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RESUMEN 
El principal interés de la presente tesis consiste en el estudio e implementación 
de postprocesadores para adaptar las trayectorias generadas por sistemas de 
Fabricación Asistida por Computador (generalmente conocidos como 
plataformas CAM, Computer Aided Manufacturing) hacia una célula robotizada 
de ocho articulaciones, la cual está destinada al prototipado de piezas 3D 
diseñadas desde plataformas CAD (Computer Aided Design). Dicha célula la 
conforma un robot manipulador industrial de seis articulaciones rotativas, el cual 
está montado sobre un rail y sincronizado con una mesa giratoria. Para alcanzar 
el objetivo principal expuesto inicialmente, sucesivas tareas son llevadas a cabo. 
Cada una de éstas conlleva una metodología, objetivo y resultados parciales que 
se conjugan y complementan, a saber: 

- Se describe la arquitectura de la célula a niveles de posición y velocidad 
articulares para las resoluciones directa e inversa en ambos casos. El 
condicionamiento numérico de la matriz Jacobiana se describe como 
indice kinetostatico para evaluar la cercanía a configuraciones singulares. 
Éstas son analizadas desde un punto de vista geométrico. 

- Previo a cualquier mecanizado, las articulaciones externas adicionales 
requieren de una calibración realizada in situ, generalmente en el lugar 
de trabajo. Se ha desarrollado un novedoso método de Calibración sin 
contacto en base a restricciones planares para estimar los parámetros de 
configuración de las articulaciones externas, por medio de un sensor 
láser de desplazamiento.  

- Un primer control, a nivel de desplazamiento por medio de un motor de 
inferencia borrosa, es integrado en el postprocesador del sistema CAM. 

- Varios Esquemas de Resolución de Redundancias a nivel de velocidad 
articular son comparados para la configuración de un postprocesador. 
Estos esquemas tratan no solo con las articulaciones adicionales 
(redundancia intrínseca) sino también con la redundancia debida a la 
simetría de la herramienta de corte (redundancia funcional). 

- El uso de estos esquemas es optimizado mediante el ajuste de dos 
vectores de criterio de comportamiento (performance criterion vectors) 
relacionados con la evitación de singularidades y el mantenimiento de 
una postura de referencia preferente. Dos novedosos motores de 
inferencia borrosa ajustan activamente el peso (o relevancia) de cada 
articulación en estas tareas. 

El sistema completo resultante es validado en el prototipado real de un modelo 
orográfico y de una Falla Valenciana. 
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ABSTRACT 
The main interest of this thesis consists of the study and implementation of 
postprocessors to adapt the toolpath generated by a Computer Aided 
Manufacturing (CAM) system to a complex robotic workcell of eight joints, 
devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R 
industrial manipulator mounted on a linear track and synchronized with a rotary 
table. To accomplish this main objective, previous work is required. Each task 
carried out entails a methodology, objective and partial results that complement 
each other, namely: 

- It is described the architecture of the workcell in depth, at both 
displacement and joint-rate levels, for both direct and inverse 
resolutions. The conditioning of the Jacobian matrix is described as 
kinetostatic performance index to evaluate the vicinity to singular 
postures. These ones are analysed from a geometric point of view.  

- Prior to any machining, the additional external joints require a calibration 
done in situ, usually in an industrial environment. A novel Non-contact 
Planar Constraint Calibration method is developed to estimate the 
external joints configuration parameters by means of a laser 
displacement sensor.  

- A first control is originally done by means of a fuzzy inference engine at 
the displacement level, which is integrated within the postprocessor of 
the CAM software. 

- Several Redundancy Resolution Schemes (RRS) at the joint-rate level 
are compared for the configuration of the postprocessor, dealing not only 
with the additional joints (intrinsic redundancy) but also with the 
redundancy due to the symmetry on the milling tool (functional 
redundancy).  

- The use of these schemes is optimized by adjusting two performance 
criterion vectors related to both singularity avoidance and maintenance 
of a preferred reference posture, as secondary tasks to be done during the 
path tracking. Two innovative fuzzy inference engines actively adjust the 
weight of each joint in these tasks.  

The resulting whole system is validated in a real prototyping of an orographic 
model and a Valencian Falla.   
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RESUM 
El principal interés de la present tesi consistix en l’estudi i implementació de 
postprocesadors per a adaptar les trajectòries generades per sistemes de 
Fabricació Assistida per Computador (normalment conegudes com a plataformes 
CAM, Computer Aided Manufacturing) cap a una cèl·lula robotitzada de huit 
articulacions, la qual està destinada al prototipat ràpid de peces 3D dissenyades 
des de plataformes CAD (Computer Aided Design). Aquesta cèl·lula la conforma 
un robot manipulador industrial de sis articulacions rotatives, el qual està muntat 
sobre un rail i sincronitzat amb una taula giratòria. Per a aconseguir l'objectiu 
principal exposat inicialment, successives tasques són dutes a terme. Cadascuna 
d'estes comporta una metodologia, objectiu i resultats parcials que es conjuguen i 
complementen, a saber: 

- Es descriu en profunditat l’arquitectura de la cèl·lula, a nivells de posició 
i velocitat articulars, per a les resolucions directa i inversa en ambdós 
casos. El condicionament numèric de la matriu Jacobiana es descriu com 
índex kinetostatic per a avaluar la proximitat a configuracions singulars. 
Estes són analitzades des d’un punt de vista geomètric. 

- Previ a qualsevol mecanitzat, les articulacions externes addicionals 
requerixen d’una calibració realitzada in situ, generalment en el lloc de 
treball. S’ha desenrotllat un nou mètode de Calibració sense contacte 
amb restriccions planars per a estimar els paràmetres de configuració de 
les articulacions externes, per mitjà d’un sensor làser de desplaçament. 

- Un primer control, desenrotllat originàriament a nivell de desplaçament 
per mitjà d’un motor d’inferència borrosa (fuzzy), és integrat en el 
postprocesador del sistema CAM. 

- Diversos Esquemes de Resolució de Redundàncies a nivell de velocitat 
articular són comparats per a la configuració d’un postprocesador. 
Aquests esquemes tracten no sols amb les articulacions addicionals 
(redundància intrínseca) sinó també amb la redundància deguda a la 
simetria de la ferramenta de tall (redundància funcional). 

- L’ús d’aquests esquemes és optimitzat per mitjà de l’ajust de dos vectors 
de criteri de comportament (performance criterion vectors) relacionats 
amb l’evitació de singularitats i el manteniment d’una postura de 
referència preferent. Dos nous motors d’inferència borrosa ajusten 
activament el pes (o relevancia) de cada articulació en aquestes tasques. 

El sistema complet resultant és validat en el prototipat real d’un model orogràfic i 
d’una Falla Valenciana.   
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ABBREVIATIONS AND 
ACRONYMS  

 
At each chapter, the notation used is introduced in its respective context. 
Nevertheless, common acronyms and abbreviations along the present document 
are listed below for shake of clarity. 
 
AP, Accuracy of pose   
{B}, Base coordinate system 
CA, Circular Angle   
CAD, Computer Aided Design 
CAM, Computer Aided Manufacturing 
CIM, Computer Integrated Manufacturing  
CL-data, Cutter Location data  
CNC, Computer Numerical Control or Computer Numerically Controlled 
CP, Continuous Path  
DH, Denavit-Hartenberg   
DK, Direct Kinematics 
DKP, Direct Kinematic Problem  
DLS-inverse, Damped Least-Squares inverse 
DOF, Degree of Freedom 
EE, or {E}, End-Effector  
FL, Fuzzy Logics  
FLC, Fuzzy Logic Controller   
GAs, Genetic Algorithms  
GPM, Gradient Projection Method  
h, Optimized performance criterion vector or Performance vector   
H, Homogeneous Jacobian matrix  
HSM, High Speed Machining    
IDF, Design and Manufacturing Institute – Instituto de Diseño y Fabricación 
IK, Inverse Kinematics 
 , Joint Space 
J , Jacobian matrix  
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aJ , Analytical Jacobian   

gJ , Geometric Jacobian  

KRC, KUKA Robot Controller 
KRL, KUKA Robot Language  
L, Characteristic Length 
MF, Membership Function   
N, links of a manipulator 
NC, Numerical Control 
NLSQ, Non-Linear least squares  
NN, Neural Networks   
PKM, Parallel Kinematic Machines  
PTP, Point to Point 
rF, Functional Redundancy 
rI, Intrinsic Redundancy 
rK, Kinematic Redundancy 
ROB, Robotics 
RP, Rapid prototyping (Repeatability of Pose, at Chapter 3) 
RPY, Roll-Pitch-Yaw  
RRS, Redundancy Resolution Schemes  
SVD, Singular Value Decomposition  
T, Task Space 
{T}, Tool coordinate system 
TCL, Tool Command Language 
TCP, Tool Center Point  
TDM, Twist Decomposition Method 
UPV, Universidad Politécnica de Valencia  
VJM, Virtual Joint Method  
W, Wrist 
WPI, Weighted Pseudo-Inverse  
 , Operational Space 
6R, six revolute joints 
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CHAPTER 1. INTRODUCTION 

 

 

 
1.1 INTRODUCTION 

Initiated the 21st century, it is practically unbelievable the revolution 
experienced by the manufacturing technologies especially on last 10-15 years. 
The evolution of the computers, the machinery and the new communication 
technologies are revolutionizing the World in general, and especially the 
industry. 

