B. Siciliano and O. Khatib (Eds.), Springer-
Verlag, Berlin, D, pp. 245–268, 2008.

[6] M. Tisius, M. Pryor, C. Kapoor, D. Tesar, An Empirical Approach to
Performance Criteria for Manipulation, Journal of Mechanisms and Robotics,
AUGUST 2009, Vol. 1 / 031002-1/12

[7] R-E. Precup, H. Hellendoorn; A Surrey on industrial applications of fuzzy
control; Comput.Industry (2010), doi:10.1016/j.compind.2010.10.001 (in press)

[8] L. Huo and L. Baron, The joint-limits and singularity avoidance in robotic
welding; Industrial Robot: An International Journal, Volume 35, Number 5,
2008, pp. 456–464

[9] S. Mitsi, K.-D. Bouzakis, D. Sagris, G. Mansour, Determination of optimum
robot base location considering discrete end-effector positions by means of
hybrid genetic algorithm, Robotics and Computer-Integrated Manufacturing 24
(2008) 50–59

[10] G.-C. Vosniakos, E. Matsas; Improving feasibility of robotic milling through
robot placement optimisation, Robotics and Computer-Integrated Manufacturing
26 (2010) 517–525

[11] B. Nemec and L.Z. Lajpah; Robotic cell for custom finishing operations,
International Journal of Computer Integrated Manufacturing, Vol. 21, No. 1,
January – February 2008, 33 – 42

[12] A.Olabi, R. Bearee, O. Gibaru, M. Damak, Feedrate planning for machining
with industrial six-axis robots; Control Engineering Practice 18 (2010) 471–482

[13] P. Neto, J. N. Pires, A. P. Moreira; CAD-Based Off-Line Robot Programming;
2010 IEEE Conference on Robotics, Automation and Mechatronics

[14] Z. Liu, W. Bu, J. Tan; Motion navigation for arc welding robots based on
feature mapping in a simulation environment; Robotics and Computer-
Integrated Manufacturing 26 (2010) 137–144

[15] N. Sugita, T. Nakano, T. Kato, Y. Nakajima and M. Mitsuishi; Path Generator
for Bone Machining in Minimally Invasive Orthopedic Surgery; IEEE/ASME
TRANSACTIONS ON MECHATRONICS, VOL. 15, NO. 3, JUNE 2010, pp.
471-479

Chapter 2. Workcell Kinematic Characterization 37

CHAPTER 2

WORKCELL KINEMATIC
CHARACTERIZATION

“And thems the breaks / For
we designer fakes / We need

to concentrate / On more
than meets the eye” –

20 years (Placebo)

Chapter 2. Workcell Kinematic Characterization 39

CHAPTER 2. WORKCELL KINEMATIC CHARACTERIZATION

2.1. CONCEPTS ON MANIPULATOR KINEMATICS

A manipulator is a device that helps human beings to perform
manipulating tasks. A robotic manipulator is to be distinguished from the
previous for its ability to lead itself through computer control. Once
programmed, it can implement the same task repeatedly. In general, robotic
manipulators can be studied using the concept of kinematic chain. A kinematic
chain is a set of rigid bodies, also called links, coupled by kinematic pairs.

A kinematic pairs is the coupling of two rigid bodies so as to constrain
their relative motion. There are two basic types of kinematic pairs, namely, upper
and lower kinematic pairs. An upper kinematic pair is obtained through either
line contact or point contact, and thus, appears in cam-and-follower, gear trains,
and roller bearings, for example. A lower kinematic pair occurs when contact
takes place along a surface common to the two bodies. From the six common
lower kinematic pairs (planar, spherical, cylindrical, revolute, prismatic, and
helicoidal) [10][11], prismatic and revolute are the most employed in industrial
manipulators (both allowing only one degree of freedom, DOF), Figure 2.1.

Figure 2.1 Left, Prismatic (P) and Revolute (R) joints at an industrial workcell.
Right, detail of the construction of a revolute joint .

 Chapter 2. Workcell Kinematic Characterization 40

2.1.1. Joint variables (generalized coordinates)

 This thesis focuses on serial manipulators, i.e., simple open kinematic
chains. In such manipulators, there are exactly two bodies with a degree of
connectivity1 of one, called end-bodies, and all the other bodies with a degree of
connectivity of two. One end-body is arbitrary regarded as fixed and is named the
Base {B}, while the other end-body is regarded as movable and is called the
moving body, or the end-effector (EE) of the manipulator, Figure 2.2.

A total of 6N coordinates are required to specify the position and
orientation of all the N links of a manipulator relative to a coordinate frame
(namely, the posture of the manipulator). Since the links are coupled together,
the 6N coordinates can be expressed as functions of a minimum set, nq R .

 T

1 2 3 nq = q , q , q , . . . , q ; dim()n n   (2.1)

The q joint variables of the manipulator, that are all independent, are
known as generalized coordinates, and the motions associated with them are
consistent with the constraints. The value n is the degree of freedom (DOF) for
that system, and is the sum of DOF of each joint. We will refer  to as the joint
space, whose dimension is n; and general n-axis manipulator to as any serial
robot having such a dimension.

Figure 2.2. Generalized coordinates in a planar manipulator

1 The degree of connectivity of a body is defined as the number of bodies directly connected to the said body
through kinematic pairs.

Chapter 2. Workcell Kinematic Characterization 41

2.1.2. Operational coordinates

The operational coordinates of a robot are the m components of the
vector mx R that specifies the position and the orientation (namely, pose) of the
EE of the robot in the physical space (namely, operational space, ) with regard
to an operational frame of reference (Base, {B}), generally Cartesian:

 T

1 2 3 mx = x , x , x , . . . , x (2.2)

In case of the general movement of the terminal organ in the 3D space,
depending on the type of coordinates of orientation that are in use, m might be
major than six. Nevertheless, since it is preferable that above mentioned
coordinates are independent, m generally will be equal to six. In such a case,
three coordinates define the position of a point of the body (TCP or tool center
point), whereas other three define the orientation angles around that point
regarding one notation conventionalism, usually Roll-Pitch-Yaw (RPY) or
whatever of the different Euler notations2.

(, , , , ,) ; dim() 6x y z x y zx p p p m       (2.3)

Nevertheless, in the mathematical background of the kinematic analysis
of manipulators, it is also useful the homogeneous notation, in which the position
and orientation of a coordinate system (usually the EE) refered to another
(usually B), Figure 2.3, is expressed by means of a 4x4 matrix, B

ET , namely:

x x x x

y y y y

z z z z

i j k p

i j k p

i j k p

0 0 0 1

B
ET

 
 
 
 
 
 

 (2.4)

where the last column indicates the position of origin of {E}, EO , with respect to
{B}, and the first three columns are the coordinates of the unitary vectors
defining {E} projected onto {B} (see Figure 2.3).

Specifically, when assuming a parallel-jaw gripper as the terminal organ

of the robot,  i, j, k
  

will be referred to as  n, s, a
  

, regarding the expected

2 Due to the existing confussion found in Euler Angle notations, we will adopt the the KUKA KRC2 controller
convenion. Thus RPY values are defined as three consecutive rotations in Z, Y and X axes, respectively, over
the resulting moved axis after each rotation. [46] [http://en.wikipedia.org/wiki/Euler_angles]

 Chapter 2. Workcell Kinematic Characterization 42

motions in those respective directions normal, sliding (or open-close) and
approach, Figure 2.3.

Figure 2.3. Left, coordinate system {E} referred to {B} by means of B
ET . Right,

conventionalism in the specific case of the terminal organ of the robot.

It is notable that in certain particular cases, the movement of the EE
might not happen in the 3D space. In fact, for example, a flat movement of the
terminal organ might be sufficient for some tasks. In such a case, the number of
operational coordinates can diminish to 2 or to 3, depending on if the orientation
is relevant or not for the task. This facts leads to what is named functional
redundancy that will be further tackled in Chapter 5.

2.2. LEVEL OF KINEMATIC ANALYSIS

To adequately control the position and orientation the robot during a task,
kinematic models are required to establish the mathematics description of the
mechanical systems. This kinematic analysis can be raised from three perpectives
[1]:

 The relations between joint positions and Cartesian positions of the EE,
known as displacement analysis;

 The relations between the time-rates of change of the joint positions,
(joint rates), and the rate of the EE. This is known as velocity analysis;

 The relations between the second time-derivatives of the joint positions,
referred to as the joint accelerations, with the time-rate of change of the
twist of the EE, known as acceleration analysis.

Chapter 2. Workcell Kinematic Characterization 43

In the context of this thesis, only the displacement and velocity analysis
will be considered as means of control an industrial manipulator at
postprocessing milling tasks. There are two main reasons for that decision: the
first one comes from the typical closed architecture of industrial manipulators
(also from the practical point of view), only allowing the control by position
parameters and velocity parameters within a range. The second reason is the type
of work aimed to do, i.e., prototyping in soft materials at the velocities perfectly
assumed by this category of robots (normally working at the 10% of the
maximum possible velocity at pick and place tasks).

2.2.1. Direct and Inverse Kinematic Problem at the displacement level.

Figure 2.4 represents the mapping between joint space and operational
space at the displacement level. The Direct Kinematic Problem (DKP) is the
mapping from Joint Space () to Operational Space (), i.e., determining the
pose of the EE (position and orientation) for a given manipulator in a given
posture. On the contrary, the Inverse Kinematic Problem (IKP) is the mapping
from  to  , determining the posture of a given manipulator for a given pose of
its EE.

Figure 2.4. Mapping between Joint Space () and Operational Space () done by
the robot controller.

The DKP can be written as a nonlinear algebraic system,

 Chapter 2. Workcell Kinematic Characterization 44

() ()x DKP q f q  (2.5)

where q is a point in  and x the corresponding point in  . The function

DKP(·) allows the computation of the operational space variables x from the
knowledge of the joint space variables q . For the straightforward3 problem
stated in (2.5), the Denavit-Hartenberg (DH) model [1][34] is employed in this
thesis due to its simplicity and popularity in the robotics community4 (see Section
2.4.2.).

Alternatively, the IKP is also written as a nonlinear algebraic system of
the form

1() ()q IKP x f x  (2.6)

At the displacement level, the DKP is straightforward and admits a single
solution, i.e., a point in  represents a unique pose of the EE in  . In general,
the IKP is much more complex and challenging since it requires the solution of a
highly non-linear algebraic system, for which no analytical closed-form solution
exist for a general 6R manipulator. Several or even infinite number of solutions
may exist (in the case of a redundant manipulator, see Chapter 5). Thus, some
suppositions must be done to discriminate a valid solution. In these cases, also
the mechanical joint limits of real robots may reduce the number of reachable
solutions.

Several methods have been described to analytically solve the IK by
means of numerical or graphical methods, and they are revised in [1]. Instead,
many manipulators in industry have three last succeeding revolute joints with
their axes intersecting at a point (W), as shown in Figure 2.5. Pieper [8] showed
that a 6R manipulator, termed as decoupled manipulator or wrist-partitioned,
always has closed-form solutions.

Tsai and Morgan [13] found that, although the number of real-significant
solutions changes from case to case, the total number of significant solutions
(real and complex) for all the 6R manipulators is 16, but it is reduced to 8
significant solutions for the decoupled cases (Figure 2.6).

3 Note that the DKP solution may be computed for any manipulator, irrespective of the number of joints or
kinematic structure. All these calculations can be easily programmed, being common the use of the Robotics
Toolbox for Matlab [36] or Hemero [37], as shown in Figure 2.22.

4 Two differing methodologies have been established for assigning coordinate frames, resulting in a standard-
DH notation [1][34] and a modified-DH (MDH) notation [35]. However, in many studies this differentiation is
not noted leading to some confusion.

Chapter 2. Workcell Kinematic Characterization 45

Figure 2.5. General architecture of a 6R decoupled manipulator [1], and the
equivalent representation (with the mechanical sense of rotation) for the KUKA
KR15/2 manipulator.

Figure 2.6. Left, eight significant solutions for a decoupled 6R manipulator; Right,
view of a KUKA KR 15/2 adopting several of these postures.

 Chapter 2. Workcell Kinematic Characterization 46

2.2.2. Kinematic analysis at joint-rate level.

Differential kinematics of robot manipulators was first introduced by
Whitney [9]. He proposed to use differential relationships to solve the joint space
motion from a given Cartesian space motion of the EE, namely, the resolved-
motion rate control.

i) DKP at joint-rate level.

The relationship between the EE velocity and the joint velocity is
represented by a linear algebraic equation, namely

·t J q  (2.7)

Equation (2.7) states the DKP at joint-rate level, or forward
kinematics problem. The coefficient of the linear equation is the Jacobian
matrix (J), which is a non-linear function of joint angles. This matrix
maps the joint rates, grouped into the n-dimensional vector 1[,...,]T

nq q q   ,

into the EE velocity, represented as the m-dimensional twist array t , or
twist vector [1], namely

t
v

 
  
 

 (2.8)

with  and v denoting the angular and linear velocities of the EE
reference frame relative to the fixed base frame {B}, respectively.

;
x x

y y

z z

v

v v

v


 



   
       
      

 (2.9)

ii) IKP at joint-rate level

Equation (2.7) implies that if the joint velocities q are known,
then the twist of the EE can be obtained. Most often, the inverse problem is
required, i.e. given the desired twist of the EE the aim is to obtain the joint
velocities, with J known.

In the case of non-redundant robots, J is a square matrix; hence,
the solution can be found as

Chapter 2. Workcell Kinematic Characterization 47

1·q J t (2.10)

From a practical point of view, this approach is evaluated
numerically for a given posture of the robot since the symbolic handle of
J is cumbersome due to the trigonometric entries of this matrix [11].
Actually, 1J  does not need to be calculated explicitly if the LU-
decomposition method [2] is used to solve the system of equations [1].

As the value of J changes with the movement of the robot, at
certain postures it may not have inverse (being the det() 0J ). Those
postures, namely singular configurations, will be treated later in this
Chapter.

Another difficulty in solving the inverse problem arises in the case
of robots having a value of m n , in the sense of (2.1) and (2.3). From a
practical point of view, those manipulators (described later as redundants,
see Chapter 5) have a not-square matrix J (with more columns than rows).
Thus, the system of equations is underdetermined having infinite possible
solutions.

The solution q that better fits all the equations of the system (2.10)
with a minimum least squares criterion can be achieved with the use of the
right Moore-Penrose pseudo-inverse5 (†J)

  1† T TJ J JJ


 (2.11)

†·q J t (2.12)

Equation (2.12) minimizes the Euclidean norm of the residual,

2
·J q t that brings ·J q “as close as possible” to t . In short, (2.12) results

in a minimum-norm solution. It has been broadly used at the velocity level
to minimize

2
q , which can be viewed as a minimization of energy

consumption [12].

5
 Given an mxn matrix B, the Moore-Penrose generalized matrix inverse is a unique nxm matrix pseudoinverse

B†. The Moore-Penrose inverse satisfies

BB†B = B ; B†BB†= B† ; (BB†)T = BB† ; (B†B)T = B†B

It is also true that z = B†·c is the shortest length least squares solution to the problem Bz = c

 Chapter 2. Workcell Kinematic Characterization 48

Nevertheless, a homogeneous component can be added to (2.12) in
order to optimize a secondary task with an additional criterion (at the cost
of giving up the minimum-norm solution). Thus, this general non-
minimum-norm solution can be written as:

 Homogeneous solutionMinimum-norm solution

† †· ()q J t I J J h  



(2.13)

In this case, some other criteria can be applied, which usually
consider a second task to be performed by the robot. These methods fall
into what is named Redundancy Resolution Schemes, and they will be
analysed at Chapter 5.

iii) The Jacobian matrix

It is noticeable that there are two different conceptions for the
Jacobian matrix (J), namely, the geometric and the analytical Jacobian.
Mainly, they differ on the method for expressing the rotation velocity of
the operation point [11][14][16].

The analytical Jacobian (aJ) can be obtained by differentiation of
the m functions {f1, …, fm} of the DKP of position, eq. (2.5), that is,

1 1

1

6

1

...

() ...

...

n

xn
a

m m

n

f f

q q
f

J q R
q

f f

q q

  
       

   
   

  (2.14)

However, it is computationally cumbersome to try to evaluate the
analytic Jacobian matrix.

In 1972, Whitney [15] proposed the geometric Jacobian (gJ)

matrix to simplify the computation6. For the sake of brevity, brief but well-
known indications to obtain gJ are extracted from [1]: in summary, the gJ

matrix of a general n-axis manipulator has the form

6 For sake of brevity, we will refer Jg as J indistinctly

Chapter 2. Workcell Kinematic Characterization 49

1 2[...]g nJ j j j (2.15)

For revolute (R) and prismatic (P) joints, the 6-dimensional ith
column of gJ , ji (i = 1, ... ,n), is given as

0
: ; :i

i i
i i i

e
R j P j

e r e

   
       

 (2.16)

where ei is the unit vector parallel to the axis of the ith revolute joint, and ri
is the vector from any point on that axis to the considered operational point
(in the EE), as shown in Figure 2.7.

Figure 2.7. Vector assignment to calculate the Jacobian matrix in a standard 6R
industrial manipulator (only r1 and r2 shown for clarity).

 Consideration to wrist-partitioned manipulator Jacobian

In the decoupled manipulators introduced at the end of the section
2.2.1. , the positioning and orienting problems can be considered
separately. In fact for many tasks, if W is the EE reference point, arbitrary
displacements can be assumed as the translation of point W combined with

 Chapter 2. Workcell Kinematic Characterization 50

the orientation of the EE reference frame, whose origin is W. Indeed, the
wrist is also named spherical because, when W is fixed, then all points on
the wrist move on spheres centred at W.

As the determinant of the Jacobian of a six-axis robot is invariant
under a change of the EE reference point [1][14]. In some cases can be
useful the consideration of W as this point. By following the method
previously described, we note that the location of W in the base reference
frame is independent of last three joint angles. In the most common case of
a 6R decoupled manipulator we have:

1 1 1 2 2 2 3 3 3Wv q e r q e r q e r        (2.17)

ri being the position vector of W with regard to any point on the first three
axes, and ei the direction vector of the axes, both expressed in coordinates
of the base frame, Figure 2.8.

Figure 2.8. Vector assignment to calculate the Jacobian matrix in a wrist-
partitioned 6R industrial manipulator, taking into account the decoupling.

The angular velocity vector,  , of the EE reference frame whose
origin is on C can be written as the vector sum of the contributions of the
angular velocities of the individual joints:

Chapter 2. Workcell Kinematic Characterization 51

1 2 6 1 1 2 2 6 6... ...q e q e q e             (2.18)

Finally, Jacobian takes the form

1 2 3 4 5 6 11 12

1 2 3 3 3 3 21 3 3

 0 0x x

e e e e e e J J
J

e r e r e r J

   
         

 (2.19)

From (2.7), the problem stated to these robots can be resumed as

11 12

21 3 30
pos

W x ori

J J q

v J q

     
     

     




 (2.20)

where q has been separated into posq and oriq to denote the three-

dimensional vectors of arm and wrist joint rates, respectively.

Thus, the velocity inversion of this type of manipulators can be
done by means of:

1
21

1
12 11

·

·(·)

pos W

ori pos

q J v

q J J q







 



 
 (2.21)

2.2.3. Singular configurations.

The singular configurations of a manipulator are those postures in which
the geometric Jacobian matrix becomes rank-deficient. By the fact, when J is
rank-deficient the mobility of the kinematic chain is reduced, i.e., at least one of
the possible motions of the EE in  disappears.

In the case of non-redundant manipulators (with square Jacobian), the
determinant of J is zero. It is remarkable that J has not inverse at those postures,
and infinite solutions to the IKP may exist. Similarly, when computing the active
joint velocities with the pseudoinverse of J in a redundant serial-link
manipulator, the singularity arises when J loses its full rank.

From a computational point of view this implies that the system cannot
be solved for q , and the control of the robot becomes problematic. In the
neighbourhood of a singularity, a small variation in the Cartesian movement of
the EE may cause large velocities in the joints. Actually, J raises its condition
number, which causes great imprecision when solving (2.10). This aspect will be
tackled later in this Chapter (see Section 2.3.2.)

 Chapter 2. Workcell Kinematic Characterization 52

Singularities can be classified in two categories (Figure 2.9):

 Boundary singularities: when the manipulator is outstretched or
retracted. They are easily avoided on condition that the robot is not
working near the limits of its reachable workspace.

 Internal singularities: they occur inside the reachable workspace.
Generally they are consequence of the alignment of two or more motion
axes. These singularities constitute a serious problem in many off-line
planned operations, as many milling tasks which are in the scope of this
thesis.

Figure 2.9. Up, boundary singularity achieved by fully extension of the robot;
down, internal singularity consequence of the alignment of qi and qj motion axes.

The possibility that a manipulator adopts an internal singular configuration
during the execution of a task was raised in one of the first works about
kinematic modelling of manipulators [15]. Later on, many authors have
dealt with the characterization of the singular configurations of
manipulators [18][17], and others have also considered the prevention of
these configurations and the better conditioning number of the Jacobian
matrix as criteria for the design of manipulators [1][19][20][21][22]. Due
to its relevance, several implications of the singularity configurations will
be revised in Section 2.3.

i) Consideration to wrist-partitioned manipulator singularities

For the sake of this thesis, special attention is given to decoupled
manipulators, whose singularities have already been a major research area.

In practice, all industrial models get blocked near a singular
configuration to avoid a possible damage of the internal mechanisms.
Despite this fact, operating manuals give either an insignificant treatment
of this subject, or none at all [30]. Most users of 6R robots are only

Chapter 2. Workcell Kinematic Characterization 53

acquainted with the operating manuals of their specific robot, but not of the
specific literature, which generally requires an advanced level of
mathematical and geometric knowledge.

Hayes et al. [18] made a revision of the concept for such
manipulators, but also giving a geometric interpretation of how the
singularities arise, given the structure of the associated Jacobian. From
(2.19), it is clear that

12 21det() det()·det()J J J  (2.22)

Moreover, many of these manipulators follow a common structure
with the first axis constantly pointing along the Z-axis of the base frame
{B}, and both axes 2 and 3 parallel to each other and to the XY-plane of
{B}, see Figure 2.8. Thus, (2.19) can be expressed as

2 2 4 5 6

2 2 4 5 6

1 4 5 6

1 1 2 2 2 3

1 1 2 2 2 3

2 2 2 2 2 3 2 3

0

0

0 0

0 0 0

0 0 0

0 0 0 0

x x x x x

y y y y y

z z z z

z y y z y z

z x x z x z

x y y x x y y x

e e e e e

e e e e e

e e e e
J

e r e r e r

e r e r e r

e r e r e r e r

 
 
 
 

   
  
 

   

 (2.23)

and (2.31) is reduced to calculate

4 5 6 4 6 5 4 5 6 4 6 5 4 6 5 4 5 6

2 2 3 2 2 3 2 3 2 3 2 2

1 2 2 1

()

det() · ·

()

()

x z y x z y y x z y x z z x y z x y

z y x x z y x z y z y x

y x y x

e e e e e e e e e e e e e e e e e e

J A B C

A r e r e r r e r r r e r

B r e e r

C     


   

 



 (2.24)

By analysing the conditions that voids each factor, we get the well
known following singularities:

i.a) Elbow singularity

Without loss of generality, the robot can be considered at the posture in
which 2e is parallel to the YZ plane of {B}. In this case,

 Chapter 2. Workcell Kinematic Characterization 54

 2 0 1 0
T

e  (2.25)

Thus, equation A vanishes when

2 3 3 2 2 3 2 3

2 2 2 2

3 3 3 3

0 / /

·cos() ·sin()

·cos() ·sin()

z x z x z z x xr r r r r r r r

r q r q

r q r q

    

 
 (2.26)

In general it is satisfied whenever 2r and 3r are aligned, but considering
the joint limits and interference, elbow singularity is therefore restricted to
satisfy 3 2q q  .

For the scope of this thesis, we note that the elbow singularity surface
represents the limits of the workspace (previously termed as boundary
singularities). Clearly, elbow singular configurations can be easily
anticipated and avoided by keeping the EE at a safe distance from its
limits.

i.b) Shoulder singularity

Vanishing of the factor B means

1 2 2 1 0y x y xr e e r  (2.27)

If 2xe or 2 ye vanishes (and being aware of the fact that, in those cases,

2 1ye  or 2 1xe  , respectively) then B will vanish only if 1 0xr  or

1 0yr  , respectively.

It means that point W lies in the YZ-plane, or ZX-plane respectively, of
the Base frame {B}. Because of the construction of common 6R
manipulators, W is consequently supposed to be on the Z-axis in this
plane. If neither 2xe nor 2 ye vanishes, then (2.27) must accomplish

1 0xr  and 1 0yr  . Again, it forces W to be on the Z-axis of the Base

frame (see Figure 2.10).

Chapter 2. Workcell Kinematic Characterization 55

i.c) Wrist singularity

Looking at C in eq. (2.24), we note that the vanishing of this depends on
the relative orientation of the last three axes (4, 5 and 6). Without loss of
generality, we can consider axis 4 to be fixed relative to the others and the
base frame, for example.

 4 1 0 0
T

e  (2.28)

Thus, the condition to satisfy, C=0, is reduced to

5 6 6 5 0z y z ye e e e  (2.29)

Because of the construction of the wrist, axes 4 and 5 as well as axes 5
and 6 are always perpendicular. Again, without loss of generality, we can
suppose axis 5 satisfying one of these two cases (namely, (a) and (b)),
both perpendicular to axis 4, and the consequences for (2.29) in each case

 
 

5() 6 6 6

5() 6 6 6

0 1 0 0· ·1 0 0

0 0 1 1· ·0 0 0

T

a y z z

T

b y z y

e e e e

e e e e

     

     
 (2.30)

As stated before, because of the construction of the wrist, we note that
factor C vanishes in every case by taking 6 4e e .

As a conclusion, the condition for wrist singular configurations is only
satisfied when axes 4 and 6 are parallel (see Figure 2.10).

For the scope of this thesis, we note that this condition can be satisfied in
the entire reachable workspace (i.e., is an internal singularity), being the
one most problematic in milling tasks consisting of a path tracking
generated by a CAM system.

 Chapter 2. Workcell Kinematic Characterization 56

Figure 2.10. From left to right, elbow, shoulder and wrist singularities.

2.3. KINETOSTATIC PERFORMANCE INDICES. POSTURE-
DEPENDENT INDICES.

The fundamental purpose of the kinematic chain of a robotic manipulator
consists of driving the EE in the workspace with an efficient controlled
movement that allows carrying out a task. As stated in the previous section, there
exist certain configurations of these architectures that originate a poor
performance of the robot. Tasks carried out near these configurations can mean,
for example, an excessive operation of the actuators, the inability to realize
locally some movements, or a low precision in the positioning of the terminal
tool. Paul and Stevenson [23] named such configurations as degenerated.

It seems to be desirable to have a characterization of the kinematic
performance of a manipulator, which can help to typify the configurations that, in
contrast with the degenerated ones, originate an optimal running of the robot.
Angeles [1] defines the kinetostatic performance index of a robotic mechanical
system (kinetostatic index for brevity), as “a scalar quantity that measures how
well the system behaves with regard to force and motion transmission, the latter
being understood in the differential sense, i.e., at the velocity level”.

It is enormous the relevance of these indices in the field of robotic
design, but also as a criterion for robot control. For the sake of this thesis, in the
following section we revise some posture-dependent indices that will be
considered as a performance criterion for the calculation of the ideal
emplacement of a manipulator on a redundant workcell, in order to perform a

Chapter 2. Workcell Kinematic Characterization 57

task. We focus the discussion below to only two indices, namely, manipulability
and kinetostatic conditioning index.

2.3.1. Manipulability

Although several authors [24][25][26] made first approaches in the topic
of the kinematic performance, the concept of manipulability was introduced by
T. Yoshikawa [27]. Previously, Paul and Stevenson [23] had used the absolute
value of the determinant of the Jacobian to measure the kinematic performance of
spherical wrists. They termed as degenerated any configuration that approach a
value of zero passing a threshold, namely

det() ; 0.5J   (2.31)

although no clear justification is presented for using 0.5 in this relationship.

In the vicinity of this condition, they observed that the terminal organ is
very poorly sensitive to the joint motions. In contrast, they noticed that a
manipulator using only configurations with high values of  worked in an
efficient way. Figure 2.11 highlights the idea of two degeneracy cones
corresponding to a spherical wrist (only the cone affecting the operational
configurations within the mechanical limits is depicted). They also noticed that
the maximum range of possible work of the spherical wrist is got with its three
axes mutually orthogonal.

Figure 2.11 Unusable orientation workspace (or degeneracy cone) due to singularity
in a spherical wrist [23]. This cone, exaggerated in scale, is generated by the axis of
the last joint at the limit of eq. (2.31).

 Chapter 2. Workcell Kinematic Characterization 58

Yoshikawa [27] defined the manipulability as the square root of the
determinant of the product of the manipulator Jacobian by its transpose.

det()TJJ  (2.32)

It can be noted that, for a square Jacobian, (2.32) is identical to the
absolute value of the determinant of the Jacobian and hence it coincides with
Paul and Stevenson's performance index.

It is possible to get a geometric interpretation of the concept of
manipulability (Figure 2.12). From the fact that (2.7) maps q into t , we can
factor J into an orthogonal matrix (R) and a positive-semidefinite7 matrix (U), by
invoking the polar-decomposition theorem, namely

J RU (2.33)

Thus, we can interpret a concatenation of two mappings of the form

·
y Uq

t J q
t Ry


   


 (2.34)

 The U matrix maps the unit m-dimensional ball into an m-axis ellipsoid
(whose semiaxis lengths bear the ratios of the eigenvalues of U, which
are the same that those of J).

 The matrix R maps this ellipsoid into another one with identical
semiaxes, but rotated or reflected, depending upon whether R is proper
or improper orthogonal8 (Figure 2.12).

For evaluation purposes, the Jacobian of a serial manipulator can be
studied as mapping the unit ball in the space of joint rates, that is

2 2 2 1/ 2
1 2(...) 1nq q q q       (2.35)

into a rotated or reflected ellipsoid in the space of Cartesian velocities, known as
manipulability ellipsoid.

7 A positive semidefinite matrix is a Hermitian matrix all of whose eigenvalues are non-negative.
(http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html)

8 Improper rotations can be represented by orthogonal matrices with determinants of −1.

Chapter 2. Workcell Kinematic Characterization 59

In this context, the value of the manipulability () is the product of the
eigenvalues () of J (or U) and is proportional to the volume of the ellipsoid in
the space of Cartesian velocities.

1 2det() det() · ·...·T T
mJJ UU      (2.36)

Figure 2.12. Highlights of the two mappings U and R, between spaces of dim=3. The
axis of the sphere are oriented along the three eigenvectors of U.

Hence, it also can be observed as a measure of the efficiency of the
transformation of the articulate speeds into the terminal organ velocities in the
different directions of the operational space. If J is singular, then at least one
semiaxis vanishes and the ellipsoid degenerates into a disk (without volume).
Manipulators at singular configurations thus have a manipulability of zero.

Finally, if the kinematic chain of a manipulator contains a part that
essentially contributes to the positioning of the EE, and another segment that
deals basically with its orientation, then the manipulability calculated by means
of (2.32) theoretically would allow to evaluate globally the efficiency with which
the translation displacements take place so much as those of rotation of the EE.
Nevertheless, due to the lack of homogeneity of J, this index turns out to be
inappropriate to evaluate in an effective way both types of displacement.
Considering this, in a later work [28] Yoshikawa proposed two complementary
indices: one to quantify the translational manipulability and other one to evaluate
the rotational manipulability. Both are calculated applying (2.32), but for the case
of the translational manipulability it uses the sub-matrix of J21 of eq. (2.19),
proceeding in an analogous way for the rotational manipulability. These indices
of translational and rotational manipulabilities only apply in case of decoupled
robots.

 Chapter 2. Workcell Kinematic Characterization 60

2.3.2. Condition number of J

The manipulability previously introduced points to evaluate the
kinematic invertibility of J at (2.10). However, Angeles [1][22] observed that in
some circumstances the determinant of a matrix is meaningless in assessing the
invertibility of that matrix. Chiaverini [32] remarks that the manipulability
measure may remain constant even in the presence of significant variations of
either the condition number or the smallest singular value of J. As a
consequence, a kinetostatic index should not be founded on the determinant of J
(or on the determinant of the product TJJ).

In the numerical analysis, the condition number associated with a
problem is a measure of its adequacy to digital computation, that is, how
numerically well-conditioned the problem is9. In particular, the condition number
of J, ()k J , can be considered as the rate at which the solution of (2.7), q , will

change with respect to a small change in t , but also gives an upper bound for the
roundoff-error amplification in the solution, by (2.37). Then, it is noteworthy that
the notion of matrix conditioning also can be used to estimate the kinematic
sensitivity [3] in resolution of (2.7).

, error of the joint rates
(())· ; with

, error of the rates in the EE

qq t
C J q

tq t

 



 





 (2.37)

Thus, if the condition number is large, even a small error in t may cause
a large error in q , and the problem is said to be ill-conditioned. On the other

hand, if the condition number is small then the error in q will not be much
bigger than the error in t and the problem is said to be well-conditioned.

As a conclusion, it is desirable for the robot to work at any postures
minimizing ()k J , as it determines the robustness against manufacturing,
assembly, or joint-encoder errors [19].

i) Inhomogeneity of J, and Characteristic length

As introduced in the previous section, in many cases the definition
of the condition number also has to deal with the lack of homogeneity of J.
That is the case of manipulators for both positioning and orientation tasks,

9 Note that this is before any effect of round-off error is taken into account, i.e. conditioning is a property of the
matrix J, not the algorithm or accuracy of the computer used to solve (2.7).

Chapter 2. Workcell Kinematic Characterization 61

in which for every column of J, eq. (2.16)-(R), the first three entries are
dimensionless while the last three have units of length.

In order to avoid this dimensional inhomogeneity, given the
descriptive geometric parameters of a robot (the DH model introduced in
Section 2.2.1.) we can evaluate the characteristic length (L) of the robot
[19][29] by which we divide the Jacobian entries that have units of length
(2.38). In this way we get a homogeneous Jacobian (H), whose associated
condition number becomes meaningful.

1 2[...]; 1
i

n i

i i

e
H h h h h

e r
L

 
  
 
 

 (2.38)

The characteristic length is defined as “the normalizing length that
renders the condition number of the Jacobian matrix a minimum” [1]. For a
given manipulator by its DH parameters, L and hence its minimum
condition number can be obtained by an optimization method described in
[19] as direct problem.

ii) Formula for the condition number of J

The condition number of a dimensionally homogeneous Jacobian
(H) is

1() ·k H H H  (2.39)

where ||·|| represents any matrix norm. Due to its lower
computational cost10 compared with other widely used norms, Angeles [1]
suggests adopting a weighted11 Frobenius norm, namely

10 The computation of kF requires only the inversion of a positive-definite 6x6 matrix. On the contrary, the
computation of k2, with the matrix 2-norm, requires an iterative procedure to calculate the eigenvalues of HHT.
[22]
11 In the weighting factor considered, m refers to the dimension of the operational space, which is 3 for
positioning tasks and 6 for positioning and orientating tasks (as the applications to be discussed in this Thesis)

   1 1T T

F
H tr H H tr HH

m m
  (2.40)

 Chapter 2. Workcell Kinematic Characterization 62

This norm is invariant under isometric transformations (reflections
or rotations) of the m-dimensional operational space. It means that a frame-
invariant condition number will be obtained.

As stated previously, for non-redundant manipulators H is square,
and hence the condition number is

1 11
() · ()· [()]

6
T T

F F F
k H H H tr HH tr HH   (2.41)

However, for redundant manipulators H is rectangular.
Nevertheless, the calculus can be tackled with its right pseudo-inverse
(†H) as defined in (2.11). Thus, (2.39) applies with †H instead 1H  . It is
easy to prove that applying (2.40) we get

† 1 11
() [()]

6
T T T

F F
H H HH tr HH   (2.42)

Then, it is concluded that (2.41) is an expression valid for any 6xn
matrix, with 6n  .

In spite of the norm used, the value of the condition number will be
comprised from one to infinity (1 k  ). It attains the value of unity for
matrices with non-zero identical eigenvalues (which we saw that map the
unit ball into another ball, Figure 2.12). Such matrices are called isotropic.
As a consequence, Angeles [1] terms as isotropic manipulator all those
whose Jacobian matrix is isotropic at certain postures (thus, induce the
smallest possible roundoff-errors). On the other side, singular matrices
have a singular value that vanishes, and then their condition number is
infinite.

iii) Consideration to wrist-partitioned manipulator singularities

From (2.21), we observe that the accuracy of the computed joint
rates depends only on blocks 12J and 21J . As 12J accounts for the
orientation of the EE, it seems to be logical to call the conditioning
associated this submatrix as the orientation conditioning. Analogously,

21J accounts for the positioning of W (Figure 2.8) and so, the conditioning
associated with this submatrix is termed the position conditioning [22].

Angeles and Rojas [31] (also Angeles in [1]), shown that an
orthogonal wrist such as the described in section 2.2.3. (i.e. first and
second axes of the wrist as well as second and third axes of the wrist being

Chapter 2. Workcell Kinematic Characterization 63

always perpendicular) attains an orientation conditioning of unity if the
joint between the last two links is at a right angle. In this case, the wrist is
postured so that its three axes are mutually orthogonal12, as shown in
Figure 2.13.

Figure 2.13. Best orientation conditioning in an orthogonal wrist, as used at many
industrial wrist-partitioned manipulators.

It is remarkable that the calculation of the condition number of spherical
wrists is straightforward, as all entries of 12J are dimensionless. In the case of

commonly 6R decoupled manipulators, all the entries of 21J associated with the
three-revolute positioning axes have units of length and hence calculation of the
condition number is also straightforward. As stated in section 2.3.2. -i), problems
arise when considering general six-axis manipulators for both positioning and
orientation tasks, dealing with the homogeneization of J by means of the
characteristic length, L.

Finally, Angeles [22] shown that wrist-partitioned manipulators having
isotropic arm and wrist subchains do not have an overall isotropic Jacobian
matrix.

2.4. KINEMATIC CHARACTERIZATION OF AN INDUSTRIAL
WORKCELL.

As this thesis focuses in integrating a CAM system with a robotic
workcell, further transformations will require knowledge of the architecture of

12 As not all the partitioned wrists can attain a condition of unity, but the success of the orthogonal wrist in
industry is an example of mechanical desing instinct leading to an optimal desing (since these wrist were
introduced in the robot market before the condition number and the isotropy became a criteria)

 Chapter 2. Workcell Kinematic Characterization 64

the workcell in order to solve the mappings previously introduced in Section 2.2.
The following characterization will be distinguished for the robotic workcell
placed at the Intituto de Diseño y Fabricación (IDF), since it is the employed in
next Chapters to study the postprocessing of milling toolpaths.

Figure 2.14. Left, complete view of the KUKA robotic workcell at the IDF-UPV
(Robot A, left; Robot B, right); Right, top view of the robot B synchronizaed with
the rotary table.

2.4.1. Components of the numerically controlled KUKA workcell

The workcell being studied at the IDF consists of a 6R KUKA KR15/2
manipulator synchronized with a rotary table on which milling operations will be
carried out, in addition to the linear track on which it is mounted (Figure 2.14).

Both additional joints, with the other
six rotary joints of the main robotic
chain, complete a workcell with eight
degrees of movement.

The exposed configuration
provides a high degree of flexibility in
milling works due to its large working
areas and multiple possible
configurations obtained with the
additional joints.

i) KUKA KRC2 controller

It contains all the components
and functions which are required to
operate the robot. It comprises the
computer and power units, which are
both installed in a common control

Figure 2.15. KUKA KRC2 controller

Chapter 2. Workcell Kinematic Characterization 65

cabinet [33] (see Figure 2.15).

ii) KUKA KR15/2 manipulator

It is an industrial decoupled 6R manipulator widely used for pick-
and-place, assembly or welding tasks (see Figure 2.16). This model, of 235
kg weight, is characterized for its repeatability (<±0.1 mm) and velocity
(up to 2 m/s) for low payloads (up to 15 kg). The robot consists of a base
frame, on which the rotating column turns about a vertical axis together
with the link arm, arm and wrist. The wrist is provided with a mounting
flange for the attachment of the EE (e.g. grippers, welding or milling
tools).

Figure 2.16. Parts of the KR15/2 manipulator and main dimensions.

The rotational axes and directions of rotation in motion of the robot
are depicted in Figure 2.5, within the ranges specified at Table 2.1. and
Figure 2.16.

Axis Range of motion Max. speed

1 ±185º 152 º/s
2 -145º to +25º 152 º/s
3 -120º to +160º 152 º/s
4 ±350º 284 º/s
5 ±135º 293 º/s
6 ±350º 604 º/s

Table 2.1. Range of motion referred to the mechanical zero of the robot axis
concerned. It is limited by means of software switches on all joints.

 Chapter 2. Workcell Kinematic Characterization 66

iii) Additional linear axis

The KL 250 is a self-contained one-axis linear unit. It is operated
as the External Axis 1 (E1) of the robot and is controlled by the KRC2
control cabinet. For shake of brevity, in this thesis this joint and the value
of its motion are indistinctively designated as Ld .The main components
are depicted in Figure 2.17.

Figure 2.17. Linear unit as an additional axis (External Axis 1 or E1), with which the
robot can be moved translationally (Ld).

The movement range is restricted by programmable software limit
switches and is additionally safeguarded by mechanical stops if these limit
switches are overrun.

iv) Additional rotary table

The CR250 rotary table is formed by a base frame in which an AC
servomotor drives the operating surface. It is operated as the External Axis
2 (E2) of the robot and, like E1, it is also controlled by the KRC2 control
cabinet. For shake of brevity, in this thesis this joint and the value of its
motion are indistinctively designated as M .

Chapter 2. Workcell Kinematic Characterization 67

Figure 2.18. Rotary (M) table CR250 (External Axis 2 or E2).

2.4.2. Direct Kinematic model of position

The DH model previously introduced in Section 2.2.1. is represented as a
4×4 matrix T that results from the product:

1

1

n
i

iT A (2.43)

T defines the transformation of the n-link associated coordinate frame into the
coordinate frame associated to the base {B} of the robotic arm. Ai designates the
DH transformation matrix relating frame i to frame i−1. The nth link frame
coincides with the EE’s coordinate frame.

Figure 2.19 illustrates the spatial relative position of two consecutive
links and their associated coordinate frames. The DH model adopts four
parameters (ai, αi, di, θi) to describe the transformation, including translations and
rotations, from one link (i−1) to the next (i). The first parameter, ai, represents
the length of common normal of the two link axes. The second parameter, αi,
denotes the angle between the two link axes. The remaining two parameters
describe the relative position of two adjacent links, which are provided by their
distance di and their rotation angle θi.

 Chapter 2. Workcell Kinematic Characterization 68

Figure 2.19. Spatial relative position of two consecutive links and their associated
coordinate frames according to the DH criterion.

After the DH coordinate frame is constructed for each link, the
transformation from one link to the next is described by the following
homogeneous matrix:

1
1 1Rot(,)Trans(,)Trans(,)Rot(,)

cos cos ·sin sin ·sin ·cos

sin cos ·cos sin ·cos ·sin

0 sin cos

0 0 0 1

i
i i i i i i i i i

i i i i i i i

i i i i i i i

i i i

A Z Z d X a X

a

a

d

 

     
     

 


  

 
  
 
 
 

 (2.44)

For a revolute axis θi is the joint variable and di is constant, while for a
prismatic joint di is variable, and θi is constant. In particular, all the parameters
describing the KUKA KR15/2 are summarized as follows:

Chapter 2. Workcell Kinematic Characterization 69

Figure 2.20. and Table 2.2 Frame assignments and parameters for the KUKA
KR15/2 with the standard DH. The posture shown corresponds to a commonly used
HOME13 position (θi ={0, -π/2, 0, 0, π/2, 0} in this model, for i=1,…, 6)

In the complete workcell studied, it was done the assignment shown in
Figure 2.21. In this case, the complete workcell can be assumed as rotating
around the workpiece coordinate system placed on the working space (table).
This consideration is going to simplify further calculations from a pure kinematic
perspective. The posture shown corresponds to a commonly used HOME
position (in this model, θi ={ π, π, -π/2, 0, 0, π/2, 0} for i=M, 1, 2,…, 6; and
dL=0)

13 The HOME position is a well known posture of the robot, previous to any task to be done.

Link
αi

(rads)

ai

(mm)

θi

(rads)

di
(mm)

1 -π/2 300 θ1 675
2 0 650 θ2 0
3 π/2 155 θ3 0
4 π/2 0 θ4 -600
5 π/2 0 θ5 0
6 0 0 θ6 -140

 Chapter 2. Workcell Kinematic Characterization 70

Link
αi

(rads)

ai

(mm)

θi

(rads)

di
(mm)

1 π/2 803 θM -305
2 π/2 0 0 dL
3 π/2 300 θ1 -675
4 0 650 θ2 0
5 π/2 155 θ3 0
6 π/2 0 θ4 -600
7 π/2 0 θ5 0
8 0 0 θ6 -140

Figure 2.21. and Table 2.3. Frame assignments and parameters for the complete
milling workcell at the IDF, formed by the KR15/2 manipulator mounted on the
linear track and synchronized with the rotary table.

Chapter 2. Workcell Kinematic Characterization 71

Figure 2.22. Workcell simulation in Matlab’s Toolbox HEMERO [37].

2.4.3. Inverse Kinematic Problem (IKP) of position

The IKP is interesting since, in practice, the task specifications and
desired toolpaths in industrial applications are defined in the Cartesian
Operational Space  , while the robot controller work at the Joint Space  . In
the particular case of this research, CAM systems generate the tracking of the
TCP in the Cartesian space for reasons of universality of this kind of data (prior
to adaptation to any capable machine). This data is also related directly with the
desired finish conditions which are mandatory in any milling task.

As previously stated, the KR15/2 is a decoupled manipulator (Figure
2.5). For the KR15/2 (and other rotary robot arms), various arm configurations
can be defined according to human arm geometry and the link coordinate systems
[38]. Thus, we can assume that this manipulator has eight significant solutions to
the IKP (Figure 2.6). There are four solutions for the first three joints: two for the
right shoulder arm configuration (Figure 2.6, 1-4) and two for the left shoulder
arm configuration (Figure 2.6, 5-8). For each arm configuration, there are two
sets of joint solutions to the last three joints of Figure 2.20: ({θ1, θ2, θ3, θ4, θ5,
θ6}) and ({θ1, θ2, θ3, θ4+π, -θ5, θ6+π}) [40].

In general, IKP can be solved either by an algebraic, iterative, or
geometric approach [41]. A brief discussion can be outlined about the better
method:

 The algebraic approach suffers from the fact that the solution does not
give a clear indication of how to select the correct solution from the
several possible solutions for a particular arm configuration [38][42][43].

 The iterative solution often requires more computations and it does not
guarantee convergence to the correct solution, especially in the singular

 Chapter 2. Workcell Kinematic Characterization 72

and degenerate cases. Furthermore, there is no indication of how to
choose the correct solution for a particular arm configuration [38].

 If the manipulator under consideration is simple, that is, it is a decoupled
model, then the geometric approach presents a better approach to get a
closed-form solution [38][39].

The existence of mechanical joint limits reduces the number of reachable
solutions for the given manipulator. Actually, due to the workcell distribution
and mainly the kind of work carried out on the rotary table, the manipulator
studied in this Section has little multiplicity when solving the IKP: according to
the previous definitions, only the right and above arm solutions will be taken into
account when solving the gross positioning (Figure 2.6, 1-2)14.

i) Geometric approach for the IKP of position

To practical effects, this Section will introduce a geometric
approach to get a consistent joint angle solution of the KR15/2 manipulator
for a desired pose of the EE. At this point, the full workcell has infinite
solutions due to its redundancy given by the Ld and M joints. This fact
can provoke problems since the system has to be able to fix one. This
suggests that an entry argument for the positioning IKP could be the
current location of the manipulator (i.e. Ld and M values), choosing the
closest15 position in the space of joints (taking into account a free-collision
workspace over the table) [41][44].

Let θ1-θ6 be the numerical angle values of the articulations A1-A6
(see Figure 2.5, right). The IKP consists of finding these values. To
practical effects, the operator uses these values to decide the relocation of
the manipulator with regard to the workpiece, by moving the additional
joints (θM and dL).

The first three joints have a planar structure that allows obtaining
the first three joint values {θ1, θ2, θ3}. Likewise, the last three joint values
{θ4, θ5, θ6} orientate the tool and the problem can be solved after
determining the first three joint values. With the observations made there is

14 In the KR15/2 model, the internal configuration of an status parameter also controls the preferred posture (a
combination of bits which are used to deal with ambiguities in the axis position), see [30].

15 Nevertheless, the notion of "closeness" could be defined in several different ways. In this particular case, it
could be profitable to establish a consideration so that the selection was favoring the movement of the
manipulator instead of moving the biggest θM and dL joints, when this option exists. It is due to reasons of
precision and economy in the articulate motions.

Chapter 2. Workcell Kinematic Characterization 73

feasible the resolution of the IKP in order to implement an effective
control.

ii) Resolution of the gross positioning

First, it is necessary to obtain the position of the wrist (W, Figure
2.8) when the values that specify the position and orientation of the TCP in
the Cartesian working space {B} (Figure 2.18) are known with the
homogeneous transformation matrix:

[] [] [] []

[] [] [] []

[] [] [] []

0 0 0 1

B B B B
TCP x TCP x TCP x TCP x

B B B B
B TCP y TCP y TCP y TCP y

TCP B B B B
TCP z TCP z TCP z TCP z

n s a p

n s a p
A

n s a p

 
 
 
 
 
  

 (2.45)

in which the nomenclature is inherited from Section 2.1.2. In case of
mounting a milling tool ({T}) instead a parallel-jaw gripper, the
conventionalism can be applied as depicted in Figure 2.23. In it, the
position vector BpTCP points from the origin of {B} to the origin of {T} (the
TCP). Also the nTCP (normal), sTCP (sliding) and aTCP (approach) vectors of
{T} are depicted in Figure 2.23.

Let 6ATCP be the homogeneous transformation matrix defining the
position and orientation of the TCP ({T} frame) regarding the robot flange
frame ({F} frame), see Figure 2.23. This data are directly obtained from
the characterization of the tool in memory of the controller. With
analogous nomenclature, it is possible to obtain the position and orientation
of the robot flange {F} with regard to the base frame {B} on the table as:

6 1
6 ·()B B

TCP TCPA A A  (2.46)

thus [42]

6 6·B B
Wp p d z  (2.47)

is the position of W regarding {B}. Then, it is necessary to express those
coordinates in the robot base frame {R} (Figure 2.23) in order to be able to
solve the geometric problem. Namely,

 Chapter 2. Workcell Kinematic Characterization 74

3 3

1 3

cos() sin() 0 0

[] sin() cos() 0 0[] []
· ·

[0] 0 0 1 01 1

1 0 0 0 1

M M M

R B
x L M MW W

x M

d

I dp p

h

 
 

   
                     
   

(2.48)

In the previous expression, dM and hM are constant design values of
the workcell whereas dL and θM are the known external joint values. [I]3x3
is the identity matrix of size 3.

Figure 2.23. Design parameters of the workcell (hM , dM) and additional external
joint values (θM , dL). Significant position vectors in the workspace are shown.

Given RpW = [Wx, Wy, Wz]
T, the value of the first joint is calculated

as:

1= - atan2 (,) (rad)y xW W (2.49)

Chapter 2. Workcell Kinematic Characterization 75

where the sign of θ1 is due to the definition of the positive sense of rotation
given by the manufacturer.

Preliminary additional calculations are required to obtain the
angles θ2 and θ3. According to Figure 2.24, the following parameters can
be determined:

Thus,

Figure 2.24. The resolution by triangulation in the plane defined by {θ1, θ2, θ3}.
Measurements in millimetres.

2 2() 300x yp W W   (2.50)

675zh W  (2.51)

2 2(155 600)a   (2.52)

650b  (2.53)

= atan2 (,) (rad)h p (2.54)

2 2c h p  (2.55)

 Chapter 2. Workcell Kinematic Characterization 76

Let s be the semiperimeter of the abc triangle, and r the radius
of the inscribed circle:

Now α y γ can be identified as:

Due to the fact that θ5 is measured up to the straight line between
the joints A3 and A5 and not up to the side a of the abc triangle, it is
necessary to consider the correction angle φ:

Given α y γ and φ, it is possible to obtain:

where the negative sign of θ2 is due to the fact that the robot is employed at
negative ranges (Figure 2.24).

iii) Resolution of the fine positioning

Let {R’W} be a coordinated system coaxial with {R} and linked to
the wrist W (Figure 2.25). It is possible to appreciate that, by means of a
rotation in z' with value ρ 1= -θ1 followed by a rotation in y’’ with value
ρ2= π/2 +θ2 + θ3 , it is achieved a coordinate system {R’’’W} whose axis
y’’’ is coaxial with the axis of the joint θ5 and with z’’’ in the direction of
the forearm from the joint θ3 to W. The homogeneous matrix that gives the
position and orientation of {R’’’W} regarding {R} has the following
structure:

2

a b c
s

 
 (2.56)

()·()·()s a s b s c
r

s

  
 (2.57)

α = 2· atan (r/(s-a)) (2.58)

γ = 2· atan (r/(s-c)) (2.59)

φ = atan (155/600) (2.60)

2 () ()rad     (2.61)

3 ()rad      (2.62)

Chapter 2. Workcell Kinematic Characterization 77

where '''
R

R WA will be denoted as R
WA for simplicity. The vector RpW is

known by means of (2.46), and sub-matrix '''
R

R WR is given by

1 1 2 2

1 1

2 2

' ' '

cos() sin() 0 0 cos() sin() 0 0

sin() cos() 0 0 0 1 0 0
·

0 0 1 0 sin() 0 cos() 0

0 0 0 1 0 0 0 1

R
R WR

   

 

 





   
   
   
   
   
   

 (2.64)

Figure 2.25. Obtaining the coordinate system {R’’’W} linked to W

For the following calculations, it becomes necessary to obtain the
orientation of the robot flange regarding {R’’’W}, that is:

1
6 6() ·W R R

WA A A (2.65)

''' 3 3
'''

1 3

[] []

[0] 1

R R
R R W x W

R W

x

R p
A

 
  
 

 (2.63)

 Chapter 2. Workcell Kinematic Characterization 78

Thus, the position of the robot flange {F} with regard to {R} is
needed (see Figure 2.23). From (2.46), RA6 is obtained as:

3 3
6 6

1 3

cos() sin() 0 0

[] sin() cos() 0 0
· ·

[0] 0 0 1 0

1 0 0 0 1

M M M

x L M MR B

x M

d

I d
A A

h

 
 

   
   
   
   
   
   

 (2.66)

According to the way in which the coordinate system {R’’’W} has
been defined, the axis z’’’ makes a distal sense (towards the end of the
forearm). The axes of rotation of the last three joints intersect within W
and the axes of rotation of the joints θ4 and θ6 match with z’’’, whereas the
axis of rotation of θ5 matches with y’’’. Therefore, the angles θ4 θ5 and θ6
can be deduced from WA6 and the definition matrix of Euler's rotations
ZYZ:

4 6 6-atan2((2,3), (1,3))W WA A  (2.67)

2 2
5 6 6 6atan2(((3,1)) ((3,2)) , (3,3))W W WA A A   (2.68)

6 6 6atan2((3,2), (3,1))W WA A   (2.69)

The negative sign of θ4 is due to the criterion of the mechanical
axis of the robot. With these values of the six joints, the inverse kinematics
of the robot KUKA KR15/2 is solved for programming control purposes.

2.4.4. Workcell Jacobian

While most trajectory planning methods in Cartesian-coordinate level
focus on position on the path followed by the operation point (the TCP), the
essential inverse kinematic of a six-axis robotic manipulator for milling tasks
requires the specification of the orientation of the EE as well.

For some simple industrial labours, the position and the orientation tasks
are separable; hence, the planning of the two tasks can be done independently.
This is the case of usual pick-and-place operations done with common decoupled
industrial manipulators. This kinematic analysis was introduced at the end of
section 2.2.2. iii). More detailed explanation for an isolated KUKA KR15/2
manipulator can be found in [14]. However, this separation is not possible for
most robotic operations, and thus both tasks must be planned concurrently [1].

Chapter 2. Workcell Kinematic Characterization 79

Therefore, in the particular case of the workcell studied for milling tasks, (2.17)
and (2.18) would become, respectively,

1 1 1 2 2 2 3 3 3M M M L Lv e r v e e r e r e r               (2.70)

1 2 3 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

M

M Me e e e e e e

       

      

       

             (2.71)

where it can be appreciated the linear velocity contribution 2v of the track. The
6x8 Jacobian matrix (J) would be completed as done in (2.20), with

   
 

11 1 2 3 12 4 5 6

21 1 1 2 2 3 3

0 ;M

M M L

J e e e e J e e e

J e r e e r e r e r

 

    
 (2.72)

1 2 3 4 5 6

T

M Lv          
        (2.73)

A common misconception in the robotics literature is to confuse aJ ,

which maps joint rates into the EE location velocities (eq. (2.14)), with gJ

defined by Whitney and introduced in (2.15), which maps joint rates into the EE
twist [11]. Thus, the difference between the two Jacobians is essential: aJ is an

actual Jacobian matrix, while gJ , properly speaking, is not [1].

From (2.5), a toolpath can be expressed as a function of the form

() df q s (2.74)

In order to find aJ in eq. (2.74), by application of the chain rule we get

·a

f
f q J q

q


 


   (2.75)

From the definition of f , we have that f is the time-derivative of the

pose array of the EE, i.e., ds . Moreover, it is well known [11] the relation
between the two Jacobians, namely

·a gJ M J (2.76)

with M defined as

 Chapter 2. Workcell Kinematic Characterization 80

0

0

Q
M

I

 
  
 

 (2.77)

where the sub-matrix Q takes on various forms, depending on the type of rotation
representation adopted. Thus, from (2.76) we get

· · · ·a g dJ q M J q s M t     (2.78)

and, therefore, the time-derivative of the toolpath can be expressed as a linear
transformation of the twist t of the EE, being it easier to compute with the
appropriate gJ , i.e. mapping joint rates into the EE twist (as described at the first

part of Section 2.2.2. iii).

2.4.5. Tool-holder characterization

For the resolution of the DKP and the IKP it is necessary to establish the
relationship between the robot flange and the TCP of the tool, i.e. the 6ATCP
homogeneous transformation matrix defining the position and orientation of the
TCP with regard to the robot flange frame (Figure 2.27). On delivery of the
robot, the mechanical robot flange frame is located as shown in Figure 2.26. Note
that the direction assigned to the Z axis is contrary to the rotation sense depicted
in Figure 2.5, and therefore it is opposed to the natural one of the DH models of
Figure 2.20 and Figure 2.21.

Figure 2.26. Location of the robot flange frame on delivery.

Chapter 2. Workcell Kinematic Characterization 81

Figure 2.27. Tool holder designed for milling tasks at the IDF.

To practical effects, the KRC2 controller implements a routine to
measure the tool by touching a fixed reference point at  with the TCP by four
different orientations [45]. This measurement method, a calibration of the tool
itself, follows the closed-loop chain methods described in Chapter 3. As a result,
the controller memorizes the position and orientation of the TCP regarding the
robot flange frame with 6 values: the position coordinates and the RPY16 values
(ABC), as shown in Table 2.4.

X -43.30 mm A -22.67º
Y 17.30 mm B -19.52º
Z 414.24 mm C -180.04º

Table 2.4. Position and orientation measured for the tool-holder regarding the robot
flange frame.

16 In the KRC2 controller, the RPY values are defined as three consecutive rotations in Z, Y and X axes,
respectively.

 Chapter 2. Workcell Kinematic Characterization 82

For the calculations considered in previous sections, 6ATCP is easily
achieved:

6

6 6
6 3 3

6

0.8697 -0.3856 0.3081 -43.30

-0.3633 -0.9226 -0.1294 17.30

0.3341 0.0007 -0.9425 414.24

0 0 0 1

[]

[] []

[]

0 0 0 1

TCP x

TCP x TCP y
TCP

TCP z

p

R p
A

p

   
   
    
   
      

 (2.79)

with

6 = rotz(A) · roty(B) · rotx(C)=

cos(A) -sin(A) 0 cos(B) 0 sin(B) 1 0 0

sin(A) cos(A) 0 · 0 1 0 · 0 cos(C) -sin(C)

0 0 1 -sin(B) 0 cos(B) 0 sin(C) cos(C)

TCPR

     
           
          

 (2.80)

As previously introduced, an additional rotation in the X-axis, rotx()
would be required to match both mechanical an DH-modelled {F} frames.

For the scope of this thesis, the full DH model can be directly deduced
from Figure 2.21 and Table 2.3, including the particular geometry of the tool, as
depicted in Figure 2.28. Measures are directly obtained from the CAD model.

Figure 2.28. and Table 2.5. Robot {EE} frame assignments and parameters for the
complete DH model of the IDF workcell, with the tool holder designed for milling
purposes.

Link
αi

(rad)

ai

(mm)

θi

(rad)

di
(mm)

1 π/2 803 θM -305
2 π/2 0 0 dL
3 π/2 300 θ1 -675
4 0 650 θ2 0
5 π/2 155 θ3 0
6 π/2 0 θ4 -600
7 π/2 0 θ5 0
8 0.3564 0 θ6 -443.4

TCP 0 0 0 -119.7

Chapter 2. Workcell Kinematic Characterization 83

2.4.6. Characteristic length L of the KUKA KR-15/2

Given the manipulator DH parameters (section 2.4.2.), finding its
characteristic length L and, hence, its associated minimum condition number is
known as the direct problem [19], as stated in section 2.3.2. -i).

Prior to the formulation of the optimization problem at hand, it is
remarkable that not all DH architecture parameters and not all posture variables
influence the condition number adopted [1][19]. In fact, if a subset of the joint
variables of a manipulator amount to a rigid-body motion of the overall
manipulator, such as in the case of the prismatic joints of a Cartesian
manipulator, then these joint variables do not affect the condition number of the
manipulator [47]. Also, Khan [19] states that “the first joint variable of a serial,
n-revolute homogeneous manipulator does not influence the condition number
(kF or k2) of its homogeneous Jacobian; neither do the architecture parameters

ld and n .”

Therefore, in the case of the first joint variable (M , the rotary table), it
is equivalent to a pure translation of the manipulator as if it was a rigid body. The
linear track (Ld) also does a pure translation and, thus, it can be left apart when
evaluating the conditioning of the manipulator managed. It also matches with the
real purpose of the additional external joints, i.e. relocating the manipulator to get
a more convenient (or better conditioned) posture of the  1 6, ...,  main chain.

As a consequence, the straightforward problem of determining the characteristic
length of the KR 15/2 will be planned as follows [19]. Taking into account
Figure 2.20, let

 max ,M MM a b (2.81)

with

 1
max

n

M i
i

a b ,  
2

max
n

M i
i

b b (2.82)

From table 2.2 and with the value of M, it is possible to redefine a non-
dimensional DH table of the KR 15/2 as follows

i
i

aa M , i
i

bb M (2.83)

for 1,...,6i  .
Additionally, let

 Chapter 2. Workcell Kinematic Characterization 84

MM L (2.84)

with L being the still unknown characteristic length. Hence,

i
i

aa L , i
i

bb L  ·i ia a M  , ·i ib b M  (2.85)

for 1,...,6i  , which is a set of unknown dimensionless parameters as M is still
an unknown. Analogously, from the definition of the homogeneous Jacobian
matrix (H), eq. (2.38), ih can be redefined as

·
·

ii
i i i

i i

er
M h

e ML
 


 

      



 (2.86)

for 1,...,6i  .
 Hence, to find the characteristic length L, all we need is to find the value
of M that will render the condition number of H a minimum with a suitable set
of values for the last five joint variables. Let all these design variables be grouped
in a design vector x , namely (Figure 2.21)

 2 3 4 5 6, , , , ,x M      (2.87)

The value of vector x is found as the solution to the optimization
problem:

2min ()F
x

k H


 , with17 0M  (2.88)

To practical effects, Matlab was used for solving the problem by means
of the function fminsearch, which uses the Nelder-Mead simplex (direct
search) method18. The algorithm and specific sintaxis can be resumed as follows
(Figure 2.29). In each particular configuration of the tool holder, the
characteristic length will be obtained by following the same scheme.

For the generic KR 15/2, without any tool attached to the robot flange,
the characteristic length obtained was L=350.6 mm and the best conditioning
achieved was kF=1.2477, which corresponds with the posture depicted in Figure
2.30.

17 2 ()Fk H is an even function of M , 2 2() ()F Fk M k M  , and hence if M is a solution to the optimization

problem, then so is M .

18 MATLAB Function Reference: fminsearch

Chapter 2. Workcell Kinematic Characterization 85

Figure 2.29. Algorithm in Matlab to find the characteristic length (L) of a
manipulator. In this particular case, table 2.2 refers to the KR 15/2 without any tool
attached, giving a value of L=350.6 mm.

Figure 2.30. Left, best conditioned poture for the 6R KR 15/2 manipulator without
any tool attached to the robot flange. Right, same result obtained with the RSV4W
[48].

 Chapter 2. Workcell Kinematic Characterization 86

REFERENCES (Ch. 2)

[1] Angeles, J., Fundamentals of robotic mechanical systems: theory, methods and
algorithms, Springer, New York, 521 pages, 2003.

[2] Golub, G. H. and C. Van Loan, 1989: Matrix Computations, Johns Hopkins
University Press, 2nd edition, Baltimore, Maryland.

[3] Arenson, N., Angeles, J. and Slutski, L., Redundancy-resolution algorithms for
isotropic robots, Advances in Robot Kinematics: Analysis and Control, pp. 425-434,
1998.

[4] Siciliano, B., Solving manipulator redundancy with the augmented task space
methode using the constraint Jacobian transpose, IEEE Intern. Conf. on Robotics and
Automation, Tutorial M1, pp. 5.1-5.8, 1992.

[5] http://mathworld.wolfram.com/NullSpace.html
[6] Liégeois, A., Automatic Supervisory Control of the Configuration and Behavior of

Multibody Mechanisms, IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 245-250,
Mar. 1977.

[7] Yoshikawa, T., Analyais and control of robot manipulators with redundancy,
Robotics Research: The First International Symposium, pp. 735-747, 1984.

[8] Pieper, D.L., The Kinematics of Manipulators under Computer Control, Ph.D. thesis,
Stanford University, 1968.

[9] Whitney, D.E., Resolved motion rate control of manipulators and human prostheses.
IEEE Trans. Man-Machine Syst., vol. 10, no. 2, pp. 47-53. 1969.

[10] Ollero; Robótica: Manipuladores y robots móviles, Marcombo, 2001. ISBN
8426713130

[11] Barrientos, Antonio; Peñín, Luis Felipe; Balaguer, Carlos & Aracil, Rafael;
Fundamentos de robótica, 2ª Ed., Cap. 4. ISBN: 8448156366

[12] Arenson, N.; REAL TIME REDUNDANCY-RESOLUTION SCHEMES FOR
ROBOTIC MANIPULATORS, Department of Mechanical Engineering-McGill
University, Montréal, 1998

[13] Tsai, L. W. and Mrogan, A. P., Solving the kinematics of the most general six- and
five-degree-of-freedom manipulators by continuation methods. ASME J.
Mechanisms, Transm., and Auto. in Design, pp. 189-200, 1985.

[14] Sciavicco, L. and Siciliano, B.; Modelling and Control of Robot Manipulators;
Springer, London, 2000, pp. 79-87. ISBN 1 85233 221 2 (hbk)

[15] Whitney, D.E., The mathematics of coordinated control of prosthetic arms and
manipulator, ASME J. Dynamics Systems, Measurement and Control, Vol. 94, No.
4, pp. 303-309, 1972.

[16] Osita D.I. Nwokah, Yildirim Hurmuzlu; The Mechanical systems design handbook;
modeling, measurement, and control; CRC Press, pp. 465-468, 2002. ISBN 0-8493-
8596-2

[17] Luis Gracia, Javier Andres, and Josep Tornero; Trajectory Tracking with a 6R Serial
Industrial Robot with Ordinary and Non-ordinary Singularities; International Journal
of Control, Automation, and Systems (2009) 7(1):85-96

[18] M. D. J. Hayes, M. L. Husty and P. J. Zsombor-Murray; "Singular Configurations of
Wrist-Partitioned 6R Serial Robots: a Geometric Perspective for Users", Carleton
University (Canada), 2003

Chapter 2. Workcell Kinematic Characterization 87

[19] Khan Waseem A.; Angeles J.; The Kinetostatic Optimization of Robotic
Manipulators: The Inverse and the Direct Problems; Journal of Mechanical
Design 2006;128(1):168 - 178.

[20] Gosselin C.; Angeles J.; A Global Performance Index for the Kinematic
Optimization of Robotic Manipulators; Journal of Mechanical Design
1991;113(3):220 - 226.

[21] Angeles J.; The Design of Isotropic Manipulator Architectures in the Presence of
Redundancies; The International Journal of Robotics Research 1992; 11; 196

[22] Angeles J., López-Cajún C. S.; Kinematic Isotropy and the Conditioning Index of
Serial Robotic Manipulators; The International Journal of Robotics Research 1992;
11; 560

[23] Paul R. P, Stevenson C. N., “Kinematics of Robot Wrists”, The International Journal
of Robotics Research, Vol. 2, pp. 31-38, 1983.

[24] Tsai Y. C., Soni A. H., “Accessible Region Synthesis of Robot Arms”, ASME,
Journal of Mechanical Design, Vol. 103, pp. 803-811, 1981.

[25] Yang, D.C., and Lai, Z.C.; On the conditioning of robotic manipulators-service
angle. ASME J. Mechanisms Transmissions and Autom. Des. 107:262-270 (1985)

[26] A. Kumar and K.J. Waldrom, "The Workspace of a Mechanical Manipulator",
ASME J. of Mechanical Design 103, 665-672 (1981).

[27] T. Yoshikawa: “Manipulability of Robotic Mechanisms”, Int. J. of Robotics
Research, Vol.4, No.2, pp.3-9, 1985.

[28] Yoshikawa T. Translational and rotational manipulability of robotic manipulator. In:
American control conference, S. Diego, CA; 1990.

[29] Ranjbaran, E, Angeles, J., GonzaIez-Placios, M. A. and Patel, R. V., "The
mechanical design of a seven-axes manipulator with kinematic isotropy", J. of
Intelligent and Robotic Systems, Vol. 14, No. 1, pp. 21-41 (1995)

[30] KUKA System Software (KSS), Expert Programming (KRC2 / KRC3), Release 5.2.,
KUKA Corp., 2005.

[31] Angeles, J. and Rojas, A., 1987, “Manipulator kinematic inversion via condition-
number minimization and continuation,” The International J. Robotics &
Automation, Vol. 2, No. 2, pp. 61-69.

[32] Chiaverini S., Oriolo G., Walker I. D.; "Kinematically Redundant Manipulators".
Springer Handbook of Robotics, pp. 245-268, (2008).

[33] KUKA Robot Group; "KR C2 edition05 - Specification"; Issued: 20.07.2007
Version: 2.1

[34] Hartenberg R. S. and Denavit J., “A kinematic notation for lower pair mechanisms
based on matrices,” Journal of Applied Mechanics, vol. 77, pp. 215–221, June 1955.

[35] Craig J.J., “Introduction to Robotics”. AddisonWesley, second ed., 1989.
[36] Corke P.I., A Robotics Toolbox for MATLAB; IEEE Robotics and Automation

Magazine, issue 1, vol. 3, pp. 24-32, march 1996
[37] Maza, J.I. and Ollero A., Herramienta MATLAB-Simulink para la simulación y el

control de robots manipuladores y móviles, Actas de las XXI Jornadas de
Automática, Sevilla, 2000

[38] C.S.G. Lee, M. ZIEGLER; Geometric Approach in Solving Inverse Kinematics of
Puma Robots; Department of Electnical Engineering and Computer Science, The
University of Michigan, Ann Arbor, MI 48109; 0018-9251/84/1100-0695

 Chapter 2. Workcell Kinematic Characterization 88

[39] H. Mayer, I. Nagy, A. Knoll; Inverse Kinematics of a Manipulator for Minimally
Invasive Surgery; Institut für Informatik-Technischen Universität München; TUM-
INFO-01-I0404-0/1.-FI, January 04

[40] Tsai, L. W. and Mrogan, A. P., Solving the kinematics of the most general six- and
five-degree-of-freedom manipulators by continuation methods. ASME J.
Mechanisms, Transm., and Auto. in Design, pp. 189-200, 1985.

[41] J. J. Craig, Introduction to Robotics. Addison Wesley, second ed., 1989.
[42] Pieper, D.L., The Kinematics of Manipulators under Computer Control, Ph.D. thesis,

Stanford University, 1968.
[43] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control.

Cambridge, Massachusetts: MIT Press, 1981.
[44] A. Ollero; “Robótica: Manipuladores y robots móviles”, Marcombo, 2001. ISBN

8426713130
[45] KUKA Corp., 2005. KUKA System Software (KSS), Puesta en servicio (KRC2 /

KRC3), Release 5.2.
[46] KUKA Corp., 2005. KUKA System Software (KSS): Expert Programming (KRC2 /

KRC3), Release 5.2.
[47] Angeles A. and Rojas A.; Manipulator inverse kinematics via condition-number

minimization and continuation; Int. J. of Robotics and Automation, Vol.2, No. 2, pp.
61-69; 1987.

[48] Khan W., Zhuang H., Angeles J.;"Robot Visualization System for Windows
(RVS4W) - User's Manual"; Centre for Intelligent Machines (CIM), Department of
Mechanical Engineering, McGill University, Montreal, Quebec, Canada, 2007.

Chapter 3. Workcell Calibration. 89

CHAPTER 3

WORKCELL CALIBRATION

“Have no fear of
perfection, you’ll never

reach it.” –

Salvador Dalí

Chapter 3. Workcell Calibration. 91

CHAPTER 3. WORKCELL CALIBRATION

3.1. CONCEPTS ON ACCURACY CRITERIA AND ERROR SOURCES

The international standard ISO 9283 [1] sets different performance
criteria for industrial manipulators and suggests test procedures in order to
obtain appropriate parameter values. The most important criteria, and also the
most commonly used, are accuracy of pose (AP) and repeatability of pose (RP).
It is well known that industrial robots have high RP but not AP [2] (Figure 3.1).

Figure 3.1. Repeteability and accuracy issues for a commanded target.

Repeatability is particularly important when the robot is moved towards
the command positions manually (Teach-In, e.g. pick and place operations).
Most of the robotic applications that capitalize on repeatability have already been
done. However, if the robot program is generated by a 3D simulation absolute
accuracy is particularly relevant (i.e., off-line programming of advanced precision
applications, such as milling or even robotic surgery.). Both are generally
influenced in a negative way by kinematic factors. Here especially the joint
offsets and deviations in lengths and angles between the individual robot links
take effect.

It has been shown that as much as 95% of robot positioning inaccuracy
arises from the inaccuracy in its kinematic model description, i.e., the parameters
used to compute the position and orientation [3]. Consequently, a simple, fast and
accurate robot geometric model adjusted through a calibration process is needed.
The position and orientation of the robot is usually determined using forward
kinematics with Denavit–Hartenberg (DH) parameters for each link of the robot.

 Chapter 3. Workcell Calibration. 92

Thus, robot accuracy ultimately depends on the accuracy of these DH
parameters.

Robot kinematic calibration is defined as a “process of improving robot’s
EE positioning accuracy through modification of its kinematic control model
without changing its hardware configurations” [4]. Basically it consists in
identifying the differences between geometrical parameters of models given by
manufacturers and those of the real robot. These differences come from
imprecise knowledge of robot geometry: link length, angle between successive
axes, joint off-sets, gear ratio. Some variation comes from the manufacturing
process, primarily due to machining inaccuracy. Other variation comes from the
assembly process, where the precise position and orientation of links and joints is
not perfectly repeatable. Most manufacturers of robots do not focus on accuracy
because if accuracy is achieved by higher tolerance in machining, the cost of
robot increases spectacularly, affecting the sales negatively.

As a consequence, a calibration approach to identify the DH parameter
values is needed to advance the state of the art in robotics. After a calibration
procedure, the robot controller can be updated with the correct robot-specific DH
parameter values instead of the standard design values. This calibrated robot has
a higher absolute positioning accuracy than an uncalibrated one, i.e., the real
position of the robot’s EE corresponds better to the position calculated from the
mathematical model of the robot.

3.1.1. State of art in robotic calibration

There has been considerable research in the field of robotic calibration,
as stated in [5]. Existing techniques can be classified into open-loop (or pose-
measuring) and closed-loop (or pose-matching) approaches [6].

Chapter 3. Workcell Calibration. 93

Figure 3.2. Several open (up) and closed (down) loop methods for robot calibration.

On one hand, conventional open-loop methods involve measuring the EE
pose, which traditionally requires expensive and complicated pose measuring
devices (such as theodolites [7], inclinometers, coordinate measuring machines
[8][9], sonic and visual sensors [10][11], and laser tracking system [12][13]).
Therefore, the resolution of measurements near the EE is limited by the
equipment used. It has been reported that partial pose information is sufficient for
complete parameter identification [3]. Generally, these calibration methods
involve the following procedures [4] (see Figure 3.3):

a) Choose a proper kinematic model to describe the relationship
between robot joint space  and its operational coordinates at
 ;

b) Take experimental measurements of robot EE locations using
external measuring devices (the requirements of measurement
phase are particularly demanding);

c) Identify the parameter errors based on the differences between
the measured locations and those predicted by the kinematic
model.

d) Implement the identified model in the robot controller (i.e.,
compensation).

 Chapter 3. Workcell Calibration. 94

Figure 3.3. Generic procedure in a robot calibration using an open-loop method [6]

On the other hand, closed-loop methods are defined as the automated
process of determining a robot's model by using only its internal sensors, and
thereby, can be named self-calibrating or autonomous methods [3][14][15]. It has
been observed that autonomous calibrations are possible for robot manipulators
with either some a priori knowledge of the task constraint. These methods
impose some constraints or some sort of motion on the EE, and the joint readings
alone are used to calibrate the robot using kinematic closed-loop equations. A
standard procedure is depicted in Figure 3.4.

Figure 3.4. Generic procedure in a robot calibration using a closed-loop method [6]

Some researchers in the past have used linear constraints allowing the EE
to slide along a straight line, e.g., Newman et al. [14] used a laser line tracking in

Chapter 3. Workcell Calibration. 95

the robot workspace. Bennett and Hollerbach [16] and Meggiolaro et al. [17]
proposed a closed-loop calibration method in which the robot endpoint is fixed at
a single point contact constraint, equivalent to a ball joint. In that case, the robot
moves to different configurations that satisfy the contact constraint. However, it
is difficult to move a physically closed kinematic chain from one posture to
another while maintaining the physical constraints. Hence, it is difficult to collect
accurate joint readings. A profuse description of the algorithms associated to the
methods constraining the EE is carried out by Khalil et al. [18][19][20]. Gatla et
al. [5] proposed a Virtual Closed Kinematic Chain method, in which the
approach does not require any physical constraint. In this case, a laser tool is
attached to the EE. This laser tool aims at an arbitrary but fixed point on a distant
plane; thus, creating a virtual closed kinematic chain. The calibration procedure
requires many different robot joint configurations and the process can be time-
consuming. The authors propose a feedback system in which a camera detects the
laser spot on the plane and it is used as feedback to adjust the robot joint angles
so as to move the laser spot to the desired fixed point.

Ikits and Hollerbach [21] extended their Implicit Loop Method to the use
of a planar constraint, where the robot endpoint is constrained to lie on a plane.
Zhuang et al. [22] also imposed plane constraints on the EE positions. These
authors showed that a single-plane constraint is normally insufficient for
calibrating a robot. It was also shown that by using a three-plane constraint, the
constrained system is equivalent to an unconstrained point-measurement system
under certain conditions. The significance of this result is that the three-plane
constraint setup can be used to successfully calibrate a robot. A profuse
description of the planar methods is carried out by Khalil and his co-workers
[19][20][23]. In the planar constraint methods, the use of a contact probe is
problematic because it is difficult to be certain that the tip-point of the probe is
exactly on the surface, neither above it nor indenting it.

Based on the planar constraint procedure and the open-loop methods, a
new robot kinematic calibration scheme is presented at Section 3.3. It can be
implemented autonomously and is suitable for on-site calibration in an industrial
environment at regular intervals, in contrast with other open-loop methods
requiring extensive human intervention and expensive or demanding devices
such as those previously mentioned. By holding a laser displacement sensor, the
robot sweeps three orthogonal constraint planes in its workspace while measuring
the distance, which is supposed to be constant. Only the distance readings are
recorded. A non-linear least-squares (NLSQ) identification model has been
derived from the consistency conditions of the planes, and is presented.

 Chapter 3. Workcell Calibration. 96

3.2. CALIBRATION. MATHEMATICAL BACKGROUND

The robot errors gathered by pose measurements can be minimized by
numerical optimization. For kinematic calibration, a complete kinematical model
of the geometric structure must be developed, whose parameters then can be
adjusted by mathematical optimization.

In practice, for the general problem of calibrating a mechanical system, it
can be shown that the main objective of the procedure consists on determining a
best approximation of a calibration matrix, C, by taking many data samples of the
actual variables and the real sensed variables:

[] [][]Actual C Sensed (3.1)

Given a large number of sensor readings and the corresponding actual
inputs, least-squares descent methods fitting these data points have demonstrate
its convenience for solving the kinematical optimization problems [19][20][24].
The method of least-squares is used to approximately solve such overdetermined
systems, i.e. systems of equations in which there are more equations than
unknowns. This is done by creating a single matrix equation from linear
approximations of the relationships between sensor responses and actual inputs.

This procedure supplies corrected kinematical parameters for the
measured machine, which then for example can be used to update the system
variables in the controller in order to adapt the used robot model to the real
kinematics.

3.2.1. Problem statement

The objective consists of adjusting the parameters of a model function so
as to best fit a data set. A simple data set consists of np points (data
pairs) (,)i i

Sq p , i = 1, ..., np; where iq is an independent variable and i
Sp is a

dependent variable whose value is found by observation. This model function has
the form

1(; ,...,) (,)i i i
M mpp f q f q    (3.2)

where the mp adjustable parameters are held in the vector  . It is desirable to
find those parameter values for which the model best fits the data. In summary,
the common behaviour of the system to adjust can be described with the vector
model function as well as the input and output vectors, as described:

Chapter 3. Workcell Calibration. 97

1

1

1
1

1

(,...,) , ;

(,...,) ,

(,...,) , (,...,) (,) ,

(,...,) , ,

np T i k npxk

T mp
mp

np T i i i i l npxl
M M M M M M l M

np T i l npxl
S S S S S

q q q q R q R

R

p p p p p p f q R p R

p p p p R p R

   



  

 

    

  

 (3.3)

The variables k, l, mp, np describe the dimensions of the single vector
spaces. For a common manipulator we have:

1 2 1 2

1,..., ; number of observations,

1,..., ;number of joints associated to each -observation (at)

 (e.g., (,) (,) for a 2-DOF manipulator),

1,..., ; (6) DOF's of the EE ob

i i i i

i np

t k i

q q

h l l

 


 


  served at (e.g.),

1,..., ; number of model parameters to adjust.

xyzABC

j mp




A residual r is defined as the difference between the observed values of
the dependent variable and the predicted values from the estimated model,

1(,); (,...,)i i i i i i T l
S lr p f q r r r R    (3.4)

Minimization of the residual error ri for the purpose of identification of
the optimal parameter vector  follows from the difference between both output
vectors using the Euclidean norm. The least-squares method defines best as when
the sum, Si, of squared residuals is a minimum.

2 2 2

1

() ;
l

i i i i i i
S M h

h

S p p r r S R


     (3.5)

Such in the case of robot calibration, a data point may consist of more
than one independent variable. In the most general case there may be one or more
independent variables and one or more dependent variables at each data point.

3.2.2. Solving the least-squares problem

Least-squares problems fall into two categories, linear and non-linear.
The linear least-squares problem has a closed form solution, but the non-linear
problem does not and is usually solved by iterative refinement; at each iteration
the system is approximated by a linear one, so the core calculation is similar in
both cases.

 Chapter 3. Workcell Calibration. 98

The minimum of the sum of squares is found by setting the gradient to
zero. Since the model contains mp parameters, there are mp gradient equations
for each of the np data pairs (,)i i

Sq p .

2
i i

i

ij j

S r
r

 
 


  (3.6)

and substituting (3.4) the gradient equations become

(,)
2 0

i i

i
ij j

S f q
r


 
 

  
  (3.7)

The gradient equations apply to all least-squares problems. Each
particular problem requires particular expressions for the model and its partial
derivatives.

i) Linear least-squares

A regression model is a linear one when the model function
comprises a linear combination of the parameters, i.e.

1

(,) ()
mp

i i i
M j j

j

p f q q  


  (3.8)

where the coefficients, j , are functions of iq .

Letting

(,)
()

i i
i i lxmpM h h

f hj hj
j j

p f q
J q R




 
 

   
 

 (3.9)

be the Jacobian matrix of the model function (Jf), it can be shown that, in
this case, the least-square estimated  is given by

1()T T
f f f MJ J J p  (3.10)

Chapter 3. Workcell Calibration. 99

ii) Non-Linear Least-Squares (NLSQ)

In a non-linear system, the derivatives i
jr   are functions of

both the independent variable iq and the parameters  , so these gradient
equations do not have a closed solution. Thus, there is no closed-form
solution to a NLSQ problem. Instead, initial values must be chosen for the
mp parameters and numerical algorithms are used to find the value of the
parameters  which minimize the objective. Then, the parameters are
refined iteratively, that is, the values are obtained by successive
approximation:

(1) ()s s       (3.11)

where s is an iteration number and the vector of increments,  , is
known as the shift vector.

In commonly used algorithms [19][20][24], at each iteration the
model is linearized by approximation to a first-order Taylor series
expansion about ()s .

()
() ()(,)

(,) (,) ()
i s

i i s s
j j

j j

f q
f q f q

   



  

 (3.12)

Substituting at (3.4), the residuals are given by

()
() ()(,)

(,) ()
i s

i i i s s
S j j

j j

f q
r p f q

  


 
      

 (3.13)

In terms of this linearized model, for the l components of r, we
define

()(,)
; ,

i i s
i i i i lxmph h

r hj f hj r f
j j

r f q
J J J J R


 
 

     
 

 (3.14)

For each observed i-point, the Jacobian of the model function, Jf, is
a function of constants (the independent variables and the estimated
parameters) so it changes from one iteration to the next. Thus,

 Chapter 3. Workcell Calibration. 100

1 1

· · ; 1,...,
mp mp

i i i i i
h h r hj j h f hj j

j j

r p J p J h l 
 

          (3.15)

with

()(,)i i i s l
Sp p f q R    (3.16)

()()s mpR      (3.17)

Substituting expressions (3.14) and (3.15) into the gradient
equations (3.7) and setting the gradient to zero to get the minimum of the
sum S of squared residuals (3.4), they become:

 1 1

2 2 ·

0

ii mpl
i i i ih

h f hj h f ht j
h h tj j

i
j

rS
r J p J

S


 


 

  
           

    

  
(3.18)

which, on rearrangement, become mp simultaneous linear equations,
named as the normal equations.

1 1 1

l m l
i i i i
f hj f t t f hj h

h t h

J J J p
  

    (3.19)

The normal equations are written in matrix notation as

()T T
f f fJ J J p   (3.20)

The superscript T denotes the matrix transpose. These equations
form the basis for the Gauss-Newton algorithm for a NLSQ problem.

3.2.3. Gauss-Newton algorithm and its application to calibration algorithms

The Gauss–Newton algorithm is a method used to solve NLSQ problems.
It can be seen as a modification of Newton's method for finding a minimum of a
function. Unlike Newton's method, the Gauss–Newton algorithm can only be
used to minimize a sum of squared function values, but it has the advantage that
second derivatives, which can be challenging to compute, are not required.

Chapter 3. Workcell Calibration. 101

i) Description of the iterative method

For calibration purposes, the above described algorithm can be
extended when np functions r1, …, rnp of mp variables β = (β1, …, βmp) are
given, corresponding to np observations done (with np ≥ mp). The Gauss–
Newton algorithm finds iteratively the minimum of the sum of squares

 2

1 1 1

() () ; ; ;
np np l

i i
h

i
i i h

S S r S R min S 
  

    (3.21)

Starting with an initial guess (0) for the minimum, the method
proceeds by the iterations

(1) () (1) ()s s s s             (3.22)

where the increment  is the solution to the normal equations:

()T TW W W r   (3.23)

The goal is to find the parameters β such that a given model
function pM= f(q, β) fits best some data points (,)Sq p , eq. (3.1). In robot
calibration, r is the vector of functions ri, e.g. the residuals of the position
and/or orientation. For each estimation of ()s

() () 1() () ()() (,...,) (,)s s s n s T s
Sr p p p p f q        (3.24)

To identify  , this equation can be performed for a sufficient
number of np configurations, q.

1(,...,)n Tq q q (3.25)

The resulting linear system of equations will be represented by:

(,)p W q     (3.26)

W is the Observation Matrix [19] of dimension (np·l×mp) with
np>>mp.

 Chapter 3. Workcell Calibration. 102

1 ()

()

(,)

...

(,)

s
f

n s
f

J q

W

J q





 
   
  

 (3.27)

being it a composition of the Jf Jacobian matrices of the model function,
()(,)s

Mp f q  , for each observation, evaluated at β(s).

Then, the increment  can be solved to get the least-squares
errors solution as

† ()sW p   (3.28)

where †W is the left pseudo-inverse1 of W .

† 1()T TW W W W (3.29)

The geometric parameters  can be updated, eq. (3.22), after

(3.28). By iteratively applying this procedure until the elements of 
become smaller than some prescribed limit. Therefore, a best-fit solution is
obtained. The common sense criterion for convergence is somewhat
arbitrary, as for example

()

0.001, 1,...,
s

j

j
s

j mp




 



(3.30)

which is equivalent to specify that each parameter should be
refined to 0.1% precision. This is reasonable when it is less than the largest
relative standard deviation on the parameters.

The procedure may not converge very well for some functions and
it is often greatly improved by picking the initial value, (0) , close to the

best-fit value. Equation (3.29) assumes that the inverse of the matrix TW W
exists, as it can be considered for the postures adopted in a calibration
procedure within the workspace range (for the scope of this thesis, over the

1 In fact [33], it verifies that ·W W I 

Chapter 3. Workcell Calibration. 103

table as depicted in following sections). A discussion of the singularity of
this matrix is given in [25].

ii) Outline of the NLSQ Model-based calibration methods. 2D planar
calibration example

The aim of the calibration of the Denavit-Hartenberg (DH)
geometric parameters by iterative methods is to minimize the difference
between the measured EE location and the calculated location. Rearranging
(3.20), a linear differential model defining the deviation of the EE location
due to the differential error in the geometric parameters can be expressed
as:

fp J    (3.31)

where:

  defines the (mp x 1) vector of the errors of the geometric DH
parameters to be adjusted.
 p represents the (l x 1) vector of the position and orientation error

(difference between measured and calculated) with 6l  DOF’s in the
Cartesian Operational Space  .
 (,)fJ q  is the (l x mp) Jacobian matrix of the homogeneous position

matrix of the EE with respect to the DH geometric parameters.

Eq. (3.31) gives l linear equations in the unknown vector  .

In classical calibration methods, we need an accurate external
sensor to measure the real EE position or location. If this sensor gives only
the position coordinates of the EE, then only the first three equations of
relation (3.31) will be used. In this case 3n >> mp observations are taken
as general rule. Analogously, in a planar motion 2n >> mp observations
are taken. The identifiable parameters must be carried out on the
corresponding observation matrix.

The exposed calculations can be tested in the calibration of a 2D
planar manipulator. This mechanism can represent the two links defining
the gross positioning in the KUKA KR 15/2 manipulator (Figure 3.5).

 Chapter 3. Workcell Calibration. 104

Figure 3.5. 2D planar manipulator of two links simulating the gross positioning in

the KUKA KR 15/2 manipulator.