In the field of milling concerning this thesis, the revolution has already 
come with terms such as High Speed Machining (HSM) or Rapid Prototyping 
(RP), which many factories start discovering right now. Nowadays, the HSM 
may have some different interpretations, but it does not necessarily mean to 
machine with a high spindle speed. For example, some HSM applications are 
carried out with moderate spindle speeds (3.000-6.000 rpm) but with tools of 
great diameter (25-30 mm) with more global depth per cut or step-over (see 
Chapter 4). Clearly, the triangle material-cutter-machine conditions the cutting 
parameters, the milling strategies, the volume of material removed per unit of 
time, etc. Thus, the speeds and feeds in the process will generally depend on the 
material to machine. Rapid Prototyping in industrial design and in mechanical 
design engineering is of increasing importance in order to get physical replicas of 
CAD (Computer Aided Design) defined models and to support the product 
development process, specially when the emphasis of the design is on the surface 
of the product more than the replication of an inner structure. Therefore, the RP 
referred here is done with soft materials, such as foams.  

At the same time, robotic arms are becoming more demanded in 
manufacturing processes involving large volumes, due to their high flexibility 
and large working areas. These properties are commonly increased with the use 
of additional joints carrying the arm or the workpiece, making up what is know 
as industrial robotic workcell. This holds in particular when the resulting 
prototypes are relatively large (normally, more than 0.5 metres).  

In this context, conventional Computer Numerical Control (CNC) 
machining techniques can be adapted from being devoted to high precision metal 
cutting to fast milling of soft material, thus making them suited for rapid 
prototyping. In fact, with the implantation of more sophisticated 
CAD/CAM/ROB integrated manufacturing systems, the time invested in 
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successive verifications, adjustments and translations in the machining process 
up to the materialization of the product is to be reduced. 

Leading commercial CAM (Computer Aided Manufacturing) softwares 
plan off-line the cutting toolpaths in a Cartesian coordinate system. Therefore, 
the tracking of the cutter is independent from the machine tool which will 
manufacture the workpiece (also due to reasons of precision and universality). 
These platforms are ready for the control and postprocessing of up to a maximum 
of 5-axis CNC machines. These five parameters are, namely: three pose 
coordinates of the tool center point (TCP) and two orientations of the milling tool 
(considering it symmetrical along its revolute axis). It supposes no indecision in 
tool positioning and orientation in conventional CNC machines but, in every 
case, the toolpath has to be postprocessed (i.e., adapted) to the production system 
that is going to be used.  

This previous overview highlights that there is still tremendous scope for 
improvement in the basic machine modelling and postprocessing fields. 
Traditional CNCs are ill-suited to the demands of many of today's complex 
robotic workcells. At the Design and Manufacturing Institute, in the Universidad 
Politécnica de Valencia (IDF-UPV), a sculpturing robot system has been 
configured in order to test and to apply milling methods for rapid prototyping. An 
industrial arm with six revolute joints is mounted on a linear track, and it works 
over a synchronized rotary table platform on which the initial blank of material is 
fixed. This provides a wider effective workspace, which is needed for handling 
large objects with complex shapes. 

The main difficulty of postprocessing a toolpath generated by a CAM 
platform for a complex robotic cell focuses on the treatment to give to the 
redundant joints in order to avoid singularities and limits of range. With the 
inherent redundancy stated previously, the aim is to reach the successive poses of 
the toolpath in the Cartesian space. This postprocessing stage raises two 
differentiated tasks referring to both cutter pose and manipulator posture: 

 Translation of the cutter poses generated by the CAM platform in 
agreement with the requirements of the robot language. 

 Kinematic analysis of the cell for a certain requirement of the cutter pose, 
in order to include the treatment of the robot posture with the additional joints.  

The second task arises from the fact that, with the inherent capacity to 
avoid non-desired postures, the set of possible configurations is now infinite. 
Several robot manufacturers solve the problem only by means of graphic 
interfaces as an intermediate step between the CAM platform and the robot 
execution. In these interfaces, an expert technician fixes the additional joints and 
checks the movements of the arm along the tracking, in order to know if a limit 
of range or a singular configuration is reached at any point. Experience and 
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knowledge of the technician in charge of the manufacturing process allow 
profiting from the employment of the additional joints in these cases. However, it 
is a tedious job. 

This thesis focuses on the application of industrial robotic workcells to 
the rapid prototyping of 3D CAD-defined products. It revises diverse methods to 
deal with the postprocessing stage from the CAM software to the redundant 
workcell. It also presents an effective implementation of a CAM-ROB integrated 
postprocessor for a fully automatic off-line generation of the robot instructions 
based on both the posture and joint velocity analysis, attending to different 
criteria.  

 

1.2 STATE OF ART AND CURRENT TENDENCIES  

The following lines mark the current trends in the context of this thesis, 
on the basis of a reflection on the latter bibliographical references. Together with 
others, they will be recounted in the thematic area of each Chapter. 

On the employment of robotic worcells for robotic rapid prototyping 
applications, Joe Campbell, director of strategic alliances of KUKA Robotics 
Corp. (Clinton Township, MI), already affirmed a few years ago [1] that “we're 
seeing this transition now where robots should plough being used for to lot of 
machining processes, in softer materials and prototyping. This is an area that was 
previously dominated by machine tools”. This trend has been supported in other 
similar analyses, among which Fei et al. [2] (May 2010) can be highlighted in 
view of its proximity to the core matter of this thesis. Nevertheless, the scope of 
this thesis goes beyond the merely treated by the above-mentioned authors, since 
it deals with other topics such as calibration and the underlying redundancies in 
complex workcells. Due to the multidisciplinary character of the study, the 
author has chosen to realize the state of the art and bibliography in relation to 
each Chapter. 

The reader will understand that certain topics of the mechanics, robotics 
and classic mechatronics have been widely recorded and checked from the 50s. 
Some of these concepts will be raised at Chapters 2 and 3. Obviously, the sources 
to which the thesis will refer in those associate chapters can come from the above 
mentioned years though the innovation lies in its application to the framework of 
this thesis. For example, this is the case of the condition number of the Jacobian 
matrix, proposed by Jorge Angeles in the early 90s, but which still maintains its 
presence in the contemporary research. In this sense, a brief stay has been done in 
the McGill’s Centre for Intelligent Machines (Montreal, Canada; 
www.cim.mcgill.ca), where Jorge Angeles directs his scientific research. Also in 
line with this, subsequent reviews of classic mechatronics applied to robot 
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milling can be found. It is the case of the recent publication of Xiao et al. [3]  
(January 2011) meantime the publication of this thesis. 

Directly from the previous topics, the optimization in the use of 
mechanical complex systems has promoted numerous studies. This way, Pin et 
al. [4] (2009) also uses the condition number for the control of a robot of seven 
rotary joints. The profuse review documented by Chiaverini et al. [5] reflects the 
fact that classical Jacobian formulations are still in the limelight. Some 
researches even stem towards the empirical evaluation of different performance 
indexes [6]. Also referred to optimization, and later used in this thesis, the use of 
the fuzzy logics is a burning topic, as the recent review realized by [7] shows. 

The recent studies on the optimal use of redundant robots in applications 
closer to milling ones are of major interest. The works of Huo et al. [8] about 
welding robots, Mitsi et al. [9] or Vosniakos and Matsas [10], Nemec and Lajpah 
[11][10], and Olabi et al. [12] are the most outstanding. 

As for future trends, attending to new demands that differ from the initial 
scope of this thesis (though it can be a point of departure) the recent publications 
of Neto et al. [13], Liu et al. [14] (about interfaces for the programming of 
industrial robots), and Sugita et al. [15] (about the applicability of CN generated 
robot toolpaths in surgery) are worth mentioning. 