The forward kinematics of the robot is achieved by the DH method
(see Chapter 2),

(,)p f q  (3.32)

where 1 2 3[]Tq    are the joint values and  the vector of the
DH parameters,

[, , ,]a d   (3.33)

which are shown in Table 3.1. These values will be referred as
(0) in the iterative process of calibration.

i αi (rad) ai (mm) θi (rad) di (mm)
1 0 1 650a  θ1 0

2 0 2 2
2 600 155a   θ2 0

Table 3.1. DH parameters for the mechanical system simulating the
manipulator gross positioning.

In this case, only the position coordinates in the plane of the
motion, []Tp x y , are observed (Figure 3.5). Consequently, only the first

Chapter 3. Workcell Calibration. 105

two equations of (3.31) will be used. Both coordinates are resumed from
the overall 4x4 DH homogeneous transformation matrix:

12 12 1 1 2 12

12 12 1 1 2 12

0 · ·

0 · ·

0 0 1 0

0 0 0 1

c s a c a c

s c a s a s
T

  
  
 
 
 

 (3.34)

with

1 1 2 2

2 2 12 1 2 1 2

1 1 12 1 2 1 2

cos() sin()

cos()

sin()

c s

c c c c s s

s s c s s c

 



 
  
  

 (3.35)

Then, in this case the theoretical positioning values, Op , are

(1,4)T and (2,4)T : It is easy to appreciate that they are non dependent on

3 :

1 1 2 12

1 1 2 12

· ·

· ·
O

O
O

x a c a c
p

y a s a s

   
      

 (3.36)

In each link of the model, it can be considered an existing error.
This error is propagated through the forward kinematics giving as a result a
positioning error, being it the residual to minimize. Care must be taken to
all of the DH parameters: none is assumed to be 0 and left out of the
kinematic model or, on the contrary, the error in that parameter is not
revealed itself in the calibration process. The identifiable parameters must
be carried out on the corresponding observation matrix W, eq. (3.27).

For the purpose of this example, let’s consider both errors of 0.2
mm at link a1 and 1º at 1 :

1

1

0.2

0.0175 (1º)
E

E
E

a mm

rad



   

       
 (3.37)

With this supposition, there are two parameters to adjust:

 Chapter 3. Workcell Calibration. 106

1

1

(2)
a

mp


 
    

 (3.38)

Figure 3.6. Thirty observed points in the workspace

Having in this case an mp=2, np=30 well-known locations in the
workspace, 1 30(,...,)T

M M Mp p p , constitute an enough number of
configurations to carry out the calibration procedure. If those locations
were commanded to the robot controller, the requested configurations

1 30(,...,)Tq q q would be internally calculated by means of the IK
theorethical model programmed. In order to emulate the possible
configurations of the real KUKA when working on the rotary table, only
the elbow-up solution is considered (Figure 3.6, see Chapter 2).

2 2 2 2
2 1 2 1 2

2
2 2

1 2 2 1 2 2

2 2 2

(() ()) /(2· ·)

1 ()

2(,) 2(· , ·)

2(,)

i i i
S S

i i

i i i i i
S S

i i i

c x y a a a a

s c

arctg y x arctg a s a a c
q

arctg s c




   

  

    
    
   

(3.39)

In the case studied, the well known locations and their theoretical
configurations are:

Chapter 3. Workcell Calibration. 107

271.2468

382.4231

343.8540

240.6678

(...)

237.3482

512.5508

322.9468

315.1908

 = = ;
i

M
M i

M

x
p

y

  
    
  
     
  
  
  
   
 
  
   

 1

2

2.0870

-2.3866

1.7772

-2.4694

(...)

2.1994

-2.2207

1.9186

-2.4164

= = ;
i

i
q




  
    
  
     
  
  
  
   
 
  
   

1, ..., 30i  (3.40)

Due to the fact that the real robot has small differences with
respect to the ideal DH model set into the controller, if q were the
commanded values to the real non-calibrated manipulator the real positions
achieved would be given by (3.36), but considering the implicit error of
(3.37), that is:

1 1 1 2 1 2

1 1 1 2 1 2

()· ·

()· ·

i i i
S E E E

S i i i
S E E E

x a a c a c
p

y a a s a s

    
       

 (3.41)

with

1 1 1 1 2 1 2 1 2

1 1 1 1 2 1 2 1 2

cos(+)

sin(+)

i i i i i i i
E E E E E
i i i i i i i
E E E E E

c c c c s s

s s c s s c

 
 

  
  

 (3.42)

In the case studied, the values reached are:

264.4295

387.2709

339.5570

246.8272

(...)

228.2464

516.7747

317.3253

320.9658

 = = ; 1,...,30
i

S
S i

S

x
p i

y

  
    
  
     
   
  
  
   
 
  
   

 (3.43)

 Chapter 3. Workcell Calibration. 108

The error p is calculated like:

-6.8173

4.8478

-4.2970

6.1594

(...)

-9.1018

4.2239

-5.6215

5.7750

; 1,...,30
i

S M i

x
p p p i

y

  
    
  
     
       
  
  
   
 
  
   

 (3.44)

With the p data and the DK model of the manipulator (3.36), an
iterative procedure is applied. In the example that is being considered, the
Jacobian matrix of (3.31) for consecutive s-iterations, () ()(,)s sJ q  , is a (2
x 2) matrix calculated as:

() () ()

1 1 2 1 1 2 1 1 1

1 1 1

() ()

1 1 2 1 1 2 1 1

1 1

()
1 1 1

1

()
1 1 1

1

1 1

1 1

cos() - ·sin(()+)-sin()·()

sin() ·cos(()+)+cos()·(

s s s
w w w

w w w

s s
w w

w w

s
w

w

s
w

w

f

a a a

a a a

a a

x x
a

J
y y

a   

     

     





  

 





  

  

     

   

  
     

    



  

  ()

1

1

)
s

w

w

a


 

 
 
 
 
  



 (3.45)

The observation matrix W for the first iteration is composed as
(3.27), evaluated at each configuration qi, considering no-errors at 1 and

1a , that is:

(0)
(0) 1

(0)
1

0

0

a



   

        
 (3.46)

It results in a 60x2 matrix, due to the fact that fJ gives a two rows

sub-matrix, (3.45), for each observed configuration.

Chapter 3. Workcell Calibration. 109

1 (0)

30 (0)

(0)

-0.4936 -382.4231

 0.8697 271.2468

-0.2049 -240.6678

 0.9788 343.8540

(...)

-0.3408 -315.1908

 0.9401 322.9468

()

...

()

,

,

f

f

J q

J q

W





  
  
  
             
     
  
  
   

 (3.47)

then, eq. (3.31) is solved by means of the 2x60 pseudo-inverse of
W (3.28),

(0)† (0) (0) 1 (0)

 0.0117 -0.0001

 0.0527 -0.0001

 0.0198 -0.0001

 0.0523 -0.0000

 (...)

 0.0244 -0.0001

 0.0518 -0.0001

 0.0174 -0.0001

 0.0516 -0

()T TW W W W 

.0000

T
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.48)

Finally a first estimation of the error  in both considered DH
parameters is obtained

(1)
(1) (0)†1

2 60 60 1(1)
1

0.0269

0.0177
·x x

a
W p


             

 (3.49)

The following step for this calibration consists of actualizing the
DK model parameters by adding the obtained (1) to the ideal DH

parameters (0) Table 3.2 shows the modifications. The new parameters

will be referred as (1) :

 Chapter 3. Workcell Calibration. 110

i αi (rad) ai (mm) θi (rad) di (mm)
1 0 (1)

1 1
650.0269a a   (1)

1 1 1
0.0177      0

2 0 2 2
2 600 155a   θ2 0

Table 3.2. MDH Matrix simulating the manipulator gross positioning.

The DK model considered to actualize the Mp positions achieved
with these corrections, for the s-iteration, is

()
() 1 1 1 2 12

1()

()
1 1 1 2 12

1

()· ·

()· ·

s
w i i

si
ws M

M i s
w i iM

w

a a c a c
x

p
y

a a s a s

 


 


 
               

 




 (3.50)

with

()

1 1
1

()

1 1
1

1 12 1 2 1 2

1 12 1 2 1 2

cos()

sin()

s
i w

w

s
i w

w

i i i i i i

i i i i i i

c c c c s s

s s c s s c

 

 





   

   

 

 

  

  




 (3.51)

After actualizing the actual error p as in (3.44), a new

observation matrix (1) (1)(,)W q  is obtained with (3.45) like in (3.47).

Reconsidering (3.49), a new correction (2) is obtained.

(2)
(2) †1

2 60 60 1(2)
1

0.1732

-0.0002
· x x

a
W p


             

 (3.52)

It can be appreciated that, in the second iteration, the error
introduced (3.37) is reached, that is, (1) (2)

E       . Consequently,

in the following iterations, the corrections ()s obtained are almost null,
verifying (3.30) so the iterative process would end. Table 3.3 shows the
final model achieved with the corrections done:

Chapter 3. Workcell Calibration. 111

i αi (rad) ai (mm) θi (rad) di (mm)
1 0 (1) (2)

1 1 1
650.2a a a     (1) (2)

1 1 1 1
0.0175         0

2 0 2 2
2 600 155a   θ2 0

Table 3.3. MDH Matrix simulating the manipulator gross positioning.

3.3. CALIBRATION OF THE ADDITIONAL JOINTS OF THE KUKA
WORKCELL

The main problem in many traditional calibration methods is the need to
have an accurate, fast and not expensive equipment to measure the EE’s pose. It
also has been exposed that autonomous calibrations methods are possible for
robot manipulators with either some a priori knowledge of the task constraint or
redundancy of the sensing systems (e.g., planar constraints).

For this particular case, the open-loop method presented uses a set of
positions of the terminal point of the robot which are assumed to be in the same
plane, but avoiding any physical contact by using a laser displacement sensor.
This technique arises from the fact that the use of a contact probe is problematic,
because it is difficult to be certain that the tip-point of the probe is exactly on the
surface.

In this Non-contact Planar Constraint Calibration procedure, the laser
sensor sweeps three orthogonal constraint planes (namely, a squared pattern) set
in its workspace while measuring the distance. Only the distance readings are
recorded. A NLSQ identification model has been derived from the consistency
conditions of the planes, and is detailed below. The proposed method can be
applied to the full-articulated chain by magnifying the observed parameters with
the same guidelines and it is suitable for on-site calibration in an industrial
environment at regular intervals. This calibration scheme can be implemented to
be done autonomously.

In this particular case, the method is implemented for the calibration of
the external additional joints introduced in Chapter 2, namely the linear track Ld

and the rotary table M , due to the fact that the assembling of the workcell in situ
carried out by the operators left some misalignments while the manipulator has
good accuracy itself. Nevertheless, the method can be applied to the full
articulated chain by magnifying the Jacobian matrix.

3.3.1. Non-contact Planar Constraint Calibration procedure. Material and
method.

 Chapter 3. Workcell Calibration. 112

A planar constraint method for robot calibration may be classified into
single-plane and multiple-plane constraints. Zhuang et al. [22] showed that
whenever a single plane constrains the robot motion, the calibration result is
biased because the measurement data is projected to a particular direction.
Furthermore, a single-plane constraint does not necessarily guarantee the
observability of unknown kinematic parameters of the robot. These authors
demonstrated that, if measurements are constrained to lie on three mutually non-
parallel planes, data collected by this multiple-plane constraint setup is
equivalent to that by a point measurement device. The significance of this
observation is that a 3D-position measurement system may be replaced by no less
than three planes placed at a number of different orientations. Without loss of
generality and in practical terms of industrial calibration, the calibration issue
can be carried out on a mechanized squared corner (Figure 3.7) placed on the
base frame of the workspace {B} in which accuracy is critical (i.e., it will be
assumed that the plane parameters are known a priori).

At this point, some authors [3][23] work by means of recording the joint
readings enabling desirable and safe touch on the planes. Actually, the use of a
contact probe is problematic because it is difficult to be certain that the tip-point
of the probe is exactly on the surface, neither above it nor indenting it. In the
scheme presented, a laser displacement sensor attached to the EE aims at
arbitrary but fixed points on three orthogonal meshes placed in those three
planes.

Figure 3.7. Mechanized squared corner with high tolerance degree, placed on the
base frame of the workspace {B}

Chapter 3. Workcell Calibration. 113

The procedure capitalizes on the constraint that the laser line, being
almost perpendicular to the plane, must be at a constant distance of each plane
for all the respective points of the mesh commanded to the controller. The main
advantage of the scheme presented in this Section is that the distant laser point is
very sensitive and there is no physical contact, which facilitates acquiring more
accurate readings for the calibration. Instead of working with the joint readings,
the NLSQ identification model is derived only from the laser readings without
external measures or joint recordings, see Figure 3.8.

Figure 3.8. Open-loop procedure proposed for the workcell calibration.

i) Laser displacement sensor

A laser displacement sensor (mod. SICK OD100-35P840) is
rigidly attached to the robot flange by means of a specific tool holder. It
has a measuring range of 100 mm with 35 µm in resolution. The laser is
supposed to be aligned with the Z-axis of the EE and a coordinate system
({LR}) is chosen in the laser line. Both X-Y axes orientation and the origin
(TCP) along the laser line are arbitrary, which can be set at some
convenient location. As it is depicted at Figure 3.9 (right), the triangulation
measurement is the physical basis of this displacement sensor: the site of
the light spot on the position-sensitive device (PSD, a photodiode) is
dependent on the distance of the detected object. The signals A and B (see
Figure 3.9) change depending on the position of the light spot. The
calculation of the signals in the microcontroller then gives a linear output
signal depending on the distance of the object.

 Chapter 3. Workcell Calibration. 114

 Figure 3.9. View of the laser displacement sensor.

The laser is supposed to be aligned with the Z8-axis of the EE and
a coordinate system (SC{LR}) is chosen in the laser line, see Figure 3.9
and Figure 3.10, left. Both the orientation of X-Y axes and the origin along
the laser line are arbitrary. Then, the robot can aim the laser TCP at some
location.

It may be cumbersome to use planar methods if the calibration
process includes the calibration of the laser itself. The observability of
certain parameters is not possible with the EE being moved parallel over a
plane as described. These unknown parameters are: two rotations about X8
and Y8 (these angles of rotation are close to zeros) and two coordinates of
translation in X8-Y8 plane (also close to zeros). Gatla et al. [5] integrate
this calibration procedure into the whole calibration process, but in a
different way the joint values are not recorded in the method proposed
here. Zhu et al. [26] also isolate this problem and proposed an approach for
calibrating robot tool center point (TCP) position relative to the robot-
mounting flange when using a noncontact sensor (such as the laser pointer
tool) through the use of NLSQ optimization algorithms and simple
geometry with known dimensions. Thus, we assume the availability of a
fully calibrated laser sensor prior to the assembly of the new additional

joints, i.e. 8
LRT is known.

Chapter 3. Workcell Calibration. 115

3.3.2. Formulations

i) Formulation of the Kinematic Identification Model

The planar methods use a set of configurations of the manipulator
where the position of the terminal point (the TCP) of the robot is in the
same plane. In the Cartesian workspace {B}, the terminal points are
commanded to the controller by setting the position and orientation of the
TCP. For each commanded point,

(, , , , ,) (,); 1,...,i i i i i i i i
M M x M y M z M A M B M Cp p p p p p p f q i np   (3.53)

where np is the total number of points and

, , i i i
M x M y M zp p p represent the position in {B}, whereas the orientation is set

by three RPY2 angles, , ,i i i
M A M B M Cp p p . The mp adjustable model

parameters are held in the vector  . In the case studied,

1 1 1 2[]T
M La d d    (mp=6).

The general equation of a plane  containing the origin of {B} is:

 0a x b y c z   (3.54)

where a, b, c correspond to the plane coefficients. Since the TCP of the
laser is supposed to be in the plane, each commanded point i

Mp should
accomplish:

 0 i i i
M x M y M za p b p c p   (3.55)

Equation (3.55) is exploited to carry out the calibration of the robot
parameters. In practical terms of industrial calibration, it is useful to
assume that the coefficients of the plane are known because the working
space is well known and {B} is already identified in it. This base {B},
materialized with a squared pattern, can be placed easily using an external
sensor where a very limited number of points is needed (theoretically only
three points per plane are needed), see Figure 3.7. Moreover, the particular
equations observed for the three pattern planes are, respectively:

 0i
M xp  (3.56)

 0i
M yp  (3.57)

2 RPY (roll-pitch-yaw) KUKA convention [34].

 Chapter 3. Workcell Calibration. 116

 0i
M zp  (3.58)

We name these planes respectively as X , Y and Z . For each
plane, a set of points in those planes can be easily done by commanding the
robot controller the location of three different orthogonal meshes (Figure
3.10, right), in which the corresponding coordinate (i

M xp , i
M yp or i

M zp) is

null and the orientation of the laser pointer is perpendicular to the plane,
respectively:

(0, , ,0, / 2,0)i i i
M M y M zp p p   (3.59)

(,0, ,0,0, / 2)i i i
M M x M zp p p   (3.60)

(, ,0,0,0,0)i i i
M M x M yp p p (3.61)

Figure 3.10. Left, highlight of the DH model introduced in Chapter 2. Right, three
commanded meshes on the three respective planes.

The fact that each set is constrained to lie on its corresponding

plane leads to the construction of the identification model. Let i
Sp

represent the actual coordinates of the laser TCP in {B} that correspond to
the configuration qi acquired for a commanded i

Mp . Due to the

perpendicular orientation commanded, the distance iD measured by the

Chapter 3. Workcell Calibration. 117

laser device approximates to the respective actual coordinate i
S xp , i

S yp or
i

S zp at {B} (Figure 3.10). For each plane, the other five coordinates are
neither unknown nor approximated with any external measure.

Figure 3.11. Coordinate i

S yp approximated by the distance
Y

iD to Y .

With this suppose, a residual, ir , can be defined as the difference
between the actual observed values i

Sp and the model predicted values,

namely (,)i i i
Sr p f q   . For each plane  and each commanded i-

point, we approximate each residual to be minimized with the measure
iD . Thus, the identification model relating the deviation of the EE

location from the plane  with the differential error in the geometric
parameters () can be expressed as:

fD J    (3.62)

with fJ r     being the Jacobian matrix of the residual regarding the

identifiable parameters. Reasonably, only the expression corresponding to

 Chapter 3. Workcell Calibration. 118

the residual error in the perpendicular direction of the plane  , r , is
taken into account.

In this non-linear system, the derivatives r   are functions of
both the commanded postures and the identifiable parameters, so these
gradient equations do not have a closed solution. Instead, the default values
from the operator’s assembly are chosen as initial guess for the mp
parameters, i.e. (0) . Then, while minimizing the residuals, the final value

of  is refined iteratively by consecutive approximations,
(1) () (1) ()s s s s             (3.63)

where s is an iteration number. As equation (3.62) is applied for a
sufficient number np>>mp of commanded points arranged in the three
orthogonal planes, exceeding the total number of parameters, the resulting
system to identify  is

() ()()s sp W     (3.64)

where W is the Observation Matrix of dimension np×mp. It is an ordered
composition of the Jacobians associated to the corresponding observation
at each plane, () () ()[() () ()]

X Y Z

s s s T
f f fW J J J     . Consequently,

care must be taken in the configuration of p due to the fact that the
measures taken in each plane must correspond with the significance of
each row of W . The npx1 vector of the observed residuals in the three
planes is () () () ()[]

X Y Z

s s s s Tp D D D    .

As in previous sections, the increment  can be solved to get the
least-squares errors solution,

† ()sW p   (3.65)

where †W is the left pseudo-inverse of W , namely † 1()T TW W W W .

The geometric parameters  are iteratively updated in p and †W , eq.

(3.63), until the elements of  become smaller than some prescribed

limit (see eq. (3.30)). This best-fit solution is kept in the controller.

Chapter 3. Workcell Calibration. 119

Figure 3.12. Sweeping the reference planes with two configurations of Ld and M .

3.3.3. Results

The calibration procedure was run in an IntelTM Core Duo PC with MatlabTM
2007c. It showed a good convergence for the studied workcell, with final values
accomplishing the convergence criterion at the 18th iteration. The final
corrections achieved were [0.01 0.06 0.07 0.05 0.01 0.08]T  (mm, rad)

 Chapter 3. Workcell Calibration. 120

Figure 3.13. Left, the values of the increment  show a final stable value; Right,

the stop criterion is achieved after 18th iterations.

Chapter 3. Workcell Calibration. 121

REFERENCES (Ch. 3)

[1] International Standard ISO 9283, “Manipulating industrial Robots: Performance
criteria and related test methods”.

[2] M. Abderrahim, A. Khamis, S. Garrido, L. Moreno; “Industrial Robotics:
Programming, Simulation and Applications”, Chap. 7: “Accuracy and Calibration
Issues of Industrial Manipulators”, ARS/pIV, Germany, December 2006. ISBN 3-
86611-286-6

[3] X.-L. Zhong and J. M. Lewis, “A New Method for Autonomous Robot Calibration”,
IEEE lnt. Conf. on Robotics and Automotion, pp. 1790-1795, ISSN 0-7803-1965-6
(1995)

[4] Mooring, B. W., Z. S. Roth, and M. Driels, “Fundamentals of manipulator
calibration”, pp 23-48, John Wiley & sons, Inc.

[5] Ch. S. Gatla, R. Lumia, J. Wood, and G. Starr; “An Automated Method to Calibrate
Industrial Robots Using a Virtual Closed Kinematic Chain”; IEEE Transactions on
Robotics, Vol. 23, No. 6, pp. 1105-1116, December 2007

[6] I. Fassi, G. Legnani, D. Tosi, A. Omodei; “Industrial Robotics: Programming,
Simulation and Applications”, Chap. 8: “Calibration of Serial Manipulators: Theory
and Applications”, ARS/pIV, Germany, December 2006. ISBN 3-86611-286-6

[7] Whitney, D., Lozinsky and Rourke,J., "Industrial robot fonwartl calibration method
and results", ASME J. of Dynamic Systems, Measur. and Control, 108, pp. 1-8,
1986.

[8] M. R. Driels, L. W. Swayze, and L. S. Potter, “Full-pose calibration of a robot
manipulator using a coordinate measuring machine,” Int. J. Adv.Manuf. Technol.,
vol. 8, no. l, pp. 34–41, 1993.

[9] Zhong, XL, Lewis, J.M., and Rea, H.; "Neuroaccuracy Compensator for Industrial
Robots"; Proc. Of IEEE Int. Conf. on Neural Networks, WCC1'94, Vol. 5, pp. 2797-
2802, Orlando, Florida, 1994

[10] Stone, H.W., Sanderson,A.C. and Neuman,C.P., "Arm Signature Identification",
Proc. IEEE Int. Conf. On Robotics and Automation, San Francisco, CA, PP. 41-48,
1986.

[11] Driels, M.R. and Swayze,W., "Automated partial pose measurement system for
manipulator calibration experiments", IEEE Trans. on Robotics and Automation,
Vol. 10, No. 4, PP. 430-440, 1994.

[12] J.R. Prenninger, M. Vincze, H. Gander; "Contactless position and orientation
measurement of robot EE", IEEE Int. Conf. Robotics and Automation, Atlanta,
Vol.1: pp. 180-185, 1993

[13] M. Vincze, J. P. Prenninger, and H. Gander, “A laser tracking system to measure
position and orientation of robot EEs under motion”, Int. J. Robot. Res., vol. 13, pp.
305–314, 1994.

[14] D.W. Osborn and W. S. Newman, “A new method for kinematic parameter
calibration via laser line,” in Proc. IEEE Int. Conf. Robot. Autom., 1993, vol. 2, pp.
160–165.

 Chapter 3. Workcell Calibration. 122

[15] L. Giugovaz and J. M. Hollerbach, “Closed loop kinematic calibration of the Sarcos
Dexterous Arm,” in Proc. IEEE/RSJ Intl. Conf. Intell. Robots Syst. Sep. 12–16,
1994, pp. 329–334.

[16] D. J. Bennet and J. M. Hollerbach, “Autonomous calibration, of singleloop closed
kinematic chains, formed by manipulators with passive endpoint constraints”, IEEE
Trans. Robot. Autom., vol. 7, no. 5, pp. 597–606, Oct. 1991.

[17] M. A. Meggiolaro, G. Scriffignano and S. Dubowsky; “Manipulator calibration using
a single endpoint contact constraint”; Proceedings of the 26th Biennial Mechanisms
and Robotics Conference of the 2000 ASME Design Engineering Technical
Conferences, Baltimore, MD, September 2000.

[18] W. Khalil, G. Garcia, J.F. Delagarde, “Calibration of the Geometric Parameters of
Robots without External Sensors”, IEEE lnt. Conf. on Robotics and Automotion, pp.
3039-3044, ISSN 0-7803-1965-6 (1995)

[19] W. Khalil, P. Lemoine; “GECARO: A System for the Geometric Calibration of
Robots”, APII-JESA European Journal of Automation, Publisher Hermes Science
Publications, ISSN 1269-6935 33, 5-6 (1999) pp. 717-739

[20] W. Khalil, S. Besnard, P. Lemoine, “Comparison Study of the Geometric Parameter
Calibration Methods”, International Journal of Robotics and Automation 15, 2
(2000) pp. 56-67

[21] Ikits, M. and J. Hollerbach, “Kinematic calibration using a plane constraint”, Proc.
IEEE Int. Conf. Robotics and Automation, pp. 3191-3196, April 20-25, 1997.

[22] H. Zhuang, S. H. Motaghedi, and Z. S. Roth, “Robot calibration with planar
constraints,” in Proc. IEEE Int. Conf. Robot. Autom., Detroit, MI, 1999, pp. 805–
810.

[23] W. Khalil, P. Lemoine, M. Gautier; “Autonomous calibration of robots using planar
points”, International Symposium on Robotics and Manufacturing-ISRAM'96,
Montpellier, France (1996)

[24] J. Hollerbach; “A review of kinematic calibration”, The Robotics, Review 1
(Cambridge, MA: MIT Press, 1989), pp. 207-242.

[25] P. Robinson, P. Orzechowski, P.W. James, C. Smith, “An Automated Robot
Calibration System”, IEEE-Proceedings ISIE’97, pp. 285-290 IEEE, Catalog
Number: 97/THS280, Guimariies, Portugal (1997).

[26] Z. Zhu, Q. Tang, J. Li, Z. Gan ; “Calibration of laser displacement sensor used by
industrial robots”; Society of Photo-Optical Instrumentation Engineers, Opt. Eng.
43(1) pp. 12–13, DOI: 10.1117/1.1631935, January 2004.

[27] K.S. Fu, R.C. Gonzalez and C.S.G. Lee. (1987). Robotics: Control, Sensing, Vision,
and Intelligence, McGraw Hill, Singapore.

[28] J. J. Craig, Introduction to Robotics. Reading, MA: Addison-Wesley, 1986.
[29] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms

based on matrices,” ASME J. Appl. Mech., vol. 77, pp. 215–221, 1955.
[30] H. Zhuang, Z.S. Roth and F. Hamano. 1992. A Complete and Parametrically

Continuous Kinematic Model for Robot Manipulators. IEEE Transactions on
Robotics and Automation , Vol.8, No.4.

[31] S.A. Hayati and M. Mirmirani. 1985. Improving the absolute positioning accuracy of
robot manipulators. J. Robotic Systems. 2: 397-413.

[32] Hollerbach, J.M. and C.W. Wampler. (1996). A taxonomy of kinematic calibration
methods. International Journal of Robotics Research, 14, pp. 573-591.

Chapter 3. Workcell Calibration. 123

[33] http://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_pseudoinverse
[34] KUKA Corp., 2005. KUKA System Software (KSS): Expert Programming (KRC2 /

KRC3), Release 5.2.

Chapter 4. CAM to Workcell postprocessing 125

CHAPTER 4

CAM TO WORKCELL
POSTPROCESSING

"One of the principal
objects of theoretical research in

my department of knowledge is to
find the point of view from which
the subject appears in its greatest

simplicity." –

J. W. Gibbs

Chapter 4. CAM to Workcell postprocessing 127

CHAPTER 4. CAM TO WORKCELL POSTPROCESSING

4.1. INTEGRATED PRODUCTION SYSTEMS

In the latter years, a radical change has taken place in the design and
manufacture of all industrial products. The CAD/CAM/CNC-ROB systems,
which integrate the labours of piece design and generation of paths for its
machining, are included into a wider concept of Computer Integrated
Manufacturing (CIM) (Figure 4.1).

Figure 4.1. The scope of CAD/CAM and CIM [2]

CAD stands for Computer-Aided Design. These systems are meant for
engineering drafting and drawing based mostly on lines, arcs, spline curves and,
more recently, 3-D surfaces. Packages such as AutoCADTM, NXTM,
SolidWorksTM, SolidEdgeTM, CatiaTM and ProEngineerTM are some of the more
commonly used CAD systems on the market today.

CAM systems (Computer-Aided Manufacturing) take the drawing to the
final stage to produce machining instructions to make the part on a CNC
(Computer Numerically Controlled) machine (milling machine, lathe, but also
including manipulators as it is the scope of this thesis).

Historically, CAD systems began as a technological computerized
engineering, while the CAM were a semiautomatic technology for the control of
machines of numerical form [1]. But these two disciplines, which were born
separately, have been mixed gradually up to obtaining a technology sum of the

Chapter 4. CAM to Workcell postprocessing 128

two, so that CAD/CAM systems are considered to be a unique discipline
nowadays, see Figure 4.2. This means that the separation between design and
manufacture has diminished to the minimum and the qualification of the
technical staff has improved substantially with regard to a few years ago. The
design process has changed itself and nowadays it is done by means of an
interactive dialog between the designer and the computer. In this sense, the
designer is released of the least creative processes to intensify his effort in those
tasks that cannot automate (like the creative processes). It is important to note
that the quality and efficiency of the CAD-models designed is the point of
departure for applying the rest of computer assisted technologies, see Figure 4.3.

Figure 4.2. View of the main window of NXTM while covering a complete CAD/CAM
process.

Due to particular characteristics of each manufacturing CNC-machine
(kinematics, controller languages, etc), an important step has to be done between
CAD/CAM and the final production stage, namely, the postprocessing to the
specific machine to be used. This concept is discussed in Section 4.4.

4.1.1. Benefits of the integrated production systems

The benefits in the adoption of integrated production systems can be
summarized in [1][2]:

 Ability to handle pieces with increased complexity,

Chapter 4. CAM to Workcell postprocessing 129

 Notable increase of the productivity: reduction in errors, elimination
of dry runs and time saving,

 Decrease of the production costs,

 Rapid adaptability of the production to the fluctuations and
requirements of the market,

 Considerable improvement in quality and reliability of the
production,

 Professional promotion of the technicians and skilled workers, and
more effective utilization of the machinery.

The simplicity in the flow of information between the production stages
(Figure 4.3) is the most significant contribution of the CAD/CAM integration. In
one hand, it implies that the information relating to the manufacturing process, to
the quality or to the costs of the product becomes more visible to the engineering
(CAD). On the other hand, it also implies that the information of the design of
any product is more accessible when aiming for the manufacturing path-planning
(CAM).

Figure 4.3. CAD/CAM/CNC-ROB flow process: the quality of the CAD-model
determines the efficiency of the results obtained in the following steps of the
manufacturing process.

Chapter 4. CAM to Workcell postprocessing 130

However, it seems to be that the direction of development of CAD/CAM
systems is directed towards engineers rather than machinists. From the author’s
point of view, and as it will be shown in following Sections, in some systems
skill-based knowledge is not given the emphasis that it rightly deserves. The
adaptation of the information to CNC-machines, including robots (ROB), makes
more evident the feedback needed between the machinists and engineers.

4.2. COMPUTER NUMERICAL CONTROL (CNC)

Machine tools have played a fundamental role in the technological
development of the World up to the point that the rate of development of the
machines tools is directly related to the rate of the industrial development. To a
certain extent, it is what happened at the Industrial Revolution with the vapour
machine.

Day after day, numerous and new requirements forced the utilization of
new computerized technologies partially replacing the human operator. About
1942, the engineer John T. Parsons come up what might be called the first
numerical control (NC), due to a need imposed by the aeronautical industry for
the accomplishment of propellers of helicopters with different configurations.
Since then, the Computer Numerical Control (CNC) has taken its place in
industry for several reasons [3]:

 Need to make products that could not be obtained in sufficient
quantity and quality (precision) without an automation of the
manufacturing process,

 Need to obtain products very difficult to make or even impossible
until then, for being excessively complex to be controlled by a
human operator (see Figure 4.4). Even in case of small series the use
of NC can be profitable when the piece is complex enough to justify
its programming,

 Need to make products with low prices,

 Security: NC is especially advisable for the work with dangerous
products.

Later, due to the new needs in industry other important factors appeared
such as the flexibility, which also promoted the use of robotic manipulators
(ROB).

Chapter 4. CAM to Workcell postprocessing 131

Figure 4.4. CAD/CAM/ROB systems offer the possibility of producing very complex
pieces

4.2.1. Definition

CNC (Computer Numerical Control) refers specifically to the method of
controlling machines by the application of digital electronic computers and
circuitry [4]. Machine movements that are controlled by cams, gears, levers, or
screws in conventional machines are directed by computers and digital circuitry
in CNC-machines from a prepared program containing coded alphanumeric data.
Thus, CNC-machine tools or manipulators are operated by programmed
commands encoded on a storage medium, as opposed to manually controlled via
handwheels or levers, or mechanically automated via cams alone.

4.2.2. Classification of the Numerical Control systems

Generally, NC systems can be classified into:

 Equipments of positioning numerical control or point-to-point (PTP).

 Equipments of contouring (or continuous path, CP) numerical
control.

Chapter 4. CAM to Workcell postprocessing 132

In a PTP system, the control determines, from the information given by
the program and before the movement, the complete distance to cover. Later the
above mentioned positioning is done, without considering the crossed path, since
the only thing that matters is to reach with accuracy and rapidity the point
commanded.

The equipments that allow generating curves receive the name of
contourning systems. These machines govern not only the final position but also
the movement in every instant of the axes in which the interpolation is realized.
In these equipments a perfect synchronization exists among the different joints
controlling, therefore, the CP that the tool must follow.

Figure 4.5. Left, the path followed by PTP positioning to reach various programmed
points (machining locations) on the XY axis. Right, complex contour tracking.

While the PTP systems are conceived for tasks such as point welding or
pick-and-place, more complex tracking can be generated with the contouring
systems such as straight lines with any slope, arcs of circumference or any
combination of them. These systems are used, especially, for complex milling
operations, lathe, etc.

Originally this differentiation referred to different types of machine-
tools, since industrial robots were devoted to PTP operations. The evolution in
recent years in informatics allowed the design of controllers for more complex
robotic manipulators (Figure 4.6).

Chapter 4. CAM to Workcell postprocessing 133

Figure 4.6. Left, resistance welding in the industry of automotion (PTP operation).
Right, continuous path (CP) tracking to cut a stone (courtesy of Pedra Navas).

i) Interpolation

The method by which contouring machine-tools move from one
programmed point to the next is known as interpolation. This ability to
merge individual axis points into a predefined toolpath is built into most of
today’s control units. There are five common methods of interpolation,
namely: linear, circular, helical, parabolic, and cubic.

In a linear interpolation, the end point of one segment becomes the
start point for the next segment, and so on, throughout the entire program.
Therefore, a very large number of points would have to be programmed to
describe the curve in order to produce a contour shape. Circular
interpolation has greatly simplified the process of programming arcs and
circles. To program an arc, the control unit only requires the coordinate
positions of the circle center, the radius of the circle, the start point and end
point of the arc being cut, and the direction in which the arc is to be cut
(clockwise or counterclockwise). The information required may vary with
different controllers.

All contouring controls provide linear interpolation, and most
controls are capable of both linear and circular interpolation, such as in the
controllers of the robots used for the purpose of this thesis (KUKATM
robots, as those on Figure 4.6). Helical, parabolic, and cubic interpolation
are used by industries that manufacture parts which have complex shapes,
such as aerospace parts and dies for car bodies, by means of very specific
machine-tools.

Chapter 4. CAM to Workcell postprocessing 134

Figure 4.7. Compared with a linear controller (left), circular interpolation has
greatly simplified the process of programming arcs and circles, and consequently
the length of the codes.

4.3. CAM SYSTEMS FOR TOOLPATH GENERATION

Once the part to be machined is represented by a CAD model, a set of
machining instructions must be produced. These instructions are needed to guide
the cutter TCP (tool center point) on the path over the raw material.

CAM systems work in three stages [8]: the first is to generate cutter
contact points (CC points), the second stage is to generate cutter location data
(CL-data) and the last stage is to convert CL-data to machine code, for the
desired CNC. CL-data contains the necessary information to generate, through
any specific postprocessors, the numerical commands to drive any specific
machine-tool.

Traditionally, CAM has been considered as a numerical control
programming tool, wherein CAD models are used to generate the code to drive
CNC machine tools. Commercial CAM systems are applied off-line, that is,
previously and independently from the machine tool which will manufacture the
object. These systems do not eliminate the need for skilled professionals. In fact,
leverages the value of the most skilled manufacturing professionals through
advanced productivity tools. Users must select some input parameters such as the
type of tool, machining process, tolerances, materials and strategies to be used,
prior to the generation of the toolpath on the CAD part (Figure 4.8)

4.4. POSTPROCESSING

The latest commercial CAD/CAM systems can design freeform surfaces
and generate either the three-axis or five-axis toolpaths. The CL-data, composed
of the cutter tip (TCP) position and orientation relative to the part frame ({B}, as
seen in Chapter 2), can be obtained directly from a CAD model of a product
design created in the CAD/CAM systems. However, difficulty frequently arises

Chapter 4. CAM to Workcell postprocessing 135

in communication between the CAM systems and the NC-machine tools,
especially when various machine tools are employed.

The interface that links the CAM systems and NC-machines is called the
postprocessor and it converts CL-data to the specific controller input code
needed. Essentially, different combinations of machine tool and control unit
require different postprocessors. Consequently, a manufacturing system with a
variety of machine tools requires several postprocessors.

Most CNC controller units are programmed using the widely established
international standard ISO 6983 (G-code)1 language, also known as RS274D, but
it is not the unique existing code. In fact, many machine-tool manufacturers have
introduced special features with the justification of improving or meeting new
performances. Moreover, with the augmented scope of robotic manipulators,
each brand has developed newer and non-standarized languages to command its
motion.

4.4.1. Concept of postprocessing

A postprocessor is a software link in the CAD/CAM chain that
communicates instructions from CAM to a CNC machine [7].

As a consequence, the postprocessing can be understood as the
adaptation of the descriptive information of a machining process generated by a
CAM system towards the specific numeric controller unit which drives the
device used to machine a workpiece (Figure 4.9).

This descriptive information not only includes the CL-data (TCP position
and orientation relative to the part frame), but also additional information such as
tool changes or the occasional use of coolant systems. In the case of redundant
manipulators, the use of the undetermined additional joints is expected.

As a conclusion, after the planning in a CAM system, a good
postprocessor results in a code which fulfils a complete machining process,
without need for editing and checking the code. On the contrary, it supposes a
waste of time and entails risks which are non-desirable nowadays.

1 New standards are being introduced in industry the later years for the newest machine-tools, for example ISO
10303 (also known as STEP) and ISO 14649 (STEP-CNC) [5]. Clearly both them are outside of the scope of
this thesis due to the capabilities of current industrial robotic manipulators.

Chapter 4. CAM to Workcell postprocessing 136

Figure 4.8. Input parameters prior to the generation of the toolpath (NXTM)

Chapter 4. CAM to Workcell postprocessing 137

Figure 4.9. Concept of postprocessing as link between CAD/CAM and the
production sytem at the shopfloor.

4.4.2. Literature review in CNC Postprocessing

The core research problems in NC appear to have been investigated in
the 1970's and 1980's (i.e. path interpolation) and the emphasis of research
activity has focused in applied NC in fields such as:

 Linking CNC machines in CIM environments

 Understanding of machining operations

 Tool life and efficiency diagnosis (material and management
design).

For some authors, the first field (originally intended with the ISO-6983)
has fallen behind due to the variety of machine configurations to which CNC has
been applied. The required conversion or postprocessing is even more
complicated because of the proliferation of CNC manufacturer-specific
extensions [9].

It is also remarkable that CNC controlled milling machines and milling
programming techniques have not featured strongly in the literature. It is
surprising since milling represents one of the most demanding of all CNC
applications. This could be due to the highly specialized nature of this class of
production systems, but also this is probably due to the very expensive
machinery required to test theories, placing this topic away from the reach of
many research institutes.

A minimum of five axes are required in a milling machine to achieve the
maximum possible position and orientation DOF’s in the cutter relative to the

Chapter 4. CAM to Workcell postprocessing 138

part frame {B} (see Chapter 2). The cutter tool, as rigid body located in
Euclidean space, has three translational degrees of freedom and three orientation
degrees of freedom but the third orientation degree of freedom is not required
since the cutting tool possesses rotational symmetry about the spindle axis. This
functionally redundancy inherent to the pose of the cutting tool will be discussed
in Chapter 5. Now, from a practical point of view, it is remarkable that the
calculation of the position of the tool centre point (TCP) and orientation of the
tool axis is solved for all commercial software with five-axis capabilities
(UnigraphicsTM, CatiaTM, PowermillTM, GibbsCamTM and others) [20]. Therefore,
this matter is outside of all skilled CAM users’ scope. The main trouble during
toolpath generation appears in postprocessing steps, when the toolpath generated
by the CAM system is translated into CNC code.

There are many different configurations of milling machines, and post-
processors have to be adapted for each of them. A small numbers of researchers
have recently worked on the basic architectural issues of CNC milling
postprocessors. Bedi and Vickers [10] developed a postprocessor program for
FANUC 6MB machine tool. In a similar way, Balaji [11] presented the
development and implementation of a postprocessor by converting APT2 source
codes to a machine code format. However, both works are focused towards three-
axis machines (i.e. static tool orientation). This fact makes the transformation
from CL-data to NC-data straightforward and no additional coordinate
transformation technique is necessary.

There are three typical five-axis machine tools proposed by Sakamoto
and Inasaki [14], and different postprocessors have to be adapted for each of
them. For example, using a machine with two rotary additional axes in bed
(Figure 4.10, left) is totally different to those with two orientation angles (twist
and tilt angles) in the tool head (Figure 4.10, right). Thus, the tool positions and
orientations relative to the part frame require further transformations by the
postprocessor before encoding it into the machine input language [20]. The
transformation requires knowledge of the kinematic architecture of machine-tool
in order to solve the inverse kinematics, i.e., transferring the tool positions and
orientations (operation space) into machine axes positions (joint space). Lee and
She [15] documented a postprocessor capable of converting cutter location CL-
data to machine control data for those machines, in order to establish an interface
between CAM-systems and those machines. For this, they made an inverse
kinematic analysis of each sort to obtain the analytical equations for the resulting
NC data. Recently, She et al. [16][17] have made a revision of this work.

2 APT or Automatically Programmed Tool is a high-level computer programming language used to generate
instructions for NC machine tools created by Douglas T. Ross during the late 1950's [19]. Today, it is an ISO
standard of CL-file code [8][18] .

Chapter 4. CAM to Workcell postprocessing 139

Figure 4.10. Three different configurations in a 5-axis machine tool [14].

Recent research have been done in some milling machines at the University of
Montreal [21][22] to increase significantly their workspace by using its
functionally redundant revolute joint, previously introduced. An optimization
procedure was implemented within a postprocessor module and tested with the
architecture of a generic five-axes milling machine [8]. They presented a
functional Redundancy-Resolution Scheme (RRS) implemented within a
postprocessor module of the generic B-Y-Z-X-C milling center Huron KX8-Five
(Figure 4.11). The CL-data was generated with the commercial CATIA V5
system.

This previous research demonstrates that there is still tremendous scope
for improvement in the basic machine modelling and postprocessing fields.
Traditional CNCs are ill-suited to the demands of many of today's complex robotic
workcells (including serial manipulators and parallel robots). Nowadays, these
machines are characterized by intensive shop-floor level set-up and programming
as opposed to the growing trend for CNC machines to be programmed off-line.

Chapter 4. CAM to Workcell postprocessing 140

Figure 4.11. Generic B-Y-Z-X-C milling center Huron KX8-Five, and view of the
CAM software CATIA.

Parallel Kinematic Machines (PKM) are clearly outside of the scope of
this thesis, although it is remarkable the interest that they have achieved in a few
years due to their major stability in fast milling machines, for example at [23][24].
For the author’s point of view, it is worth mentioning the work recently done by
Guo et al. [28] (Figure 4.12). These authors implemented a special postprocessor
in TCL/TK language and based on UG/POST (NX-Siemens Corp.), and it was
applied for converting the CL-data to machine control data.

Figure 4.12. Guo et al. implemented a postprocessor for the NX system (Siemens
Corp.) and to convert CL-data to PKM control data.

Chapter 4. CAM to Workcell postprocessing 141

In case of serial robotic manipulators, as it is the scope of this thesis, the
parameters and paths for the conventional CNC machining described above should
be converted now into paths to be followed by a tool attached to the robot flange.
Lorini and Meneghello [25] developed a computational application to translate
CAD/CAM files into the programming language used in a 6R ABBTM-robot
(RAPIDTM). In a similar way, Feng-yun and Tian-sheng [27] developed a 6R robot
system for complex surface polishing based on CL-data generated by a CAM
system. For the author’s point of view, it is worth mentioning the work recently
done by Huang and Lin [26], since they developed a postprocessor to establish an
interface between the UG (UnigraphicsTM) CAD/CAM system and the unique
controller of a dual-robot workcell (Figure 4.13) by converting five-axis CL-data
to robot control data. In order for both robots to perform cutting operations
concurrently on the same workpiece, the original CL-data was divided into two
parts, one for each robot in the workcell.

Figure 4.13. Huang and Lin converted five-axis CL-data into robot control data
readable by the unique controller of a dual-robot ABB workcell

Finally, there is a discussion on the best way of programming
postprocessors. The first way of developing postprocessors is based on the
employment of sophisticated programming languages (Basic, Fortran, Pascal,
C, C++, etc.) to develop the post-program in charge of the adaptation of the
machine code according to several machine specifications (like the generalized
NC postprocessor done by Ryu [29] by using Microsoft Visual C++) In general,
this development requires a competent programmer. Whereas the method
offers flexibility and potential to the developer, this way makes
extraordinarily difficult and costly the creation and debugging of

Chapter 4. CAM to Workcell postprocessing 142

postprocessors. Usually the last is a complex problem that could move in later
responsibilities towards each particular user.

The second way rises from the programming languages specially
developed for postprocessing. These are known as interpreted languages such as
the previously introduced TCL/TK [37]. This has been the solution for the main
CAM developers, being able to separate the tasks of programming and
debugging postprocessors. These interpreted languages allow the development
of hybrid interfaces that optimize a simple managing (within a range) of
postprocessors for each type of machine-tool (Figure 4.14). As a result, CAM
software developers leave the difficulties of a good postprocessor debugging as a
labour for every particular user but usually sacrificing flexibility and
programming potential by the restrictions of the interface. Some of CAM
developers even provide collections of standard postprocessors to be adjusted by
the user of a particular CNC machine.

Figure 4.14. Post Builder interface that allows a simple managing of
postprocessors for different standard machine-tools (within a range).

In case of complex mechanical systems like the robotic workcells shown
previously (Huang and Lin; Guo et al.), or the one treated in this thesis, those
commercial interfaces do not provide a way to implement the specific kinematic
particularities.

Chapter 4. CAM to Workcell postprocessing 143

4.4.3. CAM-ROB postprocessing

As introduced above, the NC programming code of a machine-tool can
be generated directly for milling tasks up to 5-axes from any CAM system. The
characteristics of these systems allow the automation of the process of NC
programming through the introduction of operation parameters, manipulation of
equipment or tool databases, and generation of the machining path (see Figure
4.8).

The CAM to ROB postprocessing considers the use of the above
mentioned characteristics of the CAM systems for path generation (with the
corresponding cutting parameters definition) and for the subsequent conversion
of the toolpath to the specific robot language (KRL in the scope of this thesis).
Thus, the postprocessor’s objective is to interpret and manipulate the text file
with the CL-data, in order to relate the different functions of the NC through the
motion commands in robot language (hence, converting this information into a
robot program).

As it will be shown in later sections, the application consists basically of
programmed routines (such as TCL or C++ programming languages) with the
purpose to automatically generate the robot language programming providing
larger flexibility and automation to the operation of the robots, This allows
diversifying their uses and reducing the processing time. The general structure of
this application and its integration to the used systems is illustrated in Figure
4.15, where the referred application developed for the CAM-ROB postprocessing
is marked within a border.

The graphical files generated in CAD systems are transferred to CAM
systems by a graphical file transference standard format (iges, parasolid, step, …)
or more directly with the specific format of the CAD/CAM platform (*.prt in
NX, as it is the program used in the IDF). The CAM software interprets the
information from the CAD file and the toolpath to be is automatically generated
according to selected parameters and strategies. The processes of circular
interpolation or linear path generation are made by the algorithms implemented
in the CAM module. The set of path information and operation parameters is
recorded as CL-data.

From this point, the CAM-ROB postprocessor uses this CL-data or even
the commonly generated CN program (usually G-code) as input data for the
robotic system (see red border at Figure 4.15). The CAM-ROB postprocessor
interprets this text file and correlates the functions in it with the specific
functionalities and capabilities of the robotic system.

Finally, it is important to note that most of the current robotic
CAD/CAM systems have powerful graphic capabilities that allow robot motion
simulation. These approaches use the trial and error loop that is a time consuming

Chapter 4. CAM to Workcell postprocessing 144

procedure applied by the technician, without use of any optimization concept, see
Figure 5.12. It justifies the search of the optimum workpiece location with regard
to the robot reference system {B} (see Figure 2.18) as done in Chapter 5, to
automatically avoid poor manipulator postures (compared to other possible
configurations).

Figure 4.15. General structure of a CAM-ROB postprocessing

4.5. NX-CAM TOOLPATH GENERATION

4.5.1. NX-CAM module characteristics

NXTM (Siemens Corp.) is a digital product development system that
integrates and fully associates the labours of design (CAD), simulation (CAE)
and manufacturing (CAM). The Computer Aided Manufacturing (CAM) module
makes possible the planning of milling tasks (Figure 4.2). In addition to the
generation of the path planning of the successive tools (cutting strategies, speeds,
etc), NXTM also allows to automatically reformulate the order of the successive
machining operations.

i) Trajectory generation (CL-File). Linear and circular path tracking

As stated in Section 4.4.3. and even more with the advancing
computer technology, commercial CAD/CAM systems can design complex

Chapter 4. CAM to Workcell postprocessing 145

surfaces and directly generate their CL-data up to five-axis machining. In
general, CAM systems work within three stages: the first is to generate
cutter contact points on the CAD model, the second stage is to generate
CL-data and the last stage is to convert CL-data to machine code.

 Actually, with the parameters given by the designer (Figure 4.8)
and to accomplish the two firsts stages, the CAM system automatically
discretizes the path curve into small segments within the machining
tolerance of the toolpath (Figure 4.16).

Figure 4.16. Trajectory tolerances, intol and outol, in the NX-CAM system.

Each of these end-points is saved in cutter location file (CL-file)
under an ISO standard3. The five-axis CL-data consists of positions and
orientations of the cutter with regard to the workpiece coordinate system
{B}.

In order to execute the five-axis CL-data on the robotic workcell,
the data are required to be transformed into different reference inputs.
These reference inputs are normally linear motions or circular motions,
although NURBS trajectories have been successfully implemented in the
ultimate CN-machine tools and most CAM systems already are able to
generate this approximation. For the scope of this thesis, only linear and
circular motions are the possible CP trajectories most serial manipulators
[26][33][34]. Thus, this would be the format data required from the NX-
CAM (Figure 4.17).

3 One of these standards is the APT format (Automatically Programmed Tools), previously introduced.

Chapter 4. CAM to Workcell postprocessing 146

Figure 4.17. NX-CAM dialog window to determine the sort of CN inputs generated.
Those inputs must describe linear and circular motions for most current industrial
manipulators.

 Linear and circular path tracking

The most usual way to specify the toolpath in a milling operation
consists of a succession of points with small linear interpolations between
each two of them. Clearly, the approximation of a bended trajectory with
small straight lines implies a loss of accuracy.

Figure 4.18. Influence of the tolerances (intol and outol) on the number of linear
interpolations required to track a toolpath [38].

Chapter 4. CAM to Workcell postprocessing 147

In case of trajectories with a small curvature radius, the density of
points is higher than in case of nearly straight ones. The dialog box of
Figure 4.16 is the way to control the degree of accuracy specified by the
designer (intol and outol tolerances). Higher tolerances entail higher
discretization error, resulting in a faceted piece. On the contrary, narrow
tolerances force the CAM to make a great amount of interpolations
resulting in a very long program (Figure 4.18). The influence of this
discretization on the surface finish was recently documented by Helleno
and Schützer [38], using the same CAM-system than in the current thesis.

An immediate solution to this problem consists of using arcs in
each of the coordinate planes of the (XY-XZ-YZ) to approximate the
toolpath (see Figure 4.19). It also reduces the size of the NC-program.

Although it is immediate to define the linear movement by the
location of the destination point from the actual point, the definition of the
circular movement depends on the controller unit. It varies with different
criterion to define the arc center, the radius, the amplitude of the arc and
the motion sense.

Figure 4.19. Toolpath interpolated with arcs and lines.

ii) NXTM-Post

As it was mentioned, the last stage of CAD/CAM systems is to
convert CL-data to machine code, and the interface that links the CAM
systems and NC-machines was already introduced as the postprocessor.

NXTM can also be considered as configurable postprocessing
software [31][32], specifically named NX-Post. It uses the stored toolpath
as input data, and provides a legible NC code. The Post postprocessor
consists of several parts [40]: the Event Generator, the Event Handler, the
Definition File and the Output File. The Event Generator is the NX core
program that cycles through the events in a CL-file and communicates the
data associated with each event to the Post postprocessor. An event of path
is a collection of data, that when processed by Post, causes the NC machine

Chapter 4. CAM to Workcell postprocessing 148

to perform some specific action [30][31]. For example, a basic
Linear_Move event will cause the NC machine to move the tool along a
straight line to a position specified by the information stored in the position
parameters (X, Y and Z coordinates at {B}). In this case the Event
Generator will trigger the Linear_Move event and will load the
corresponding parameters X, Y, and Z with the values that represent the
end position of the straight move postprocessed. A complete description of
recognized events, and the variables associated with each, is described in
[40] (at Events sub-section). By the way, the Output File is the file where
the postprocessor writes the postprocessed instructions that will be read
and executed by the NC-machine or robot.

Figure 4.20. Integrated postprocessing in the NX-CAM system. The Definition File
and the Event Handler are programmed in TCL to adapt NX's CAM towards the
KUKA KRC2 controller. The Event Handler is able to interact with executable
modules programmed in C++.

The great configurability of the NXTM integrated postprocessor is
achieved by means of the interactivity of the system with two programs
that manipulate the event variables and adapt the CAM data towards the
particularities of the NC-machine (or the robotic workcell, Figure 4.20):

 Event Handler (.tcl): It is a file containing principally of a succession
of procedures and calculations to carry out with the associated event
variables to get the information required by the NC controller. For
example, tool pose data relative to the part frame {B} may require
further transformations before encoding it into the specific NC-file.
For example, these transformations can be based on the machine tool
architecture or the robot inverse kinematics transformations (as

Chapter 4. CAM to Workcell postprocessing 149

studied by some authors, section 4.4.2.). For the scope of the IDF’s
workcell, special treatment is required by the KUKATM KRC2
controller [33], see Section 4.6.3.

 Definition File (.def): It is a static file that gives the required format
to the output information, namely the desired toolpath. As example,
the KRL structure [33][34] is the format required for the scope of this
thesis, see Section 4.6. and 4.6.3.

Both programs are programmed in TCL (Tool Command
Language), previously introduced in section 4.4.2. It is an interpreted
programming language with capacity of connecting in a flexible way
certain number of modules in other programming languages like C++
[35][36][37].

The Event Generator, the Event Handler, and the Definition File
are dependent upon each other. Together they transform the tool path data
contained in the part file into a set of formatted instructions that they can
be read and executed by a specific machine tool/controller combination.

4.6. Industrial NXTM to KUKATM workcell Postprocessing

4.6.1. KUKATM Workcell programming

As the scope of this thesis is about using a KUKATM robotic workcell for
milling tasks, in addition of the architecture and kinematics of the workcell the
input format required by the workcell controller must be known.

KUKATM KRC2 controller uses textual language commands which are
written in English-like statements to perform the motion program. The motion
instructions can be subdivided into commands for simple PTP motions and
commands for CP movements. Whereas, with CP, the EE describes a
geometrically defined path in space (straight line or arc), the motion path in PTP
movements is dependent on the robot’s kinematic system and cannot, therefore,
be accurately predicted in this industrial robot (see [34]). Common to both these
types of motion is the fact that programming takes place from the current
position to a new position. For this reason, a motion instruction generally only
requires the specification of the end position (with the exception of CP circular
motions)

Position coordinates can be specified either as text (writing the numeric
values of the joints or tool coordinates) or by moving the robot to them and
saving the actual values (by using an electronic keypad known as a teach-
pendant). However, the last method cannot enter a program into the controller
while the robot is off-line, and it is devoted to pick & place or welding
programming.

Chapter 4. CAM to Workcell postprocessing 150

Off-line programming has the advantage of preparing the robot program
at a remote computer terminal, prior to it is deployed to the robot controller for
its execution. Off-line programming systems generally include a computer
graphic interface (a PC or laptop), which allows the robots to be programmed
without access to the robot itself during the programming. It means the robot cell
can be taught to perform a task via a computer while it continues to perform a
separate task. Without off-line programming, workers must stop production,
enter into the cell and manually walk the robot through the motions required to
perform a task. Put succinctly, off-line programming has at least the following
advantages [39]:

 reducing down-time caused by robot reprogramming;

 avoiding the risk of damage to real robot by checking the motion
on a graphic simulator in advance;

 it becomes possible that existing CAD and CAM information are
incorporate into the control functions.

Concerning these advantages, it is justified the attraction that the off-line
programming has attracted a lot of robot developers (as shown in section 4.4.2.).

4.6.2. KRL for PTP motions (synchronous PTP)

In a KUKATM manipulator, the PTP motion is the quickest way of
moving the TCP from the current position to a programmed end position [34]. To
do this, the KRC2 controller calculates the necessary angle differences for each
joint. The motions of the joints are synchronized in such a way that all of them
start and stop moving at the same time (synchronous PTP).

The KRL (KUKA Robot Language) provides a specific command for
PTP motions [34]:

PTP {destination_point} (4.1)

The structure of the point required has two possible syntaxes:

{E6POS: X, Y, Z, A, B, C, E1, E2} (4.2)

{E6AXIS: A1, A2, A3, A4, A5, A6, E1, E2} (4.3)

In (4.2), the TCP positioning and orientation coordinates (X, Y, Z, A, B,
C) are referred to the workpiece Cartesian coordinate system {B} placed on the
rotary table (Figure 2.18).

Chapter 4. CAM to Workcell postprocessing 151

In (4.3), {A1, …, A6} set the desired final mechanical values for each
joint of the main 6R manipulator. Those values correspond to the

 1 6, ...,  values calculated in the kinematic models of Chapter 2, respectively.

In both cases, E1 and E2 set the external joint values. In the case of the
workcell studied in this thesis (Figure 2.14), they are the linear track Ld and

rotary table M joint values also calculated in Chapter 2, respectively. To
practical effects, both additional external joint values are requested only in case
of avoiding singularities or limit of range in the motion of the A1-A6 chain
(Figure 2.5). This criterion in the KRC2 controller attends to reasons of precision
in the tasks (i.e., putting the calibration procedure on one side as treated in
Chapter 3) and economy in the articulate motions. Also to avoid the
mathematical problem that redundancy introduces, it is the criterion that
KUKATM takes, namely, leaving them aside and behaving as a 6R manipulator
until the skilled technician perceives the convenience of its employment.

It is important to note that, as the mechanical origin or the rotation sense
may show a discrepancy from the ones established in the DH modelling, some of
them are offset by a constant. Moreover, the controller works with sexagesimal
degrees (º) instead radians (rad). Thus, readings from the controller (in º) must be
converted to rad and the values of the following table must be added to get the
values in the DH kinematic model.

Mechanical joint E2 E1 A1 A2 A3 A4 A5 A6

DH joint M Ld 1 2 3 4 5 6

Offset (rad)  0  0 2
   

Table 4.1. Offset between the mechanical and the DH modelled joint values

Finally, it is noteworthy that the precise path of a PTP motion between two
points cannot be predicted exactly as the robot uses the quickest path it can. This
path is influenced slightly by a number of factors [34]. This is the reason why
PTP commands do not apply for controlling the actual industrial workcell for
precise path tracking, as it cannot guarantee the precision and constant velocity
required in the TCP for milling tasks.

4.6.3. KUKA KRL for Continuous Path Tracking

The KRL provides specific commands for Continuous Path tracking (CP
commands). Unlike with PTP motions, in the case of CP motions it is not just

Chapter 4. CAM to Workcell postprocessing 152

start and end positions what is predefined. Additionally, the accurate movement
of the TCP along a path between these points is also mandatory. This path
tracking may be a combination of straight-linear and circular TCP motions at a
constant speed, commanded with the following templates [34]:

LIN {destination_point} (4.4)

CIRC {auxiliary_point }{ destination_point } CA (4.5)

In both cases, the points required must follow the syntax of (4.2). The
velocities to be entered do not relate any longer, to the individual axes, but to the
motion of the TCP. The TCP is thereby moved at a precisely defined velocity.

In KRL, a circular movement has the peculiarity of that the sign of the
circular angle (CA) does not indicate the rotation sense (like in the most common
G-codes) but the order with which the TCP should move to the points. Figure
4.21 shows the effect of the CA sign in the CIRC command for the same points
(PAUX={auxiliary_point}; PPROGRAMED END={destination_point}) and amplitude
(CA).

Figure 4.21. The actual end position (PACTUAL END) on the arc is determined by the
programmed CA sign and value, and not by the destination point (PPROGRAMED END)

Therefore, a circular movement is defined by three points different from
one another and not on a straight line and a circular angle (CA) in degrees.
Similarly, the variables that describe a circular movement in NXTM referred to a
Cartesian Coordinate System {B} (Figure 2.23) are well known [40], and
represented in Table 4.2. and Figure 4.22:

Chapter 4. CAM to Workcell postprocessing 153

CONCEPT VARIABLE
NAME OF THE EVENT HANDLER
VARIABLE

Initial point P1 [$mom_prev_pos]3x1
Arc center PC [$mom_pos_arc_center] 3x1
Unitary vector, normal to the arc
plane

N [$mom_pos_arc_axis] 3x1 (left hand rule)

Arc angle CA $mom_arc_angle (degrees)

Table 4.2. NX Event Handler variables for circular movements.

Figure 4.22. Left, Arc of circumference and arc plane. Right, definition points.

Thus, in order to obtain three points giving the equivalent circular motion
at the manipulator, let ri be the vector of position associated with Pi. Then:

10 rrR  (4.6)

1003 ·2 rrRrr  (4.7)

PRrr  02
 (4.8)

with  · ·P P
P

R R
R R N V

R N V
  


 (4.9)

Those expressions allow getting the requested points. Additionally, the
absolute value of the arc angle (CA) is well known, and always positive due to
the way in which the points of destination and auxiliary have been defined.

4.6.4. Post programming

The information above, suitably treated by the Event Handler, is passed
to the Definition File, which gives the required format for the output code ((4.4)
and (4.5)). Appendix I shows the TCL code of both the Event Handler and the
Definition File configuring a postprocessor from NX to a KUKA 6R
manipulator, as the redundancy problem is treated in Chapter 5.

Chapter 4. CAM to Workcell postprocessing 154

REFERENCES (Ch. 4)

[1] Krouse, John K.; "What every engineer should know about computer-aided design

and computer-aided manufacturing"; Marcel Dekker, Inc.; 1982, pp. 15-17, ISBN 0-
8247-1666-3

[2] Groover, M. P.; “Automation, production systems, and computer-integrated
manufacturing”; Prentice-Hall, Inc.; pp. 699-711, 2001; New Jersey; ISBN 0-13-
088978-4

[3] Castillo García, F. J.; García Higuera, A.; CIM: El Computador en la
Automatización de la Producción; Ediciones de la Universidad de Castilla-La
Mancha, 2007. ISBN: 8484274446

[4] Mcgraw-Hill Encyclopedia Of Science & Technology, McGraw-Hill, Editorial
McGraw-Hill 2007, ISBN: 0071441433.

[5] BODEMYR E., VALLIN D.; “How Improve a CAD/CAM/CNC-process, A study of
organization and technology at Electrolux AE&T”; Department of Human Work
Sciences, Luleå University of Technology, ISSN: 1402 – 1617 (2005)

[6] R.-S. Lee and C.-H. She; Developing a Postprocessor for Three Types of Five-Axis
Machine Tools; Int J Adv Manuf Technol (1997) 13:658-665

[7] http://www.toolingu.com/definition-300160-6999-post-processor.html (accesed on
9th March, 2010)

[8] Valipour, H. et Baron, L., The Orthogonal Decomposition Method in the Post-
Processing of Redundant Machinning Operations, Third International Conference on
Industrial Automation, Montreal, Canada, (2007).

[9] Gibbs B., “Postprocessors: An Integral Part Of Machine Tools”; Gibbs and
Associates (www.productionmachining.com/articles/postprocessors-an-integral-part-
of-machine-tools.aspx)

[10] Bedi S. and Vickers G. W, "Postprocessor for numerically controlled machine tools",
Computers in Industry, 9(1), pp. 3-18, 1987.

[11] Balaji B. K., "Development and interface of a postprocessor for a CNC mill", Master
Thesis, California State University, Long Beach, USA, December 1993.

[12] Lin P. D. and Chu M. B., "Machine tool settings for manufacture of cams with flat-
face followers", International Journal of Machine Tools and Manufacture, 34(8), pp.
1119-1 t 31, 1994.

[13] Lin P. D. and Tsai I. J., "The machining and on-line measurement of spatial cams on
four-axis machine tools", International Journal of Machine Tools and Manufacture,
36(1), pp. 89-101, 1996.

[14] Sakamoto S. and Inasaki I., "Analysis of generating motion for five-axis machining
centers", Transactions of the Japan Societyof Mechanical Engineers, Series C,
59(561), pp. 1553-1559, 1993

[15] Lee R.-S. and She C.-H., Developing a Postprocessor for Three Types of Five-Axis
Machine Tools Int J Adv Manuf Technol (1997) 13:658-665, Springer-Verlag
London Limited (1997)

[16] She C.-H., Chang C.-C., Design of a generic five-axis postprocessor based on
generalized kinematics model of machine tool, International Journal of Machine
Tools & Manufacture 47 (2007) 537–545

Chapter 4. CAM to Workcell postprocessing 155

[17] She C.-H., Huang Z.-T., Postprocessor development of a five-axis machine tool with
nutating head and table configuration, Int J Adv Manuf Technol (2008) 38:728–740,
DOI 10.1007/s00170-007-1126-5

[18] http://en.wikipedia.org/wiki/APT_(programming_language) (accesed on 19th March,
2010)

[19] Ross, D.T.; Origins of the APT Language for Automatically Programmed Tools;
ACM SIGPLAN Notices, Vol. 13, No. 8, August 1978

[20] LOPEZ DE LACALLE L.N. , LAMIKIZ A., MUÑOA J. and SANCHEZ J.A.; The
CAM as the centre of gravity of the five-axis high speed milling of complex parts;
International Journal of Production Research, Vol. 43, No. 10, 15 May 2005, 1983–
1999

[21] Baron L., "An optimal surfacing post-processor module for 5-axes CNC milling
machine", Ecole Polytechnique de Montréal, 2000.

[22] Shareghi F. and Baron L., “An Optimal Redundancy-Resolution Scheme for the
Post-Processing of 5-Axes Milling Machines”, Ecole Polytechnique de Montréal,
2000.

[23] Chen S.-L. and Liu Y.-C.; "Post-Processor Development for a Six Degrees-of-
Freedom parallel-Link Machine Tool"; Int J Adv Manuf Technol (2001) 18:254–265

[24] Chang T.-H., Chen S.-L., Liu Y.-C. and Inasaki I.; "Post-Processor Development of
a Hybrid TRR-XY Parallel Kinematic Machine Tool"; Int J Adv Manuf Technol
(2002) 20:259–269

[25] Lorini F.J. and Meneghello G.P.; "A Milling System with Robot Resources"; ABCM
Symposium Series in Mechatronics - Vol. 1 - pp. 144-149 (2004)

[26] Huang H.-k., Lin G.C.I.; "Rapid and flexible prototyping through a dual-robot
workcell"; Robotics and Computer Integrated Manufacturing 19 (2003) 263–272

[27] Feng-yun L. and Tian-sheng L.; "Development of a robot system for complex
surfaces polishing based on CL data"; Int J Adv Manuf Technol (2005) 26: 1132–
1137

[28] Guo X., Wang L., Wang Z., Liu W.; "Development of CAD/CAM System for
Parallel Kinematics Machine"; Proceedings of the IEEE International Conference on
Mechatronics and Automation, pp. 2501-2507 (2007)

[29] Ryu, G.-S., "IMPLEMENTATION OF WEB-BASED NC POSTPROCESSOR
BUILDER"; KSIAM IT series Vol.6, Nº2, 91-99 2002

[30] A. González, J. C. Sánchez; "CAM UG, Manual cam completo v2.1."; UGS
Corporation 2005

[31] “NX Documentation” ; ({$UGII_base_dir}\UGDOC)
[32] "Post Builder 5.0: Post Building Techniques"; UGS Corporation 2007
[33] J. Andres, L. Gracia, J.Tornero; “Inverse kinematics of a redundant manipulator for

CAM integration. An industrial perspective of implementation”, unpublished
(submited to ICM09)

[34] “KUKA System Software (KSS): Programación por el experto (KRC2 / KRC3)”,
Release 5.2., KUKA Corp., 2005.

[35] B. B. Welch, K. Jones, J. Hobbs; “Practical programming in Tcl/Tk”. ISBN
0130385603

[36] F. Feito, R. J. Segura, F. de Asís; “Programación en Tcl/Tk”, Universidad de Jaén,
1997. ISBN 8488942966

Chapter 4. CAM to Workcell postprocessing 156

[37] Ousterhout J. K.; “Tcl and the Tk Toolkit”, Addison Wesley, 1994, ISBN
020163337X

[38] Helleno A.L., Schutzer K.; “Investigation of toolpath interpolation on the
manufacturing of die and molds with HSC technology”; Journal of Materials
Processing Technology 179 (2006) 178–184

[39] Celia F.; "Implant Manufacturers, Robotics Are Finding Common Ground";
http://www.odtmag.com/articles/2005/11/implant-manufacturers-robotics-are-
finding-common-.php (Accesed 22nd March, 2010)

[40] “NX Documentation - Post” ; ({$UGII_base_dir}\ UGDOC\ html_files\ ugpost\
index.html)

Chapter 5. Redundancy Resolution Schemes 157

CHAPTER 5

REDUNDANCY RESOLUTION
SCHEMES

“No scientist thinks
with formulae: before the

physician begins to calculate
he must have in his brain the

course of his reasonings.
Those, in most cases, can be

expressed with simple words.
Calculations and formulae

arise later” - A. Einstein

Chapter 5. Redundancy Resolution Schemes 159

CHAPTER 5. REDUNDANCY RESOLUTION SCHEMES

5.1. KINEMATIC REDUNDANCY

At Chapter 2, the operational space () was defined as the physical
space where the manipulator changes the pose of its EE, with regard to a Base
frame of reference {B}, in order to perform a task.

For a specific task, the motion of the EE may require the whole
operational space  or only a subspace of  . In any case, the space in which
the task is undergoing can be named as the task space, , with dim() t  .

In addition, m was presented as the dimension of the operational space1;
therefore, if the robot is required to position and orient its EE in three-
dimensional Euclidean space, m = 6. Thus, for the final scope of this thesis, the
following condition must be accomplished to perform a milling operation:

6 ,t n    (5.1)

While most 6R manipulators have enough DOF’s to perform a position
and orientation tracking, it is known that their conditioning (and also its
manipulability) may be frustrated due to mechanical limits or even worst, due to
internal singularities (see Chapter 2).

5.1.1. Definition of Kinematic Redundancy

A manipulator is said to be redundant when the dimension of the task
space t is less than the dimension of the joint space n [19], that is

, (dim(); dim() 6)n t with n t         (5.2)

The degree of kinematic redundancy of the pair of serial manipulator-
task, namely rK, is computed as

Kr n t  (5.3)

1 Although it could be considered dim() 6m   , for the shake of this thesis only 6m  will be taken into

account. This is the case of general milling tasks, in which the milling tool can be positioned in all the
ix

coordinates of (2.2).

Chapter 5. Redundancy Resolution Schemes 160

It is also known that a redundant n-axis manipulator meant to perform
tasks in the m-dimensional Cartesian-space has an mxn Jacobian matrix with
m<n, as it was highlighted for the IDF’s milling workcell in Chapter 2.

In contrast to non-redundant manipulators, it becomes now possible to
avoid the above frustrating situations that could arise during a task. But at the
same time, the control of a kinematically redundant manipulator is challenging
since there are infinite possible joint trajectories for a given task.

Figure 5.1. Anatomical studies of the arm showing the movements, by Leonardo Da
Vinci (1510)

A typical example of a redundant manipulator is the human arm (Figure
5.1), which has 7 DOF from the shoulder to the wrist. If the shoulder and hand
position and orientation are both fixed, requiring 6 DOF; the elbow can still be
moved due to the additional mobility associate with the redundant DOF.

Previously introduced decoupled 6R manipulators (Figure 5.2) are
widely used in industry because they are multipurpose. In fact, they can produce
any position and orientation of the EE in their workspace. However, the concept
of redundancy also can be related to the definition of the task instead as an
intrinsic characteristic of the structure of the robot. Even if a manipulator is
kinematically redundant for a specific task, it may not be redundant for another
one.

For the scope of this thesis, devoted to milling tasks, it is interesting the
visit the considerations that Huo and Baron [23][20] made on the concept of

Chapter 5. Redundancy Resolution Schemes 161

redundancy. They distinguish two types of redundancy: intrinsic and functional.
This classification, with different names is assumed by other authors [56].

Figure 5.2. Left, decoupled 6R manipulator. Right, the same manipulator combined
with two additional joints (linear track and rotary table)

i) Intrinsic redundancy

A serial manipulator for milling tasks is intrinsically redundant if

6 (dim(); dim() 6)n with n m      (5.4)

that is, the dimension of the joint space,  , is greater than the dimension
of the resulting operational space of the EE,  , that is considered to be
equal to six. The degree of intrinsic redundancy of a serial manipulator,
namely rI, is computed as

6Ir n  (5.5)

ii) Functional redundancy

The pair of serial milling manipulator and task are said to be functionally
redundant when

6 , dim(), dim() 6t with t m        (5.6)

Chapter 5. Redundancy Resolution Schemes 162

that is, the dimension of the operational space,  , is greater than the
dimension of the task space,  , to be carried out by the milling tool
attached to the EE. The milling task is also supposed to be totally included
into the operation space of the manipulator, i.e.,  .

The degree of functional redundancy of a serial manipulator, namely rF, is
computed as

6Fr t  (5.7)

From (5.5) and (5.7) the kinematic redundancy (5.2) can be rewritten as

K I Fr r r  (5.8)

which makes clear that kinematic redundancy comes from two different sources:
the functional redundancy and the intrinsic redundancy.

Milling tasks have a t=5, i.e. labours controlling position and two
orientations of the tool (being these orientations constant or variable, namely 3-
axes or 5-axes milling, respectively). In this case, there exists an axis around
which a rotation of the EE is irrelevant, as shown in Figure 5.3.

Figure 5.3. Irrelevant axis of symmetry of the tool at milling tasks.

If we reconsider the 6R manipulator of Figure 5.2 alone (left), it can be
redundant when the task requires less than the full 6 DOF mobility of the EE,
even more when additional joints are provided. For example, the RP-6R serial
manipulator shown in Figure 5.2-right has a dim() 8n   in an operational

Chapter 5. Redundancy Resolution Schemes 163

space of dim() 6  . Hence, this manipulator has a degree of intrinsic

redundancy of 2, i.e. 6 8 6 2Ir n     . To define the pose of the milling tool,
five reference inputs are required (i.e. three linear motions plus two rotational
motions) and so dim() 5t    . Hence, the degree of functional redundancy is

6 6 5 1Fr t     . As a conclusion, the kinematic redundancy of this pair

manipulator-task is three: 2 1 3K I Fr r r     , as depicted in Figure 5.4.

Figure 5.4. Intrinsic and functional redundancies of serial robotic tasks, with
references to the studied workcell.

Summarizing, redundant manipulators have extra DOF’s than those
required to perform a main task. Solution strategies exploiting the potential
benefits of these additional DOF’s, are termed as Redundancy Resolution
Schemes (RRS). To the author knowledge, it is notable that most of the reported
RRS have been tested on simulations, while only a few implementations on real
robots have been reported as Honegger and Codourey [24]. In many industries,
the skilled operator is still who evaluates the best posture of the robot according
to experience.

5.2. CONTINUOUS PATH PLANNING AND TRACKING

Once a continuous trajectory space is generated at  , the EE of the robot
should track this trajectory, and hence, the joint angles of the robot have to be
calculated along this continuous set of poses of the EE. In practice, the

Chapter 5. Redundancy Resolution Schemes 164

continuous trajectory is sampled at a discrete set of close-enough poses  1

N

ks . A

tangent, normal, and binormal unit vectors ({t, n, b}, respectively) can be
associated with every sample point of the trajectory, namely the Frenet-Serret
vectors, indicating the required pose (Figure 5.5).

Figure 5.5. Milling toolpath with Frenet-Serret frames (tangent t, normal n and
binormal b) indicating the required pose at each point in the toolpath. Again, it can
be appreciated the irrelevant axis of symmetry of the milling tool.

In principle, an IKP of position could be solved at each sampled pose. If
the manipulator is non-redundant and of the decoupled type these calculations are
feasible in a fraction of a millisecond, as described in Chapter 2. However, if the
manipulator has an architecture not lending itself to a simple solution, like the
redundant workcell studied, an alternative approach is needed.

Chapter 5. Redundancy Resolution Schemes 165

In order to deal with these inconveniences when solving the IKP, an
iteratively approach can be applied as proposed by Angeles [48]. The procedure
is based on Newton-Gauss method [47]. Recalling the DK statement, eq. (2.74),
the desired toolpath at each pose can be expressed as a nonlinear algebraic
system of the form

() kf q s (5.9)

Upon application of the Newton-Gauss method to find a solution of eq.
(5.9) we assume an initial guess 0q (usually a previous actual pose), and based

on this value we generate a sequence 0 1,..., ,i iq q q  until either a convergence or
an abortion criterion is met2. This sequence is generated in the form

1i i iq q q    (5.10)

with iq calculated from

()· ()i i i
a kJ q q s f q   (5.11)

where aJ is defined as in (2.14).

Alternatively, the use of this differential form of the Jacobian matrix can
be avoided as explained in Section 2.4.4., by using gJ [48][49]:

()i i i
gJ q q t   (5.12)

with it defined as

· ()T
i k k dQ vect Q Q

t
p

 
    

 (5.13)

where Qk represents the actual rotation matrix from base frame to EE frame, Qd
represents the desired rotation matrix, and they have a relation as

· ·T
d k k dQ Q Q Q Q Q    (5.14)

2 It is common practice in all Newton methods to assume that a good enough approximation to the root wanted
is available, and hence,  is "small." Since any norm can be used to calculate the vector norm  , we can

choose the norm that is fastest to compute, namely, the Chebyshev norm (this norm only requires comparisons
and no floating-point operations):  max i

i
 


 

Chapter 5. Redundancy Resolution Schemes 166

Function ()vect Q represents the axial vector of a 3x3 rotation matrix

Q , and is calculated as [48]

32 23

13 31

21 12

1
()

2

Q Q

vect Q Q Q

Q Q

   
      
    

 (5.15)

Vector p is defined as the difference between the prescribed value pd of
the position vector of the operation point and its actual value pk.

The relations amongst Qd, pd, Qk, pk, and Q , p are shown in Figure
5.6.

Figure 5.6. Relation between the desired and the current pose.

From Angeles [48], Baron and Huo [20][22][23] sketched an algorithm applied it
to their RRS (exposed in the following section). For the scope of this thesis, a
generic algorithm (5.16) can be deduced, from which some variations in the 8th
step will be done in following sections:

Chapter 5. Redundancy Resolution Schemes 167

 
 

1) initial joint position

2) , desired EE pose

3) , DK()

4) ·

5)

· ()
6)

7) () DK()

8) Redundancy Resolution Scheme

9) if STOP, else

10)

d d

T
d

d

g

q

p Q

p Q q

Q Q Q

p p p

Q vect Q
t

p

J q q

q

q 







 

  

 
    



 

  

 + , and go to step 3q q q 

 (5.16)

Figure 5.7. Highlight of the loop leading from an initial current pose (k) to a desired
final pose.

5.3. REDUNDANCY RESOLUTION SCHEMES (RRS)

Depending on the application requirements and choice of controller,
redundancy can be resolved at joint-position [13], velocity [15], or acceleration
level [19]. In practical terms, at most robot controllers the control input is written

Chapter 5. Redundancy Resolution Schemes 168

in form of a joint-position or
EE-position values, but due to
the fact that this problem is
highly non-linear, a proper
analysis of position can be
done from the RRS at joint-
rate level.

At Figure 5.8, the
vector nq R is mapped into

(6)mt R m  . Two
fundamental subspaces
associated with a linear
transformation are its Null
Space (()J) [3] and its

Range (()J), namely

 1() · 0n
nxJ q R J q     (5.17)

 () · nJ J q q R    (5.18)

From the fact that J is a linear transformation of nR , Equation (5.17)
means that ()J is the set of all vectors q such that are mapped to the null

vector, 10nx . On the other side, only a sub-space of the Operational Space will be

reachable, being it ()J .

From a mathematical point of view, the SVD3 of an mxn Jacobian matrix
J can be written in the form

TJ U V  (5.19)

where U is the mxm orthonormal matrix of the output singular vectors

 iu , V is the nxn orthonormal matrix of the input singular vectors  iv , and Σ =

[S 0] is the mxn matrix whose mxm diagonal submatrix S contains the singular
values i of the matrix J (strictly positive). Letting rank(J) = r, the following
holds:

3 http://mathworld.wolfram.com/SingularValueDecomposition.html

Figure 5.8. Mapping at velocity level, from the
Joint Space () to the accessible workspace

(())J in the Operational Space () .

Chapter 5. Redundancy Resolution Schemes 169

 
 

1 2 1

1 2

1 2

... ... 0

() , ...,

() , ...,

r r n

r

r r n

J span u u u

J span v v v

    

 

      

 

 






From a practical point of view, the joint velocities belonging to ()J ,
can be specified without affecting the task space velocities, since the do not
affect the motion of the EE. They are referred to as internal joint motion or self-
motions, and there are infinite options. This shows the major advantage of
redundant manipulators: additional objectives can be satisfied while executing a
main task specified via positions and orientations of the EE, such as occurs in
milling tasks.

Several authors [17][19] classify the RRS into two trends, namely local
and global methods:

 The global methods need all the required data before the movement
is realized in a time invariant workspace, for tasks requiring strict
optimality. Those methods, involve a great amount of computations
making prohibitive a fast resolution scheme [17][19].

 The local methods search a solution for every instant with the use of
the available data. Those schemes would be found the more
convenient for the treatment of a CAM-Rob postprocessing task, for
two reasons: the immense amount of data and the major flexibility in
the treatment of the process.

5.3.1. Local Optimization Algorithms for intrinsically-redundant
manipulators (rI)

Most of the RRS focus on the solution of intrinsically-redundant
manipulators, by using ()J to select an optimized solution, and use the Moore-
Penrose pseudo inverse (or a weighted pseudo inverse) of the Jacobian matrix.

i) Schemes with the Moore-Penrose Pseudo-Inverse

For a redundant manipulator, the dimension of ()J is equal to n-
r, where r is the rank of the matrix J. If J has full column rank (r=m), then
the dimension of ()J is equal to the degree of redundancy [33].

For these RRS, we recall the eq. (2.13), namely

Chapter 5. Redundancy Resolution Schemes 170

 Homogeneous solutionMinimum-norm solution

† †· ()q J t I J J h  



(5.20)

Equation (5.20) has been used by many researchers in order to
solve redundant tasks (see [1][2][5][9][25]). The ability of the pseudo-
inverse to provide a meaningful solution in the least-squares sense
regardless of whether equation ·t J q  is underspecified, square, or over-
specified makes it the most attractive technique in redundancy resolution.

The first part of (5.20) is the minimum-norm solution4 or base
solution and the second part is an arbitrary vector from the Null Space5 of
the Jacobian, being †()I J J the projection operator on ()J .

Vector h of (5.20) is an optimized performance criterion vector
(performance vector for shake of brevity). Namely, the manipulator is
required to track a desired target positions as primary task, but in addition
one can try to accomplish secondary goals by properly choosing h. In this
case, the performance vector can be taken as a virtual force which attempts
to push the configuration of the manipulator away from the critical area of
configuration space [38].

 Selection of the performance vector, h

Different selections of h result in different performance methods,
most related to various applications of RRS.

The most widespread method used to apply such a secondary
motion criterion through the Null Space (the primary requirement being a
prescribed end point motion in the workspace) is the Gradient projection
method (GPM), introduced by Liégeois [4]. It takes the minimization a

4 If t is in the range of J, t Jq  , q is the unique vector solution of smallest magnitude. If t is not in the range

of J, q is the unique vector of smallest magnitude which minimizes Jq t , or equivalently, which minimizes

2
Jq t . [29]

5 Clearly:

 

† †

† †

† †

0

· ·(· ())

· · ()

· · (())
I I

J q J J t I J J h

J q JJ t J I J J h

J q JJ t J JJ J h t

  

  

   







Chapter 5. Redundancy Resolution Schemes 171

position-dependent scalar performance criterion (or virtual potential
function [38], p(q)), by means of its gradient vector (h), namely

·h k p   (5.21)

1 2

() () ()
, ,...,

T

n

p q p q p q
p

q q q

   
      

 (5.22)

With the aim of avoiding joint limits, Liégeois [4] introduced a
performance criterion that helps joint-limit avoidance with the lower and
upper joint limits known (min

iq and max
iq , respectively)

2mid min max

mid
mid max

1

1
, with

2

n
i i i i

i
i i i

q q q q
p q

n q q

  
   
 (5.23)

A variation of this criterion has been recently applied by Huo et al.
[23].

With the aim of avoiding singularities, Yoshikawa [5] suggested
the measure of manipulability (), introduced in Chapter 2, as

performance criterion (i.e., ()p q). Several authors have used the
manipulability as the distance criterion to stay away from manipulator
singularities [36]. He also introduced a performance index for obstacle
avoidance, namely

1
() ()

2
T

r rp q q W q q   (5.24)

where W is a diagonal weighting matrix and rq is a given arm reference
posture.

Also the condition number of J, has been referred as singularity
avoidance criterion [23] but, to the author’s knowledge, by using the
matrix 2-norm (i.e., the ratio of the maximum and minimum singular
values of J termed as 2 ()k J). No direct application of the condition
number derived from weighted Frobenius norm (see Chapter 2) has been
reported. Huo and Baron [23] combined the manipulability and the 2k -
condition number in a single index that they named as parameter of
singularity (ps)

Chapter 5. Redundancy Resolution Schemes 172

1

2
2

1 2 2

1

· ·...· ·...·
m

ps
m m

k




     

   (5.25)

It is logical to activate the performance criterion related to
singularity avoidance when the parameter of singularity considered passes
over a preset threshold value Tsq . At that instant, the corresponding

configuration q is recorded. Thus, the parameter of singularity can be
written as:

() ()
2
ps T

ps Ts Tsp q q W q q


   (5.26)

In (5.24) and (5.26) the choice of the weight, W, is a major
difficulty to implement due to the subjectivity for a given performance
criterion, p. At the same time, it is critical for the performance of the RRS.
In particular, a small value of the W may slow down the minimization of
the performance criteria, but on the other hand a large value may even lead
to an increase of p [33]. Therefore, W is usually set based on trial and error
[23].

In practice, it seems to be desirable to identify an appropriate value
of W at each configuration in a reasonable time.

ii) Schemes using the Weighted Pseudo-Inverse

Several authors [37] propose that rather than driving the robot
away from singularities at very high demands in joint velocities, the GPM
solution based on the ()J projection sometimes leads the robot to
singularities. A weighted pseudo-inverse by the inertia matrix can be used
instead. Thus, a weighted solution is directly deduced from (5.20), namely

† †· ()·wq J t I J J h   (5.27)

where a weighted pseudo-inverse (WPI) is used

  1† 1 1T T
wJ W J JW J

  (5.28)

and W is a positive-definite weighting matrix.

Chapter 5. Redundancy Resolution Schemes 173

Recently, Honnegger [24] implemented this solution for the control
of the redundant manipulator Robojet®.

iii) Schemes using Householder Reflection

Arenson, Angeles and Slutski [1][18] proposed to use Householder
reflection in a RRS. At first, equation (5.20) can be rewritten as:

q k h  (5.29)

with

† ()k J t Jh  (5.30)

Multiplying both members of (5.29) by J , then

Jq Jk Jh  (5.31)

Therefore,

Jk r (5.32)

where r t Jh  .

For solving (5.32), Householder reflection is used for the
transposed Jacobian matrix TJ . The matrix H and U are reached, and they
have a relation with TJ in the form

()0
mxmT

nxn
n m xm

U
H J



 
  
 

 (5.33)

where U is a m x m upper-triangular matrix, H is an orthogonal matrix6 (n
x n), and n > m for redundancy7. Hence, from (5.32) there is

 TT TJH Hk HJ Hk r  (5.34)

6 HTH=HHT=I

7 in this research, m=6

Chapter 5. Redundancy Resolution Schemes 174

As

  [0]
0

TT T T TU
HJ HJ U

 
   
 

 (5.35)

equation (5.34) is equal to

0T TU Hk r    (5.36)

If we define 1 2

TT THk y y y     , where 1y is an m-dimensional

vector and 2y is an (n-m)-dimensional vector, then Arenson notes that k

and y have the same Euclidean norms. Hence, minimizing
2

k is

equivalent to minimizing
2

y . Then, if we want to minimize
2

k , or

equivalently,
2

y , we can choose 2 0y  and 1y will he found from (5.36)

2 01
1

2

0 ·yT T Ty
U r U y r

y
 

      
 

 (5.37)

Now, with y known, k can be found from the previous definition
of y with the fact that H is an orthogonal matrix

·Tk H y (5.38)

which we can substitute in (5.29)

·Tq H y h  (5.39)

We should not forget that these computations will be performed
with finite precision, and hence, roundoff-error amplification is bound to
occur. In order to keep roundoff-errors as low as possible, this algorithm
avoids the direct calculation of the generalized inverse of the Jacobian
matrix, as with (5.20). Hence, the squaring of the condition number of the
J is avoided and the round-off error of the algorithm is not amplified.

It is an interesting solution for the calculation of ill-condition
postures because here the Jacobian matrix J may have a very high
condition number.

Chapter 5. Redundancy Resolution Schemes 175

iv) Schemes using the damped least-squares (DLS-) inverse

In the field of RRS, a problem with (5.20) is its instability around a
singularity: in some circumstances, postprocessing a toolpath tracking with
(5.20) seems to be mathematically cumbersome. More precisely, the norm
of the first term of (5.20) becomes very large in the immediate
neighbourhood of these configurations. Thus, there are some velocities in
task space which require physically unrealizable joint rates. To deal with
this inconvenience, Wampler [30], and Nakamura and Hanafusa [26],
introduced the DLS-method. In essence, it minimizes

2 22·J q t q   (5.40)

where R , the damping factor, is used to specify the relative importance
of the norms of joint rates and the tracking accuracy. This is equivalent to
minimizing the quantity of a new augmented system of equations [29],
namely

0

J t
q

I
   

   
   

 (5.41)

The corresponding normal equation is

0

T T
J J J t

q
I I I  

       
       

       
 (5.42)

This can be equivalently rewritten as

2()T TJ J I q J t  (5.43)

which leads to

† ·aq J t (5.44)

 with † 2 1()T T
aJ J J I J    (5.45)

It is easy to show [29] that

2 1 2 1() ()T T T TJ J I J J JJ I     (5.46)

with † 2 1()T T
bJ J JJ I    (5.47)

Chapter 5. Redundancy Resolution Schemes 176

The advantage of †
bJ  over †

aJ  is that the matrix being inverted is
mxm instead nxn, and m is less than n in redundant manipulators. Thus, we
can rewrite (5.44) as

† ·bq J t (5.48)

It is important to mention that it is a frequent mistake to use †J 
for the construction of the homogeneous term of (5.20), as the damped
least squares inverse lacks various vital properties [27]. Instead, it must be
built as done in (5.20), i.e., based on †J .