 
1.3 OBJETIVES 

In 2006, the study of the CAM to robotics postprocessing with the IDF’s 
industrial workcell was established as the main goal for this thesis. At the 
beginning, as usual in research, the final objective seemed to be clear (i.e. be able 
to mill with the redundant robots recently updated by KUKA with the two 
additional joints). Later on, with the development of the study, further partial 
objectives appeared as a continuous of steps. 

The main objectives of this thesis are described as follows: 

 Going into the knowledge of the architecture of the automated industrial 
redundant workcells in depth, specifically about the: 

- Establishment of a full kinematic model of the robotic workcell for 
both direct and inverse, posture and velocity analysis (Chapter 2) 

- Study of different criteria (namely, indices) to establish the better 
performance of the robot posture (Chapter 2) 

- Revision of the singularities concerning the work with this type of 
wokcells (Chapter 2).  

- Calibration of the external joints added to the main robotic arm to 
form the industrial workcell (Chapter 3) 
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 Describing a complete postprocessing methodology from CAM systems 
to NC controllers, improving (and unifying in some cases) previous works. Those 
controllers manage machine tools or robots (Chapter 4). 

 Giving a complete guide on the types of redundancy in industrial robots 
devoted to milling tasks and the Redundancy Resolution Schemes (RRS) 
associated (Chapter 5). 

 Implementation and comparison of the most suitable RRS (Chapter 6). 

 Raising solutions to two different applications: the milling of both an 
orographic model and a valencian ninot, thus having a test and evaluation of the 
implementation done (Chapter 7). 

 

1.4 METHODOLOGY  

As stated in the previous Section, the followed methodology arises from 
the partial proposed aims. In turn, these ones have appeared in correspondence 
with partial needs: 

- The kinematic modelling of the workcell arises as direct subtask, for 
the need to simulate the robot and to be able to establish an off-line path 
planning in a PC. In short, a good model is what allows the required 
abstraction in the in the theoretical workframe of this thesis. 

- Without losing of sight the real aim of milling, the task of calibration 
is carried out close to the real robot. Because of the production and 
assembly, the true geometric parameters of an industrial robotic workcell 
are different from the corresponding ones used by the robot kinematic 
model. It results in errors in the tool poses. Model-based robot 
calibration methods are studied to minimize those pose errors through 
identifying the true geometric parameters of the workcell based on the 
measurements of strategically planned toolpaths and the mathematical 
solutions of non-linear least squares optimization. 

Those previous works were the basis to keep working with the workcell, 
and also to deep on the pros and cons of working with an industrial controller. 
Nevertheless, the final aim toward obtaining a feasible implementation was 
always kept in mind.  At this point, the research was done in two parallel ways: 
on one hand, the existing CAM postprocessors and their capabilities to be 
reprogrammed were analyzed. In this sense, NX (licensed at the IDF) proved to 
be one of the most user-friendly programmable commercial platforms. To get 
expertise, technical advice was needed in some cases, as it is recognised in the 
acknowledgements Section at the beginning of the thesis. On the other hand, the 
mathematical models of the workcell found its uses in the Redundancy 
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Resolution Schemes that were to be integrated with the path tracking generated 
by the CAM 

After all this previous work, the evaluation of the implemented models 
was carried out by means of a theoretical problem in 5-axis milling, i.e. the 
machining of an spherical surface, prior to the practice with real cases. 

From the author’s point of view, one of the strong points of the present 
document is the complete troubleshooting through the multidisciplinary 
approach done. Obviously, the structure of the thesis is conceived by chapters 
approaching each of the above mentioned matters, as it is described in the 
following Section,. This structure coincides with the temporary sequence of the 
studies. 

 
1.5 STRUCTURE 

The current thesis is planned in eight chapters, including this one. 

Chapter 2, Workcell Kinematics Characterization, can be considered as a 
requirement prior to the development of the study. In summary, it consists of 
going into the redundant workcell architecture and the related problematic facts 
in depth. Therefore, this chapter also includes a state of art related to this. 

In this sense, the state of art associated to each of the objectives tackled 
in successive chapters is made, mainly, in the first pages of each one. This also 
allows channelling their development.  

At Chapter 3, Workcell calibration, a Non-Linear Least Squares (NLSQ) 
identification model has been derived from the consistency conditions of three 
orthogonal a pattern planes that are swept by a laser displacement sensor 
mounted on the manipulator. This non-contact calibration scheme can be 
implemented autonomously. It is expected to be suitable for on-site calibration in 
an industrial environment of the external joints introduced in Chapter 2. 

Chapter 4, CAM to Workcell postprocessing, lays the necessary 
foundations for the knowledge of integrated production systems. In this chapter, 
the fundamentals of CAM systems and CNC are described, to finally raise the 
concept of postprocessing. This chapter ends with particular specifications 
related to the system NX-CAM and the KUKA workcell used in the IDF. 

On the scope of the thesis, due to the fact that the workcell is redundant, 
Chapter 5 compiles and classifies different types of redundancy and describes the 
different methods for redundancy resolution (namely, Redundancy Resolution 
Schemes, RRS) that can be considered for postprocessing labours. 

From the previous chapters, several implementations for the particular 
IDF’s redundant workcell are done in Chapter 6. The first implementation 
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consists of a postprocessor based on the analysis with logic fuzzy of the inverse 
kinematics (IK) of the robotic arm posture. This allows getting on in 
postprocessor programming labours. Nevertheless, with the limitations found for 
complex millings (large workpieces or milling with variable tool orientation), the 
acquired practice is then invested in the implementation of the RRS based on the 
control at joint rate level. 

Chapter 7 applies the postprocessor implemented to two practical cases: 
the machining of an orographic surface of big dimensions, and the one of a 
valencian ninot with variable tool orientation. 

Finally, the most relevant conclusions are outlined in Chapter 8. A series 
of feasible future works departing from the current investigation is also proposed.  
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WORKCELL KINEMATIC  
CHARACTERIZATION 

“And thems the breaks / For 
we designer fakes / We need 

to concentrate / On more 
than meets the eye” –  

20 years (Placebo) 
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CHAPTER 2.  WORKCELL KINEMATIC CHARACTERIZATION 

 

 

 

2.1.  CONCEPTS ON MANIPULATOR KINEMATICS 

A manipulator is a device that helps human beings to perform 
manipulating tasks. A robotic manipulator is to be distinguished from the 
previous for its ability to lead itself through computer control. Once 
programmed, it can implement the same task repeatedly. In general, robotic 
manipulators can be studied using the concept of kinematic chain. A kinematic 
chain is a set of rigid bodies, also called links, coupled by kinematic pairs.  

A kinematic pairs is the coupling of two rigid bodies so as to constrain 
their relative motion. There are two basic types of kinematic pairs, namely, upper 
and lower kinematic pairs. An upper kinematic pair is obtained through either 
line contact or point contact, and thus, appears in cam-and-follower, gear trains, 
and roller bearings, for example. A lower kinematic pair occurs when contact 
takes place along a surface common to the two bodies. From the six common 
lower kinematic pairs (planar, spherical, cylindrical, revolute, prismatic, and 
helicoidal) [10][11], prismatic and revolute are the most employed in industrial 
manipulators (both allowing only one degree of freedom, DOF), Figure 2.1. 

 

Figure 2.1 Left, Prismatic (P) and Revolute (R) joints at an industrial workcell. 
Right, detail of the construction of a revolute joint . 
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2.1.1.  Joint variables (generalized coordinates) 

 This thesis focuses on serial manipulators, i.e., simple open kinematic 
chains. In such manipulators, there are exactly two bodies with a degree of 
connectivity1 of one, called end-bodies, and all the other bodies with a degree of 
connectivity of two. One end-body is arbitrary regarded as fixed and is named the 
Base {B}, while the other end-body is regarded as movable and is called the 
moving body, or the end-effector (EE) of the manipulator, Figure 2.2.  

A total of 6N coordinates are required to specify the position and 
orientation of all the N links of a manipulator relative to a coordinate frame 
(namely, the posture of the manipulator). Since the links are coupled together, 
the 6N coordinates can be expressed as functions of a minimum set, nq R .  

 T

1 2 3 nq = q  , q  , q  , . . . , q ; dim( )n n    (2.1) 

The q joint variables of the manipulator, that are all independent, are 
known as generalized coordinates, and the motions associated with them are 
consistent with the constraints. The value n is the degree of freedom (DOF) for 
that system, and is the sum of DOF of each joint. We will refer   to as the joint 
space, whose dimension is n; and general n-axis manipulator to as any serial 
robot having such a dimension. 