The singular value decomposition (SVD), introduced at the
beginning of this Section, provides a powerful method for analyzing the
Pseudo-Inverse and the DLS-methods [26]. From the previous section (i),
let’s consider J not having full column rank (i.e., r<m). With this
consideration, the last r-m singular values of Σ (5.19) are zero, ()J is an

r-dimensional subspace of mR , and the dimension of ()J increases to n-r.
Recalling (5.19), the SVD of an mxn Jacobian matrix J of rank r can be
written in the form:

1

r
T

i i i
i

J u v


 (5.49)

where i are the singular values (strictly positive),  iu and

 iv are the basis of ()J and the complementary space ()J , see pages

167 et sqq.

The expression of the pseudo-inverse shows the strong influence of
any small singular values, thus explaining the instability of the solution
around the singularity, namely

†

1

1r
T

i i
i i

J v u


 (5.50)

in which the minimum singular value approaches zero (0i ) as
a singular configuration is approached, i.e., at a singular configuration,
becomes ill-conditioned.

In this context, the damping factor  transforms the ill-behaved
inverse term in (5.20) into a damped term converging smoothly to zero
when the singular value becomes small, namely

Chapter 5. Redundancy Resolution Schemes 177

†
2 2

1

r
Ti

i i
i i

J v u 
 


 (5.51)

This alternative pseudo-inverse provides continuous and feasible
joint velocities even at the neighbourhood of singular points.

Choosing the value of  is not straightforward. Several methods to
determine  have been proposed in the literature [31], most of them based
on some Jacobian-dependent measure such as the Yoshikawa’s
manipulability value [26] or rate of change [32], as well as the smallest
singular value of J [28] (although SVD has a high computational cost). All
these methods act above a threshold value.

Finally, a discussion arises about the convenience of this DLS-
method for postprocessing at milling tasks. It is easy to see that the
constant λ introduces an algorithmic error, also away from a singular point.
This error is introduced in terms of both direction and magnitude. DLS-
defenders argue that, if the singular values are much larger than the
damping factor (which is likely to be true far from singularities), then there
is little difference between the two solutions, since in this case

2 2

1i

i i


  




 (5.52)

Nevertheless, for the scope of this thesis (devoted to milling tasks)
and taking profit from the redundant additional joints, it has been taken as
more efficient and precise the previously introduced method.

5.3.2. Solution of functionally-redundant manipulators (rF)

As presented in the previous section, most researchers use the pseudo
inverse †J and the projection onto the ()J of the manipulator to solve the
inverse kinematic problem at redundant manipulators. Those RRS are of direct
application on many cases.

However, in section 5.1.1. the concept of functional redundancy was
introduced. It is more clearly highlighted in commonly used 6R manipulators in
which J often is a full rank square matrix, i.e., its null space doesn't exist so the
second term of (5.20), working on ()J , can not be directly used. As a
consequence, a new algorithms corresponding to the cases of full rank J have
been recently developed in order to change (5.20) into an under-determined
system. Two techniques are exposed: one by augmenting the dimension of joint-

Chapter 5. Redundancy Resolution Schemes 178

rate (namely, Virtual Joint Method) and another one by reducing the dimension
of the twist (namely, Twist Decomposition Method).

i) Virtual Joint Method (VJM)

Baron [21] proposed a joint limits avoidance strategy by adding a
virtual joint around the symmetry axis of the tool (Figure 5.9), in order to
obtain an under-determined linear algebraic system with at least one DOF
of redundancy.

Figure 5.9. Additional virtual joint allowing a rotation around the symmetry axis of
the tool.

Therefore, equation (5.20) can be rewritten as

† †
(1) (1)· ()·v v n x n v vq J t I J J h    (5.53)

where vJ is an augmented Jacobian matrix by a virtual joint-rate 1nq  ,
namely

  1

1

; 1,...,i nx
v

n

q
q i n

q 

 
  
  





 (5.54)

For example, in the explicit case of the IDF workcell, this additional virtual

joint 7 implies having the joint-rate vector 1 6 7[, , ,..., ,]T
v M Lq d        .

Chapter 5. Redundancy Resolution Schemes 179

ii) Twist Decomposition Method (TDM)

In general milling operations, the cutting tool has a symmetry axis.
The tool holder can be rotated around this axis without affecting the task.
This axis describes the geometry of the functional redundancy. In Figure
5.10, the unit vector e denotes the orientation of the symmetry axis along
the milling tool.

Figure 5.10. Decomposition of the angular velocity vector  into two orthogonal

parts: one lying on the task subspace () and another one lying on the orthogonal

task subspace ( ).

Huo and Baron [22] decomposed the angular velocity in the twist
vector (t , 32 R) of the minimum norm solution (first term of (5.20)) into
two orthogonal subspaces, one in the task subspace and another lying into
the orthogonal task subspace (Figure 5.10), namely

· ·t t t T t T t 


    (5.55)

where T is a twist projector matrix. The twist projectors for a general
milling task can be defined as

3 3
6 6

3 3

() 0 0
;

0 0 0

T T
x

x

x

I ee ee
T T I T

I
   

      
  

 (5.56)

Therefore, the first term of (5.20) can be rewritten as

Chapter 5. Redundancy Resolution Schemes 180

 † †
6 6· ()·xq J T t J I T t   (5.57)

The first part of (5.57) represents the relevant task displacement
and the second part represents the redundant displacement, i.e. those
components not important for the task. In fact, the author reconsidered
these components as a way to deal with the redundancy by replacing t
with an arbitrary vector h of joint spaces properly projected on the task
space, allowing a secondary task to be satisfied. Thus, (5.57) is rewritten as

 † †
6 6· ()·xq J T t J I T Jh   (5.58)

The TDM has great difference with the projection on ()J (eq.
(5.20)) on the theoretical base. Both of them consider a prior task and a
secondary use of the redundancy, but the TDM projects the task from the
robot base frame to the EE frame. Thus, the motion of the secondary task is
always constant in the EE frame (the rotation around the symmetry axis of
EE), while this secondary motion may or may not be constant in the base
frame. Thus, TDM classifies the order of task priority in instantaneous EE
frame instead of in robot base frame as by the previous null space
approach, and the TDM was directly developed from the minimum-norm
solution without considering the projection onto the null space of J.

5.3.3. Consideration for functionally-redundant (rF) and intrinsically-
redundant (rI) manipulators

A final consideration must be done for the workcell studied in the present
thesis, where both intrinsic and functional redundancies exist (Figure 5.4). Thus,
it is very interesting to study the combination of the TDM and the projection on

()J in order to take advantage from both types of redundancy, namely

 † † †
1 2· ()· ()·q J T t J I T Jh I J J h     (5.59)

where h1 and h2 are the two possible performance vectors for the redundant task.
Clearly, h1 is projected onto the functional redundancy, while h2 is projected onto
the intrinsic redundancy.

To the author’s knowledge, a solution like (5.59) has not been studied.
Clearly, (5.58) is a particular case of (5.59) with h2 =0.

Chapter 5. Redundancy Resolution Schemes 181

Figure 5.11. In the TDM, the motion of the secondary task is always constant in the
EE frame (the rotation around the symmetry axis of EE).

Recalling Section 2.4.5., it is remarkable that the DH representation of
the manipulators depends on the RRS selected, according to the significance
explained in Section 5.3.2. , by adding the additional joint or considering a fixed
displacement up to the tool tip. For the VJM (Figure 5.12, left), and additional
line is added in the DH-model (Table 5.1). The TDM uses the actual DH-model,

Chapter 5. Redundancy Resolution Schemes 182

and therefore a final constant displacement matrix is required to know the
position of the EE (Figure 5.12, right).

Figure 5.12. Comparison of the DH frame assignment for the VJM (left) and the
TDM (right).

Table 5.1. Table summarizing the parameters for both standard DH-models.

Link
αi

(rad)

ai

(mm)

θi

(rad)

di
(mm)

1 π/2 803 θM -305
2 π/2 0 0 dL
3 π/2 300 θ1 -675
4 0 650 θ2 0
5 π/2 155 θ3 0
6 π/2 0 θ4 -600
7 π/2 0 θ5 0
8 0.3564 0 θ6 -443.4

TCP 0 0 θ7(VJM) -119.7

Chapter 5. Redundancy Resolution Schemes 183

5.3.4. Redundant manipulator controlling process

The usual control flowchart to control an industrial redundant workcell is
based on the experience of the workman in charge of the system. Such methods
are directly deduced from the position IK problem that, in most industrial
manipulators, can be solved rapidly (for example, by using geometric methods as
those described in Chapter 2).

Figure 5.13. Usual flowchart for a redundant manipulator controlling process.

From the described RRS, another controlling process is deduced as
shown in Figure 5.14, where the resolution is done at the joint rate level. In
Chapter 6 several case studies will be developed following this reasoning. In the
following, it can be interesting to highlight how the experience of the workman
can be placed in such a flowchart. For that, a previous revision of the expert
fuzzy systems is done in the next Section.

5.4. INTELLIGENT CONTROL IN REDUNDANCY RESOLUTION

Intelligent control is a new research direction making control systems to
have higher degree of autonomy. The intelligent control methods applied on the
Redundancy Resolution problems may include fuzzy logics (FL), neural networks
(NN), and genetic algorithms (GAs).

Chapter 5. Redundancy Resolution Schemes 184

Figure 5.14. Proposed flowchart for a redundant manipulator controlling process.

There are many researches that want to replace some or all of the
physical kinematic and dynamic modelling usually needed to implement
conventional control techniques in robotics. With proper development, intelligent
control approaches are supposed to have great potential for solving difficult
control problems considering the complexity and computational cost of most of
the mathematical models. Those goals are mainly pursued by training and
learning processes of the NN or GAs, which then can be used to control the
manipulator. This posture is reinforced with the argument not only of the
simplicity but also of the failure robustness of these techniques just like in
humans, i.e. not computing exact inverse kinematics but solving precise
positioning from heuristics.

On the contrary, there are also many researchers who believe that this
approach is not a good use of intelligent control algorithms. They argument that
control techniques should keep as much physical modelling as possible, and let
the intelligent control algorithm to handle the uncertainties or the unknown

Chapter 5. Redundancy Resolution Schemes 185

physical phenomenon of the mechanical system at hand. This posture is
reinforced with the support of the rapid development in computer technology.

Both perspectives find good reasons to keep going on, and in many cases
they found each other in an intermediate point, taking mutual benefits. From this
point of view, FL can find the reason for its use when tuning several aspects of
the kinematic control which take into account an expert knowledge.

5.4.1. Fuzzy-Based Redundancy-Resolution Approaches

Considering the facts mentioned in the previous section, some efforts
have been done to solve the inverse kinematics problem using FL methods
[39][40][41][42][43].

Kim and Lee [39][40], and Xu and Nechyba [41], proposed two different
approaches for fuzzifying the differential relationship between the differential
twist and joint motions in the homogeneous solution of (5.20). In a similar way,
Beheshti et al. [43] developed an optimized IK solving method through FL for
real time applications, with a rule base indicating whenever one of the joint
variables increases or decreases, which corresponding variables of the Cartesian
space should increase or decrease. They applied this to a redundant 4R planar
manipulator. Graca [44] proposed a FL algorithm for non-redundant robotic
manipulators to track specified trajectories in Cartesian space. This algorithm
consisted of treating the inverse of the Jacobian matrix as a matrix of fuzzy
numbers, which was solved using fuzzy regression to obtain a fuzzy version of
the Jacobian inverse matrix. In [45], he extended these inferencing techniques for
optimizing the secondary task at redundant manipulators, i.e. for determining a
fuzzy model for the performance index (h). For this, he constructed the rule base
based on the desired subtask (singularity avoidance) by mean of observations on
the determined symbolically Jacobian.

From a critical point of view, most of them do not propose a systematic
method for generating and adjusting membership functions of fuzzy sets. The
reason is that finding a fuzzy rule base for inverse kinematics of a redundant
robot is a difficult task and the approaches exposed result as complex as the
many corresponding analytical methods. Thus, creating and tuning these models
are at the same level of complexity that other well-know mathematical models,
even for the simplest cases such as planar manipulators that they deal with. From
the author’s point of view, it is also noteworthy the fact that many of these
exclusive-fuzzy models lead efforts to develop the model but forgetting the real
raison d'être of the fuzzy inference (i.e. the use of the expert knowledge of a
skilled operator). In this sense, efforts can be senseless if they do not have a
reasonably advantage in front of mathematical models or are founded in the
observation of the same equations.

Chapter 5. Redundancy Resolution Schemes 186

In the following Chapter, FL is included from two practical points of
view: first, by implementing a control based on the IK positioning analysis of the
workcell, and second by dynamically tuning several aspects of a RRS while
taking into account an expert knowledge.

5.4.2. Fuzzy Logic Overview

A Fuzzy Logic Controller (FLC) is a controller that works internally with
fuzzy variables. It comprises a knowledge base with definitions of membership
functions and a rule-base (i.e. a set of If-Then statements), a decision-making
logic (or inference mechanism), and interfaces to and from the physical world
which allow the conversion from crisp values into fuzzy values and vice versa
(i.e. fuzzification and defuzzification interfaces).

The rule-base contains a fuzzy logic quantification of the expert’s
linguistic description of how to achieve good control, while the inference
mechanism (also known as inference engine or inference module) emulates the
expert’s decision making in interpreting and applying knowledge about how best
to control a process. A block diagram of a fuzzy control system is shown in
Figure 5.15.

A control cycle typically consists of taking process variables as input,
converting them to fuzzy values (fuzzification), applying the input to the rule-
base and deriving a fuzzy control action, converting this fuzzy control action to a
crisp value (defuzzification), and giving this crisp value to the controlled process
as control action.

Figure 5.15. Block diagram of a fuzzy control. The inference mechanism interprets
the values in the input vector and, based on some set of rules, assigns values to the
system inputs.

The following subsections review briefly some of the concepts
introduced, and the inference process.

Chapter 5. Redundancy Resolution Schemes 187

i) Fuzzy sets and membership functions

Fuzzy logic starts with the concept of fuzzy set. A fuzzy set is a set
without a clearly defined boundary. A fuzzy set admits the possibility of
partial membership in it. In other words, this is the major advantage that
fuzzy reasoning, namely the ability to reply to a yes-no question with a
not-quite-yes-or-no answer. Humans do this kind of thing commonly, but it
is a rather new trick for computers.

In fuzzy logics, the input space is sometimes referred to as the
universe of discourse. Thus, if X is the universe of discourse and its
elements are denoted by x, then a fuzzy set A in X is defined as a set of
ordered pairs

 , () |AA x x x X  (5.60)

where ()A x is called the membership function (MF) of x in A. It is a
curve that defines how each point in the input space is mapped to a
membership value between 0 and 1. These membership functions are, in
turn, built from several basic functions [54]: piecewise linear functions,
Gaussian distribution functions, sigmoid curves and polynomial curves
(see Figure 5.16). The simplest membership functions are formed using
straight lines and, of these, the simplest is the triangular membership
function.

Figure 5.16. Types of Membership Functions: triangular MF, trapezoidal MF,
Gaussian MF and Sigmoidal MF.

Chapter 5. Redundancy Resolution Schemes 188

ii) Logical Operations

FL reasoning is a superset of standard Boolean logic. In other
words, standard logical operations will hold by keeping the fuzzy values at
their extremes of 1 (completely true), and 0 (completely false).

Figure 5.17. Standard truth tables adapted to FL reasoning: because there is a
function behind the truth table rather than just the truth table itself, values between
1 and 0 can be considered now.

Due to the fact that in FL the truth of any statement is a matter of

degree, the input values can be real numbers between 0 and 1 as previously
stated. In this case, the min(A,B) operation preserves the results of the A
AND B truth table and also extend to all real numbers between 0 and 1.
With the same reasoning, the OR operator can be replaced with the max
function, so that A OR B becomes equivalent to max(A,B). Finally, the
operation NOT A becomes equivalent to the operation 1-A (Figure 5.17). In
the Figure 5.18, the truth table is converted to a plot of two triangular fuzzy
sets applied together to create one fuzzy set.

Figure 5.18. The upper fuzzy sets (A, B) are managed with the fuzzy operations
defined, to get the result displayed below.

Chapter 5. Redundancy Resolution Schemes 189

iii) If-Then Rules

The expert knowledge of the workman in charge of the system to
manage (the robotic manipulator for the scope of this thesis) has to be
considered in the design of the central core of the fuzzy controller.

To practical effects, this knowledge can be collected in fuzzy
association matrixes, relating the control variables, the adjectives that
describe those variables and the action associated to an expert managing.
This information is necessary for the accomplishment of a set of rules,
known as rule-base. In it, the stand alone controller will uphold the
criterion for the decisions taken when managing the system.

These rules combine one or more fuzzy sets of entry (antecedents)
and associate it with one or more output fuzzy sets (consequents). They are
basically of the type of “IF <antecedents> THEN <consequents>”, being
both fuzzy sets associated by fuzzy operators AND, OR, NOT.

iv) Fuzzy Inference Process

The process of fuzzy inference involves all of the pieces previously
introduced. It is the process of formulating the mapping from a given input
to an output using fuzzy logic.

Two types of fuzzy inference systems are commonly used, namely
the Mamdani-type and Sugeno-type [50][51][54]. These two types of
inference systems vary somewhat in the way outputs are determined.
Ebrahim Mamdani’s fuzzy inference method is the most commonly seen
fuzzy methodology [50], and it will be the inference method used in this
thesis.

Fuzzy inference process comprises of five steps:

 Fuzzification of the input variables

The first step is to take the inputs and determine the degree to
which they belong to each of the appropriate fuzzy sets via evaluation of the
membership functions. The input is always a crisp numerical value limited
to the universe of discourse of the input variable and the output is a fuzzy
degree of membership in the qualifying linguistic set (always the interval
between 0 and 1). In this manner, each input is fuzzified over all the
qualifying membership functions required by the rules.

 Application of the fuzzy operator (AND, OR, NOT) in the antecedent

If there is only one part to the antecedent, then this is the degree of
support for the rule.If there are multiple antecedent parts, after the inputs

Chapter 5. Redundancy Resolution Schemes 190

are fuzzified, the fuzzy operator is applied to obtain one number that
represents the result of the antecedents for that rule. This number is then
applied to the output function.

 Implication from the antecedent to the consequent

The output fuzzy set is also represented by a membership function.
The input for the implication process is the single number resulting from
the previous step. If the antecedent is only partially true, (i.e., is assigned a
value less than 1), then the output fuzzy set is truncated according to the
implication method. Implication is implemented for each rule.

Figure 5.19. Fuzzification, application of the fuzzy operator (OR) and implication
processes for a single if-then rule

 Aggregation of the consequents across the rules

In general, one rule alone is not effective. Two or more rules that
can interact amongst them are needed. All rules are evaluated in parallel,
the order of the rules is unimportant, and the output of each rule is a fuzzy
set.

Because decisions are based on the evaluation of all of the rules,
the rules must be combined in some manner in order to make a decision.
Therefore, aggregation is the process by which the fuzzy sets that represent
the outputs of each rule are combined into a single output fuzzy set for
each output variable (Figure 5.20).

Chapter 5. Redundancy Resolution Schemes 191

 Defuzzification

As much as fuzziness helps the rule evaluation during the
intermediate steps, the final desired output for each variable is generally a
single number. Therefore, from the previous aggregated output fuzzy set,
the defuzzification process gives as a result a crisp value.

The most popular defuzzification method is the centroid
calculation (Figure 5.20), which returns the center of area under the
aggregated curve defining the single output fuzzy set.

Figure 5.20. Aggregation of the consequents across the rules a single output fuzzy
set, and final defuzzification by means of the centroid method. In summary,
information flows through the fuzzy inference process as shown.

Chapter 5. Redundancy Resolution Schemes 192

REFERENCES (Ch. 5)

[1] Arenson, N., Angeles, J. and Slutski, L., Redundancy-resolution algorithms for
isotropic robots, Advances in Robot Kinematics: Analysis and Control, pp. 425-434,
1998.

[2] Siciliano, B., Solving manipulator redundancy with the augmented task space
methode using the constraint Jacobian transpose, IEEE Intern. Conf. on Robotics and
Automation, Tutorial M1, pp. 5.1-5.8, 1992.

[3] http://mathworld.wolfram.com/NullSpace.html (Accessed on 12-feb-2010).
[4] Liégeois, A., Automatic Supervisory Control of the Configuration and Behavior of

Multibody Mechanisms, IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 245-250,
Mar. 1977.

[5] Yoshikawa, T., Analyais and control of robot manipulators with redundancy,
Robotics Research: The First International Symposium, pp. 735-747, 1984.

[6] Nakamura, Y., Advanced robotics: redundancy and optimization, Addison-Wesley
Pub. Co., Massachusetts, 337 pages, 1991.

[7] Nakamura, Y. and Hanafusa, H., Task priority based redundancy control of robot
manipulators, MIT Press, pp. 155-162, 1985.

[8] H Hanafusa, T Yoshikawa, Y Nakamura; Analysis and control of articulated robot
arms with redundancy, - 8th IFAC World Congress, 1981

[9] Whitney, D.E., Resolved motion rate control of manipulators and human prostheses.
IEEE Trans. Man-Machine Syst., vol. 10, no. 2, pp. 47-53. 1969.

[10] Park, J., Chung, W. and Youm, Y., Weighted decomposition of kinematics and
dynamaics of kinematically redundant manipulators, IEEE International Conference
on Robotics and Automation, Vol. 1, pp. 480-486, 1996.

[11] Chang, T.-F. and Dubey, R.-V., A weighted least-norm solution based scheme for
avoiding joints limits for redundant manipulators, IEEE Trans. Robot. Automat.,vol.
11, pp. 286-292, Apr. 1993.

[12] Arenson, N., Angeles, J. and Slutski, L., Redundancy-resolution algorithms for
isotropic robots, Advances in Robot Kinematics: Analysis and Control, pp. 425-434,
1998.

[13] Yashi, O.S., and Ozgoren, K., Minimal joint motion optimization of manipulators
with extra degrees of freedom, Mechanism and Machine Theory, Vol. 19, No. 3, pp.
325-330, 1984.

[14] Angeles, J., Anderson, K. and Gosselin, C., An Orthogonal-Decomposition
Algorithm for Constrained Least-Square Optimization, ASME Robotics,
Mechanisms and Machine Systems, Design Eng. Division, Vol. 2, pp. 215-220, 1987

[15] Baillieul, J., Avoiding obstacles and resolving kinematic redundancy, IEEE
International Conference on Robotics and Automation, Washington, pp. 1698-1704,
1986.

[16] Siciliano, B., Solving manipulator redundancy with the augmented task space
methode using the constraint Jacobian transpose, IEEE Intern. Conf. on Robotics and
Automation, Tutorial M1, pp. 5.1-5.8, 1992.

Chapter 5. Redundancy Resolution Schemes 193

[17] Siciliano, B.; Kinematic Control of Redundant Robot Manipulators: A Tutorial;
Journal of lntelligent and Robotic Systems 3: 201-212, Kluwer Academic Publishers
1990.

[18] Arenson, N.; REAL TIME REDUNDANCY-RESOLUTION SCHEMES FOR
ROBOTIC MANIPULATORS, Department of Mechanical Engineering-McGill
University, Montréal, 1998

[19] R.V. Patel and F. Shadpey; "Control of Redundant Robot Manipulators: Theory and
Experiments"; Springer 2005, ISBN 10 3-540-25071-9

[20] Baron L. and Huo L., “Inverse Kinematics of Functionlly-Redundant Serial
Manipulators: A Comparison Study”; 12th World Congress on the Theory of
Machines and Mechanisms, Besancon, France, 18-21 juin 2007.

[21] Baron L., “A joint-limits avoidance strategy for arc-welding robots”, International
Conference on Integrated Design and Manufacturing in Mechanical Engineering,
Montreal, Canada, May 2000.

[22] Huo L., and Baron, L., “Kinematic inversion of functionally-redundant serial
manipulators: application to arc-welding”, Transactions of the Canadian Society for
Mechanical Engineering, 2005, Canada.

[23] Huo L. and Baron L.; "The joint-limits and singularity avoidance in robotic
welding"; Industrial Robot: An International Journal 35/5 pp 456–464 (2008)

[24] Honegger, M. and Codourey, A., Redundancy resolution of a cartesian space
operated heavy industrial manipulator, IEEE International Conference on Robotics
and Automation, Vol. 3, pp. 2094-2098, 1998.

[25] Baerlocher P., Boulic R.; “An inverse kinematics architecture enforcing an arbitrary
number of strict priority levels”, The Visual Computer 20:402–417, Springer (2004)

[26] Nakamura, Y. and Hanafusa, H.: Inverse kinematic solutions with singularity
robustness for robot manipulator control, Trans. ASME, J. Dynamic Systems,
Measurement and Control 108, 163-171 (1986).

[27] Baerlocher P, Boulic R; Task-priority formulations for the kinematic control of
highly redundant articulated structures. Proc of IEEE IROS 98, Victoria, BC, pp
323-329, (1998).

[28] Maciejewski A. A., Klein C. A., “Numerical filtering for the operation of robotic
manipulators through kinematically singular configurations,” Journal of Robotic
Systems, vol. 5, no. 6, pp. 527-552, (1988).

[29] Buss S.R.; "Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares methods", Department of Mathematics,
Department of Mathematics (October 2009). Unpublished.

[30] C. W. Wampler, Manipulator inverse kinematic solutions based on vector
formulations and damped least squares methods, IEEE Transactions on Systems,
Man, and Cybernetics, 16, pp. 93-101, (1986).

[31] DEO A. S., WALKER I. D.; "Overview of Damped Least-Squares Methods for
Inverse Kinematics of Robot Manipulators", Journal of lntelligent and Robotic
Systems 14: 43-68, (1995).

[32] Kelmar, L. and Khosla, E K.: Automatic generation of kinematics for a
reconfigurable modular manipulator system, in Proc. 1988 IEEE Conf. Robotics and
Automation, Philadelphia, PA, 1988, pp. 663-668.

[33] Chiaverini S., Oriolo G., Walker I. D.; "Kinematically Redundant Manipulators".
Springer Handbook of Robotics, pp. 245-268, (2008).

Chapter 5. Redundancy Resolution Schemes 194

[34] TISIUS M., PRYOR M., KAPOOR Ch., TESAR D.; "An Empirical Approach to
Performance Criteria for Manipulation", Journal of mechanisms and robotics vol. 1,
no3 (2009).

[35] McGhee, S., Chan, T., and Dubey, R., “Probability-Based Weighting of Performance
Criteria for Redundant Manipulators,” Proceedings of IEEE International Conference
on Robotics and Automation, San Diego, CA, pp. 1987–1984, (1994)

[36] Marani G., Kim J., Yuhl J., Chung W. K.; “A real-time approach for singularity
avoidance in resolved motion rate control of robotic manipulators”; IEEE
International Conference on Robotics and Automation, pp. 1973-8, (2002).

[37] KHOUKHI A., BARON L., BALAZINSKI M., "PLANIFICATION MULTI-
OBJECTIFS DE TRAJECTOIRE DES ROBOTS REDONDANTS PAR
LAGRANGIEN AUGMENTÉ ET GRADIENT PROJETÉ", TRANSACTIONS-
CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, VOL 31; NUMB
4, pages 391-406 (2007)

[38] KEMÉNY Z.; "MAPPING, DETECTION AND HANDLING OF SINGULARITIES
FOR KINEMATICALLY REDUNDANT SERIAL MANIPULATORS";
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 46, NO. 1, PP. 29–45 (2002)

[39] Kim, Sung-Woo and Lee, Ju-Jang, Resolved motion rate control of redundant robots
using fuzzy logic, IEEE International Conference on Fuzzy Systems, pp. 333-338,
1993.

[40] Kim, Sung-Woo, Lee, Ju-Jang, andSugisaka, Masanori, Inverse kinematics solution
based on fuzzy logic for redundant manipulators, Int. Conf. Intell. Rob. Syst., pp.
904-910, 1993.

[41] Xu, Y. and Nechyba, M. C., Fuzzy inverse kinematic mapping:rule generation,
efficiency, and implementation, Int. Conf. Intell. Rob. Syst., pp. 911-918, 1993.

[42] Ramos, M.C. and Koivo, A.J., Fuzzy logic-based optimization for redundant
manipulators, IEEE Transactions on Fuzzy Systems, vol. 10, no. 4, pp. 498-509,
2002.

[43] Beheshti M., Tehrani A., Ghanbari B.; “An Optimized Adaptive Fuzzy Inverse
kinematics Solution for Redundant Manipulators”; Proceedings of the 2003 IEEE
Int. Symposium on Intelligent Control, Houston, Texas; pp. 924-929, (2003)

[44] Graca, Randy A. and Gu, You liang, A fuzzy learning algorithm for kinematic
control of a robotic system, Proceedings of the IEEE Conference on Decision and
Control, Vol. 2, pp. 1274-1279, 1993.

[45] Graca, Randy A. and Gu, You-Liang, Application of the fuzzy learning algorithm to
kinematic control of a redundant manipulator with subtask optimization, IEEE
International Conference on Fuzzy Systems, Vol. 2, pp. 843-848, (1994).

[46] Pieper, D.L., The Kinematics of Manipulators under Computer Control, Ph.D. thesis,
Stanford University, 1968.

[47] Dahlquist, G. and Björck, A., Numerical Methods, Prentics-Hall, Englewood Cliffs,
New Jersey, 573 pages, 1974.

[48] Angeles, J., Fundamentals of robotic mechanical systems: theory, methods and
algorithms, Springer, New York, 521 pages, 2003.

[49] Whitney, D.E., “The mathematics of coordinated control of prosthetic arms and
manipulator”, ASME J. Dynamics Systems, Measurement and Control, Vol. 94,No.
4, pp. 303-309, 1972.

Chapter 5. Redundancy Resolution Schemes 195

[50] Mamdani, E.H. and S. Assilian, "An experiment in linguistic synthesis with a fuzzy
logic controller," International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-
13, 1975.

[51] Sugeno, M., Industrial applications of fuzzy control, Elsevier Science Pub. Co.,
1985.

[52] Passino K. M., Yurkovich S.; "Fuzzy Control", Addison Wesley Longman, Inc.,
ISBN 0-201-18074-X (1998).

[53] Jantzen J., Tutorial on Fuzzy Logic; Technical University of Denmark, Department
of Automation, Lyngby, DENMARK., Tech. report no 98-E 868, 19 Aug 1998.

[54] Reyero, R., Nicolas, C. F.; Sistemas de control basados en lógica borrosa : fuzzy
control, Omron Electronics, 1995. ISBN 8492032626

[55] Roger Jang J.S., Gulley, N.; Fuzzy Logic Toolbox: User’s Guide; Revised for
Version 2.2.7 (Release 2008), The MathWorks, Inc. 2008

[56] Park, J., Choi Y., Chung W.K., Youm Y.; “Multiple Tasks Kinematics Using
Weighted Pseudo-Inverse for Kinematically Redundant Manipulators”; Proceedings
of the 2001 IEEE International Conference on Robotics & Automation, pp. 4041-
4048, Seoul, Korea; May 21-26, 2001

Chapter 6. Analysis and results 197

CHAPTER 6

ANALYSIS AND RESULTS

“I'm so happy 'cause today / I
found my friends / They're in my head /
I'm so ugly, that's okay / 'Cause so are

you / Broke our mirrors / Sunday morning
is everyday / For all I care / And I'm not

scared / Light my candles, in a daze /
'Cause I've found God”

Kurt Cobain

Chapter 6. Analysis and results 199

CHAPTER 6. ANALYSIS AND RESULTS

6.1. INTRODUCTION

The main difficulty of postprocessing a toolpath generated by a CAM
platform for a complex robotic cell focuses on the treatment to give to the
redundant joints in order to avoid singularities and limits of range (Figure 6.1).
With the inherent redundancy stated previously, the aim is to reach the
successive positions of the toolpath in the Cartesian Operational space 
following a criterion of precision and economy in the whole motion of the
manipulator. This raises two differentiated tasks referring to both tool pose and
manipulator posture:

 Translation of the tool pose information generated by the CAM platform
in agreement with the requirements of the robot language.

 Kinematics analysis of the robotic cell for the required the cutting tool
pose at  , in order to include the treatment of the manipulator posture at 
with the additional joints.

Chapter 6 is focused on the implementation of a control system for the
redundant workcell previously described in Chapter 2, by following the
algorithms and methods described in Chapter 5.

Traditionally, several robot manufacturers solve the problem by means of
graphic simulator interfaces as an intermediate step between the CAM platform
and the robot execution. An expert operator fixes the additional joints and checks
the motions of the robot during the planned tracking, in order to know if a limit
of range or a singular configuration is reached at any point. Figure 6.1 shows two
singular configurations concerning the milling processes on the rotary table [1],
and also different practical expert solutions to avoid both the widespread
singularity (by means of a linear axis displacement) and the wrist singularity (by
means of a table rotation).

As first attempt, it may be desirable the employment of such a fast and
robust methodology that emulates the expert reasoning like the fuzzy control
[2][3]. It is exposed in the following Section. Nevertheless, due to the fact that
the positioning problem is highly non-linear, it results cumbersome to deal with.
Thus, a second attempt is described in Section 6.3. with the RRS described in
Chapter 5, namely the VJM and the TDM, which are compared. Additionally,
some improvements on these methods are done, also taking benefit of the fuzzy

Chapter 6. Analysis and results 200

logic (see Section 6.3.2.). It can be applied on some tips that normally are
subjected to author’s estimation.

Figure 6.1. Wrist singularity (top) and widespread position singularity (bottom)
concerning the milling processes on the rotary table.

6.2. FUZZY LOGIC FOR IK POSITIONING (IKP) PROBLEM

To practical effects, when the control the KUKATM industrial workcell is
carried out by an expert operator, both additional joints (external linear track E1
and rotary table E2) are requested only in case of avoiding singularities or limits
of range in the chain A1-A6 (Figure 6.1). This main chain must be understand as
the part of the robotic system devoted to locate the tool in  . Both additional
joints should be placed taking profit from the fact that, after fixing whatever
optimal valid values of E1 (Ld) and E2 (M) to reach the proper tool pose, the
path tracking is not affected since the controller adapts the A1-A6 values
(namely,  1 6,..., ).

Nevertheless, due to the KRC2 characteristics and the entry data
structure required for CP tracking (Section 3.1.2.), the IKP analysis of the
manipulator is necessary for the expert fuzzy evaluation of the optimal location of

Chapter 6. Analysis and results 201

E1 and E2. To make feasible the IKP resolution of this redundant system, the
previous E1 and E2 joint values were considered to be known, being Ld and M ,
respectively (see Chapter 2)1. It is logical as it allows rapidly taking the
successive toolpath coordinates at  to  , where the convenience of a new
robot posture may be assessed. In other words, a fuzzy engine can just decide if
the current posture is convenient for the milling operation or, on the contrary, if it
is better to relocate the robot (by means of the linear track) or the workpiece
(with a table rotation).

In the following paragraphs, the development of the structure for the
controller will be explained, whereas its implementation inside NX's
postprocessor will be developed in the following section. This controller will be
implemented with Matlab (The MathWorks, Inc.) by means of its Fuzzy Logic
Toolbox [6].

Figure 6.2. Overview of the Matlab’s Fuzzy Logic Toolbox, which allows the design
and testing of a fuzzy controller.

1 To face the problem of the existence of infinite possible solutions and with the aim of automate the problem, it
seems to be logical and profitable to take a solution near to the previous one [4]. Therefore, it is natural to store
the previous position to minimize displacements of the additional joints E1 and E2.

Chapter 6. Analysis and results 202

 This toolbox generates a .fis file (namely, fuzzy inference system file) in
which the characteristics of the fuzzy model are saved. In addition, two C++ files
(fismain.c and fis.c) are provided as the source codes to implement a stand-alone
fuzzy inference engine.

6.2.1. Development of the fuzzy controller

This section approaches the design of the brain that controls the
automated cell, that is, the fuzzy controller. It is expected to have the capacity to
take decisions and therefore to govern the robotic mechanism. As the fuzzy logic
admits different degrees of membership of any information inside the diffuse sets
(see Chapter 5), a fuzzy controller can analogously determine different degrees of
actuation of the robotic system.

The flow of the information of the joints in the expert system proposed is
shown in Figure 6.3. The point of departure for all milling processes is a known
posture of the workcell (HOME), which is prior and common to the execution of
any subsequent program. From this posture, and depending on the point in the
Cartesian space to which the TCP of the tool must come, the positioning of the
external axes is reconsidered on the basis of the programmed fuzzy controller.

i) Variable definition

The output variables of the fuzzy system are clearly identified by
the data structure required by the KRC2 controller: M and Ld , that is,
the incremental values to adequate the position of E1 and E2 (in addition to
the tool pose that is a unavoidable data given by the CAM)2.

On the basis of those data and after studying which robot joints are
more affected applying the previous output variables, the input variables
are structured. These variables are strongly dependent on the architecture
of the workcell and the shape of the tool holder (Chapter 2). Two input
variables are defined: 3 and 5 , both directly concerning the singular
configurations that affect the operability of the arm on the table. They can
be obtained with the previous IKP geometric computation described in
Chapter 2.

2 For CP commands, with the six coordinates of the tool pose and the values of the external joints (E1 and E2)
the KRC2 internally solves the posture of the manipulator (Chapter 2).

Chapter 6. Analysis and results 203

ii) Clusterization of input and output spaces

As much the input space as the output spaces can be divided in five
triangular clusters. This type of clusterization presents a major simplicity in
its representation, managing and evaluation (Figure 6.4). The number of
clusters is related to the linguistic etiquettes assigned, according to the
experience.

It can be noticed that the functions neither are equidistant nor have
identical form. It depends on the expected reactions, such as a steady state
in intermediate values in the case of 3 but a greater displacement if 5 is

almost aligned (0º). In case of 3 , it may be convenient the existence of a
few dead zone without overlapping in which only a set for universe, and in
consequence an alone rule, would be activated.

Figure 6.3. Flow of the heuristic reasoning in the control of the automated cell and
its interaction with the expert system implemented in NXTM.

iii) Fuzzification of the input variables

Figure 6.4 represents graphically the fuzzification process. The
inputs to the fuzzy controller are discreet values in the range of the
mechanical joint limits. For each of the input variables 3 and 5 , the
value is compared with its respective space and associated with a cluster.
Subsequently, the controller calculates the membership value  of every
input in each of the clusters being affected. Due to the particular partition
of the spaces shown, the variable only could belong to one or two clusters,
resulting in only one or two membership functions for space.

iv) Knowledge base

As justified in the previous Chapter 5, the expert knowledge of the
operator in charge of the robots can be collected in two fuzzy association

Chapter 6. Analysis and results 204

matrixes (Table 6.1 and Table 6.2), which are necessary for the
accomplishment of the rule-base. With two outputs it has been necessary
to establish control for each one (i.e., two association matrixes), even when
they have relative dependence on the same inputs.

It is easy to detect the vicinity of a wrist singularity configuration
by means of the value of 5 . The expert system is supposed to reconsider
this value when it is near to zero.

To practical effects, 3 should be considered when its value is near

to provoke an extended position singularity, i.e. if   (Figure 2.24), so

that 3  . In this case, the optimal position is considered to be in the
intermediate position between the extended position and the closer limit to
the robot base (namely, when 3  160º).

3
M

VC C R O VO
VN Q Q Q Q Q
N Q Q Q Q Q

ALI CCW CCW CW CW VCW
P Q Q Q Q Q

5

VP Q Q Q Q Q

Table 6.1. Knowledge base for M

3
Ld

VC C R O VO
VN MFA FA Q AP MAP
N MFA FA Q AP MAP

ALI MFA FA Q AP MAP
P MFA FA Q AP MAP

5

VP MFA FA Q AP MAP

Table 6.2. Knowledge base for Ld

a. Abbreviations. ((V)C=(Very) Closed, R=Relaxed, (V)O=(Very) Opened, (V)N=(Very) Negative, ALI=Aligned, (V)P=(Very) Positive,
(M)AP=(Much) Approach, Q=Quiet, (M)FA=(Much) Far Away, (V)CCW=(Very) Counter-Clockwise, (V)CW=(Very) Clockwise.

v) Inference engine

The process of inference used is that of Minimum-Maximum
(Mandami), as described in Chapter 5. The result of the fuzzification gives
certain membership values in different clusters at every space of entry (3

and 5). These values (considered as the antecedents) are leaked on the

Chapter 6. Analysis and results 205

base of rules to know in which clusters of the output spaces take place the
consequents. The membership value inherited to the output clusters of
every fulfilled rule is the minimal membership value of the clusters of the
input spaces (antecedents) involved in that rule (Figure 6.4, in red).

Finally, it is necessary to compose the output polygon (Figure 6.4,
in blue), which reflects the membership values in the clusters of the output
spaces (M and Ld) along the set of fulfilled rules. For this, it is
necessary to review every cluster of the output spaces at all applied rules
where the consequents coincide, taking the maximum membership value
which it presents at any rule.

Figure 6.4. Min-Max inference process for two rules: two discrete input values
(3 , 5) are fuzzificated (3 , 5) by the corresponding clusters involved in both rule.

The minimum degree of membership in each case is taken as output membership
value in the implied output clusters (red), and then aggregated (blue) into a single
fuzzy set for the overall output.

vi) Defuzzification

As final part of the fuzzy process, the defuzzification is carried out
by means of the centroid method applied to the figure that results from the
prior composition, as described in Chapter 5 (Figure 6.5). The resultant
position on the horizontal axis is the defuzzificated value of the output
variable (crisp output).

Chapter 6. Analysis and results 206

Figure 6.5. The centroid calculation returns the center of area under the aggregated
curve as crisp output value.

vii) Interactivity with fuzzy controller module.

As shown in Figure 6.6 (whose origins are in Figure 4.20.), the
Event Handler has been programmed to pass the next desired tool pose
coordinates at {B} and the current external joint values (i.e., from the
current position prior to any relocation of the tool possibly requiring a
movement of the external joints) to a C++ programmed module. It makes
two tasks:

 The inverse kinematics calculation, to obtain the  1 2 3 4 5 6, , , , ,     

joint values, corresponding to the next desired position with the current

Ld and M values.

 The fuzzy control: with the calculated joint values, the embedded fuzzy
inference engine reads the .fis model and returns the estimated M

and Ld to reach the desired position of the TCP with an optimal
configuration.

These values are checked as valid by means of an iterative cycle
(Figure 6.3), and then returned to the Event Handler, which passes the final
values to the Definition File for its publication.

It is important to note that, to practical effects and due to the
architecture of the KRC2 controller, the values passed are the same tool
pose coordinates at {B} but with the recalculated values of the additional
external joints E1 and E2, as justified in the previous section i.1) and [5].

Chapter 6. Analysis and results 207

Figure 6.6. Integrated postprocessing in NX. The Definition File and the Event
Handler are programmed in TCL to adapt NX's CAM to the KUKA KRC2
controller. The Event Handler is able to interact with executable modules
programmed in C++.

6.2.2. Analysis and results

After the implementation of the postprocessor, further simulation was
carried out in order to verify if it realizes satisfactory control actions. This
simulation was first run with Matlab’s toolbox Hemero [10], and then the result
was compared with the real robot movement.

Figure 6.7 and Table 6.3 illustrate the behaviour of the previously
described controller when an adjustment of 3 is obviously required (case A), or

both 3 and 5 (case B).

 CASE A CASE B

iP [0, 0, 10] [-75, 10, 0]

 Before After Before After

Ld -2970 -2603 -2800 -2346

M 0 0 -75 -51

1 13.65 33.21 25.93 50.24

2 -65.94 -55.72 -84.66 -59.46

3 129.02 111.44 157.66 119.32

4 -19.86 -7.79 -67.72 -26.96

5 53.85 63.31 31.99 54.07

6 33.18 42.42 18.09 23.87

Table 6.3. Case studied

Chapter 6. Analysis and results 208

As it can be appreciated, in both cases the result was the desirable with
the first iteration, obtaining the same values for M and Ld in a second
calculation with the values previously obtained. In this sense, the implemented
fuzzy control works as desired in terms of rapidity in the response.

Figure 6.7. Matlab simulation of the readjustment of the workcell after the
actuation of the implemented fuzzy controller for Case A (left) and B (right).

However, it is easy to highlight some limitations for this implementation.
First, the rule base should be wider enough to consider all the possible poses of
the tool when milling on the table. This is the reason why it has been only
performed successfully for a 3-axis milling (i.e. with a constant tool orientation
like shown in Figure 6.7). Even in this case, the configuration of a rule base is
cumbersome due to the high non-linearity of this system which makes it
unpredictable in a certain way and in some situations, even for an experienced
workman. For that reason, the previous fuzzy implementation may be re-
considered for its use at the rate level, where the problem becomes linear.

6.3. IK PROBLEM IMPLEMENTATION AT RATE LEVEL

6.3.1. Discussion

In the previous Section, the IK problem was managed at the position
level. Clearly, despite the obtained results are discussed in a later section, that

Chapter 6. Analysis and results 209

problem was highly non-linear. Thus, it can be deduced that despite the
application of fuzzy logic to deal with these non-linearities, some difficulties will
appear when configuring such a wide rule-base foreseeing all possible situations
in a complex milling task. Moreover, it can be criticized the employment of the
fuzzy logic itself when some other control methods for redundant manipulators
have been developed, as shown in Chapter 5.

In this sense, the IK problem at joint-rate level was introduced at Section
2.2.2-ii). In addition, this problem was highlighted for the case of redundant
manipulators, by means of eq. (2.13). Nevertheless, it was in Section 5.3.1 when
several methods derived from this equation where introduced.

It is important to note that the great acceptance of these RRS founded on
the joint-rate level is justified by the fact that the non-linear position problem is
converted to a linear problem at the velocity level. In fact, in Section 2.2.2-iii),
Whitney's geometric Jacobian matrix was described as the mapping between the
joint rates and the twist of the tool tip. From a practical point of view, this
Jacobian can be easily evaluated numerically for each given posture of the robot.

This section deals with the control of the workcell with some of these
methods by comparing two of them, namely the TDM and the VJM described in
Chapter 5. The implementation by using the Householder-Reflections will be
taken into account in both cases as described in Section 5.3.1-iii). As justified
there, both methods are more suitable for milling applications than any other
based on the DLS-inverse, since the position and orientation of the TCP are
highly compulsory3.

Finally, several considerations on the utility of fuzzy logics for the
assignment of the performance vector h are done. Thus, some valid
improvements for both methods are implemented and tested.

6.3.2. TDM and VJM test implementation

i) Method

A challenging 5-axis milling was done as test to compare the
performance of the TDM and the VJM. It consists of a spherical shape to
be milled through a continuous spiral path. As shown in Figure 6.8, the
symmetry axis of the tool (in red) is required to point constantly the center
of the sphere, while the successive TCP positions are depicted in blue. This
shape is supposed to be located into the manipulator’s workspace on the

3 As exposed in Chapter 5, the damping factor (λ) would introduce an algorithmic error, also away from a
singular point, in terms of both direction and magnitude.

Chapter 6. Analysis and results 210

rotary table, namely the base {B}. For the test, the center has been
somehow located at an arbitrary point in the workspace, with the
coordinates

 100, 200, 250 ()C mm (6.1)

and the radius of the sphere has been set in R=150 mm. For the scope of
this thesis, the tool holder designed at the IDF for milling purposes
(described at Figure 2.28 and Table 2.5) is considered in this comparison,
as depicted in Figure 6.8.

Figure 6.8.Workcell at HOME posture and main parameters of the experimental
toolpath.

It is important to remark that this test is highly demanding. In fact,
common milling paths are composed of relatively short trajectories which
are concatenated by means of other void motions (i.e. motions with the tool
not touching the workpiece) in which the robot or machine tool is
relocated. Instead, we are aiming for this relocation of the additional
external joints meanwhile a long and challenging path-tracking is being
followed.

Chapter 6. Analysis and results 211

This test has been programmed in Matlab for both TDM and VJM
methods, within the same suppositions. The trajectory data, generated with
NXTM, is kept as TCAM. Starting from the HOME posture shown in Figure
6.8 (0 [+ , 0, + , - /2, 0, 0, + /2, 0]Tq     rad) and with the DH models of
both the KR15/2 manipulator (DH-KR15/2, Table 2.2) and the complete
workcell (DH-Workcell, Table 2.3) at hand, the programmed algorithm is
summarized as follows on the basis of (5.16):

where the sub-index Workcell refers to the kinematic chain of the complete
kinematic chain of the workcell, i.e. including the linear track and the
rotary table.

To determine the convenience of a given posture, the condition
number of the Jacobian (with the Frobenius norm, i.e. kF) was introduced
in Section 2.3.2. Moreover, this calculus is going to be done for the
isolated 6R KR15/2 manipulator, that is, leaving aside the external joints as
justified in 2.4.6. Therefore, the 8th step can be detailed as:

 

 

0

CAM

CAM

g Workcell

1)

 (each -point of the trajectory, T ())

2) , T

3) , DK(, DH-Workcell)

4) ·

5)

· ()
6)

7) DK(, DH-Workcell)

 8)

d d

T
d

d

q q

for i i

p Q

while q

p Q q

Q Q Q

p p p

Q vect Q
t

p

J q







 



 
  

 
    





 Determination of

9) RRS

10) +

Fk

q

q q q

endwhile

endfor

 
 

 (6.2)

Chapter 6. Analysis and results 212

 6 2 6

 6 6

6 6
 (Section 2.4.6)

6
. (2.41)

 8) Determination of

 8.1) 0, ,...,

 8.2) () DK(, DH-KR15/2)

 8.3)

 8.4)

F

R

g R R

R g R
L

F R
eq

k

q

J q q

H J

k H

 







 (6.3)

Algorithm (6.2) is customized in the 9th step for each of the two
RRS studied, as it will be described in next sub-sections. It is remarkable
that the DH representation of the manipulators depends on the RRS
selected, see Section 5.3.3. At this point, it is noteworthy the great
influence on the result of the performance vector, h.

ii) Performance criterion vector, h

As explained in Section 5.3.1, the manipulator is required to track
successive target positions as primary task, but in addition one can try to
achieve secondary goals by suitably choosing h. It could be considered as
having a virtual force which attempts to push the configuration of the
manipulator away from a critical area in the configuration space [9].

Nevertheless, as explained in Chapter 5, it is important to remark
the different signification of h in both VJM and TDM. In case of the VJM,
fully based on eq. (5.20), h is a motion projected on ()J (i.e., the tool tip
is not moved by the action of h), but in case of the TDM this secondary
motion may not be constant in the base frame (i.e., from the base frame, a
movement can be appreciated trough the symmetry axis of the tool tip). It
was depicted in Figure 5.11.

 Joint-limit avoidance

When considering the performance vector (h) for joint-limits
avoidance, the Yoshikawa’s formulation (5.24) is widely used [8]. In this
case the performance criterion can be written as to maintain the
manipulator as close as possible to the mid-joint posture, i.e. as far as
possible from its mechanical joint limits, namely

min max
mid mid mid1

() (), with
2 2

T
jnt jnt

q q
p q q W q q q


    (6.4)

Chapter 6. Analysis and results 213

It is remarkable that the mid-joint posture of the KR 15/2 is such a
non-functional posture that it is not appropriate as a reference (Figure 6.9,
right). Also the best conditioned posture could be considered as reference
(in fact, it seems to be more logical and desirable) but, as shown in Figure
6.9 (left), it is quite near of some mechanical joint limits. Thus, and for the
scope of this thesis, the commonly used HOME posture depicted in Figure
6.8 will be taken as the reference posture (ref

0q q) for eq. (6.4) as a
compromise between both objectives.

Figure 6.9. Left, best conditioned posture for the 6R KR 15/2 manipulator deduced
in Section 2.4.6. Right, mechanical mid-joint posture.

The setting of the weighting diagonal matrix jntW of equation (6.4)

is very important for the success, as demonstrated below.

 Best conditioning (kF)

In addition, the Fk -condition number is also taken into account to
achieve a definitive h. Thus, for the scope of this thesis, the performance
criterion (5.26) can be rewritten by using the Fk -condition number as

Chapter 6. Analysis and results 214

() ()
2

TF
cond Ts cond Ts

k
p q q W q q   (6.5)

This performance criterion is activated when the Fk -condition

number passes over a preset threshold value,  . At this instant, the

corresponding configuration, Tsq , is recorded. Thus, the algorithm
considered takes the form:

1

 · ·()

F

Ts

Ts actual

cond cond F Ts

Ts

if k

if q

q q

end

h p W k q q

else

q

h

end



 


    




 (6.6)

Compared to Fk , the inverse of Fk has the advantage of being
comprised between 0 and 1 (best conditioned). It also makes easier the
graphical representation and comparison in further sections.

Again, in (6.5) the choice of the weight, condW , is a major difficulty
to implement due to the subjectivity.

 Combined performance criterion

Finally, the two secondary tasks described above, joint-limits and
kinematic singularity avoidance can be combined into a unique
performance criterion vector, which is to maintain the manipulator as close
as possible to the reference posture (HOME) and as far as possible of bad
conditioned postures at the same time. The objective function could be
written as:

jnt condp p p  (6.7)

Chapter 6. Analysis and results 215

By tuning both jntW and condW , the relative importance between

the two sub-tasks is adjusted. Vector h is thus chosen as the gradient of p,
namely:

 jnt cond jnt condh p p p h h       (6.8)

 ref
jnt jnth W q q   (6.9)

 · ·cond cond F Tsh W k q q   (6.10)

Choosing both W can be critical for the performance of the RRS
and traditionally this task has been set based on trial and error. This matter
will be considered when performing the numerical tests.

Figure 6.10. Additional virtual joint, associated with a rotation in Z9.

iii) Algorithm for the VJM

The VJM was profusely described in Section 5.3.2.i). In fact, the
most significant implication is the consideration of an additional rotary
joint in the tool tip around the tool symmetry axis. Therefore, the DH

Chapter 6. Analysis and results 216

model for the IDF’s workcell has an additional line more than expected in
the real model (namely, the virtual joint). It was detailed at Section 5.3.3
(see Figure 6.10).

The RRS in the 9th step of the algorithm (6.2) is programmed with
Matlab following the scheme of Section 5.3.1.v), by using Householder
reflections. Again, it is justified by the fact that these computations are
performed with finite precision. Hence, in order to keep round-off errors as
low as possible, this algorithm avoids the direct calculation of the
generalized inverse of the Jacobian matrix. The Matlab algorithm can be
resumed as follows [7]:

 
1) ' (' designates the transpose of a matrix in Matlab)

2) [] (Matlab's function makes the

 orthogonal-triangular -)

 2.1)

T

T

J J

Q R qr J qr

QR decomposition

H





1 1

1

'

 2.2) (1: 6,:)

3) - ·

4) (',) (· , solved by forward substitution,

 with U being a upper triangular matrix)

5) [; (3,1)]

6)

T

Q

U R

r t J h

y forward U r U y r

y y zeros






 


'·

7)

k H y

q k h


  

 (6.11)

iv) Algorithm for the TDM

The TDM was also described in Section 5.3.2.ii) and
complemented in Section 5.3.3 with the projection on ()J . In this case,
the DH model is the one described in Chapter 2, but with the adequate
attached length of the final link until the tool tip. Thus, the position and
orientation of the tool tip regarding the tool-holder is known by means of
the corresponding homogeneous matrix (9TTCP), as detailed at Section 5.3.3
and Figure 6.11.

 Again, it is justified the use of the Householder reflections to
solve (5.65), but with some modifications as shown in the following
algorithm:

Chapter 6. Analysis and results 217

 
1) ' (' designates the transpose of a matrix in Matlab)

2) [] (Matlab's function makes the

 orthogonal-triangular -)

 2.1)

T

T

J J

Q R qr J qr

QR decomposition

H





1

3 1

2

1 1

'

 2.2) (1: 6,:)

· · ·
3) * ·

0

4) *- ·

5) (',) (· , solved by forward substitution,

 with U being a upper triangula

T

x

T

Q

U R

e e A h
t T t

r t J h

y forward U r U y r




 
     

 
 

 

1

2

r matrix)

6) [; (2,1)]

7) '·

8)

y y zeros

k H y

q k h




  

 (6.12)

Figure 6.11. Represetation of the EE in the TDM test. The transformation matrix
towards the tool tip is expressed as a displacement on Z9 in mm.

Chapter 6. Analysis and results 218

6.3.3. Analysis and results.

The exposed algorithms were run in Matlab for the test described
previously. At the same time, the workcell was sketched and virtually animated
with the aid of the Matlab’s Toolbox Hemero [10].

For each possible treatment, namely:

(a) the VJM,

(b) the TDM,

(c) the TDM combined with a projection on ()J , eq. (5.65);

the joint values and the inverse of Fk were recorded. Moreover, in the case (c),

it may be possible to highlight the convenience of evaluating as 1h and 2h (at

(5.65)) the respective values of jnth and condh (of (6.8)).

For a value of 0.5  in algorithm (6.6), the following tests were
performed:

i) Constant weighting vector for the combined performance criterion.

In order to perform the first attempt of evaluation of the VJM and
TDM methods, two constant diagonal weighting matrixes are assumed [8],
namely

 M Ld 1 2 3 4 5 6 7()VJM

jntW 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

condW 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 6.4. From left (element (1,1)) to right (element (8,8)), diagonal weighting
matrixes for the combined performance criterion.

The results and comparison amongst the cases studied are
graphically depicted in the Table 6.5:

Chapter 6. Analysis and results

219

 VJM

TDM

1

2

(

, (6.12))

jnt condwith h h h

and h in

 



TDM

1 2(

(6.12))

jnt condwith h h and h h

in

 

TDM

1 2(

(6.12))

cond jntwith h h and h h

in

 

1
Fk

mean: 0.4776 0.4051 0.3275

0.3187

M

Chapter 6. Analysis and results

220

Ld

2(4)

1(3

(5

)

3)







5(7)

4(6

(8

)

6)







Chapter 6. Analysis and results

221

F
in

al
 p

os
tu

re

W
or

st
 k

F
 p

os
tu

re

Table 6.5. Experimental results for the simulation in the studied workcell of the VJM and TDM algorithms. In the TDM, two
variations including a projection in ()J are studied, according to case (c).

Chapter 6. Analysis and results

222

From the analysis above, the VJM seems to be more robust
configuring the consecutive postures along the path and taking into account
the criterion of the proximity to the reference posture and best kF.

A second attempt can be done varying the magnitude of the
weights. It is noteworthy that the more weight, the faster reaction can be
expected in the manipulator. Thus, two constant diagonal weighting
matrixes are assumed, namely, with a 10-times bigger order of magnitude:

 M Ld 1 2 3 4 5 6 7()VJM

jntW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

condW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 6.6. From left (element (1,1)) to right (element (8,8)), diagonal
weighting matrixes for the combined performance criterion.

The results and comparison amongst the cases studied are
graphically depicted in the Table 6.7:

Chapter 6. Analysis and results

223

 VJM

TDM

1

2

(

, (6.12))

jnt condwith h h h

and h in

 



TDM

1 2(

(6.12))

jnt condwith h h and h h

in

 

TDM

1 2(

(6.12))

cond jntwith h h and h h

in

 

1
Fk

mean: 0.4767 0.3517 0.4514

0.3642

M

Chapter 6. Analysis and results

224

Ld

2(4)

1(3

(5

)

3)







5(7)

4(6

(8

)

6)







Chapter 6. Analysis and results

225

F
in

al
 p

os
tu

re


(none)

W
or

st
 k

F
 p

os
tu

re

Table 6.7. Experimental results for the simulation in the studied workcell of the VJM and TDM algorithms, with the constant weights
of Table 6.6. In the TDM, two variations including a projection in ()J are studied, according to case (c).

Chapter 6. Analysis and results

226

The VJM shows the more robust behaviour, and almost similar to
the previous study. Nevertheless, 3 goes out of a mechanical limits so the
first attempt of VJM can be regarded as most convenient. Again, the TDM
shows a more unstable and even unpredictable behaviour, much sensible
to the weight performance.

ii) Adapted Fuzzy weighting vector for the combined performance criterion.

As recommended by several authors [8][11][12][13], higher
weights are assigned to those joints that are supposed to be more reactive
when lowering the condition number or being far of the reference posture.
Those studies assigned the weights depending on the significance of the
joints and according to an expert knowledge. Nevertheless, in case of
milling tasks where the tool pose (and hence the robot posture) changes
constantly, it seems to be desirable to identify an appropriate value for the
weights at each configuration and in a reasonable time.

In practice, the implementation reported for the configuration of a
fuzzy engine controlling the position (Section 6.2.) gives the key to
configure a similar one but performing, on the basis of a rule base, the
importance (namely, the weight) to be associated to each joint.

The steps to develop such a fuzzy controller with the Matlab’s
Fuzzy Toolbox were described in Section 6.2.1. , and the interactivity with
this controller from the postprocessor module was shown more explicitly
in sub-section vii). Therefore, the description to be done in this section
points to the variable and knowledge base definitions.

 Variable definition

The condition number is expected to be decrease when the robot
acquires a posture near the extended arm or the wrist singularities
(described in Chapter 2). In this case, joints 3 and 5 had a direct

implication, and also the additional joints (,M Ld) in order to avoid this
posture.

In the case of the maintenance of a reference posture, where all
joints are implied, different weights are assigned to the joints articulating
the gross and fine positioning described in Chapter 2, as well as the

Chapter 6. Analysis and results

227

additional joints. In fact, it can be convenient to work near a reference
posture of the joints doing the gross positioning while a fine orientation is
being done, so it seems to be logical making different assignments.

Based this reasoning, the output variables of the fuzzy system are
those weights associated to the joints which are more related to a critical
change in both aspects described (from Table 6.3):

 M Ld 1 2 3 4 5 6 7()VJM

jntW wMjnt wLjnt 0.01 0.01 w3jnt 0.01 w5jnt 0.01 0.01

condW wMcond wLcond wgross wgross wgross wfine wfine wfine 0.01

Table 6.8. From left (element (1,1)) to right (element (8,8)), diagonal weighting
matrixes for the combined performance criterion. The fuzzyfied weights are
assigned to the most significant joints according to experience.

On the basis of those data and after studying which robot joints
affect the most the conditioning and the risk of joint limit reaching, the
input variables are structured. Two input variables are defined in case of
the conditioning (3 5,  , as justified in Section 6.2.1.) and three in case of

the maintenance of the reference posture (2 3 5, ,  ), (Figure 6.12, in

yellow). Moreover, it is noteworthy that the absolute value of 5 , namely

5 , will be considered due to symmetry in the range of this joint.

Figure 6.12. Left, graphical representation of the fuzzy engine determining the
weights for the reference posture manteinance criterion. Right, the fuzzy engine
giving the weights for the singularity avoidance criterion.

Chapter 6. Analysis and results

228

 Clusterization of input and output spaces

In each input and output spaces, the number of clusters is related
to the linguistic etiquettes assigned, according to the experience. In case of
the input spaces (2 3 5, or  ), they are divided in three triangular clusters
(Figure 6.13). It can be noticed that the functions neither are equidistant
nor have identical form. It depends on the expected reactions.

Figure 6.13. From left to right, representation of the peak posture of each of the
three clusters in which the input spaces are divided.

The output spaces are different for each fuzzy inference system,
depending also on the experience. In each case, the weights are comprised
between 0 and 0.05 (0.025 for the additional joints when considering the
reference posture maintenance).

Moreover, in practice the additional joints are considered after the
most adequate solutions involving the main chain of the manipulator. As a

Chapter 6. Analysis and results

229

result, only two clusters are considered for the external joints (one giving
a very low weight, almost 0) while three clusters are considered in the
case of the joints of the main chain (1 6to ), the one on the left giving a
major weight if required (Figure 6.14).

Figure 6.14. Output spaces for the weight assignment: left, for the reference
posture criterion; right, for the singularity avoidance criterion.

Chapter 6. Analysis and results

230

 Knowledge base

The last requirement to run the inference engine consists in the
rule base relating the input and output spaces. Those “if-then” rules
comprise a number of 4-5 up to a maximum of 12. Teorically, giving more
rules can be cumbersome and comes up with the desired simplicity of a
fuzzy inference system.

In case of this trial, some basic rules are taken into account, as
shown in Figure 6.15. Next, with those simple rules, the results obtained
are shown.

Figure 6.15. MATLAB’s Fuzzy Toolbox has a Rule Editor to easily manage the if-
then rules relating the input and output spaces. Four rules were created for the
reference posture criterion (up), and two for the singularity avoidance criterion
(down).

 Results with the adapted fuzzy weighting vector

Due to the fact that previous studies showed a better performance
of the VJM, the implementation of the adapted fuzzy weighting vector
was done only for this method.

With the suppositions of the preliminary sections, the results and
comparison amongst the cases studied are graphically depicted in the
Table 6.9:

Chapter 6. Analysis and results

231

 VJM

TDM

1

2

(

(6.12))

jnt condwith h h h

and h in

 



TDM

1 2(

(6.12))

jnt condwith h h and h h

in

 

TDM

1 2(

(6.12))

cond jntwith h h and h h

in

 

1
Fk

mean: 0.5087 0.3505 0.3425

0.3010

M

Chapter 6. Analysis and results

232

Ld

2(4)

1(3

(5

)

3)







5(7)

4(6

(8

)

6)







Chapter 6. Analysis and results

233

F
in

al
 p

os
tu

re

W
or

st
 k

F
 p

os
tu

re

Table 6.9. Experimental results for the simulation in the studied workcell of the VJM and TDM algorithms, with the adapted
weights of Table 6.8 via fuzzy inference. In the TDM, two variations including a projection in ()J are studied, according to case

(c).

Chapter 6. Analysis and results

234

From the analysis above, it can be observed that the VJM again
offers the best kF average, but also the more robust behaviour. In this trial,
the TDM has a quite unstable behaviour again, although resulting in a
better conditioned final posture compared to VJM. The worst conditioned
point in the TDM is achieved due to wrist singularities, as depicted in
Table 6.9.

Following attempts are going to be done with the VJM, taking profit
from its robustness but considering a periodic IKP revision to perform a better
control on the final kF.

Figure 6.16. Proposed Fuzzy revision for the studied workcell.

6.3.4. Periodic revision by fuzzified IK analysis.

Common milling tasks are compound of a succession of toolpath
trackings allowing a posture revision between them. In previous trials, a
continuous toolpath has been considered showing the robustness of VJM when
compared to TDM.

However, to practical effects, it can be convenient to take profit from a
periodic revision of the posture. It can be done at a set of points on the toolpath
by means of the IK of position, as shown in Section 6.2. For this, the rotary table
and the track are moved at those points to try to radically improve the kF, taking

Chapter 6. Analysis and results

235

into account the desired pose of the TCP, the actual position on this additional
joints and the resulting IKP analysis.

As shown in Figure 6.16, different criteria can be considered for this
periodic revision, namely the time from the previous revision, a kF threshold or
reaching any of the joint limits in the kinematic chain of the manipulator. In all
those cases, the position of the table can be first revised to get better posture.
This is due to the fact that with this, the major improvement is achieved without
moving track. Thus, in a certain manner, it is also an observation done from
experience attending to precision of the manipulator (as noted in Chapter 3).
After that, another fuzzified track motion can be considered, which for this case
will be smaller than on the contrary.

With this supposition and with the more robust of the previous methods
tested, the VJM, the results obtained are shown in the following table:

Chapter 6. Analysis and results

236

 VJM

1
Fk

mean: 0.5644

M

Ld

2(4)

1(3

(5

)

3)







5(7)

4(6

(8

)

6)







F
in

al
 p

os
tu

re

Table 6.10. Experimental results for the simulation in the studied workcell of the VJM with the implementation of the adapted fuzzy
weighting vector and a periodic IKP position analysis as depicted in Figure 6.16

 Chapter 6. Analysis and results

237

6.3.5. Comparison of the previous VJM improvements

Figure 6.17 compares the conditioning achieved with the different VJM
trials of the previous sections. It can be appreciated the progressive better
conditioning of each of the successive improvements done.

Figure 6.17. Comparison of the conditioning achieved with the different VJM
trials: blue, with constant weighting vector (w=0.01); green, with fuzzy adapted
weighting vector; and red with fuzzy adapted weighting vector and a periodic
revision of the IKP.

Moreover, the last method, assisted by the IKP revision, can be
considered more robust than the previous implementations. In fact, the worst
conditioned posture, at t=180s, is about 0.4 like the method only using a fuzzy
adapted weighting vector, but in this case this posture is rapidly corrected in the
following revision at t=200s to continue with the milling process.

In addition, the implementation of those methods is to be done in the
real robot, and the last one guarantees the postures that are most continuously
approachable in the real workcell (Figure 6.18).

Chapter 6. Analysis and results

238

Figure 6.18. While the condition number is almost the same (kF=0.4), the worst
posture achieved with the periodically revised method (right) has a better
performance for continuous milling purposes.

Chapter 6. Analysis and results

239

REFERENCES

[1] M. D. J. Hayes, M. L. Husty and P. J. Zsombor-Murray; "Singular Configurations
of Wrist-Partitioned 6R Serial Robots: a Geometric Perspective for Users",
Carleton University (Canada), 2003

[2] R. Reyero, C. F. Nicolas; “Sistemas de control basados en lógica borrosa : fuzzy
control”, Omron Electronics, 1995. ISBN 8492032626

[3] L. Huo; “Inverse kinematics of robotized functionally and intrinsically redundant
tasks”; Departement de Genie Mecanique - Ecole Polytechnique de Montreal, 2006.

[4] A. Ollero; “Robótica: Manipuladores y robots móviles”, Marcombo, 2001. ISBN
8426713130

[5] J. Andres, L. Gracia, J.Tornero; “Inverse kinematics of a redundant manipulator for
CAM integration. An industrial perspective of implementation”, unpublished
(submited to ICM09)

[6] J.-S. Roger Jang, N. Gulley; “Fuzzy Logic Toolbox: User’s Guide”; Revised for
Version 2.2.7 (Release 2008a), The MathWorks, Inc. 2008

[7] http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ (Matlab Function
Reference)

[8] Huo L. and Baron L.; "The joint-limits and singularity avoidance in robotic
welding"; Industrial Robot: An International Journal 35/5 pp 456–464 (2008)

[9] Kemeny Z.; " Mapping, detection and handling of singularities for kinematically
redundant serial manipulators "; Periodica Polytechnica Electr. Eng., 46 (2002), pp
29-45.

[10] J. I. Maza, A. Ollero; "Hemero: Herramienta MATLAB/Simullink para el estudio de
manipuladores y robots móviles", Marcombo, 2001.

[11] Huo L., and Baron, L., “Kinematic inversion of functionally-redundant serial
manipulators: application to arc-welding”, Transactions of the Canadian Society for
Mechanical Engineering, 2005, Canada.

[12] Honegger, M. and Codourey, A., Redundancy resolution of a cartesian space
operated heavy industrial manipulator, IEEE International Conference on Robotics
and Automation, Vol. 3, pp. 2094-2098, 1998.

[13] Baron L., “A joint-limits avoidance strategy for arc-welding robots”, International
Conference on Integrated Design and Manufacturing in Mechanical Engineering,
Montreal, Canada, May 2000.

Chapter 7. Applications 241

CHAPTER 7

APPLICATIONS

"False facts are
highly injurious to the

progress of science, for they
often endure long; but false
views, if supported by some
evidence, do little harm, for

every one takes a salutary
pleasure in proving their

falseness." –

 Charles Darwin

Chapter 7. Applications 243

CHAPTER 7. APPLICATIONS

7.1. INTRODUCTION

Prior to the motivation of the present thesis, there was a permanent
partnership agreement between the IDF and the official NXTM dealer in the
Valencian Community (Avantek, currently converted to Procue). Therefore,
leaving aside the standard applications on CN milling centres, NXTM provided an
open environment for CAD/CAM/ROB integration research. All possible
applications of robotics in machining industry started to be investigated by means
of the KUKATM complex robotic workcell introduced in Chapter 2.

After studying the RRS for such a workcell and the implementation of
the treatment to give to the code generated by the CAM, the present Chapter
deals with two practical cases studied at the IDF. As first case studied, the
workcell is intended to machine a full 8x13 meters orographic model of a
reservoir in the Mijares River (Spain), and afterwards the applicability of the
CAM/ROB integration into traditional processes is tackled in the second case
studied, in partnership agreement with the Comité de Artistas Falleros de
Valencia.

At next section, a brief presentation of the specific materials used to
carry out both works is done. A guideline of the specific treatment of the CAD
file in each case studied is also highlighted.

7.2. MATERIAL AND METHODS

Besides the specific treatment of the CAD file imported to the NXTM
platform, some common guidelines about the material (distinguishing between
software and hardware) and methods used in both cases studied are exposed in
this Section.

7.2.1. Material

i) Software

In addition to the NXTM platform, KUKATM provides a basic
graphical simulator which helps the operator when preparing a milling
task. As first attempt, this software (RobomoveTM, Qdesign [5]) can be

Chapter 7. Applications 244

profitable to visualize postures and possible interferences, validating the
result of the RSS implemented (Figure 7.1).

Nevertheless, NXTM itself has a graphic simulator. NXTM-Motion is
a CAE package integrated within NXTM allowing the kinematic simulation
of complex mechanisms modelled or imported to the CAD module [2], like
the exposed workcell. This package has been tested with good results and
with the aimed advantage that the CAD and CAM work done is profitable
within the same software. The input for NXTM-Motion is a two columns
matrix containing a time counter and the associated joint values. However,
it is still more cumbersome to manage due to the large weight of the CAD
parts when compared with the lower weight of the parts managed by
RobomoveTM. Different views of the workcell simulated in Motion and
RobomoveTM are shown in Figure 7.1.

Figure 7.1. Up, different views of the workcell simulated in NXTM MOTION; down,
two views of the simulation done with RobomoveTM.

Chapter 7. Applications 245

ii) Hardware

Apart from the KUKATM workcell (with the KRC2 controller [4])
used for the scope of this thesis and introduced in Chapter 2, some specific
tools designed at the IDF where utilized to carry out the milling tasks,
namely: the milling tool holder on the robot flange, and the workpiece
holder on the rotary table.

The geometry of the milling tool (and the tool holder) was
described in Chapter 2, and it has been made from a 15 mm aluminium
sheet as shown in Figure 7.2-left. However, and due to the fact that CAM-
softwares only consider the tool as revolute shapes (due to axial symmetry
of the tool, see Chapter 4), it is modelled according to Figure 7.2-right. It
gives the criterion of highest possible safety due to the fact that NXTM
calculates the toolpath while detecting possible collisions of the tool holder
modelled [1][2]. In fact, the orientation that the current tool could take
regarding its +Z axis is not determined in NXTM at first, but fixed in the
DH-model of the workcell (and consequently, to practical effects, in the
measurement of the tool within the KRC2 controller).

Figure 7.2. Left, real tool: an air turbine moves a 20 mm diameter spherical-tip tool;
right, revolute model in NXTM.

The workpiece holder (on the rotary table, Figure 7.3) fixes it
during the milling work. Like the milling tool, it is also fed by means of a
pneumatic system.

Chapter 7. Applications 246

Figure 7.3. A pressurized air system (right) pushes the pistons against the opposite
angle (left) to fix the workpiece.

When describing the materials utilized for the case studied, a
special mention must be done abut the blank composition. In this thesis,
expanded polystyrene (EPS) was chosen. There are several advantages of
modelling with EPS: it is a cheap material, it is also easier and quicker to
machine, more stable over time, and less prone to damage than other
materials. If needed, it is easy to divide the model into separate sections,
and chop and change various elements. Finally, EPS can be treated with
many different surface finishes and so can provide a more realistic model.

Figure 7.4. Left, EPS blanks; right, machining process of one piece in EPS.

7.2.2. Methods

The designs are developed by means of the NXTM-CAD module, in some
cases after importing the original data source file. In these cases, any
discontinuity or defect is restored. It is remarkable that the quality of the CAD
model always determines the efficiency of the results that could be obtained later

Chapter 7. Applications 247

in the following steps of the manufacturing process (Figure 7.5). Therefore, this
is always the point of departure for applying the rest of computer assisted
technologies.

With the cases studied, particular attention is to be paid for the very
common processes starting with a CAD translation (namely, coming from
different CAD systems) or a digitalization process. For each case studied, the
particularities during the processing are explained at subsequent sections.

Figure 7.5. Flow process for the cases studied

Finally, as explained in Chapter 2, KUKATM KRC2 control cabinet
contains all the components and functions required to operate the robot.
However, this cabinet is oriented to industrial environments so the control
software is normally protected, having a limited access during processing a work.
In fact, the externally programmed KRL codes (.src) must be compiled before its
execution by updating them in a specific folder (KRC:\R1\Program). In addition,

Chapter 7. Applications 248

this cabinet, more oriented to pick-and-place tasks, has a limited memory of 3
Mb.

To avoid both limitations, the more convenient solutions consists of
executing a generic program in the specified folder (thus previously compiled)
but reading the sequence of CP points from an external .dat file, as done with the
extended version of the RobomoveTM package [5].

Figure 7.6. Up, sketch of the scaled model (factor 1:75) of the reservoir used to
simulate flows, refluxes and water retentions; down, Valencian Falla.

7.3. CASES STUDIED

With the aim of validating the postprocessor designed, two cases are
studied in the workcell of the IDF.

 In the first case, the workcell is intended to machine a full 8x13 meters
orographic model of a reservoir in the Mijares River (Puebla de Arenoso,
Spain), with the aim of simulating water avenues in order to study the

Chapter 7. Applications 249

position of the wave that is formed when this avenue collides with the
water stored in the reservoir (Figure 7.6, up).

 In the second case, the workcell is devoted to machine an EPS carving
(namely, a Valencian Falla) being part of a partnership study with the
Comité de Artistas Falleros de Valencia to evaluate the applicability of
the current CAM/ROB integration into traditional processes (Figure 7.6,
down).

7.3.1. Orographic model

Due to the dimensions of the model, it is obtained by assembling 120
blocks of 1x1x0.5 meters of EPS. The design is developed by means of the
NXTM-CAD module after importing the original data source file from
AUTOCADTM with MDTTM v4 (the most commonly used system in topography).
The contour lines must be fixed and then a surface mesh is interpolated. Then,
this surface is divided to obtain the blocks (Figure 7.7).

Figure 7.7. The model is obtained by assembling 120 blocks of 1x1x0.5 meters of
EPS, after fixing the contour lines and interpolating mesh for each block.

Due to the relatively simple geometry of the blocks and the length of the
tool (Figure 7.2), this first case studied was profited to validate the postprocessor
in 3-axis milling operations (used for both cavity milling and surface finishing),
previous to the second case studied (see Figure 7.8).

Chapter 7. Applications 250

Figure 7.8. CAM/Rob process for the construction of each block, validating the
postprocessor for 3-axis milling operations.

Thus, following the previous CAD process to obtain each block, the
CAM process is summarized as follows:

i) Trajectory generation

After introducing the cutting parameters exposed in Chapter 4,
both trajectories for Cavity Mill and Mill Finish operations are generated in
NX, as it would be done for a conventional CN-machine, Figure 7.9.

Figure 7.9. Trajectories for Cavity Milling and Finish Milling are generated in NX.

ii) Trajectory postprocessing

Figure 7.10, left, shows the generated toolpath directly passed to
the graphical simulator RobomoveTM for a specific initial position. It can

Chapter 7. Applications 251

be appreciated that the end of the workpiece could not be reached without
moving the additional external joints (E1 and E2), and so the trajectory is
red-coloured in that part (Figure 7.10, left). Thus, the same toolpath is
postprocessed with the algorithms implemented and simulated within
RobomoveTM (Figure 7.10, right).

Figure 7.10. With the programmed algorithm, the additional joints are moved to
reach the complete toolpath while maintaining a well conditioned posture.

As it can be appreciated, all joints are maintained between the
allowable limits, while the condition number is kept between reasonable
values.

Chapter 7. Applications 252

M
Ld

4

3

5





7

6

8





1
Fk

Table 7.1. Range of motion and conditioning of the manipulator while the execution
of the task.

After milling all the blocks of the model, the final result was placed at
the Hydraulic Engineering Department (DIHMA) of the Universidad Politécnica
de Valencia (Figure 7.11).

Chapter 7. Applications 253

Figure 7.11. Final model in EPS with scaled factor 1:75 for flowing simulation (real
dimensions of 8x13 m).

7.3.2. Valencian Ninot

The Fallas are a Valencian traditional celebration in praise of St. Joseph
in Valencia, Spain (on March 19th). The term Fallas refers to both the celebration
and the monuments created for the celebration. Prior to the celebration, much
time has been spent preparing the ninots (namely, puppets or dolls) that are
assembled to compose the Falla (Figure 7.12).

The ninots and their falles are developed according to an agreed upon
theme to be a satirical joke at anything drawing the attention of the critical eyes
of the celebrants (fallers). In modern times, this celebration has spawned a huge
local industry (Ciutat fallera) where the artists elaborate the constructions with
EPS, wood, paper and wax.

Chapter 7. Applications 254

Figure 7.12. Valencian Falla composed of fanciful ninots in outrageous poses
arranged in a gravity-defying architecture.

For the purpose of this case studied, the model of a ninot was provided
by the Comité de Artistas falleros de Valencia. This model was given as a
stereolitography (.stl) original file, a standard in scanning software. First of all, it
had to be enlarged with an scale factor of 12,2:1 (based on particular
requirements of the real Falla). This is due to the fact that most models are first
done on a small size by traditional skills for its later digitalization. Then, it
seemed profitable the smoothing of some regions to get a better milling result.
This softening was carried out within the NX’s CAD interface with the
appropriate plug-ins for the treatment of faceted bodies (Figure 7.13).

Chapter 7. Applications 255

Figure 7.13. From left to right, the effects of the softening operation are shown. It
has great relevance as it determines the rest of operations until the final milling.

The analysis of the geometry of the workpiece, its dimensions and the
geometry of the tool determine number of milling operations to be planned and
the related parameters.

Cavity milling operations are always done with a constant orientation to
avoid the collision of the tool with the walls being generated between different
levels (Figure 7.14). Thus, they consist of a series of 3-axes operations with the
convenient tool orientation (namely, 3+2 milling operations, Figure 7.15 and
Figure 7.16), but following the pattern of Section 7.3.1.

Chapter 7. Applications 256

Figure 7.14. For the cavity milling, the workpiece is necessarily divided in different
cutting areas (upper and lower zones). This treatment optimizes the use of the
additional joints, and is strongly dependent on the tool’s lenght.

Figure 7.15. The successive cavity mill operations will be carried out with variable
orientation of the tool, in order to reach all the parts of the ninot.

Chapter 7. Applications 257

Figure 7.16. The attachment of the blank directly over the table makes the access to
the lower parts difficult. Therefore, the blank is fixed by means of an intermediate
piece which raises the height.

For comparison purposes, this section now focuses on a 5-axes milling
operation on the ninot’s surface. The toolpath is shown at Figure 7.17, in which
the tool orientation is defined as normal to the surface along the tracking. Care
must be taken in this case, where sudden changes must be prevented mainly due
to surface defects from the scanning. Thus, not only the CAD treatment but also
the graphical simulation is very supportive in these cases1.

Figure 7.17. A 5-axes toolpath is planned on the eyes to test the postprocessor.

1 It is noteworthy that, in many cases and to practical effects, it is preferable the use of a spherical-tip tool
(namely, a ball-nose end mill) to get the same result than with variable orientation but with a 3+2 operation,
leaving aside the profuse revision because of the visually negligible defects in the scanned surface.

Chapter 7. Applications 258

For this experience, the same initial posture (HOME) is considered,
namely

   1 2 3 4 5 6, , , , , , , 0º, 0.5 m, -90º, -90º, 0º, 0º, 70º, 0º, 0ºM Ld       

and the same task is attempted without and with the implemented postprocessor
(Figure 7.18). Clearly, it can be appreciated much better performance within the
second case.

Figure 7.18. With the programmed algorithm, the additional joints are moved to
obtain a better performance while maintaining a well conditioned posture.

As it can be appreciated, all joints are maintained between the allowable
limits, while the condition number is kept between reasonable values.

Chapter 7. Applications 259

M
Ld

4

3

5





7

6

8





1
Fk

Table 7.2. Range of motion and conditioning of the manipulator while the execution
of the task.

It can be considered a valuable result due to the fact that the limitations
are found only in those surfaces where the orientation changes rapidly (Figure
7.19, up). As stated previously, special care must be taken in those cases.

Chapter 7. Applications 260

Figure 7.19. In some regions, where the orientation of the surfaces changes rapidly,
the orientation of the tool associated to them can be problematic not only for the fast
reaction of the posture required but also for the collision of the tool itself.

Although the case studied demonstrate the better performance achieved,
to practical effects it is preferable the use of a spherical-tip tool (see note 1). The
same consideration can be done when gaining access to regions where the surface
is not a good reference for orientation (Figure 7.19, down).

Therefore, the experience could be repeated with a 3+2 operation. In this
case, after estimating the most convenient orientation of the tool axis, it can be
appreciated that the full surface could be machined almost completely (Figure
7.20).

Chapter 7. Applications 261

Figure 7.20. After estimating the most convenient ZTOOL axis (left), the full surface
could be machined almost completely (right) with a 3+2 milling operation.

Chapter 7. Applications 262

REFERENCES

[1] A. González, J. C. Sánchez; "CAM UG, Manual cam completo v2.1."; UGS
Corporation 2005

[2] “NX Documentation” ; ({$UGII_base_dir}\UGDOC)
[3] "Post Builder 5.0: Post Building Techniques"; UGS Corporation 2007
[4] “KUKA System Software (KSS): Programación por el experto (KRC2 / KRC3)”,

Release 5.2., KUKA Corp., 2005.
[5] “CAD-CAM off line programming for industrial robots”, ROBOmove on line help

v. 2.0, Qdesign S.r.l., 2007

Chapter 8. Conclusions 263

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Chapter 8. Conclusions 265

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1. CONCLUSIONS

After introducing the capabilities of an industrial serial robotic workcell,
the present thesis has been focused on the postprocessing of the information
generated by NXTM-CAM platform towards the KUKATM KRC2 controller for
the workcell set at the IDF. Next, the most relevant conclusions and contributions
of the present thesis are exposed:

 Both direct and inverse kinematic problems at the displacement and at
joint-rate level have been obtained for a redundant workcell,
contextualised in the postprocessing step from a CAM to the
particular requirements of an industrial workcell (Chapter 2).

o At the displacement level, due to redundancy, a known value
for the external additional joints must be supposed in order to
solve the inverse kinematic problem. With this consideration,
a geometric resolution has been described as the best chance
for a fast computation (Chapter 2).

o Also the model at joint rate level has been documented,
developing the concept of geometric Jacobian for the
workcell studied. With it, the condition number of the
Homogeneous Jacobian has been described as criteria to
evaluate the efficiency of a manipulator posture. The
characteristic length of the KUKATM KR15/2 has been
obtained for this purpose.

 To study in depth in the architecture of the workcell, also the
singularities that affect the workspace have been characterized with a
geometric interpretation (Chapter 2).

 A due to the particular requirements of the industrial KUKATM
workcell, which is assembled in situ and it is programmed by moving
preferably the last six joints (see Chapter 4), a Non-contact Planar
Constraint Calibration Method has been developed in Chapter 3 for
the calibration of the external additional joints. It uses a three planar
pattern fixed at the corresponding workplace, and a laser
displacement sensor, and uses a Non-Linear Least Squares (NLSQ)
procedure based on the sensor readings. It can be implemented

Chapter 8. Conclusions 266

autonomously and is suitable for on-site calibration in an industrial
environment at regular intervals, in contrast with other open-loop
methods requiring extensive human intervention and expensive or
demanding devices

 From the previous model at displacement level, a first approach to
control the redundant joints has been done by means of a fuzzy
inference engine integrated within the CAM system. It analyses the
convenience of moving the additional joints like a skilled operator
would do. Nevertheless, due to the high non-linearity and complexity
of the model, and the variety of milling operations that exists, a
growing number of rules for complex milling makes cumbersome the
control (Chapters 4 and 5).

 The managing of the additional external joints and the redundancy
due to the symmetry of the cutter tool: a functional postprocessor
have been programmed inside the CAM system for the control of the
redundancies at milling tasks. It is also expected to be easily
applicable not only on any industrial robot, but also for different
applications such as welding or painting labours.

 At joint rate level, where the problem becomes linear, the
management of redundancies, with the use of a Redundancy
Resolution Scheme (RSS), has been discussed. Previously, different
types of redundancy (functional and intrinsic) have been identified in
the workcell (Chapter 5)

 Different RRS were exposed in Chapter 5. Also the convenience of
adjusting the weighting matrix which balances the joint behaviour in
the achievement of secondary tasks is exposed. For that, a fuzzy
inference engine is implemented to automatically tune this matrix,
according to the actual robot posture. The secondary tasks mentioned
above can be resumed as the maintenance of a well-conditioned
posture and the avoidance of joint-limits by the maintenance of a
reference posture.

 Previously selected RRS (Virtual Joint Method VJM and Twist
Decomposition Method TDM) are implemented and tested in Chapter
6. VJM shows a more desirable behaviour (more stable and with a
better conditioning during the trials done). This RRS deals with the
functional redundancy (the one due to the symmetry axis of the
cutter) by considering an additional (virtual) joint in the referred
symmetry axis.

 VJM behaviour is improved by tuning the weights as introduced
above, with a programmed fuzzy inference engine.

Chapter 8. Conclusions 267

 Taking into account the current requirements of a challenging milling
task (a continuous sphere), the VJM programmed greatly improves its
performance by periodically using the inverse kinematic problem at
displacement level. It periodically sets a point of departure with a
significantly much better conditioned posture (Chapter 6).

 A functional postprocessor have been programmed inside the NXTM-
CAM, improving the communication between software and the
KUKATM robotic workcell.

 The implemented postprocessor is proven first in graphical simulation
and then with real milling tasks at Chapters 6 and 7, by setting the
additional external joints as required by the resolution of the
implemented RRS. Two works, an orographic model (3-axes milling)
and a Valencian Falla (5-axes milling) are described with special
attention to the complete flow procedure of the CAD/CAM/ROB
operations.

Therefore, the following reflections can be added:

 With the previous described work, the cycle in which the data
generated by a CAM system are translated into a directly
understandable language for an industrial controller is closed. In
addition, the motion of the external additional joints (linear track and
rotary table) and the spin on the tool symmetry axis is automatically
reconsidered on the basis of a set of rules derived form skilled
experience.

 It is also worth mentioning the great influence on the result of the
performance vector h that tunes the secondary tasks (hence, also the
relevance of the weighting matrix).

 The practical cases studied validate the effectiveness of these
production systems for the milling of large prototypes with the use of
soft materials.

8.2. FUTURE WORK

Next, some directions for future works are considered:

 Further study may be done with other RRS: the Schemes using the
Damped Least-Squares (DLS-) Inverse have been rejected at first due
to the fact that, clearly, the error introduced affects the precision at
milling tasks. However, comparison with a Scheme directly using a
Weighted Pseudo-Inverse in the same conditions is the next study to
be published.

Chapter 8. Conclusions 268

 The modus operandi applied explodes the capabilities of commercial
CAM systems and the industrial robot controllers. It is expected to be
easily applicable on any industrial robot configurations if the need
arises, by the same guidelines. Thus, further investigation is to be
done with different configurations and systems.

 With the same guidelines, this postprocessor is expected to be easily
profitable not only on any industrial robot, but also for different
applications tracking a toolpath, such as welding or painting labours.

 As stated in Chapter 2, the best conditioned posture, the best the robot
behaves the with regard to force (and motion) transmission. A
Force/Torque sensor has been acquired by the IDF to be mounted in
the robot flange. Further implementation must be done to tune the
speed of the TCP during the tracking accordingly to the sensed
efforts, mostly at weak conditioned postures. First attempts with OPC
(Ole Process Control) technologies were not profitable, but new
modules have been acquired to KUKATM.