 

 

Figure 2.2. Generalized coordinates in a planar manipulator 

 

                                                      

1 The degree of connectivity of a body is defined as the number of bodies directly connected to the said body 
through kinematic pairs. 
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2.1.2.  Operational coordinates 

The operational coordinates of a robot are the m components of the 
vector mx R  that specifies the position and the orientation (namely, pose) of the 
EE of the robot in the physical space (namely, operational space,  ) with regard 
to an operational frame of reference (Base, {B}), generally Cartesian: 

 T

1 2 3 mx =  x  , x  , x  , . . . , x  (2.2) 

In case of the general movement of the terminal organ in the 3D space, 
depending on the type of coordinates of orientation that are in use, m might be 
major than six. Nevertheless, since it is preferable that above mentioned 
coordinates are independent, m generally will be equal to six. In such a case, 
three coordinates define the position of a point of the body (TCP or tool center 
point), whereas other three define the orientation angles around that point 
regarding one notation conventionalism, usually Roll-Pitch-Yaw (RPY) or 
whatever of the different Euler notations2.  

( , , , , , ) ; dim( ) 6x y z x y zx p p p m        (2.3) 

Nevertheless, in the mathematical background of the kinematic analysis 
of manipulators, it is also useful the homogeneous notation, in which the position 
and orientation of a coordinate system (usually the EE) refered to another 
(usually B), Figure 2.3, is expressed by means of a 4x4 matrix, B

ET , namely: 

x x x x

y y y y

z z z z

i j k p

i j k p

i j k p

0 0 0 1

B
ET

 
 
 
 
 
 

 (2.4) 

where the last column indicates the position of origin of {E}, EO , with respect to 
{B}, and the first three columns are the coordinates of the unitary vectors 
defining {E} projected onto {B} (see Figure 2.3). 

Specifically, when assuming a parallel-jaw gripper as the terminal organ 

of the robot,  i, j, k
  

will be referred to as  n, s, a
  

, regarding the expected 

                                                      
2 Due to the existing confussion found in Euler Angle notations, we will adopt the the KUKA KRC2 controller 
convenion. Thus RPY values are defined as three consecutive rotations in Z, Y and X axes, respectively, over 
the resulting moved axis after each rotation. [46] [http://en.wikipedia.org/wiki/Euler_angles]  
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motions in those respective directions normal, sliding (or open-close) and 
approach, Figure 2.3.  

  

Figure 2.3. Left, coordinate system {E} referred to {B} by means of  B
ET . Right, 

conventionalism in the specific case of the terminal organ of the robot. 

 

It is notable that in certain particular cases, the movement of the EE 
might not happen in the 3D space. In fact, for example, a flat movement of the 
terminal organ might be sufficient for some tasks. In such a case, the number of 
operational coordinates can diminish to 2 or to 3, depending on if the orientation 
is relevant or not for the task. This facts leads to what is named functional 
redundancy that will be further tackled in Chapter 5. 

 

2.2.  LEVEL OF KINEMATIC ANALYSIS 

To adequately control the position and orientation the robot during a task, 
kinematic models are required to establish the mathematics description of the 
mechanical systems. This kinematic analysis can be raised from three perpectives 
[1]: 

 The relations between joint positions and Cartesian positions of the EE, 
known as displacement analysis; 

 The relations between the time-rates of change of the joint positions, 
(joint rates), and the rate of the EE. This is known as velocity analysis; 

 The relations between the second time-derivatives of the joint positions, 
referred to as the joint accelerations, with the time-rate of change of the 
twist of the EE, known as acceleration analysis. 
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In the context of this thesis, only the displacement and velocity analysis 
will be considered as means of control an industrial manipulator at 
postprocessing milling tasks. There are two main reasons for that decision: the 
first one comes from the typical closed architecture of industrial manipulators 
(also from the practical point of view), only allowing the control by position 
parameters and velocity parameters within a range. The second reason is the type 
of work aimed to do, i.e., prototyping in soft materials at the velocities perfectly 
assumed by this category of robots (normally working at the 10% of the 
maximum possible velocity at pick and place tasks).   

 

2.2.1.  Direct and Inverse Kinematic Problem at the displacement level. 

Figure 2.4 represents the mapping between joint space and operational 
space at the displacement level. The Direct Kinematic Problem (DKP) is the 
mapping from Joint Space ( ) to Operational Space ( ), i.e., determining the 
pose of the EE (position and orientation) for a given manipulator in a given 
posture. On the contrary, the Inverse Kinematic Problem (IKP) is the mapping 
from   to  , determining the posture of a given manipulator for a given pose of 
its EE. 

 

 

Figure 2.4. Mapping between Joint Space ( ) and Operational Space ( ) done by 
the robot controller. 

 

The DKP can be written as a nonlinear algebraic system,  
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( ) ( )x DKP q f q   (2.5) 

where q  is a point in   and x  the corresponding point in  . The function 

DKP(·) allows the computation of the operational space variables x  from the 
knowledge of the joint space variables q . For the straightforward3 problem 
stated in (2.5), the Denavit-Hartenberg (DH) model [1][34] is employed in this 
thesis due to its simplicity and popularity in the robotics community4 (see Section 
2.4.2. ). 

Alternatively, the IKP is also written as a nonlinear algebraic system of 
the form 

1( ) ( )q IKP x f x   (2.6) 

At the displacement level, the DKP is straightforward and admits a single 
solution, i.e., a point in   represents a unique pose of the EE in  . In general, 
the IKP is much more complex and challenging since it requires the solution of a 
highly non-linear algebraic system, for which no analytical closed-form solution 
exist for a general 6R manipulator. Several or even infinite number of solutions 
may exist (in the case of a redundant manipulator, see Chapter 5). Thus, some 
suppositions must be done to discriminate a valid solution. In these cases, also 
the mechanical joint limits of real robots may reduce the number of reachable 
solutions.  

Several methods have been described to analytically solve the IK by 
means of numerical or graphical methods, and they are revised in [1]. Instead, 
many manipulators in industry have three last succeeding revolute joints with 
their axes intersecting at a point (W), as shown in Figure 2.5. Pieper [8] showed 
that a 6R manipulator, termed as decoupled manipulator or wrist-partitioned, 
always has closed-form solutions.  

Tsai and Morgan [13] found that, although the number of real-significant 
solutions changes from case to case, the total number of significant solutions 
(real and complex) for all the 6R manipulators is 16, but it is reduced to 8 
significant solutions for the decoupled cases (Figure 2.6).  

                                                      
3 Note that the DKP solution may be computed for any manipulator, irrespective of the number of joints or 
kinematic structure. All these calculations can be easily programmed, being common the use of the Robotics 
Toolbox for Matlab [36] or Hemero [37], as shown in Figure 2.22. 

4 Two differing methodologies have been established for assigning coordinate frames, resulting in a standard-
DH notation [1][34] and a modified-DH (MDH) notation [35]. However, in many studies this differentiation is 
not noted leading to some confusion.  
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Figure 2.5. General architecture of a 6R decoupled manipulator [1], and the 
equivalent representation (with the mechanical sense of rotation) for the KUKA 
KR15/2 manipulator. 

 

 

Figure 2.6.  Left, eight significant solutions for a decoupled 6R manipulator; Right, 
view of a KUKA KR 15/2 adopting several of these postures. 
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2.2.2.  Kinematic analysis at joint-rate level. 

Differential kinematics of robot manipulators was first introduced by 
Whitney [9]. He proposed to use differential relationships to solve the joint space 
motion from a given Cartesian space motion of the EE, namely, the resolved-
motion rate control. 

 

i) DKP at joint-rate level. 

The relationship between the EE velocity and the joint velocity is 
represented by a linear algebraic equation, namely  

·t J q   (2.7) 

Equation (2.7) states the DKP at joint-rate level, or forward 
kinematics problem. The coefficient of the linear equation is the Jacobian 
matrix ( J ), which is a non-linear function of joint angles. This matrix 
maps the joint rates, grouped into the n-dimensional vector 1[ ,..., ]T

nq q q   , 

into the EE velocity, represented as the m-dimensional twist array t , or 
twist  vector [1], namely 

t
v

 
  
 

 (2.8) 

with   and v  denoting the angular and linear velocities of the EE 
reference frame relative to the fixed base frame {B}, respectively.  

;
x x

y y

z z

v

v v

v


 



   
       
      

 (2.9) 

 

ii) IKP at joint-rate level 

Equation (2.7) implies that if the joint velocities q  are known, 
then the twist of the EE can be obtained. Most often, the inverse problem is 
required, i.e. given the desired twist of the EE the aim is to obtain the joint 
velocities, with J known. 

In the case of non-redundant robots, J is a square matrix; hence, 
the solution can be found as  
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1·q J t  (2.10) 

From a practical point of view, this approach is evaluated 
numerically for a given posture of the robot since the symbolic handle of 
J is cumbersome due to the trigonometric entries of this matrix [11]. 
Actually, 1J   does not need to be calculated explicitly if the LU-
decomposition method [2] is used to solve the system of equations [1]. 

As the value of J changes with the movement of the robot, at 
certain postures it may not have inverse (being the det( ) 0J  ). Those 
postures, namely singular configurations, will be treated later in this 
Chapter. 

Another difficulty in solving the inverse problem arises in the case 
of robots having a value of  m n , in the sense of (2.1) and (2.3). From a 
practical point of view, those manipulators (described later as redundants, 
see Chapter 5) have a not-square matrix J (with more columns than rows). 
Thus, the system of equations is underdetermined having infinite possible 
solutions.  

The solution q that better fits all the equations of the system (2.10) 
with a minimum least squares criterion can be achieved with the use of the 
right Moore-Penrose pseudo-inverse5 ( †J ) 

  1† T TJ J JJ


  (2.11) 

†·q J t  (2.12) 

Equation (2.12) minimizes the Euclidean norm of the residual, 

2
·J q t that brings ·J q  “as close as possible” to t . In short, (2.12) results 

in a minimum-norm solution. It has been broadly used at the velocity level 
to minimize

2
q , which can be viewed as a minimization of energy 

consumption [12].  

                                                      
5
 Given an mxn matrix B, the Moore-Penrose generalized matrix inverse is a unique nxm matrix pseudoinverse 

B†. The Moore-Penrose inverse satisfies 

BB†B = B ;    B†BB†= B† ;    (BB†)T = BB† ;    (B†B)T = B†B 

It is also true that z = B†·c is the shortest length least squares solution to the problem Bz = c 
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Nevertheless, a homogeneous component can be added to (2.12) in 
order to optimize a secondary task with an additional criterion (at the cost 
of giving up the minimum-norm solution). Thus, this general non-
minimum-norm solution can be written as: 

 Homogeneous solutionMinimum-norm solution

† †· ( )q J t I J J h  


  
(2.13) 

In this case, some other criteria can be applied, which usually 
consider a second task to be performed by the robot. These methods fall 
into what is named Redundancy Resolution Schemes, and they will be 
analysed at Chapter 5. 

 

iii) The Jacobian matrix 

It is noticeable that there are two different conceptions for the 
Jacobian matrix ( J ), namely, the geometric and the analytical Jacobian. 
Mainly, they differ on the method for expressing the rotation velocity of 
the operation point [11][14][16].  

The analytical Jacobian ( aJ ) can be obtained by differentiation of 
the m functions {f1, …, fm} of the DKP of position, eq. (2.5), that is,  

1 1

1

6

1

...

( ) ...

...

n

xn
a

m m

n

f f

q q
f

J q R
q

f f

q q

  
       

   
   

   (2.14) 

However, it is computationally cumbersome to try to evaluate the 
analytic Jacobian matrix.  

In 1972, Whitney [15] proposed the geometric Jacobian ( gJ ) 

matrix to simplify the computation6. For the sake of brevity, brief but well-
known indications to obtain gJ  are extracted from [1]: in summary, the gJ  

matrix of a general n-axis manipulator has the form  

                                                      
6 For sake of brevity, we will refer Jg as J indistinctly 
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1 2[ ... ]g nJ j j j  (2.15) 

For revolute (R) and prismatic (P) joints, the 6-dimensional ith 
column of gJ , ji (i = 1, ... ,n), is given as 

0
: ; :i

i i
i i i

e
R j P j

e r e

   
       

 (2.16) 

where ei is the unit vector parallel to the axis of the ith revolute joint, and ri 
is the vector from any point on that axis to the considered operational point 
( in the EE), as shown in Figure 2.7. 

 

 

Figure 2.7. Vector assignment to calculate the Jacobian matrix in a standard 6R 
industrial manipulator (only r1 and r2 shown for clarity). 

 

 Consideration to wrist-partitioned manipulator Jacobian 

In the decoupled manipulators introduced at the end of the section 
2.2.1. , the positioning and orienting problems can be considered 
separately. In fact for many tasks, if W is the EE reference point, arbitrary 
displacements can be assumed as the translation of point W combined with 
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the orientation of the EE reference frame, whose origin is W. Indeed, the 
wrist is also named spherical because, when W is fixed, then all points on 
the wrist move on spheres centred at W.  

As the determinant of the Jacobian of a six-axis robot is invariant 
under a change of the EE reference point [1][14]. In some cases can be 
useful the consideration of W as this point. By following the method 
previously described, we note that the location of W in the base reference 
frame is independent of last three joint angles. In the most common case of 
a 6R decoupled manipulator we have:  

1 1 1 2 2 2 3 3 3Wv q e r q e r q e r         (2.17) 

ri being the position vector of W with regard to any point on the first three 
axes, and ei the direction vector of the axes, both expressed in coordinates 
of the base frame, Figure 2.8. 

 

 

Figure 2.8. Vector assignment to calculate the Jacobian matrix in a wrist-
partitioned 6R industrial manipulator, taking into account the decoupling. 

 

The angular velocity vector,  , of the EE reference frame whose 
origin is on C can be written as the vector sum of the contributions of the 
angular velocities of the individual joints: 
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1 2 6 1 1 2 2 6 6... ...q e q e q e              (2.18) 

Finally, Jacobian takes the form 

1 2 3 4 5 6 11 12

1 2 3 3 3 3 21 3 3

          

   0 0x x

e e e e e e J J
J

e r e r e r J

   
         

 (2.19) 

From (2.7), the problem stated to these robots can be resumed as 

11 12

21 3 30
pos

W x ori

J J q

v J q

     
     

     




 (2.20) 

where q  has been separated into posq  and oriq  to denote the three-

dimensional vectors of arm and wrist joint rates, respectively.  

Thus, the velocity inversion of this type of manipulators can be 
done by means of: 

1
21

1
12 11

·

·( · )

pos W

ori pos

q J v

q J J q







 



 
 (2.21) 

 

2.2.3.  Singular configurations. 

The singular configurations of a manipulator are those postures in which 
the geometric Jacobian matrix becomes rank-deficient. By the fact, when J is 
rank-deficient the mobility of the kinematic chain is reduced, i.e., at least one of 
the possible motions of the EE in   disappears.  

In the case of non-redundant manipulators (with square Jacobian), the 
determinant of J is zero. It is remarkable that J has not inverse at those postures, 
and infinite solutions to the IKP may exist. Similarly, when computing the active 
joint velocities with the pseudoinverse of J in a redundant serial-link 
manipulator, the singularity arises when J loses its full rank. 

From a computational point of view this implies that the system cannot 
be solved for q , and the control of the robot becomes problematic. In the 
neighbourhood of a singularity, a small variation in the Cartesian movement of 
the EE may cause large velocities in the joints. Actually, J raises its condition 
number, which causes great imprecision when solving (2.10). This aspect will be 
tackled later in this Chapter (see Section 2.3.2. ) 
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Singularities can be classified in two categories (Figure 2.9): 

 Boundary singularities: when the manipulator is outstretched or 
retracted. They are easily avoided on condition that the robot is not 
working near the limits of its reachable workspace. 

 Internal singularities: they occur inside the reachable workspace. 
Generally they are consequence of the alignment of two or more motion 
axes. These singularities constitute a serious problem in many off-line 
planned operations, as many milling tasks which are in the scope of this 
thesis. 

 

 

Figure 2.9.  Up, boundary singularity achieved by fully extension of the robot; 
down, internal singularity consequence of the alignment of qi and qj motion axes. 

 

The possibility that a manipulator adopts an internal singular configuration 
during the execution of a task was raised in one of the first works about 
kinematic modelling of manipulators [15]. Later on, many authors have 
dealt with the characterization of the singular configurations of 
manipulators [18][17], and others have also considered the prevention of 
these configurations and the better conditioning number of the Jacobian 
matrix as criteria for the design of manipulators [1][19][20][21][22]. Due 
to its relevance, several implications of the singularity configurations will 
be revised in Section 2.3.  

 

i) Consideration to wrist-partitioned manipulator singularities 

For the sake of this thesis, special attention is given to decoupled 
manipulators, whose singularities have already been a major research area.  

In practice, all industrial models get blocked near a singular 
configuration to avoid a possible damage of the internal mechanisms. 
Despite this fact, operating manuals give either an insignificant treatment 
of this subject, or none at all [30]. Most users of 6R robots are only     
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acquainted with the operating manuals of their specific robot, but not of the 
specific literature, which generally requires an advanced level of 
mathematical and geometric knowledge. 