 Without losing sight of the importance of obtaining a more efficient
expert control, it is also interesting to have a tool to visually validate
the motions of the robotic manipulator. As mentioned before, NXTM is
a powerful CAD system in which the workcell has been modelled.
Further efforts may be done to lighten the CAD-parts as done in
RobomoveTM.

 Commercial robot controllers, more prepared for pick and place or
assembly tasks, suffer from lack of memory when a long milling
program is to be executed. The implementation of a buffer may
override this problem, but at the same time this problem is solved in
the incoming new robots.

_

Appendices 269

APPENDICES

A.1. IK POSITIONING PROBLEM. MATLAB CODE. 271
A.2. CALIBRATION OF THE ADDITIONAL EXTERNAL AXES
 …………………………………………………………………………….. 274
A.3. TCL CONCEPTS FOR THE PROGRAMMING OF A

POSTPROCESSOR IN THE PLATFORM NX 285
A.4. CHARACTERISTIC LENGTH L OF THE KUKA KR-15/2

(CORRESPONDING TO SECTION 2.4.6.) 304
A.5. MATLAB CODE FOR THE POSTPROCESSING OF CLSF

FOUNDED ON THE VJM WITH PERIODIC RE-EVALUATION.
... 305

Appendices

271

A.1. IK POSITIONING PROBLEM. MATLAB CODE.

The following lines resume the Matlab code solving the IKP of the IDF’s
KUKA workcell. Some comments are done directly on the code, but more
precise understanding is achieved by following the explanations given in Section
2.4.3.

function q=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaVJM,T_CAMM)

% MOVIMIENTO GRUESO (t1 t2 t3)
tm=thetamesa-pi; % E2 (rad)
dl=dtrack; % E1 (m)
A_Base_a_TCP=T_CAMM*rotz(-thetaVJM); % SC TCP expresado en la mesa SC
Base;
A_Brida_a_TCP=rotx(0.3564)*transl(0,0,-0.1197); % SC TCP expresado en el
SC Brida
A_TCP_a_Brida=inv(A_Brida_a_TCP); % SC Brida expresado en el SC TCP

A_Base_a_Brida=A_Base_a_TCP*A_TCP_a_Brida; % SC Brida respecto de SC BAse
B en la mesa

% Con la matriz recien calculada ya puedo hallar la posicion de la munyeca
% W respecto de la Base, por Pieper (hago el calculo en m)
Pos_Base_a_Wrist=([A_Base_a_Brida(1,4) A_Base_a_Brida(2,4)
A_Base_a_Brida(3,4)]'+0.4434*[A_Base_a_Brida(1,3) A_Base_a_Brida(2,3)
A_Base_a_Brida(3,3)]');

% Con esto, tengo las coordenadas de la munyeca en la MESA, pero quiero
% aplicar el metodo geometrico desde la base del robot $robroot. Primero
% hacer la rotacion y luego la trastacion de las coordenadas:
% a) ROTACION (en Z)
Pos_Base_a_Wrist_rotada=rotz(-tm)*[Pos_Base_a_Wrist(1) Pos_Base_a_Wrist(2)
Pos_Base_a_Wrist(3) 1]';
% b)TRASLACION
Pos_Robot_a_Wrist=[1 0 0 0.803;0 1 0 -dl;0 0 1 0.305;0 0 0
1]*Pos_Base_a_Wrist_rotada;

Mx=Pos_Robot_a_Wrist(1);
My=Pos_Robot_a_Wrist(2);
Mz=Pos_Robot_a_Wrist(3);

%%%%%%%%%%%%% MOVIMIENTO GRUESO (t1 t2 t3) %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% t1
t1=-atan2(My,Mx)+pi;

aprox_cero=1e-5;
% if abs(t1)<=aprox_cero
% t1=0;
% end

%%%%%%%%%%%%%% t2 y t3
p=sqrt(Mx^2+My^2)-0.300;
h=(Mz-0.675);

 Appendices 272

eps=atan2(h,p);
a=sqrt(0.155^2+0.600^2);
b=0.650;
c=sqrt(h^2+p^2);
fi=atan(0.155/0.600);

if c>=(a+b)
 t3=0; % este es el límite de brazo estirado en el mecanizado (ver
dibujo articulo ICM)
 t2=eps; % el triangulo abc no existe
 warning('punto fuera del alcance, brazo estirado')
 q=q0;
 return
else
 s=(a+b+c)/2;
 r=sqrt((s-a)*(s-b)*(s-c)/s);
 alfa=2*atan(r/(s-a));
 sig=2*atan(r/(s-c));

 t2=-eps-alfa;
 t3=pi-sig+fi-pi/2; % resto pi/2 para trabajar modelo DH, no el angulo
mecanico KUKA
end

if abs(t2)<=aprox_cero
 t2=0;
end
if abs(t3)<=aprox_cero
 t3=0;
end

% MOVIMIENTO FINO (t4 t5 t6)

ro1=-t1-pi; % resto pi por motivos del DH
Rzt1=rotz(ro1);

ro2=pi/2+(t2+(t3+pi/2));
R_yprima_ro2=roty(ro2);

% con la composicion de estas rotaciones y la posicion de la muñeca
% referida a Robroot tengo la matriz homogenea T_RM que me define la
posicion y
% orientacion en ese punto M, osea T_RM= [[R_RM][Pos_Robot_a_Wrist]';0 0 0
1]
T_RM=Rzt1*R_yprima_ro2;
T_RM(:,4)=Pos_Robot_a_Wrist;

% Ahora voy a posicionar la brida
% (que la conozco respecto de la mesa como A_Base_a_Brida) respecto del
Robroot. Para
% ello hago lo mismo que hice con la muñeca (deshacer la rotacion de la
% mesa y la traslacion del lineal)
T_R6=[1 0 0 0.803;0 1 0 -dl;0 0 1 0.305;0 0 0 1]*rotz(-tm)*A_Base_a_Brida;
T_M6=inv(T_RM)*T_R6;

% Finalmente
t4=-atan2(-T_M6(2,3),-T_M6(1,3));
t5=atan2(sqrt(T_M6(3,1)^2+T_M6(3,2)^2),T_M6(3,3));

Appendices

273

t6=-atan2(-T_M6(3,2),-T_M6(3,1));

if abs(t4)<=aprox_cero
 t4=0;
end
if abs(t5)<=aprox_cero
 t5=0;
end
if abs(t6)<=aprox_cero
 t6=0;
end

% theta
q=[tm+pi dl t1 t2 t3 t4 t5 t6];
end

 Appendices 274

A.2. CALIBRATION OF THE ADDITIONAL EXTERNAL AXES

In this Matlab code, a NLSQ iterative procedure is carried out to obtain
the errors E in the assembly DH parameters of the additional external joints
(linear track and rotary table) that are previously introduced on purpose, namely,

1

1

1

2

0.01

0.06

0.07

0.05

0.01

0.08

E

E

ME
E

E

E

LE

a

d

d








   
      
   

        
   
   
      

 (mm, rad) (0.1)

It corresponds to the study done at Section 3.3., as follows:

%%
%%%%%%%%%%%%% EXT JOINTS CALIBRATION %%%%%%%%%%%%%
%%

clear all
% format long g
format short g

deg2rad=(2*pi)/360; % multiplicador para pasar a rads
rad2deg=360/(2*pi); % multiplicador para pasar a degs
rotacion_de_brida_a_tool=rotx(pi);
traslacion_de_brida_a_tool=transl(0,0,250);
T_6LASER=traslacion_de_brida_a_tool*rotacion_de_brida_a_tool;
%%%
% KUKA MODEL
%%%

syms tm E2 real; % para T0M (mm, t rads, E y A en º)
syms dl E1 real; % para TML
syms t1 A1 real; % para TL1
syms t2 A2 real; % para T12
syms t3 A3 real; % para T23
syms t4 A4 real; % para T34
syms t5 A5 real; % para T45
syms t6 A6 real; % para T56

DH_KUKA=[pi 0 0 305 0;
 pi/2 -803 0 0 1;
 -pi/2 0 0 -675 0;
 pi/2 300 0 0 0;
 0 650 0 0 0;
 pi/2 155 0 -600 0;
 -pi/2 0 0 0 0;
 -pi/2 0 0 140 0];

Q=[tm dl t1 t2 t3 t4 t5 t6];

Appendices

275

T06=fkine(DH_KUKA,Q); % transformacion a la brida,

% offsets con las lecturas reales de la consola (modelo mecanico):
tm=deg2rad*E2;
dl=E1+2977.17;
t1=deg2rad*A1;
t2=deg2rad*A2;
t3=(deg2rad*A3)-pi/2;
t4=deg2rad*A4;
t5=deg2rad*A5;
t6=(deg2rad*A6);

T06_KUKA=subs(T06);
Q_KUKA=[E2 E1 A1 A2 A3 A4 A5 A6]; % parametros de articulacion en degs y
mm

% Solo consideramos la posicion (x,y,z)' (no medimos orientacion)
Pideal=[T06_KUKA(1,4),T06_KUKA(2,4),T06_KUKA(3,4)]';

%%
%
% suponer errores en todos los parametros de montaje de los ejes
% externos (altura d1, alejamiento a1, inclinacion lateral del rail
alpha1,
% inclinacion frontal del rail theta2
%%
%
syms d1 delta_d1 a1 delta_a1 alpha1 delta_alpha1 theta2 delta_theta2
delta_E2 delta_E1 real
syms tm E2 real; % para T0M
syms dl E1 real; % para TML
syms t1 A1 real; % para TL1
syms t2 A2 real; % para T12
syms t3 A3 real; % para T23
syms t4 A4 real; % para T34
syms t5 A5 real; % para T45
syms t6 A6 real; % para T56

DH_KUKA_con_delta_beta=[pi 0 0 (305+delta_d1) 0;
 (pi/2+delta_alpha1) (-803+delta_a1) (0+delta_theta2) 0 1;
 -pi/2 0 0 -675 0;
 pi/2 300 0 0 0;
 0 650 0 0 0;
 pi/2 155 0 -600 0;
 -pi/2 0 0 0 0;
 -pi/2 0 0 140 0];

T06_con_delta_beta=fkine(DH_KUKA_con_delta_beta,Q); % transformacion al
efector final

% offsets con lecturas "reales" de la consola KUKA, y los deltas de los
ejes externos para hallar
% el posible error:
tm=deg2rad*(E2+delta_E2);
dl=E1+2977.17+delta_E1;
t1=deg2rad*A1;
t2=deg2rad*A2;

 Appendices 276

t3=(deg2rad*A3)-pi/2;
t4=deg2rad*A4;
t5=deg2rad*A5;
t6=(deg2rad*A6);

T06_KUKA_con_delta_beta=subs(T06_con_delta_beta); % transformacion al
efector final
Q_KUKA=[E2 E1 A1 A2 A3 A4 A5 A6];

% Para este ajuste, considero la posicion (x,y,z)' sobre la mesa y la
% orientacion ABC sobre la mesa
P_con_delta_beta=[T06_KUKA_con_delta_beta(1,4),T06_KUKA_con_delta_beta(2,4
),T06_KUKA_con_delta_beta(3,4)]';
r_con_delta_beta=T06_KUKA_con_delta_beta(1:3,1:3);

PO_LASER_con_delta_beta=eval(T06_KUKA_con_delta_beta)*T_6LASER;

% Modelo con supuesto de error (para comprobar la convergencia, supongo
estos errores a los
% que deberá converger):
% - error de altura d1: 0.05 mm
delta_d1=0.05 % 0;
% - error de inclinacion lateral del rail alpha1: 0.01 rad (= 0.57º)
delta_alpha1=0.01 % 0;
% - error de alejamiento a1: 0.06 mm
delta_a1=0.06 % 0;
% - error de inclinacion frontal del rail theta2: 0.01 rad (= 0.57º)
delta_theta2=0.01 % 0;
% - error angular en el giro de la mesa: 0.07º (= 0.012 rad), en la
ecuacion
% lo entro en grados, siendo ahí pasado a radianes dentro del modelado de
la celula.
delta_E2=0.07 % 0;
% - error de desplazamiento del lineal: 0.08 mm
delta_E1=0.08 % 0;

T06_KUKA_con_error=subs(T06_KUKA_con_delta_beta);
P_con_error=subs(P_con_delta_beta);
r_con_error=subs(r_con_delta_beta);

PO_LASER_con_error=eval(T06_KUKA_con_error)*T_6LASER;

syms delta_d1 delta_a1 delta_alpha1 delta_theta2 delta_E1 delta_E2 real

%%
% MEDICION DE PUNTOS DE CALIBRACION
%%

% A) Puntos ideales (cinematica inversa ideal)
%%

% Vamos a trabajar con 3 planos ortogonales sobre los que barreré el laser
% con el programa de la carita. El objetivo es
% repasar las siguientes matrices de puntos en cada plano (cada una de 16
% puntos)

dimensiones_matriz_puntos_Pm_gen=[4,4];

Appendices

277

numero_de_puntos_Pm_gen=dimensiones_matriz_puntos_Pm_gen(1)*dimensiones_ma
triz_puntos_Pm_gen(2);
espaciado_puntos_Pm=100; %mm

 [M,N]=meshgrid(-
espaciado_puntos_Pm*((dimensiones_matriz_puntos_Pm_gen(1)-
1)/2):espaciado_puntos_Pm:espaciado_puntos_Pm*((dimensiones_matriz_puntos_
Pm_gen(1)-1)/2),-
espaciado_puntos_Pm*((dimensiones_matriz_puntos_Pm_gen(2)-
1)/2):espaciado_puntos_Pm:espaciado_puntos_Pm*((dimensiones_matriz_puntos_
Pm_gen(2)-1)/2));
 cont_Pm=1;
 for j=1:dimensiones_matriz_puntos_Pm_gen(1)
 for i=1:dimensiones_matriz_puntos_Pm_gen(2)
 Pm_gen(cont_Pm,:)=[M(i,j) N(i,j)]; % Pm_generador
 cont_Pm=cont_Pm+1;
 end
 end

 % 16 Puntos en Plano XY (superficie mesa, un cuadrado de 200 + 200 mm)
 ABC_xy=[0 0 0]; % este dato es para la IK que voy a hacer, y es la
posicion del tool con Z entrante
 Pm_xy=[Pm_gen zeros(size(Pm_gen,1),1)]; %la tercera columna es 0,
porque el punto esta en el plano XY
 % plot3(Pm(:,1),Pm(:,2),Pm(:,3)); hold;
 for i=1:size(Pm_xy,1)
 Pm_xy_ABC(i,:)=[Pm_xy(i,:) ABC_xy];
 end

 % 16 Puntos en Plano XZ (plano vertical paralelo al lado corto de la
mesa)
 ABC_xz=[0 0 -pi/2]; % idem
 Pm_xz=[Pm_gen(:,1) zeros(size(Pm_gen,1),1) Pm_gen(:,2)]; %la segunda
columna es 0, porque el punto esta en el plano XZ
 for i=1:size(Pm_xz,1)
 Pm_xz_ABC(i,:)=[Pm_xz(i,:) ABC_xz];
 end

 % 16 Puntos en Plano YZ (plano vertical paralelo al lado largo de la
mesa)
 ABC_yz=[0 -pi/2 0]; % idem
 Pm_yz=[zeros(size(Pm_gen,1),1) Pm_gen]; %la primera columna es 0,
porque el punto esta en el plano YZ
 for i=1:size(Pm_yz,1)
 Pm_yz_ABC(i,:)=[Pm_yz(i,:) ABC_yz];
 end

 Pm=[[Pm_yz_ABC];[Pm_xz_ABC];[Pm_xy_ABC]];

% Vamos a considerar dos casos de los ejes externos [E1 E2],
casos=[[-2000 0]; [-2400 45]]; % empiricamente hemos comprobado que esta
dentro del campo de trabajo

for cont_casos=1:size(casos,1)
 for i=1:size(Pm,1)

q_caso(i,:)=IK_KUKA_laser_cualquier_ori(Pm(i,1),Pm(i,2),Pm(i,3),Pm(i,4),Pm

 Appendices 278

(i,5),Pm(i,6),casos(cont_casos,1),casos(cont_casos,2))*rad2deg; %
coordenadas articulación A1-A6 para cada punto
 end
 q(cont_casos,:,:)=q_caso;
end

% %%%
% A) Puntos alcanzados
%%%

% Al robot le pedimos esos puntos y lo va a hacer mal por los
% errores anteriormente supuestos en los parametros de montaje de los ejes
% externos

% En primer lugar, con los siguientes bucles anidados voy a ver donde se
situaría el
% hipotetico TCP del laser (recordemos que esta a 250mm de la brida)

for cont_casos=1:size(casos,1)
 for i=1:size(Pm,1)
 E2=casos(cont_casos,2);
 E1=casos(cont_casos,1);
 A1=q(cont_casos,i,1);
 A2=q(cont_casos,i,2);
 A3=q(cont_casos,i,3);
 A4=q(cont_casos,i,4);
 A5=q(cont_casos,i,5);
 A6=q(cont_casos,i,6);

 plotbot(DH_KUKA,[deg2rad*E2 E1+2977.17 deg2rad*A1 deg2rad*A2
deg2rad*(A3-90) deg2rad*A4 deg2rad*A5 deg2rad*A6],'flw');
frame(eye(4),'y',500);

 PO_LASER=eval(T06_KUKA_con_error)*T_6LASER;

 % ABC_alcanzada=KUKAtr2rpy(PO_LASER);
 Pos_alcanzada=subs(PO_LASER(1:3,4))';
 Vector_del_laser_respecto_BASE=subs(PO_LASER(1:3,3))';

 % Ps(cont_casos,i,:)=[Pos_alcanzada ABC_alcanzada]; % Para q(numero de
caso,punto Pm del plano de 1 a 75),articulacion) <--> Ps(numero de
caso,punto Pm del plano de 1 a 12),coordenada xyzABC de 1 a 6)
 Ps(cont_casos,i,:)=[Pos_alcanzada Vector_del_laser_respecto_BASE]; %
Para q(numero de caso,punto Pm del plano de 1 a 75),articulacion) <-->
Ps(numero de caso,punto Pm del plano de 1 a 12),coordenada xyzABC de 1 a
6)
 end
end

% Para hacer mis minimos cuadrados, la unica medición de que dispongo es
la
% la distancia que mide el laser (cuasi perpendicular al plano y cuanto
mas se corrijan lo errores del robot,
% mas cierta será esta perpendicularidad). VAMOS A MEDIR LA DISTANCIA QUE
LEE EL LASER que, en
% definitiva, quiero que sea 0.

Appendices

279

%%
% PROCEDIMIENTO DE CALIBRACION
%%
% delta_P=J·delta_beta --> delta_beta=(J+)·delta_P

syms d1 delta_d1 a1 delta_a1 alpha1 delta_alpha1 theta2 delta_theta2
delta_E2 delta_E1 real
syms tm E2 real; % para T0M
syms dl E1 real; % para TML
syms t1 A1 real; % para TL1
syms t2 A2 real; % para T12
syms t3 A3 real; % para T23
syms t4 A4 real; % para T34
syms t5 A5 real; % para T45
syms t6 A6 real; % para T56

Q=[tm dl t1 t2 t3 t4 t5 t6];
Q_KUKA=[E2 E1 A1 A2 A3 A4 A5 A6];

DH_KUKA_param=[pi 0 0 (d1) 0;
 (alpha1) (a1) (theta2) 0 1;
 -pi/2 0 0 -675 0;
 pi/2 300 0 0 0;
 0 650 0 0 0;
 pi/2 155 0 -600 0;
 -pi/2 0 0 0 0;
 -pi/2 0 0 140 0];

T06_param=fkine(DH_KUKA_param,Q);
PO_LASER_param=eval(T06_param)*T_6LASER;

tm=deg2rad*E2;
dl=E1+2977.17;
t1=deg2rad*A1;
t2=deg2rad*A2;
t3=(deg2rad*A3)-pi/2;
t4=deg2rad*A4;
t5=deg2rad*A5;
t6=(deg2rad*A6)+pi;

PO_LASER_KUKA_param=subs(PO_LASER_param);

D_LASER_KUKA_param=PO_LASER_KUKA_param(1:3,4); % fijate que, según el
plano, la D hace referencia a la coordenada X Y o Z de la base.

% Directamente obtengo Jr, dado que J completa es enorme

dhparam=[d1 alpha1 a1 theta2 E2 E1];
for i=1:size(dhparam,2)
 Jr(:,i)=diff(D_LASER_KUKA_param,dhparam(i)); % dependencia de la
posicion xyz respecto a cada parametro de DH a ajustar;
end

% ya estan sustituidos en Jr los parametros de dh que NO son variables y
que asumimos
% que no tienen error, osea que quedará en funcion de E2 & E1
% (por ser joints del robot) y tambien de d1, alpha1, a1, theta2 (que
consideramos que

 Appendices 280

% tienen error).

 d1=305+delta_d1;
 alpha1=pi/2+delta_alpha1;
 a1=-803+delta_a1;
 theta2=0+delta_theta2;
 E2=E2+delta_E2;
 E1=E1+delta_E1;

Jr_con_delta=subs(Jr);

%%
% ITERACION
%%
numero_de_iteraciones=20;

clear delta_d1 delta_alpha1 delta_a1 delta_theta2 delta_E1 delta_E2
V_correc_acumuladas V_correc_tras_cada_iteracion V_errores_posic

% inicialmente se supone no-error en los parametros de DH
delta_d1=0; delta_alpha1=0; delta_a1=0; delta_theta2=0; delta_E2=0;
delta_E1=0;
j=1;
for cont_casos=1:size(casos,1)
 for i=1:numero_de_puntos_Pm_gen
 syms DistXbase DistYbase DistZbase real

delta_P_filas(j,1)=eval(solve(Ps(cont_casos,i,1)+DistXbase*Ps(cont_casos,i
,4),DistXbase));
 delta_P_filas(j,2)=-
eval(solve(Ps(cont_casos,numero_de_puntos_Pm_gen+i,2)+DistYbase*Ps(cont_ca
sos,numero_de_puntos_Pm_gen+i,5),DistYbase));
 delta_P_filas(j,3)=-
eval(solve(Ps(cont_casos,2*numero_de_puntos_Pm_gen+i,3)+DistZbase*Ps(cont_
casos,2*numero_de_puntos_Pm_gen+i,6),DistZbase));

 j=j+1;
 end
end

for iter=1:numero_de_iteraciones

% OJO, reset en delta_P y delta_beta porque se calculan de nuevo, pero
% no delta_theta1 ni delta_a1 porque acumulan la correccion
clear delta_P delta_beta Dpi b

% los nuevos errores de posicion se calcularán de nuevo al iniciar el
bucle

delta_P_cols=delta_P_filas'; % en columnas
num_filas_delta_P_cols=size(delta_P_cols,1); % 3, D en Xbase, en Ybase y
en Zbase
num_columnas_delta_P_cols=size(delta_P_cols,2); % 50, la mitad son del
caso 1 y otra mitad del caso 2

for h=1:num_columnas_delta_P_cols
 clear aux

Appendices

281

 aux=delta_P_cols(:,h);
 for k=0:(num_filas_delta_P_cols-1)
 delta_P(num_filas_delta_P_cols*h-k,:)=aux(num_filas_delta_P_cols-k,:);
 end
end

V_errores_posic(:,iter)=delta_P;

% damos forma a la matriz de observacion (Jacobiano, para cada punto
% ensayado), W, con Jr_con_delta

num_filas_Jr_con_delta=size(Jr_con_delta,1);

for cont_casos=1:size(casos,1)
 for i=1:numero_de_puntos_Pm_gen
 syms E2 E1 A1 A2 A3 A4 A5 A6 real
 clear J_o

 E2=casos(cont_casos,2); E1=casos(cont_casos,1); A1=q(cont_casos,i,1);
A2=q(cont_casos,i,2);
 A3=q(cont_casos,i,3); A4=q(cont_casos,i,4); A5=q(cont_casos,i,5);
A6=q(cont_casos,i,6);
 J_o(1,:)=subs(Jr_con_delta(1,:));

 E2=casos(cont_casos,2); E1=casos(cont_casos,1);
A1=q(cont_casos,numero_de_puntos_Pm_gen+i,1);
A2=q(cont_casos,numero_de_puntos_Pm_gen+i,2);
 A3=q(cont_casos,numero_de_puntos_Pm_gen+i,3);
A4=q(cont_casos,numero_de_puntos_Pm_gen+i,4);
A5=q(cont_casos,numero_de_puntos_Pm_gen+i,5);
A6=q(cont_casos,numero_de_puntos_Pm_gen+i,6);
 J_o(2,:)=subs(Jr_con_delta(2,:));

 E2=casos(cont_casos,2); E1=casos(cont_casos,1);
A1=q(cont_casos,2*numero_de_puntos_Pm_gen+i,1);
A2=q(cont_casos,2*numero_de_puntos_Pm_gen+i,2);
 A3=q(cont_casos,2*numero_de_puntos_Pm_gen+i,3);
A4=q(cont_casos,2*numero_de_puntos_Pm_gen+i,4);
A5=q(cont_casos,2*numero_de_puntos_Pm_gen+i,5);
A6=q(cont_casos,2*numero_de_puntos_Pm_gen+i,6);
 J_o(3,:)=subs(Jr_con_delta(3,:));

 for j=0:(num_filas_Jr_con_delta-1)
 W(cont_casos*num_filas_Jr_con_delta*i-
j,:)=J_o(num_filas_Jr_con_delta-j,:); % matriz de observacion
 end
 end
end

% Pmeudo-inversa de la matriz de observacion
Pseinv_W=(inv(W'*W))*W';

% correcciones para el DH: delta_beta=[delta_a1 delta_theta1]'
delta_beta=Pseinv_W*delta_P;

% Vector de correcciones calculadas en cada iteracion (debe converger a 0)
V_correc_tras_cada_iteracion(:,iter)=delta_beta;

 Appendices 282

% Vector de correcciones acumuladas tras un numero 'iter' de iteraciones
% (debe converger a los errores supuestos antes)

delta_d1=delta_d1+delta_beta(1);
delta_alpha1=delta_alpha1+delta_beta(2);
delta_a1=delta_a1+delta_beta(3);
delta_theta2=delta_theta2+delta_beta(4);
delta_E2=delta_E2+delta_beta(5);
delta_E1=delta_E1+delta_beta(6);

V_correc_acumuladas(:,iter)=[delta_d1 delta_alpha1 delta_a1 delta_theta2
delta_E2 delta_E1]';

% Nuevos valores para P_con_delta_beta con las correcciones realizadas al
% modelo.

clear delta_P_filas;
j=1;
for cont_casos=1:size(casos,1)
 for i=1:numero_de_puntos_Pm_gen
 E2=casos(cont_casos,2); E1=casos(cont_casos,1);
A1=q(cont_casos,i,1); A2=q(cont_casos,i,2);
 A3=q(cont_casos,i,3); A4=q(cont_casos,i,4); A5=q(cont_casos,i,5);
A6=q(cont_casos,i,6);
 delta_P_filas(j,1)=Ps(cont_casos,i,1)-
subs(PO_LASER_con_delta_beta(1,4)); % 16 Puntos en Plano YZ (plano
vertical paralelo al lado largo de la mesa, con lo que el error esta en
Xbase)

 E2=casos(cont_casos,2); E1=casos(cont_casos,1);
A1=q(cont_casos,numero_de_puntos_Pm_gen+i,1);
A2=q(cont_casos,numero_de_puntos_Pm_gen+i,2);
 A3=q(cont_casos,numero_de_puntos_Pm_gen+i,3);
A4=q(cont_casos,numero_de_puntos_Pm_gen+i,4);
A5=q(cont_casos,numero_de_puntos_Pm_gen+i,5);
A6=q(cont_casos,numero_de_puntos_Pm_gen+i,6);
 delta_P_filas(j,2)=Ps(cont_casos,numero_de_puntos_Pm_gen+i,2)-
subs(PO_LASER_con_delta_beta(2,4)); % 16 Puntos en Plano XZ (plano
vertical paralelo al lado corto de la mesa, con lo que el error esta en
Ybase)

 E2=casos(cont_casos,2); E1=casos(cont_casos,1);
A1=q(cont_casos,2*numero_de_puntos_Pm_gen+i,1);
A2=q(cont_casos,2*numero_de_puntos_Pm_gen+i,2);
 A3=q(cont_casos,2*numero_de_puntos_Pm_gen+i,3);
A4=q(cont_casos,2*numero_de_puntos_Pm_gen+i,4);
A5=q(cont_casos,2*numero_de_puntos_Pm_gen+i,5);
A6=q(cont_casos,2*numero_de_puntos_Pm_gen+i,6);
 delta_P_filas(j,3)=Ps(cont_casos,2*numero_de_puntos_Pm_gen+i,3)-
subs(PO_LASER_con_delta_beta(3,4)); % 16 Puntos en Plano XY (superficie
mesa, con lo que el error está en la cota Zbase)
 j=j+1;
 end
end
end

V_correc_tras_cada_iteracion
V_correc_acumuladas

Appendices

283

V_errores_posic;

The desired result is achieved after 20 iterations.

% V_correc_tras_cada_iteracion =
%
% Columns 1 through 6
%
% 2.5261 -2.4744 -0.8153 0.046677 0.26192 0.22285
% 0.003954 0.0032042 0.0017677 0.00080756 0.00029859 7.0228e-005
% 1.7958 -1.2227 -0.72805 -0.097757 0.092338 0.093987
% 0.0065782 0.0032192 0.0011285 5.4383e-006 -0.00030156 -0.0002715
% -0.10895 -0.0086977 0.098631 0.059879 0.021651 0.0061652
% -0.75614 -0.17527 0.49519 0.35682 0.14534 0.03935
%
% Columns 7 through 12
%
% 0.14037 0.07674 0.038006 0.017183 0.0070109 0.0024844
% -1.1631e-005 -2.9501e-005 -2.5332e-005 -1.6791e-005 -9.7019e-006 -5.0865e-006
% 0.061173 0.034333 0.017549 0.0082141 0.00349 0.0013119
% -0.00017534 -9.7566e-005 -4.9105e-005 -2.2592e-005 -9.4273e-006 -3.4615e-006
% 0.0014933 0.00021234 -9.9251e-005 -0.00012604 -8.469e-005 -4.4372e-005
% 0.0019563 -0.0075152 -0.0076546 -0.0054512 -0.0032938 -0.0017844
%
% Columns 13 through 18
%
% 0.00067594 5.6418e-005 -9.8746e-005 -0.00010077 -6.8299e-005 -3.8797e-005
% -2.4554e-006 -1.0927e-006 -4.4303e-007 -1.5814e-007 -4.4887e-008 -5.7397e-009
% 0.00040441 7.2713e-005 -2.4058e-005 -3.7516e-005 -2.8213e-005 -1.6927e-005
% -1.0202e-006 -1.501e-007 9.0399e-008 1.1376e-007 8.1667e-008 4.7839e-008
% -1.9357e-005 -6.8299e-006 -1.5418e-006 2.581e-007 6.2839e-007 5.2992e-007
% -0.00088563 -0.00040512 -0.00016967 -6.3452e-005 -1.9744e-005 -3.8307e-006
%
% Columns 19 through 20
%
% -1.9584e-005 -8.9244e-006
% 4.5662e-009 5.2604e-009
% -8.892e-006 -4.2033e-006
% 2.4696e-008 1.1487e-008
% 3.4585e-007 1.9679e-007
% 8.5922e-007 1.5828e-006 (almost zeroes)
%
%
% V_correc_acumuladas =
%
% Columns 1 through 6
%
% 2.5261 0.051669 -0.76363 -0.71696 -0.45504 -0.23219
% 0.003954 0.0071582 0.0089258 0.0097334 0.010032 0.010102
% 1.7958 0.57305 -0.15499 -0.25275 -0.16041 -0.066425
% 0.0065782 0.0097974 0.010926 0.010931 0.01063 0.010358
% -0.10895 -0.11765 -0.01902 0.040858 0.062509 0.068674
% -0.75614 -0.93141 -0.43622 -0.079407 0.065935 0.10529
%
% Columns 7 through 12
%
% -0.091816 -0.015077 0.02293 0.040113 0.047123 0.049608
% 0.010091 0.010061 0.010036 0.010019 0.010009 0.010004
% -0.005252 0.029081 0.046629 0.054843 0.058333 0.059645
% 0.010183 0.010085 0.010036 0.010014 0.010004 0.010001
% 0.070168 0.07038 0.070281 0.070155 0.07007 0.070026
% 0.10724 0.099726 0.092072 0.086621 0.083327 0.081542
%

 Appendices 284

% Columns 13 through 18
%
% 0.050284 0.05034 0.050241 0.050141 0.050072 0.050034
% 0.010002 0.010001 0.01 0.01 0.01 0.01
% 0.06005 0.060122 0.060098 0.060061 0.060033 0.060016
% 0.0099998 0.0099996 0.0099997 0.0099998 0.0099999 0.01
% 0.070006 0.069999 0.069998 0.069998 0.069999 0.069999
% 0.080657 0.080252 0.080082 0.080019 0.079999 0.079995
%
% Columns 19 through 20
%
% 0.050014 0.050005 (delta_d1 = 0.05)
% 0.01 0.01 (delta_alpha1 = 0.01)
% 0.060007 0.060003 (delta_a1 = 0.06)
% 0.01 0.01 (delta_theta2 = 0.01)
% 0.07 0.07 (delta_E2 = 0.07)
% 0.079996 0.079997 (delta_E1 = 0.08)

Appendices

285

A.3. TCL CONCEPTS FOR THE PROGRAMMING OF A
POSTPROCESSOR IN THE PLATFORM NX

A.3.1. Introduction. General characteristics of the TCL.

TCL (Tool Command Language) is a scripting language created by John
Ousterhout (Berkeley Univ.)1. It is used for scripted applications, GUIs and
testing. Tcl is used on embedded systems platforms, both in its full form and in
several other small-footprinted versions. In the NXTM system, it is used to
configure the NX/Post.

A TCL script can connect several modules in different programming
languajes (such as C++), without compiling them again, see Figure A3.1. The
main difference between compiled and interpreted languajes, like the TCL, arises
in the way in which the translation is done (instruction by instruction in this case,
while in a compiler the translation is done for the full code after read).

Figure A3.1. Connetion amongst modules in TCL and C++

A.3.2. Format of the orders in Tcl

The general syntax of an order in Tcl is of the form:

order options argument 1 argument 2 argument n

The word order is the name of the Tcl command or of a procedure Tcl
developed previously. The options give to the TCL interpreter detailed
instructions of the task that the order must develop. The arguments are any type
of information that could be processed, changed or used somehow in the
execution of the order.

1 J. K. Ousterhout; “Tcl and the Tk Toolkit”, Addison Wesley, 1994, ISBN 020163337X
Other reference books are:
B. B. Welch, K. Jones, J. Hobbs; “Practical programming in Tcl/Tk”. ISBN 0130385603
F. Feito, R. J. Segura, F. de Asís; “Programación en Tcl/Tk”, Universidad de Jaén, 1997. ISBN 8488942966

 Appendices 286

Figure A3. 2. Some examples of orders and arguments.

The order grouping in Tcl, or script, is realized by means of a sequence

in different lines and between keys. The program comments are preceded by # in
order that they are not considered by the TCL interpreter.

Figure A3. 3. Script and comments in TCL

The flow control structures are TCL orders that allow the control of the
execution of the program. Like in many other languages, they can be selective or
iterative. The first ones would contemplate conditional structures (if/elseif), or
multiconditional alternatives like-a-menu (switch), whereas the second ones
contemplate curls finished by counter (for) and for sentry (while).

A.3.3. TCL Variables. Substitution.

Appendices

287

The order set is used for the assignment of values, without need to
initialize them before being used provided that the TCL interpreter creates it
simultaneously.

set <variable> <value>

A variable can keep numbers or chains of characters (letters, numbers,
symbols or combination of them). Nevertheless, in TCL everything is interpreted
as character chains which makes necessary to use the mechanism of substitution
(by means of the operator $).

Tcl allows local and global variables. The local variables are used inside
a procedure (proc). When the procedure is called, the variable is created, and
when it finishes the variable is deleted (unset <variable>). A global variable
(global <variable>) allows to store information amongst calls to different
procedures, and has the same identifier independently of its location in the
program

A.3.4. Event Handler syntax for the KUKA KRC2 controller

This section analyzes the morphology of the .tcl file adapted to the
control KUKA KRC2 for a 6R KR15/2. Basically, the Event Handler has two
differentiated parts:

a) An initialization of variables, in many cases describing the machine or
the functioning of the NC. These variables, together with the global
variables that NX associates with every event, will be used by the
described procedures later.

b) Una sucesión de procedimientos (proc) que, ante un evento a
postprocesar, realizan las siguientes tareas:

c) A succession of procedures (proc) that, with an event to postprocess,
realize the following tasks:

i. Load the variables that are going to be indispensable for the data
processing that has to be offered to the controller of the machine
tool or robot.

ii. Realize the necessary operations with the above mentioned
variables.

iii. After having all the necessary information in order that the
machine tool could materialize the event that wants to be
postprocessed, puts all this information to disposition on the

 Appendices 288

Definition File to be able to write the Output File (with the
necessary format, as it will be described later on)

i) Variable definition

A full list (and its explanation) of the variables coming from the
generation of the toolpath is available with the installation of the NXTM
system (see mom variables at {UGII_BASE_DIR} \UGDOC \html_files
\ugpost \index.html). These ones and some other user variables are defined
as global at the beginning of the program, before any proc (see code
below).

ii) Procedure definition

As explained in the paragraph dedicated to Event Handler's
concept, it is necessary to to define a procedure (proc) for every event to be
carried out in the machine. Some of these events come implicitly defined
by the way of handling the information of the module of mechanized the
platform NX (like the concepts of start of program, start of group or start
of path) and necessarily we will find the procedure that will develop the
corresponding actions to realize in each of them. Others will be defined by
the user according to the characteristics of the machine and of the process,
like in the case of the motions in CP tracking (see Section 4.6.3.).

In the most elementary version of proc for a linear move, this
block of process just sends the infotmation of the destination point and
TCP rate to the corresponding templates of the Definition File, that will
give KUKA KRL format to the output file as explained later. In this case, it
is not be necessary to invoke variables since they are global and the call is
done directly from the Block_Template of the Definition File (see
paragraph 1.3.2.).

Figure A3. 4. Basic processing at the Event Handler of a linear motion.

proc MOM_linear_move {} {

 MOM_do_template Velocidad

 MOM_do_template Linear

}

Appendices

289

As an improvement of this processing, and at the expense of the
existence of a linear track and a rotary table, it is proposed a review of the
previous basic process that solves the adoption of extreme configurations
in the robot for remote points of the same one, by means of a fuzzy2,3
controller, implemented in Matlab4.

The call is done by means of the TCL command catch, by which
the values of EE’s position and of the additional external joints (vertor k)
are passed to the executable containing the fuzzy model. The increments
obtained for the additional external joints are the last two values of the
vector a.

Figure A3. 5. Event Handler processing of a linear motion relocating the external
joints.

2 J. Andres, L. Gracia, J.Tornero; “Inverse kinematics of a redundant manipulator for CAM integration. An
industrial perspective of implementation”, ICM09.
3 J. Andres, L. Gracia, J.Tornero; “TOOLPATH POSTPROCESSING FOR THREE AXES MILLING IN
REDUNDANT ROBOTIC WORKCELLS BY MEANS OF FUZZY INTEGRATION IN A CAM
PLATFORM”, ICM09.
4 J.-S. Roger Jang, N. Gulley; “Fuzzy Logic Toolbox: User’s Guide”; Revised for Version 2.2.7 (Release
2008a), The MathWorks, Inc. 2008

proc MOM_linear_move {} {
 global mom_pos mom_prev_pos
 global mov_carro mov_mesa
 global k E2 E1 a t

Five values passed to the .exe with the IKP and the fuzzy engine.
 set k(0) $E2
 set k(1) $E1
 set k(2) $mom_pos(0)
 set k(3) $mom_pos(1)
 set k(4) $mom_pos(2)

 MOM_output_to_listing_device "k: $k(0) , $k(1) , $k(2) , $k(3) , $k(4)"

 catch {exec C:\\NX5\\MACH\\auxiliary\\javi2_matlabfuzz [array get k]} a

 set t(6) [lindex $a 0]
 set t(7) [lindex $a 1]

 set E2 [expr $k(0) + $t(7)]
 set E1 [expr $k(1) + $t(6)]

 set mov_mesa $E2
 set mov_carro $E1

 MOM_do_template Velocidad
 MOM_do_template Linear
}
}

 Appendices 290

Finally and after all these calculations in which the obtained values
are kept as new definite variables, all the information is at the disposal of
the Definition File: MOM_do_template Linear

iii) Transcription of the Event Handler of the NX-KUKA
KRC2postprocessor

CN: KR15/2 – KRC2 KUKA (_v3)
Revisiones 20-3-2010 # Javier Andres #

Global vble def
Machine Kinematic
set mom_kin_machine_resolution 0.001
set mom_kin_arc_output_mode FULL_CIRCLE
Defines how circles will be output by the post. Only circles generated
in the operation can be output as circles. LINEAR will output linear
moves based on the tolerances defined on the arc in the operation.
QUADRANT will output circles only on quadrant boundaries (divide arcos en
cuadrantes). FULL_CIRCLE will output arcs up to 360 degrees (Kuka
controller stands for full_circle)
set mom_kin_helical_arc_output_mode LINEAR
linearizes helix motions, not allowed at KRC2
set mom_kin_arc_valid_plane ANY
set mom_kin_min_arc_length 0.01
set mom_kin_min_arc_radius 0.1
set mom_kin_max_arc_radius 5000
below or above these values, it inearizes.
set mom_kin_machine_type 5_axis_dual_head
set mom_kin_4th_axis_direction

 "MAGNITUDE_DETERMINES_DIRECTION"
#set mom_kin_4th_axis_plane "ZX"
set mom_kin_4th_axis_leader "B"
set mom_kin_4th_axis_rotation "standard"
set mom_kin_4th_axis_type "Head"
set mom_kin_5th_axis_direction

 "MAGNITUDE_DETERMINES_DIRECTION"
#set mom_kin_5th_axis_plane "YZ"
set mom_kin_5th_axis_leader "C"
set mom_kin_5th_axis_rotation "standard"
set mom_kin_5th_axis_type "Head"
set mom_kin_rapid_feed_rate 12000
set mom_kin_tool_change_time 30.0
set mom_sys_spindle_direction_code(OFF) "FALSE"
set mom_sys_output_file_suffix ".src"

set pto_sim(0) 0
set pto_sim(1) 0
set pto_sim(2) 0
set pto_per(0) 0
set pto_per(1) 0
set pto_per(2) 0

Appendices

291

set angulo_arco_circ 0
set abs_ang_giro 0
set R(0) 0
set R(1) 0
set R(2) 0
set mod_R 0
set Vp(0) 0
set Vp(1) 0
set Vp(2) 0
set mod_Vp 0
set div_mod 0
set Rp(0) 0
set Rp(1) 0
set Rp(2) 0
set num_despl 0
set despl 200
set sentido 1
set cero_carro -2100
set mov_carro 0
set mov_mesa 0
set k(0) 0
set k(1) 0
set k(2) 0
set k(3) 0
set k(4) 0
HOME:
set E2 45
set E1 -2977.17 E2 0
set E1 -2500
set a "void"
set t(0) 0
set t(1) 90
set t(2) 0
set t(3) -90
set t(4) 90
set t(5) 0
set t(6) 0
set t(7) 0

proc MOM_start_of_program {} {}

proc MOM_start_of_group {} {
 global mom_group_name mom_parent_group_name
 if { $mom_group_name == $mom_parent_group_name } {

 MOM_output_to_listing_device

"PROGRAM: $mom_parent_group_name\n"
 MOM_output_text "&ACCESS RVP"
 MOM_output_literal "&PARAM TEMPLATE =
C:\\KRC\\Roboter\\Template\\ExpertVorgabe"
 MOM_output_text "&PARAM EDITMASK = *"
 MOM_output_text "DEF $mom_parent_group_name ()"
 MOM_output_text "BAS (#INITMOV,0)"
 MOM_output_text "PTP XHOME"
 MOM_output_text "\$APO.CVEL = 100"
 } else {
 MOM_output_to_listing_device

 Appendices 292

 "SUB-PROG: $mom_group_name"
 }
}

proc MOM_machine_mode { } { }

proc MOM_start_of_path { } {
 global mom_path_name mom_parent_group_name mom_group_name
mom_fixture_offset_value
 global mom_csys_matrix
 if {[info exists mom_parent_group_name]} {

 MOM_output_to_listing_device
"OPERATION: $mom_path_name

} else {
 set mom_parent_group_name $mom_path_name
 set mom_group_name $mom_path_name
 MOM_start_of_group

 }
 if { $mom_fixture_offset_value == 0 } {
 set mom_fixture_offset_value 1
 }
 MOM_do_template base
 MOM_do_template tool
}

proc MOM_set_csys { } {
 global mom_csys_matrix
}

proc MOM_msys { } {
global mom_msys_matrix mom_msys_origin

 }

proc MOM_first_tool {} {
 global mom_tool_number
}

proc MOM_tool_change {} {
 global mom_tool_number mom_next_tool_number mom_next_tool_status
 MOM_output_text "PTP HOME"
 MOM_first_tool
 MOM_output_text "PTP HOME"
}

proc MOM_rapid_move {} {
 MOM_linear_move
}

proc MOM_linear_move {} {
 global mom_pos mom_prev_pos
 global mov_carro mov_mesa
 global k E2 E1 a t
Asignation of the 5 values passed to the IKP.exe
 set k(0) $E2

Appendices

293

 set k(1) $E1
 set k(2) $mom_pos(0)
 set k(3) $mom_pos(1)
 set k(4) $mom_pos(2)

 MOM_output_to_listing_device "k: $k(0) , $k(1) , $k(2) , $k(3) ,
$k(4)"

given k, .exe gives back the increments for E1 & E2 within the chain a.
 catch {exec C:\\NX5\\MACH\\auxiliary\\javi2_matlabfuzz [array get
k]} a

 set t(6) [lindex $a 0]
 set t(7) [lindex $a 1]

new ext. Joint values
 set E2 [expr $k(0) + $t(7)]
 set E1 [expr $k(1) + $t(6)]

 set mov_mesa $E2
 set mov_carro $E1

 MOM_do_template Velocidad
 MOM_do_template Linear
}

proc MOM_circular_move {} {
global mom_arc_direction mom_arc_angle mom_pos_arc_center mom_prev_pos
mom_pos mom_arc_radius
global gb_sim gb_per angulo_arco_circ pruebatan
global R mod_R pto_sim Vp mod_Vp div_mod Rp pto_per angulo_arco_circ
global mom_pos_arc_plane mom_out_angle_pos mom_tool_axis mom_pos_arc_axis

MOM_do_template Velocidad

Calculo del Radio entre en Punto Inicial y el Centro del Arco, y de su
modulo
 set R(0) [expr $mom_pos_arc_center(0) - $mom_prev_pos(0)]
 set R(1) [expr $mom_pos_arc_center(1) - $mom_prev_pos(1)]
 set R(2) [expr $mom_pos_arc_center(2) - $mom_prev_pos(2)]
 set mod_R [expr sqrt(pow($R(0),2)+pow($R(1),2)+pow($R(2),2))]

a) Cálculo del Punto Simétrico del Punto Inicial
 set pto_sim(0) [expr 2*$mom_pos_arc_center(0) - $mom_prev_pos(0)]
 set pto_sim(1) [expr 2*$mom_pos_arc_center(1) - $mom_prev_pos(1)]
 set pto_sim(2) [expr 2*$mom_pos_arc_center(2) - $mom_prev_pos(2)]

b) Cálculo del Punto Perpendicular.
b.1.) Calculo de un vector perpendicular (Vp) a R y al vector normal al
plano del arco (mom_pos_arc_axis), y de su modulo
 set Vp(0) [expr $R(1)*(-$mom_pos_arc_axis(2)) - $R(2)*(-
$mom_pos_arc_axis(1))]
 set Vp(1) [expr $R(2)*(-$mom_pos_arc_axis(0)) - $R(0)*(-
$mom_pos_arc_axis(2))]
 set Vp(2) [expr $R(0)*(-$mom_pos_arc_axis(1)) - $R(1)*(-
$mom_pos_arc_axis(0))]
 set mod_Vp [expr sqrt(pow($Vp(0),2)+pow($Vp(1),2)+pow($Vp(2),2))]

 Appendices 294

b.2) Calculo del vector Rp (perpendicular a R y en el plano del arco), y
del mismo modulo que R
 set div_mod [expr $mod_R / $mod_Vp]
 set Rp(0) [expr $Vp(0)*$div_mod]
 set Rp(1) [expr $Vp(1)*$div_mod]
 set Rp(2) [expr $Vp(2)*$div_mod]

b.3) Calculo del punto auxiliar (pto_per) para el comando CIRC en KRL
 set pto_per(0) [expr $mom_pos_arc_center(0)+$Rp(0)]
 set pto_per(1) [expr $mom_pos_arc_center(1)+$Rp(1)]
 set pto_per(2) [expr $mom_pos_arc_center(2)+$Rp(2)]

c) Angulo
 set abs_ang_giro [expr abs($mom_arc_angle)]

 set angulo_arco_circ [expr $abs_ang_giro]
 MOM_do_template Circular

}

proc MOM_end_of_path { } {
 proc hiset { v1 } {
 upvar $v1 v2
 if { [info exists v2] } { return 1 } else { return 0 }
 }
}

proc MOM_end_of_group { } { }

proc MOM_end_of_program {} {
 global mom_parent_group_name mom_sys_output_file_suffix
mom_output_file_full_name mom_output_file_directory
 MOM_output_text "PTP HOME"
 MOM_output_text "END"
 MOM_close_output_file $mom_output_file_full_name

 set new_file
$mom_output_file_directory$mom_parent_group_name$mom_sys_output_file_suffi
x

 file rename -force $mom_output_file_full_name $new_file

 MOM_output_to_listing_device "\nFichero de mecanizado: $new_file\n"
}

proc MOM_catch_warning { } {
 global mom_warning_info

 if { $mom_warning_info == "WARNING: ONE AXIS ARC MOVE; ABORTED TO LINEAR
MOVE" } {

 # IGNORE

 } else {

 MOM_output_to_listing_device " * ERROR * $mom_warning_info *"
 }
}

END OF PROGRAM

Appendices

295

A.3.5. Definition File syntax for the KUKA KRC2 controller

The Definition File, as a TCL extension of the Event Handler, mainly
contains static information about a specific machine tool or robot so that the Post
could give exit format towards the Output File of the event that is postprocessed,
namely: general attributes of the machine (FORMAT), addresses of commands
supported by the controller (ADDRESS) with the attributes of every address
(format, max, min) and a set of templates (BLOCK_TEMPLATE) that describe
how the addresses of previous commands conjugate to shape a specific action in
the robot.