Hayes et al. [18] made a revision of the concept for such 
manipulators, but also giving a geometric interpretation of how the 
singularities arise, given the structure of the associated Jacobian. From 
(2.19), it is clear that  

12 21det( ) det( )·det( )J J J   (2.22) 

Moreover, many of these manipulators follow a common structure 
with the first axis constantly pointing along the Z-axis of the base frame 
{B}, and both axes 2 and 3 parallel to each other and to the XY-plane of 
{B}, see Figure 2.8. Thus, (2.19) can be expressed as 
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 (2.23) 

and (2.31) is reduced to calculate 
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
   

 



 (2.24) 

By analysing the conditions that voids each factor, we get the well 
known following singularities:  

 

i.a) Elbow singularity 

Without loss of generality, the robot can be considered at the posture in 
which 2e  is parallel to the YZ plane of {B}. In this case,  
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 2 0 1 0
T

e   (2.25) 

Thus, equation A  vanishes when 

2 3 3 2 2 3 2 3

2 2 2 2

3 3 3 3

0 / /

·cos( ) ·sin( )

·cos( ) ·sin( )

z x z x z z x xr r r r r r r r

r q r q

r q r q

    

 
 (2.26) 

In general it is satisfied whenever 2r and 3r  are aligned, but considering 
the joint limits and interference, elbow singularity is therefore restricted to 
satisfy 3 2q q  . 

For the scope of this thesis, we note that the elbow singularity surface 
represents the limits of the workspace (previously termed as boundary 
singularities). Clearly, elbow singular configurations can be easily 
anticipated and avoided by keeping the EE at a safe distance from its 
limits. 

 

i.b) Shoulder singularity 

Vanishing of the factor B means 

1 2 2 1 0y x y xr e e r   (2.27) 

If 2xe  or 2 ye  vanishes (and being aware of the fact that, in those cases, 

2 1ye   or 2 1xe  , respectively) then B will vanish only if 1 0xr  or 

1 0yr  , respectively.  

It means that point W lies in the YZ-plane, or ZX-plane respectively, of 
the Base frame {B}. Because of the construction of common 6R 
manipulators, W is consequently supposed to be on the Z-axis in this 
plane. If neither 2xe  nor 2 ye  vanishes, then (2.27) must accomplish 

1 0xr  and 1 0yr  . Again, it forces W to be on the Z-axis of the Base 

frame (see Figure 2.10). 
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i.c) Wrist singularity 

Looking at C in eq. (2.24), we note that the vanishing of this depends on 
the relative orientation of the last three axes (4, 5 and 6). Without loss of 
generality, we can consider axis 4 to be fixed relative to the others and the 
base frame, for example. 

 4 1 0 0
T

e   (2.28) 

Thus, the condition to satisfy, C=0, is reduced to 

5 6 6 5 0z y z ye e e e   (2.29) 

Because of the construction of the wrist, axes 4 and 5 as well as axes 5 
and 6 are always perpendicular. Again, without loss of generality, we can 
suppose axis 5 satisfying one of these two cases (namely, (a) and (b)), 
both perpendicular to axis 4, and the consequences for (2.29) in each case 

 
 

5( ) 6 6 6

5( ) 6 6 6

0 1 0 0· ·1 0 0

0 0 1 1· ·0 0 0

T

a y z z

T

b y z y

e e e e

e e e e

     

     
 (2.30) 

As stated before, because of the construction of the wrist, we note that 
factor C vanishes in every case by taking 6 4e e . 

As a conclusion, the condition for wrist singular configurations is only 
satisfied when axes 4 and 6 are parallel (see Figure 2.10). 

For the scope of this thesis, we note that this condition can be satisfied in 
the entire reachable workspace (i.e., is an internal singularity), being the 
one most problematic in milling tasks consisting of a path tracking 
generated by a CAM system. 
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Figure 2.10. From left to right, elbow, shoulder and wrist singularities. 

 

2.3.  KINETOSTATIC PERFORMANCE INDICES. POSTURE-
DEPENDENT INDICES. 

The fundamental purpose of the kinematic chain of a robotic manipulator 
consists of driving the EE in the workspace with an efficient controlled 
movement that allows carrying out a task. As stated in the previous section, there 
exist certain configurations of these architectures that originate a poor 
performance of the robot. Tasks carried out near these configurations can mean, 
for example, an excessive operation of the actuators, the inability to realize 
locally some movements, or a low precision in the positioning of the terminal 
tool. Paul and Stevenson [23] named such configurations as degenerated.  

It seems to be desirable to have a characterization of the kinematic 
performance of a manipulator, which can help to typify the configurations that, in 
contrast with the degenerated ones, originate an optimal running of the robot. 
Angeles [1] defines the kinetostatic performance index of a robotic mechanical 
system (kinetostatic index for brevity), as “a scalar quantity that measures how 
well the system behaves with regard to force and motion transmission, the latter 
being understood in the differential sense, i.e., at the velocity level”.  

It is enormous the relevance of these indices in the field of robotic 
design, but also as a criterion for robot control. For the sake of this thesis, in the 
following section we revise some posture-dependent indices that will be 
considered as a performance criterion for the calculation of the ideal 
emplacement of a manipulator on a redundant workcell, in order to perform a 
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task. We focus the discussion below to only two indices, namely, manipulability 
and kinetostatic conditioning index.  

 

2.3.1.  Manipulability 

Although several authors [24][25][26] made first approaches in the topic 
of the kinematic performance, the concept of manipulability was introduced by 
T. Yoshikawa [27].  Previously, Paul and Stevenson [23] had used the absolute 
value of the determinant of the Jacobian to measure the kinematic performance of 
spherical wrists. They termed as degenerated any configuration that approach a 
value of zero passing a threshold, namely   

det( ) ; 0.5J    (2.31) 

although no clear justification is presented for using 0.5 in this relationship. 

In the vicinity of this condition, they observed that the terminal organ is 
very poorly sensitive to the joint motions. In contrast, they noticed that a 
manipulator using only configurations with high values of   worked in an 
efficient way. Figure 2.11 highlights the idea of two degeneracy cones 
corresponding to a spherical wrist (only the cone affecting the operational 
configurations within the mechanical limits is depicted). They also noticed that 
the maximum range of possible work of the spherical wrist is got with its three 
axes mutually orthogonal. 

 

Figure 2.11 Unusable orientation workspace (or degeneracy cone) due to singularity 
in a spherical wrist [23]. This cone, exaggerated in scale, is generated by the axis of 
the last joint at the limit of eq. (2.31). 
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Yoshikawa [27] defined the manipulability as the square root of the 
determinant of the product of the manipulator Jacobian by its transpose.  

det( )TJJ   (2.32) 

It can be noted that, for a square Jacobian, (2.32) is identical to the 
absolute value of the determinant of the Jacobian and hence it coincides with 
Paul and Stevenson's performance index.  

It is possible to get a geometric interpretation of the concept of 
manipulability (Figure 2.12). From the fact that (2.7) maps q  into t , we can 
factor J into an orthogonal matrix (R) and a positive-semidefinite7 matrix (U), by 
invoking the polar-decomposition theorem, namely 

J RU  (2.33) 

Thus, we can interpret a concatenation of two mappings of the form 

·
y Uq

t J q
t Ry


   


  (2.34) 

 The U matrix maps the unit m-dimensional ball into an m-axis ellipsoid 
(whose semiaxis lengths bear the ratios of the eigenvalues of U, which 
are the same that those of J).  

 The matrix R maps this ellipsoid into another one with identical 
semiaxes, but rotated or reflected, depending upon whether R is proper 
or improper orthogonal8 (Figure 2.12).  

For evaluation purposes, the Jacobian of a serial manipulator can be 
studied as mapping the unit ball in the space of joint rates, that is 

2 2 2 1/ 2
1 2( ... ) 1nq q q q        (2.35) 

into a rotated or reflected ellipsoid in the space of Cartesian velocities, known as 
manipulability ellipsoid.  

                                                      
7 A positive semidefinite matrix is a Hermitian matrix all of whose eigenvalues are non-negative. 
(http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html)  

8 Improper rotations can be represented by orthogonal matrices with determinants of −1. 
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In this context, the value of the manipulability (  ) is the product of the 
eigenvalues ( ) of J (or U) and is proportional to the volume of the ellipsoid in 
the space of Cartesian velocities. 

1 2det( ) det( ) · ·...·T T
mJJ UU       (2.36) 

 

 

Figure 2.12. Highlights of the two mappings U and R, between spaces of dim=3. The 
axis of the sphere are oriented along the three eigenvectors of U. 

 

Hence, it also can be observed as a measure of the efficiency of the 
transformation of the articulate speeds into the terminal organ velocities in the 
different directions of the operational space. If J is singular, then at least one 
semiaxis vanishes and the ellipsoid degenerates into a disk (without volume). 
Manipulators at singular configurations thus have a manipulability of zero. 

Finally, if the kinematic chain of a manipulator contains a part that 
essentially contributes to the positioning of the EE, and another segment that 
deals basically with its orientation, then the manipulability calculated by means 
of (2.32) theoretically would allow to evaluate globally the efficiency with which 
the translation displacements take place so much as those of rotation of the EE. 
Nevertheless, due to the lack of homogeneity of J, this index turns out to be 
inappropriate to evaluate in an effective way both types of displacement. 
Considering this, in a later work [28] Yoshikawa proposed two complementary 
indices: one to quantify the translational manipulability and other one to evaluate 
the rotational manipulability. Both are calculated applying (2.32), but for the case 
of the translational manipulability it uses the sub-matrix of J21 of eq. (2.19), 
proceeding in an analogous way for the rotational manipulability. These indices 
of translational and rotational manipulabilities only apply in case of decoupled 
robots. 
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2.3.2.  Condition number of J 

The manipulability previously introduced points to evaluate the 
kinematic invertibility of J  at (2.10). However, Angeles [1][22] observed that in 
some circumstances the determinant of a matrix is meaningless in assessing the 
invertibility of that matrix. Chiaverini [32] remarks that the manipulability 
measure may remain constant even in the presence of significant variations of 
either the condition number or the smallest singular value of J. As a 
consequence, a kinetostatic index should not be founded on the determinant of J  
(or on the determinant of the product TJJ ). 

In the numerical analysis, the condition number associated with a 
problem is a measure of its adequacy to digital computation, that is, how 
numerically well-conditioned the problem is9. In particular, the condition number 
of J, ( )k J , can be considered as the rate at which the solution of (2.7), q , will 

change with respect to a small change in t , but also gives an upper bound for the 
roundoff-error amplification in the solution, by (2.37). Then, it is noteworthy that 
the notion of matrix conditioning also can be used to estimate the kinematic 
sensitivity [3] in resolution of (2.7). 

, error of the joint rates       
( ( ))· ; with 

, error of the rates in the EE

qq t
C J q

tq t

 



 





 (2.37) 

Thus, if the condition number is large, even a small error in t  may cause 
a large error in q , and the problem is said to be ill-conditioned. On the other 

hand, if the condition number is small then the error in q  will not be much 
bigger than the error in t  and the problem is said to be well-conditioned.  

As a conclusion, it is desirable for the robot to work at any postures 
minimizing ( )k J , as it determines the robustness against manufacturing, 
assembly, or joint-encoder errors [19].  

 

i) Inhomogeneity of J, and Characteristic length 

As introduced in the previous section, in many cases the definition 
of the condition number also has to deal with the lack of homogeneity of J. 
That is the case of manipulators for both positioning and orientation tasks, 

                                                      
9 Note that this is before any effect of round-off error is taken into account, i.e. conditioning is a property of the 
matrix J, not the algorithm or accuracy of the computer used to solve (2.7).  
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in which for every column of J, eq. (2.16)-(R), the first three entries are 
dimensionless while the last three have units of length. 

In order to avoid this dimensional inhomogeneity, given the 
descriptive geometric parameters of a robot (the DH model introduced in 
Section 2.2.1. ) we can evaluate the characteristic length (L) of the robot 
[19][29] by which we divide the Jacobian entries that have units of length 
(2.38). In this way we get a homogeneous Jacobian (H), whose associated 
condition number becomes meaningful. 

1 2[ ... ]; 1
i

n i

i i

e
H h h h h

e r
L

 
  
 
 

 (2.38) 

The characteristic length is defined as “the normalizing length that 
renders the condition number of the Jacobian matrix a minimum” [1]. For a 
given manipulator by its DH parameters, L and hence its minimum 
condition number can be obtained by an optimization method described in 
[19] as direct problem.  

 

ii) Formula for the condition number of J 

The condition number of a dimensionally homogeneous Jacobian 
(H) is  

1( ) ·k H H H   (2.39) 

where ||·|| represents any matrix norm. Due to its lower 
computational cost10 compared with other widely used norms, Angeles [1] 
suggests adopting a weighted11 Frobenius norm, namely 

                                                      
10 The computation of kF requires only the inversion of a positive-definite 6x6 matrix. On the contrary, the 
computation of k2, with the matrix 2-norm, requires an iterative procedure to calculate the eigenvalues of HHT. 
[22] 
11 In the weighting factor considered, m refers to the dimension of the operational space, which is 3 for 
positioning tasks and 6 for positioning and orientating tasks (as the applications to be discussed in this Thesis) 

   1 1T T

F
H tr H H tr HH

m m
   (2.40) 
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This norm is invariant under isometric transformations (reflections 
or rotations) of the m-dimensional operational space. It means that a frame-
invariant condition number will be obtained. 

As stated previously, for non-redundant manipulators H is square, 
and hence the condition number is 

1 11
( ) · ( )· [( ) ]

6
T T

F F F
k H H H tr HH tr HH    (2.41) 

However, for redundant manipulators H  is rectangular. 
Nevertheless, the calculus can be tackled with its right pseudo-inverse 
( †H ) as defined in (2.11). Thus, (2.39) applies with †H  instead 1H  . It is 
easy to prove that applying (2.40) we get 

† 1 11
( ) [( ) ]

6
T T T

F F
H H HH tr HH    (2.42) 

Then, it is concluded that (2.41) is an expression valid for any 6xn 
matrix, with 6n  . 

In spite of the norm used, the value of the condition number will be 
comprised from one to infinity (1 k   ). It attains the value of unity for 
matrices with non-zero identical eigenvalues (which we saw that map the 
unit ball into another ball, Figure 2.12). Such matrices are called isotropic. 
As a consequence, Angeles [1] terms as isotropic manipulator all those 
whose Jacobian matrix is isotropic at certain postures (thus, induce the 
smallest possible roundoff-errors). On the other side, singular matrices 
have a singular value that vanishes, and then their condition number is 
infinite.  

 

iii) Consideration to wrist-partitioned manipulator singularities 

From (2.21), we observe that the accuracy of the computed joint 
rates depends only on blocks 12J  and 21J . As 12J accounts for the 
orientation of the EE, it seems to be logical to call the conditioning 
associated this submatrix as the orientation conditioning. Analogously, 

21J accounts for the positioning of W (Figure 2.8) and so, the conditioning 
associated with this submatrix is termed the position conditioning [22]. 

Angeles and Rojas [31] (also Angeles in [1]), shown that an 
orthogonal wrist such as the described in section 2.2.3. (i.e. first and 
second axes of the wrist  as well as second and third axes of the wrist being 
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always perpendicular) attains an orientation conditioning of unity if the 
joint between the last two links is at a right angle. In this case, the wrist is 
postured so that its three axes are mutually orthogonal12, as shown in 
Figure 2.13. 

 

Figure 2.13. Best orientation conditioning in an orthogonal wrist, as used at many 
industrial wrist-partitioned manipulators. 

 

It is remarkable that the calculation of the condition number of spherical 
wrists is straightforward, as all entries of 12J  are dimensionless. In the case of 

commonly 6R decoupled manipulators, all the entries of 21J  associated with the 
three-revolute positioning axes have units of length and hence calculation of the 
condition number is also straightforward. As stated in section 2.3.2. -i), problems 
arise when considering general six-axis manipulators for both positioning and 
orientation tasks, dealing with the homogeneization of J by means of the 
characteristic length, L.  

Finally, Angeles [22] shown that wrist-partitioned manipulators having 
isotropic arm and wrist subchains do not have an overall isotropic Jacobian 
matrix. 

 

2.4.  KINEMATIC CHARACTERIZATION OF AN INDUSTRIAL 
WORKCELL. 

As this thesis focuses in integrating a CAM system with a robotic 
workcell, further transformations will require knowledge of the architecture of 

                                                      
12 As not all the partitioned wrists can attain a condition of unity, but the success of the orthogonal wrist in 
industry is an example of mechanical desing instinct leading to an optimal desing (since these wrist were 
introduced in the robot market before the condition number and the isotropy became a criteria) 
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the workcell in order to solve the mappings previously introduced in Section 2.2.  
The following characterization will be distinguished for the robotic workcell 
placed at the Intituto de Diseño y Fabricación (IDF), since it is the employed in 
next Chapters to study the postprocessing of milling toolpaths. 