In the following, we revise the most significant lines before the
transcription of the complete code of the Definition File

i) General attributes of the machine (FORMATTING)

The first lines of a definition file are as follows:

 Figure A3. 6. First lines of a definition file

 WORD_SEPARATOR " "

It forces to the Postprocessor to insert a chain of characters (in this
case a space) between all the other chains of the ADDRESS overturned in
the Output File.

 END_OF_LINE ""

It forces to the Postprocessor to place a chain of characters (none
in this case) at the end of other chains of the ADDRESS overturned in the
Output File.

 FORMAT <name> &abcdef

FORMATTING
{

 WORD_SEPARATOR " "
 END_OF_LINE ""

 FORMAT Block_num "&__4_00"
 FORMAT Coordinate "&__4.30"
 FORMAT Socket "%02d"
 FORMAT Feed "&__4_00"
 FORMAT Str "%s"
 FORMAT Zero_int "&_01_0_"

 Appendices 296

It defines data formats (decimal, integer, chain of characters) to the
type of datum <name>. The analysis of the characters after the name is the
following:

o a = + ó _ (+ forces + at positive values, _ do not)

o b = 0 ó _ (0, zeroes fulfil the digits reserved for the integer
part, _ do not)

o c = {0, 1, 2, ..., 9} (number of digits of the integer part)

o d = . or _ (‘.’ Forces the decimal point, _ do not)

o e = {0,1,2, ..., 9} (number of digits of the decimal part)

o f = 0 or _ (0, zeroes fulfil the digits reserved for the decimal
part, _ do not)

o FORMAT Str "%s", for chains of characters

ii) ADDRESS

Following lines of the Definition File establish the addresses that
will be used in the Output File, as they could be the addresses X, Y, or Z
for the position coordinates of the TCP. With the syntaxes that shown
below there are defined the attributes of the above mentioned addresses:

Figure A3. 7. Address definition in the .def code. Right, addresses to command the X
position of the TCP.

 ADDRESS name:

It is the name of the address

ADDRESS X {
 FORMAT Coordinate
 ZERO_FORMAT Zero_int
 FORCE always
 LEADER "X "
 TRAILER ","
 }
 ADDRESS Y {
(…)
 ADDRESS Z {
(…)

ADDRESS name

{

 FORMAT name

 FORCE < Always | Once | Off >

 MAX number <Abort | Warning | Truncate>

 MIN number <Abort | Warning | Truncate>

 LEADER < string | [TCL_expression] >

 TRAILER string

 }

Appendices

297

 FORMAT name:
Instructs NX/Post to use format name to print the value of the

address expression to the output.

 FORCE:
Always (Instructs Post to always output the value of an address

expression)/ Once (Instructs Post to output the value of the next address
expression, (Default)) / Off (Instructs Post to not force the output of the
value of an address expression. Instead, output the value of an address
expression if and only if the value is different than the previous address
expression value for this address.)

 MAX number :

Instructs Post to use number as the maximum value to be output by
this address. The options are: Abort, if Max is violated then Abort creation
of NC file; Warning, if Max is violated then write a warning message to
the system log file and continue; Truncate, if Max is violated then write a
warning message to the system log and continue using the Max value as
the output value of the address.

 MIN number:

Instructs Post to use number as the minimum value to be output by
this address. The options are: Abort, if Min is violated then Abort creation
of NC file; Warning, if Min is violated then write a warning message to the
system log file and continue; Truncate, if Min is violated then write a
warning message to the system log and continue using the Min value as the
output value of the address.

 LEADER string:

Precede this address with string in every template in which the
address appears. Default is the Address name.

 TRAILER string:

Follow this address with string in every template in which the
address appears. Default is the empty string.

iii) BLOCK_TEMPLATE

Finally the addresses with the formats of the beginning are inserted
in the template that gives the definitive form to the proper commands of
the language KRL in the Output File. The above mentioned form is given

 Appendices 298

definitively in the successive Block Templates that are called from the
Event Handler (by means of the procedure MOM_do_template). The
structure of a Block template is the following:

Figure A3. 8. Structure of a Block template.

 Address_Name

The name of a previously defined Address. The attributes of that
Address determine the format of the output for this Block Template
member.

 Address_Expression (ae)

A TCL expression whose value should be sent to the output. This
expression can be any valid TCL expression. Post will ask TCL to evaluate
this expression and then output its value using the format indicated by the
Address Format attribute.

 \nows

An optional switch. If present then the value is not followed by the
WORD_SEPARATOR in the generated output. If not present then the
value is followed by the WORD_SEPARATOR in the generated output.

 \opt

An optional switch. If present and the ae can not be evaluated then
ignore this address. If it is not present and the ae cannot be evaluated an
error is issued.

 \ldr=string1

BLOCK_TEMPLATE name
{
 Address_Name [Address_Expression]
 \nows
 \opt
 \ldr=string1
 \trlr=string
 "string"
}

Appendices

299

An optional switch. If present then precede this address with
string1 in this Block Template (not in every template in which the address
appears; use LEADER in the address definition for that).

 \trlr=string1

An optional switch. If present then follow this address with string1
in this Block Template (not in every template in which the address
appears; use TRAILER in the address definition for that).

 "string"

A string to output literally. This string follows the octal rule. This
string may also be qualified with switches.

There can be any number of Address members and any number of string

members in a Block Template. They may appear in any order.

 Appendices 300

Figure A3. 9. Block Templates that give exit format to the circular and linear
motions.

iv) Transcription of the Definition File of the NX-KUKA
KRC2postprocessor

CN: KR15/2 – KRC2
20-3-2010 # JAVIER ANDRES #

MACHINE GENERIC_MACHINE
FORMATTING
{

 ORD_SEPARATOR " "
 END_OF_LINE ""
 FORMAT BLOCK_NUM "&__4_00"

BLOCK_TEMPLATE Linear {
"LIN {E6POS:"
X[$mom_pos(0)]
Y[$mom_pos(1)]
Z[$mom_pos(2)]
"A 0,"
A1[$mom_out_angle_pos(0)]
A2[$mom_out_angle_pos(1)]
E1[$mov_carro]
E2[$mov_mesa]\nows
"} C_VEL"

 }

 BLOCK_TEMPLATE Circular {

“CIRC {E6POS:"
X[$pto_per(0)]
Y[$pto_per(1)]
Z[$pto_per(2)]
"A 0,"
A1[$mom_out_angle_pos(0)]
A2[$mom_out_angle_pos(1)]
E1[$mov_carro]
E2[$mov_mesa]\nows
"}, {E6POS: "
X[$pto_sim(0)]
Y[$pto_sim(1)]
Z[$pto_sim(2)]
"A 0,"
A1[$mom_out_angle_pos(0)]
A2[$mom_out_angle_pos(1)]
E1[$mov_carro]
E2[$mov_mesa]\nows
"},"
CA[$angulo_arco_circ]
"C_VEL"

 }

Appendices

301

 FORMAT COORDINATE "&__4.30"
 FORMAT SOCKET "%02D"
 FORMAT FEED "&__4_00"
 FORMAT STR "%S"
 FORMAT ZERO_INT "&_01_0_"
 #####################################
 # ADRESSES
 #####################################
 ADDRESS STR {
 FORMAT STR
 FORCE ALWAYS
 LEADER "" }
 ADDRESS X {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER "X "
 TRAILER "," }
 ADDRESS Y {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER "Y "
 TRAILER "," }
 ADDRESS Z {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER "Z "
 TRAILER "," }
ADDRESS CA {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER "CA "
 TRAILER "" }
ADDRESS A0 {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER "A "
 TRAILER "," }

ADDRESS A1 {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER [$MOM_KIN_4TH_AXIS_LEADER]
 TRAILER "," }
ADDRESS A2 {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER [$MOM_KIN_5TH_AXIS_LEADER]
 TRAILER "," }
ADDRESS E1 {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT

 Appendices 302

 FORCE ALWAYS
 LEADER "E1 "
 TRAILER "," }
ADDRESS E2 {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE ALWAYS
 LEADER "E2 " }
ADDRESS M_SPIN {
 FORMAT SOCKET
 FORCE OFF
 LEADER "$OUT["
 TRAILER "]" }
ADDRESS VEL {
 FORMAT COORDINATE
 ZERO_FORMAT ZERO_INT
 FORCE OFF
 LEADER "$VEL.CP=" }
ADDRESS B {
 FORMAT BLOCK_NUM
 MAX 999999 TRUNCATE
 MIN 1
 FORCE OFF
 LEADER "$BASE = BASE_DATA["
 TRAILER "]" }
 ADDRESS T {
 FORMAT BLOCK_NUM
 MAX 999999 TRUNCATE
 MIN 1
 FORCE OFF
 LEADER "$TOOL = TOOL_DATA["
 TRAILER "]" }

#####################################
BLOCK_TEMPLATES
#####################################
BLOCK_TEMPLATE BASE {
 B[$MOM_FIXTURE_OFFSET_VALUE]
}

 BLOCK_TEMPLATE TOOL {
 T[$MOM_TOOL_NUMBER]
}

BLOCK_TEMPLATE LINEAR {

"LIN {E6POS:"
X[$MOM_POS(0)]
Y[$MOM_POS(1)]
Z[$MOM_POS(2)]
A0[-$MOV_MESA]
A1[$MOM_OUT_ANGLE_POS(0)]
A2[$MOM_OUT_ANGLE_POS(1)]
E1[$MOV_CARRO]
E2[$MOV_MESA]\NOWS
"} C_VEL" }

See KUKA Expert programming manual for C_VEL information

BLOCK_TEMPLATE CIRCULAR {

Appendices

303

"CIRC {E6POS:"
X[$PTO_PER(0)]
Y[$PTO_PER(1)]
Z[$PTO_PER(2)]
A0[-$MOV_MESA]
A1[$MOM_OUT_ANGLE_POS(0)]
A2[$MOM_OUT_ANGLE_POS(1)]
E1[$MOV_CARRO]
E2[$MOV_MESA]\NOWS
"}, {E6POS: "
X[$PTO_SIM(0)]
Y[$PTO_SIM(1)]
Z[$PTO_SIM(2)]
A0[-$MOV_MESA]
A1[$MOM_OUT_ANGLE_POS(0)]
A2[$MOM_OUT_ANGLE_POS(1)]
E1[$MOV_CARRO]
E2[$MOV_MESA]\NOWS
"},"
CA[$ANGULO_ARCO_CIRC]
"C_VEL"
}

BLOCK_TEMPLATE VELOCIDAD {

VEL[$MOM_FEED_RATE/60000]
 }

BLOCK_TEMPLATE SPINDLE_OFF {
 M_SPIN[$MOM_SYS_SPINDLE_DIRECTION_CODE(OFF)] }
}

END OF PROGRAM

 Appendices 304

A.4. CHARACTERISTIC LENGTH L OF THE KUKA KR-15/2
(CORRESPONDING TO SECTION 2.4.6.)

clear all
clc
 %%%
 KUKA_SDH_solo= [-pi/2 .300 0 .675 0;
 0 .650 0 0 0;
 pi/2 .155 0 0 0;
 pi/2 0 0 -0.600 0;
 pi/2 0 0 0 0;
 0 0 0 -0.140 0];
 % TO PLOT THE ROBOT WITH CORKE's PLOT
L1_SDH_solo=link([-pi/2 .300 0 .675 0],'standard');
L2_SDH_solo=link([0 .650 0 0 0],'standard');
L3_SDH_solo=link([pi/2 .155 0 0 0],'standard');
L4_SDH_solo=link([pi/2 0 0 -.600 0],'standard');
L5_SDH_solo=link([pi/2 0 0 0 0],'standard');
L6_SDH_solo=link([0 0 0 -.140 0],'standard');
ROB_KUKA_SDH_solo=robot({L1_SDH_solo L2_SDH_solo L3_SDH_solo L4_SDH_solo
L5_SDH_solo L6_SDH_solo});
 %%%

% drivebot(ROB_KUKA_SDH_solo)
% q_SDH_solo=[0 -pi/2 0 0 pi/2 0];
% T_SDH_solo=fkine(ROB_KUKA_SDH_solo,q_SDH_solo);

% from the DH parameters
aM=max(abs(KUKA_SDH_solo(:,2)));
bM=max(abs(KUKA_SDH_solo(2:end,4)));
M=max(aM,bM);

% thus, with M we calculate the non-dimensional DH params
KUKA_non_dimens=[KUKA_SDH_solo(:,1) KUKA_SDH_solo(:,2)/M
KUKA_SDH_solo(:,3) KUKA_SDH_solo(:,4)/M KUKA_SDH_solo(:,5)]; %we dont mind
the value of b1

% So now, i'm implementing the search of eq. (35) of Khan and Angeles 2006
% After defining my fuction kF2, lets do
init_guess=[1.5 -pi/2 pi/2 0 pi/2]; % of [Mraya theta2 theta3 theta4
theta5], dont miss it
[x,FVAL]=fminsearch(@(x) kF2(x,KUKA_non_dimens),init_guess);

% x = 1.8543 -1.9280 1.0530 0.0000 1.8299
% o lo que es lo mismo, pasando los angulos a grados
% x = (Mraya=1.8543) [-110.4667 60.3314 0.0002 104.8436]
Mraya=x(1);
q=[0 x(2:end) 0] % theta6 was not included, as it does not affect the
condition number for this particular architecture.

figure(1)
plot(ROB_KUKA_SDH_solo,q);

% The characteristic length is thus computed as
L=M/Mraya % L=0.3506 m (el RSW4 da .350572 m) OK!!!
kF=sqrt(FVAL)
KCI=inv(kF)*100;

Appendices

305

% the KCI of this manipulator can still be improved dramatically by noting
% that the condition number is highly dependent on the location of the
operation
% point of the end-effector. The robot DH parameters given in Table 5.2 do
not
% account for the geometry of the EE.

% Finally, rms of distances "ro" from 1 to n of the OP to the n axes of
the R joints

 n=size(KUKA_non_dimens,1);
 [G,T,ei]=dirkin(q, KUKA_non_dimens);

 sumatorio=0;
 for i = 1:n
 ro_i=norm((G(:,end-1) - G(:,i)));
 sumatorio=sumatorio+ro_i^2;
 end

rms_ro_raya=sqrt(1/n*(sumatorio)); % homog
rms_ro=L*rms_ro_raya; % en mm

A.5. MATLAB CODE FOR THE POSTPROCESSING OF CLSF
FOUNDED ON THE VJM WITH PERIODIC RE-EVALUATION.

A.5.1. Code base (founded on algorithms 6.2 and 6.11)

close all
clear all; clc
%%% CARGO DATOS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Definicion_modelos_DHidf_VJMidf
T_brida_TCP=eye(4); T_brida_TCP_MDH=eye(4);
Definicion_trayectoria_espiesferica_para_el_estudio_desplazada_2
%%%

% a) initial guess of joint position
 theta=[pi 0 pi -pi/2 0 0 +pi/2 0 0]; % El HOME de simpre
 figure(1)
 AZ = -37.5; EL = 10; VIEW(AZ,EL); set(gca,'DataAspectRatio',[2 2 2])
 plot(KUKA_SDH_todo, theta);
 % drivebot(KUKA_SDH_todo)
 hold on
 for i=1:size(T_CAM,3)

point_TCP=[T_CAM(1,4,i),T_CAM(2,4,i),T_CAM(3,4,i)];
plot3(point_TCP(1),point_TCP(2),point_TCP(3),'+'); % TCP position
point_HEADtool=[T_CAM(1,4,i)+T_CAM(1,3,i),T_CAM(2,4,i)+T_CAM(2,3,i)
,T_CAM(3,4,i)+T_CAM(3,3,i)]; % tool head
line_tool=[[point_TCP];[point_HEADtool]];
plot3(line_tool(:,1),line_tool(:,2),line_tool(:,3),'r'); % tool
vector

 end
 hold off

 figure(2)
 AXIS ([-1 1 -1 1 -1 1])

 Appendices 306

 AZ = -37.5; EL = 10; VIEW(AZ,EL); %set(gca,'DataAspectRatio',[2 2 2])
 clear time q_plot
 cont=0;

 theta_threshold_ref=zeros(1,9);
 for i=1:(pose-1)
 cont=cont+1;
 h=gca;
 cla(h);
 % b) desired pose of the EE
 Td=T_CAM(:,:,i);
 pd=Td(1:3,4);
 Qd=Td(1:3,1:3);
 incr_theta=ones(1,8); % para que entre en el while
 theta_previo=theta;

 while norm(incr_theta,inf)>0.2 % uso la norma infinito (Chebychev)

% c){p Q T}<--DKP(theta)
 [G,T_brida,ei]=dirkin(theta, KUKAstd_todo);
 T=T_brida*T_brida_TCP;
 Q=T(1:3,1:3); % tool orientation!!
 p=T(1:3,4); % tool position!!
 ei(:,end)=T(1:3,3); % ei_tool = ztool!!
 G(:,end)=T(1:3,4);

% d) incrQ <-- Q' * Qd
 incrQ=Q'*Qd;

% e) incrp <-- pd-p
 incrp=pd-p;

% f) incrt
 Vector_incrQ=1/2*[incrQ(3,2)-incrQ(2,3);incrQ(1,3)-
incrQ(3,1);incrQ(2,1)-incrQ(1,2)];
 incr_t=[Q*Vector_incrQ; incrp];

% g)DKP(theta)
 % g.1) ==> saco los vector projectors y el Jacobiano
 e=T(1:3,3); % este el el eje de la tool
 J_mio=jacobianEE_0(KUKAstd_todo, G, theta);
 A=J_mio(1:3,:);
 B=J_mio(4:6,:);
 J=[A; B];

 % ---> para evaluar la posicion que tiene el manipulador 6R
 theta_solo=[0 theta(4:8)];
 [G_solo,T_brida_solo,ei_solo]=dirkin(theta_solo, KUKAstd_solo);
 T_solo=T_brida_solo;
 Q_solo=T_solo(1:3,1:3);
 p_solo=T_solo(1:3,4);
 ei_solo(:,end)=T_solo(1:3,3);
 G_solo(:,end)=T_solo(1:3,4);
 % J_Kf_to_decide=jacobianEE_0(KUKAstd_solo, G_solo, theta_solo); %
tienen que dar idem, efectivamente.
 J_Kf_to_decide=jacobianTCP_0(KUKAstd_solo, G_solo, ei_solo, T_solo);
 A_Kf_to_decide=J_Kf_to_decide(1:3,:);
 B_Kf_to_decide=J_Kf_to_decide(4:6,:);

Appendices

307

 BH_Kf_to_decide=(1/L_solo)*B_Kf_to_decide; % L_solo es la long caract
 H_Kf_to_decide=[A_Kf_to_decide; BH_Kf_to_decide];
 Kf_to_decide=kF(H_Kf_to_decide(:,1:6)); % el joint virtual no lo pongo
en el jacobiano, para que coincida el valor con v12b4 de Huo!
 inv_Kf_to_decide=1/Kf_to_decide;
 % ---> fin evaluacion posicion
 inv_Kf_to_decide_threshold=0.5; % umbral

% h) algoritmo de resolucion VIRTUAL JOINT METHOD (dara incr_theta)
 % h.1) la pseudoinv de J y de J_21
 weights_fuzzy_psiJ=diag([1 1 1 1 1 1 1 1 1]);
 invWeightsJ=inv(weights_fuzzy_psiJ);
 psiJ=J'*inv(J*J');
 psiJw=invWeightsJ*J'*inv(J*invWeightsJ*J');

% h.3) aprovechamiento de los grado de libertad
 % h.3.1) recolocacion de la cadena lejos de limites articulares
 weights_fuzzy_referenceposture=readfis('fuzzy_refposture');
 values_to_watch_referenceposture=[theta(5) abs(theta(7)) theta(4)]; %
en el .fis doy valores limites articulares del modelo de SDH que empleo en
el calculo no mecanicos --> theta3=[-74(+16),70(+160)], theta5=[+/-135]
pp=evalfis(values_to_watch_referenceposture,weights_fuzzy_referenceposture
);
 weights1=[pp(1) pp(2) 0.01 pp(5) pp(3) 0.02 pp(4) 0.01 0.01] ;
 weights1=[pp(1) pp(2) 0.01 0.01 pp(3) 0.01 pp(4) 0.01 0.01] ;
 % weights1=[0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.1 0.1]*0.1; % bueno
 % weights1=[0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01];
 % weights1=[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1];
 theta_ref=[pi 0.5 pi -pi/2 0 0 +pi/2 0 0];
 h1=-diag(weights1)*(theta-theta_ref)';

 % h.3.2) tendencia a mantener una postura bien condicionada
 weights_fuzzy_singularities=readfis('fuzzy_singularities');
 values_to_watch_singularities=[theta(5) abs(theta(7))]; % en el .fis
doy valores limites articulares del modelo de SDH que empleo en el calculo
no mecanicos
 aa=evalfis(values_to_watch_singularities,weights_fuzzy_singularities);
 weights2=[aa(1) aa(2) aa(3) aa(3) aa(3) aa(4) aa(4) aa(4) 0.01];
 % weights_fuzzy_singularities=readfis('fuzzy_refposture');
 if inv_Kf_to_decide<inv_Kf_to_decide_threshold % quiero 0.4 a 1
 if theta_threshold_ref==zeros(1,9)
 theta_threshold_ref=theta;
 end
 h2=-diag(weights2)*Kf_to_decide*(theta-theta_threshold_ref)';
 else
 theta_threshold_ref=zeros(1,9); % si no me paso del umbral kF
deseado o he vuelto dentro de los valores deseados, lo "reseteo"
 h2=zeros(9,1);
 end
 h=h1+h2;
% h.4) incr_theta que precisamos
 % h.4.1) Metodo tradicional
 % original
 % % incr_theta_orig=psiJw*incr_t+(eye(9)-psiJ*J)*h;
 % % incr_theta=incr_theta_orig;
 % h.4.2) Metodo AA_98 (basado en algoritmo 6.2 del doc de tesis, da idem
que el tradicional)
 % Primer sub-problema

 Appendices 308

 J_T=J';
 [Q R]=qr(J_T);
 % H=Q';
 U=R(1:6,:);
 % O=R(7:9,:);
 r=incr_t-J*h;
 % v1=inv(U')*t_asterisco; % mejor resolverlo by forward
substitution (http://www.math.sc.edu/~meade/math706/MATLAB-
files/index.html)
 v1=forward(U',r); % found by forward substitution because U_21 is
a lower triangular matrix.
 v=[v1; zeros(3,1)];
 omega=Q*v;
 incr_theta=omega+h;

% i) actualizo el valor de theta antes de repetir el proceso o salir
del bucle (con el valor de theta actualizado con el último incremento)
 theta=theta+incr_theta';
 end

clear G_solo T_brida_solo ei_solo theta_solo theta_pose_muny
inv_Kf_to_decide

%%
Calculo_de_Condicionamentos_kF_para_plotear
%%
%%%%%%%%%%%% ANALISIS POSICIONAMIENTO PERIORIZADO 100S %%%%%%%%%%%%%%
Analisis_posicionamiento_periorizado_100s
%%%

time(cont)=cont*incr_tiempo;
q_plot(cont,:)=theta;
% plot(KUKA_SDH_todo, theta);

theta_plotbot_mdh=de_theta_a_theta_plotbot_mdh_VIRTUAL_JOINT_METHOD(theta)
;
q_plotbot(cont,:)=theta_plotbot_mdh; % para guardar sucesion de datos
plotbot_mdh(KUKA_MDH_todo,theta_plotbot_mdh','fw',T_brida_TCP);
F = getframe(gca);
end

hold on
for i=1:size(T_CAM,3)
point_TCP=[T_CAM(1,4,i),T_CAM(2,4,i),T_CAM(3,4,i)];
plot3(point_TCP(1),point_TCP(2),point_TCP(3),'+'); % TCP position
point_HEADtool=[T_CAM(1,4,i)+T_CAM(1,3,i),T_CAM(2,4,i)+T_CAM(2,3,i),T_CAM(
3,4,i)+T_CAM(3,3,i)]; % tool head
line_tool=[[point_TCP];[point_HEADtool]];
plot3(line_tool(:,1),line_tool(:,2),line_tool(:,3),'r'); % tool vector
end
hold off

%%%%%%%%%%%%%%%% FIGURAS %%%
Figuras_plots_para_el_estudio_idf
%%
%%%%%%%%%%%%%%%% NCL para ROBOMOVE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
escribir_ncl
%%

Appendices

309

A.5.2. Additional sub-functions

The following sub-functions are requested at certain stages in the code
described in the previous section:

 Definicion_modelos_DHidf_VJMidf

%%%%%%%%%%%%%%%%%%%%%%%%%%%% CELULA SDH %%%%%%%%%%%%%%%%%%%%%%%%
KUKAstd_todo= [pi/2 .803 0 -.305 0;
 pi/2 0 0 0 1;
 +pi/2 .3 0 -0.675 0;
 0 .65 0 0 0;
 +pi/2 .155 0 0 0;
 +pi/2 0 0 -0.6 0;
 pi/2 0 0 0 0;
 0.3564 0 0 -0.4434 0;
 0 0 0 -0.1197 0]; % del RSW

LM_SDH_todo=link([pi/2 .803 0 -.305 0],'standard');
LL_SDH_todo=link([pi/2 0 0 0 1],'standard');
L1_SDH_todo=link([pi/2 .300 0 -.675 0],'standard');
L2_SDH_todo=link([0 .650 0 0 0],'standard');
L3_SDH_todo=link([pi/2 .155 0 0 0],'standard');
L4_SDH_todo=link([pi/2 0 0 -.600 0],'standard');
L5_SDH_todo=link([pi/2 0 0 0 0],'standard');
L6_SDH_todo=link([0.3564 0 0 -0.4434 0],'standard');
L7_SDH_todo=link([0 0 0 -0.1197 0],'standard');
KUKA_SDH_todo=robot({LM_SDH_todo LL_SDH_todo L1_SDH_todo L2_SDH_todo
L3_SDH_todo L4_SDH_todo L5_SDH_todo L6_SDH_todo L7_SDH_todo});
%%%
L_todo=0.348; % metros

%%%% PLOT MDH HEMERO (EN METROS y MDH) %%%%%%%%%%%%%%%%%%
KUKA_MDH_todo=[pi 0 0 .305 0;
 pi/2 -.803 0 0 1;
 -pi/2 0 0 -.675 0;
 pi/2 .300 0 0 0;
 0 .650 0 0 0;
 pi/2 .155 0 -.600 0;
 -pi/2 0 0 0 0;
 +pi/2 0 0 -.4434 0;
 -0.3564 0 0 -.1197 0];
%%

%%%
KUKAstd_hasta_munyeca= [pi/2 .803 0 -.305 0;
 pi/2 0 0 0 1;
 +pi/2 .3 0 -0.675 0;
 0 .65 0 0 0;
 +pi/2 .155 0 0 0;
 +pi/2 0 0 -0.6 0];
%%

%%
KUKAstd_solo= [-pi/2 .300 0 .675 0;
 0 .650 0 0 0;

 Appendices 310

 pi/2 .155 0 0 0;
 pi/2 0 0 -0.600 0;
 pi/2 0 0 0 0;
 0.3564 0 0 -0.140 0];

 % TO PLOT THE ROBOT WITH CORKE's PLOT
L1_SDH_solo=link([-pi/2 .300 0 .675 0],'standard');
L2_SDH_solo=link([0 .650 0 0 0],'standard');
L3_SDH_solo=link([pi/2 .155 0 0 0],'standard');
L4_SDH_solo=link([pi/2 0 0 -.600 0],'standard');
L5_SDH_solo=link([pi/2 0 0 0 0],'standard');
L6_SDH_solo=link([0.3564 0 0 -0.140 0],'standard');
KUKA_SDH_solo=robot({L1_SDH_solo L2_SDH_solo L3_SDH_solo L4_SDH_solo
L5_SDH_solo L6_SDH_solo});
%%%
L_solo=0.3506; % metros

 Definicion_trayectoria_espiesferica_para_el_estudio_desplazada
_2

t=0; pose=0;
tfin=2*400; % segs
incr_tiempo=5;
sph_center=[0.1; 0.2; 0.25]; % situacion del centro de la trayectoria
esferica
sph_radius=0.15;
for t=0:incr_tiempo:tfin
 pose=pose+1;
 t=t+150; % para que no empiece exactamente en la vertical, donde la mz
de orientacion que defino abajo tendría indeterminacion al no existir r
 p_tool=[sph_radius*cos((2*pi/285)*t)*sin(pi*t/(2*tfin));
sph_radius*sin((2*pi/285)*t)*sin(pi*t/(2*tfin));
sph_radius*cos(pi*t/(2*tfin))]+sph_center;
 % vectores que formaran la matriz de orientacion: [ex_tool ey_tool
ez_tool]
 % tomando la esfera con centro [0 0 0], claramente el vector
de posicion de p_tool es lo que quiero que sea ztool
 ztool=[sph_radius*cos((2*pi/285)*t)*sin(pi*t/(2*tfin));
sph_radius*sin((2*pi/285)*t)*sin(pi*t/(2*tfin));
sph_radius*cos(pi*t/(2*tfin))];
 norma_ztool=norm(ztool);
 ez_tool=ztool/norma_ztool;
 % luego, el ytool será paralelo al plano z=0, y perpendicular
a ztool. Si consirdero el radio r en el plano z=0 haré el producto r x
ztool
 r=[sph_radius*cos((2*pi/285)*t)*sin(pi*t/(2*tfin));
sph_radius*sin((2*pi/285)*t)*sin(pi*t/(2*tfin)); 0];
 ytool=cross(ztool,r);
 norma_ytool=norm(ytool);
 ey_tool=ytool/norma_ytool;
 % Finalmente, perpendicular a estos dos tengo
 ex_tool=cross(ey_tool,ez_tool);
 % finalmete, formo la matriz
 Q_tool=[ex_tool ey_tool ez_tool];
 % Q_tool=eye(3); % este de aqui tiene una orientacion vertical
 T_CAM_i=eye(4); T_CAM_i(1:3,1:3)=Q_tool; T_CAM_i(1:3,4)=p_tool;
 T_CAM(:,:,pose)=T_CAM_i;

Appendices

311

end

 Calculo_de_Condicionamentos_kF_para_plotear

%%%% Condition number achieved after the Method %%%%%%%%%%
theta_solo=[0 theta(4:8)]; % para evaluar la posicion que tiene el
manipulador en sí, sin rail ni mesa
[G_solo,T_brida_solo,ei_solo]=dirkin(theta_solo, KUKAstd_solo);
T_solo=T_brida_solo;
Q_solo=T_solo(1:3,1:3);
p_solo=T_solo(1:3,4);
ei_solo(:,end)=T_solo(1:3,3);
G_solo(:,end)=T_solo(1:3,4); % aprovecho el hueco ultimo de este vector
para meter p, que es de nuevo la brida por no haber tool
J_Kf_to_plot=jacobianEE_0(KUKAstd_solo, G_solo, theta_solo);
A_Kf_to_plot=J_Kf_to_plot(1:3,:);
B_Kf_to_plot=J_Kf_to_plot(4:6,:); BH_Kf_to_plot=(1/L_solo)*B_Kf_to_plot; %
L_solo es dato, junto con los modelos de DH
H_Kf_to_plot=[A_Kf_to_plot; BH_Kf_to_plot];
 inv_w_cond_plot_solo(cont)=1/kF(H_Kf_to_plot);
 clear G_solo T_brida_solo ei_solo theta_solo T_solo Q_solo p_solo
J_Kf_to_plot A_Kf_to_plot B_Kf_to_plot BH_Kf_to_plot H_Kf_to_plot
 %%

 Analisis_posicionamiento_periorizado_100s

if i==20 | i==40 | i==60 | i==80 | i==100 | i==120 | i==140 | i==160

 thetaold=theta;
 miro_A3=theta(5);
 miro_A5=abs(theta(7));
 fuzzy_table=readfis('fuzzy_movtable');
 ttable=evalfis([miro_A3 miro_A5],fuzzy_table);
 ttable=pi/8;
 sentido_giro=+1;
 thetamesa=sentido_giro*ttable+thetaold(1);
 dtrack=thetaold(2);

new_theta1=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold(9),T_CAM(:,
:,i));
 theta=[new_theta1 thetaold(9)];

 %%%% better kF?
 inv_kF_orig=inv_w_cond_plot_solo(cont);
 Calculo_de_Condicionamentos_kF_para_plotear
 inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont);
 if inv_kF_despues_fuzzy<inv_kF_orig
 sentido_giro=-1;
 thetamesa=sentido_giro*ttable+thetaold(1);
 dtrack=thetaold(2);
new_theta1=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold(9),T_CAM(:,
:,i));

 Appendices 312

 theta=[new_theta1 thetaold(9)];
 Calculo_de_Condicionamentos_kF_para_plotear
 inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont); %
 end

 %%%% repeated?
 inv_kF1=0.35;
 inv_kF2=inv_kF_despues_fuzzy;
 subo_inv_kF=1;
 while inv_kF2>inv_kF1
 subo_inv_kF=subo_inv_kF+1;
 thetamesa=subo_inv_kF*sentido_giro*ttable+thetaold(1);
 dtrack=thetaold(2);
new_theta1=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold(9),T_CAM(:,
:,i));
 theta=[new_theta1 thetaold(9)];
 inv_kF1=inv_kF2;
 Calculo_de_Condicionamentos_kF_para_plotear
inv_kF2=inv_w_cond_plot_solo(cont);
 end
 theta;

 if theta(4)<-2.5 | theta(4)>0.4 | theta(5)<-1.3 | theta(5)>1.3 |
abs(theta(7))<0.7 % comprobar que no he rebasado ningún limite
 theta=thetaold;
 end

 % TRACK
 thetaold2=theta;
 miro_A3=theta(5);
 miro_A5=abs(theta(7));
 fuzzy_table=readfis('fuzzy_movtrack');
 ttrack=evalfis([miro_A3 miro_A5],fuzzy_table);
 ttrack=0.1;
 sentido_despl=-1;
 thetamesa=thetaold2(1);
 dtrack=sentido_despl*ttrack+thetaold2(2);
new_theta2=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold2(9),T_CAM(:
,:,i));
 theta=[new_theta2 thetaold2(9)];

 %%%% better kF?
 inv_kF_orig=inv_kF2;
 Calculo_de_Condicionamentos_kF_para_plotear
 inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont);
 if inv_kF_despues_fuzzy<inv_kF_orig
 sentido_despl=+1;
 thetamesa=thetaold2(1);
 dtrack=sentido_despl*ttrack+thetaold2(2);
new_theta2=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold2(9),T_CAM(:
,:,i));
 theta=[new_theta2 thetaold2(9)];
 Calculo_de_Condicionamentos_kF_para_plotear
 inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont);
 end

 %%%% repeated?
 inv_kF1=inv_kF_orig;

Appendices

313

 inv_kF2=inv_kF_despues_fuzzy;
 subo_inv_kF=1;
 while inv_kF2>inv_kF1
 subo_inv_kF=subo_inv_kF+1;
 thetamesa=thetaold2(1);
 dtrack=subo_inv_kF*sentido_despl*ttrack+thetaold2(2);
new_theta2=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold2(9),T_CAM(:
,:,i));
 theta=[new_theta2 thetaold2(9)];
 inv_kF1=inv_kF2;
 Calculo_de_Condicionamentos_kF_para_plotear
 inv_kF2=inv_w_cond_plot_solo(cont);
 end

 if theta(4)<-2.5 | theta(4)>0.4 | theta(5)<-1.3 | theta(5)>1.3 |
abs(theta(7))<0.7 % comprobar que no he rebasado ningún limite
 theta=thetaold2;
 end
end

 Figuras_plots_para_el_estudio_idf

figure(5)
for i=1:size(T_CAM,3)
 point_TCP=[T_CAM(1,4,i),T_CAM(2,4,i),T_CAM(3,4,i)];
plot3(point_TCP(1),point_TCP(2),point_TCP(3),'+'); % TCP position
 %
point_HEADtool=[T_CAM(1,4,i)+T_CAM(1,3,i),T_CAM(2,4,i)+T_CAM(2,3,i),T_CAM(
3,4,i)+T_CAM(3,3,i)]; % tool head
 point_HEADtool=[T_CAM(1:3,4,i)+0.05*T_CAM(1:3,3,i)]'; % tool head
 line_tool=[[point_TCP];[point_HEADtool]];
plot3(line_tool(:,1),line_tool(:,2),line_tool(:,3),'r'); % tool vector
end
hold on
%%%%%%%%%%%%%%%%%
% tpeor=175;
%
plotbot_mdh2(KUKA_MDH_todo,q_plotbot(tpeor/5,:),'fw',T_brida_TCP_MDH,T_CAM
) %
% en tpeor pongo el tiempo en que la kf es mas mala. 5 es el incrtime que
% he usado
% plot(KUKA_SDH_todo, q_plot(tpeor/5,:));
%%%%%%%%%%%%%%%%%%
plotbot_mdh2(KUKA_MDH_todo,q_plotbot,'fw',T_brida_TCP_MDH,T_CAM)
% plot(KUKA_SDH_todo, q_plot);
hold off

%%% EJES MECANICOS, POR SEPARADO

figure(6)
hold on
 xlabel('Time t (s)')
 ylabel(['MECHANICAL \theta_M (º)'])
 plot(time,q_plotbot(:,1)*180/pi, 'r') % la mesa no tiene límite
hold off

 Appendices 314

figure(9)
hold on
 xlabel('Time t (s)')
 ylabel(['MECHANICAL d_L (m)'])
 plot(time,q_plotbot(:,2),'g'); % plot(time,0,'g'); plot(time,3,'g');
% rail y sus límites
hold off

figure(7)
hold on
 xlabel('Time t (s)')
 ylabel(['DEGREES MECHANICAL \theta_' num2str(3) '\circ, \theta_'
num2str(4) '\circ, \theta_' num2str(5) '\circ'])
 plot(time,q_plotbot(:,3)*180/pi, 'r'); plot(time,180,'r'); plot(time,-
180,'r'); % A1 y sus limites
 plot(time,q_plotbot(:,4)*180/pi, 'c'); plot(time,25,'c'); plot(time,-
145,'c'); % A2 y sus limites
 plot(time,q_plotbot(:,5)*180/pi, 'g'); plot(time,70,'g'); plot(time,-
210,'g'); % A3 y sus limites
hold off

figure(8)
hold on
 xlabel('Time t (s)')
 ylabel(['DEGREES MECHANICAL \theta_' num2str(6) '\circ, \theta_'
num2str(7) '\circ, \theta_' num2str(8) '\circ'])
 plot(time,q_plotbot(:,6)*180/pi, 'r'); plot(time,360,'r');
plot(time,0,'r'); % A4 y sus limites
 plot(time,q_plotbot(:,7)*180/pi, 'c'); plot(time,495,'c');
plot(time,225,'c'); % A5 y sus limites
 plot(time,q_plotbot(:,8)*180/pi, 'g'); plot(time,360,'g'); plot(time,-
360,'g'); % A6 y sus limites
hold off

figure(4)
hold on
 xlabel('Time t (s)')
 ylabel('1/Kf (Kf=Condition number(Frob))')
 plot(time,inv_w_cond_plot_solo,'g') % la cadena A1-A6 solamente
 % plot(time,inv_w_cond_plot_workcell,'g') % todo el workcell
hold off
 inv_kf_promedio=(sum(inv_w_cond_plot_solo))/(size(time,2))

 escribir_ncl

fi = fopen('salida.ncl', 'wt');
fprintf(fi, 'UNITS/MM\nMODE/MILL\nLOADTL/1, IN, 0, LENGTH, 0.000000,
OSETNO, 0\n');
fprintf(fi, 'CUTTER/20.000000, 10.000000, 0.000000, 0.000000, 0.000000,
0.000000, 75.000000\n');
fprintf(fi, 'LINTOL/0.030000\n');
fprintf(fi, 'MULTAX/ON\n');
fprintf(fi, 'RAPID/\n');
for k=1:(size(T_CAM,3)-1) % porque el ultimo punto no lo llego a usar
fprintf(fi, 'GOTO/%f, %f, %f, %f, %f,
%f\n',T_CAM(1,4,k)*1000,T_CAM(2,4,k)*1000,T_CAM(3,4,k)*1000,T_CAM(1,3,k),T
_CAM(2,3,k),T_CAM(3,3,k));

Appendices

315

fprintf(fi, 'EXTAXISTURN / %f\n',q_plotbot(k,1)*180/pi);
fprintf(fi, 'EXTAXISTRACK / %f\n',q_plotbot(k,2)*1000-3000);
end
fprintf(fi, 'MULTAX/OFF \nEND \nFINI \n');
fclose(fi)
open('salida.ncl')

	a_Portada_trasMMB.pdf
	b_agradecimientos_trasMMB2
	c_Resumen_abstract_resum_pp1-6_trasMMb
	d_indice_general_pp7-12_trasMMB
	e_indice tablas y algoritmos_pp13-14_trasMMB
	f_indice_figuras_15-24_trasMMB
	g_shortenings_pp25-26_trasMMB
	h_C1 INTRODUCTION_trasMMB2_pp27-36
	i_C2 KINEMATICS_reviewedMMB_pp37-88
	j_C3 WORKCELL CALIBRATION_reviewedMMB_pp89-124
	k_C4 CAM toPLATFORM POSTPROCESSING_reviewedMMB_pp125-156
	l_C5 RR SCHEMES_reviewedMMB_pp157-196
	m_C6 ANALYSIS AND RESULTS_reviewedMMB_pp197-240
	o_C7 APPLICATIONS_reviewedMMB_pp241-262
	p_C8 CONCLUSIONS_MMB_pp263-268
	w_Appendix I_trasPACOMMB_269_fin