 

         

Figure 2.14. Left, complete view of the KUKA robotic workcell at the IDF-UPV 
(Robot A, left; Robot B, right); Right, top view of the robot B synchronizaed with 
the rotary table.  

 

2.4.1.  Components of the numerically controlled KUKA workcell 

The workcell being studied at the IDF consists of a 6R KUKA KR15/2 
manipulator synchronized with a rotary table on which milling operations will be 
carried out, in addition to the linear track on which it is mounted (Figure 2.14). 

Both additional joints, with the other 
six rotary joints of the main robotic 
chain, complete a workcell with eight 
degrees of movement.  

The exposed configuration 
provides a high degree of flexibility in 
milling works due to its large working 
areas and multiple possible 
configurations obtained with the 
additional joints.  

 

i) KUKA KRC2 controller  

It contains all the components 
and functions which are required to 
operate the robot. It comprises the 
computer and power units, which are 
both installed in a common control 

 

Figure 2.15.  KUKA KRC2 controller 
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cabinet [33] (see Figure 2.15 ). 

 

ii) KUKA KR15/2 manipulator 

It is an industrial decoupled 6R manipulator widely used for pick-
and-place, assembly or welding tasks (see Figure 2.16). This model, of 235 
kg weight, is characterized for its repeatability (<±0.1 mm) and velocity 
(up to 2 m/s) for low payloads (up to 15 kg). The robot consists of a base 
frame, on which the rotating column turns about a vertical axis together 
with the link arm, arm and wrist. The wrist is provided with a mounting 
flange for the attachment of the EE (e.g. grippers, welding or milling 
tools).  

          

Figure 2.16. Parts of the KR15/2 manipulator and main dimensions.    

 

The rotational axes and directions of rotation in motion of the robot 
are depicted in Figure 2.5, within the ranges specified at Table 2.1. and 
Figure 2.16. 

 

Axis Range of motion Max. speed 

1 ±185º 152 º/s 
2 -145º to +25º 152 º/s 
3 -120º to +160º 152 º/s 
4 ±350º 284 º/s 
5 ±135º 293 º/s 
6 ±350º 604 º/s 

Table 2.1. Range of motion referred to the mechanical zero of the robot axis 
concerned. It is limited by means of software switches on all joints. 
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iii) Additional linear axis 

The KL 250 is a self-contained one-axis linear unit. It is operated 
as the External Axis 1 (E1) of the robot and is controlled by the KRC2 
control cabinet. For shake of brevity, in this thesis this joint and the value 
of its motion are indistinctively designated as Ld .The main components 
are depicted in Figure 2.17.  

 

            

Figure 2.17. Linear unit as an additional axis (External Axis 1 or E1), with which the 
robot can be moved translationally ( Ld ). 

 

The movement range is restricted by programmable software limit 
switches and is additionally safeguarded by mechanical stops if these limit 
switches are overrun. 

 

iv) Additional rotary table  

The CR250 rotary table is formed by a base frame in which an AC 
servomotor drives the operating surface. It is operated as the External Axis 
2 (E2) of the robot and, like E1, it is also controlled by the KRC2 control 
cabinet. For shake of brevity, in this thesis this joint and the value of its 
motion are indistinctively designated as M . 
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Figure 2.18. Rotary ( M ) table CR250 (External Axis 2 or E2). 

 

2.4.2.  Direct Kinematic model of position 

The DH model previously introduced in Section 2.2.1. is represented as a 
4×4 matrix T that results from the product: 

1

1

n
i

iT A  (2.43) 

T defines the transformation of the n-link associated coordinate frame into the 
coordinate frame associated to the base {B} of the robotic arm. Ai designates the 
DH transformation matrix relating frame i to frame i−1. The nth link frame 
coincides with the EE’s coordinate frame.  

Figure 2.19 illustrates the spatial relative position of two consecutive 
links and their associated coordinate frames. The DH model adopts four 
parameters (ai, αi, di, θi) to describe the transformation, including translations and 
rotations, from one link (i−1) to the next (i). The first parameter, ai, represents 
the length of common normal of the two link axes. The second parameter, αi, 
denotes the angle between the two link axes. The remaining two parameters 
describe the relative position of two adjacent links, which are provided by their 
distance di and their rotation angle θi.  
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Figure 2.19. Spatial relative position of two consecutive links and their associated 
coordinate frames according to the DH criterion. 

 

After the DH coordinate frame is constructed for each link, the 
transformation from one link to the next is described by the following 
homogeneous matrix:  

1
1 1Rot( , )Trans( , )Trans( , )Rot( , )

cos cos ·sin sin ·sin ·cos

sin cos ·cos sin ·cos ·sin

0 sin cos

0 0 0 1

i
i i i i i i i i i

i i i i i i i

i i i i i i i

i i i

A Z Z d X a X

a

a

d

 

     
     

 


  

 
  
 
 
 

 (2.44) 

For a revolute axis θi is the joint variable and di is constant, while for a 
prismatic joint di is variable, and θi is constant. In particular, all the parameters 
describing the KUKA KR15/2 are summarized as follows: 
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Figure 2.20. and Table 2.2 Frame assignments and parameters for the KUKA 
KR15/2 with the standard DH. The posture shown corresponds to a commonly used 
HOME13 position (θi ={0, -π/2, 0, 0, π/2, 0} in this model, for i=1,…, 6) 

 

In the complete workcell studied, it was done the assignment shown in 
Figure 2.21. In this case, the complete workcell can be assumed as rotating 
around the workpiece coordinate system placed on the working space (table). 
This consideration is going to simplify further calculations from a pure kinematic 
perspective. The posture shown corresponds to a commonly used HOME 
position (in this model, θi ={ π, π, -π/2, 0, 0, π/2, 0} for i=M, 1, 2,…, 6; and 
dL=0) 

                                                      
13 The HOME position is a well known posture of the robot, previous to any task to be done. 

Link 
αi 

(rads) 

ai 

(mm) 

θi 

(rads) 

di 
(mm) 

1 -π/2 300 θ1 675 
2 0 650 θ2 0 
3 π/2 155 θ3 0 
4 π/2 0 θ4 -600 
5 π/2 0 θ5 0 
6 0 0 θ6 -140 
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Link 
αi 

(rads) 

ai 

(mm) 

θi 

(rads) 

di 
(mm) 

1 π/2 803 θM -305   
2 π/2 0 0 dL 
3 π/2 300 θ1 -675 
4 0 650 θ2 0 
5 π/2 155 θ3 0 
6 π/2 0 θ4 -600 
7 π/2 0 θ5 0 
8 0 0 θ6 -140 

Figure 2.21. and Table 2.3. Frame assignments and parameters for the complete 
milling workcell at the IDF, formed by the KR15/2 manipulator mounted on the 
linear track and synchronized with the rotary table.  
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Figure 2.22. Workcell simulation in Matlab’s Toolbox HEMERO [37]. 

 

2.4.3.  Inverse Kinematic Problem (IKP) of position 

The IKP is interesting since, in practice, the task specifications and 
desired toolpaths in industrial applications are defined in the Cartesian 
Operational Space  , while the robot controller work at the Joint Space  . In 
the particular case of this research, CAM systems generate the tracking of the 
TCP in the Cartesian space for reasons of universality of this kind of data (prior 
to adaptation to any capable machine). This data is also related directly with the 
desired finish conditions which are mandatory in any milling task. 

As previously stated, the KR15/2 is a decoupled manipulator (Figure 
2.5). For the KR15/2 (and other rotary robot arms), various arm configurations 
can be defined according to human arm geometry and the link coordinate systems 
[38]. Thus, we can assume that this manipulator has eight significant solutions to 
the IKP (Figure 2.6). There are four solutions for the first three joints: two for the 
right shoulder arm configuration (Figure 2.6, 1-4) and two for the left shoulder 
arm configuration (Figure 2.6, 5-8). For each arm configuration, there are two 
sets of joint solutions to the last three joints of Figure 2.20: ({θ1, θ2, θ3, θ4, θ5, 
θ6}) and ({θ1, θ2, θ3, θ4+π, -θ5, θ6+π}) [40]. 

In general, IKP can be solved either by an algebraic, iterative, or 
geometric approach [41]. A brief discussion can be outlined about the better 
method: 

 The algebraic approach suffers from the fact that the solution does not 
give a clear indication of how to select the correct solution from the 
several possible solutions for a particular arm configuration [38][42][43].  

 The iterative solution often requires more computations and it does not 
guarantee convergence to the correct solution, especially in the singular 
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and degenerate cases. Furthermore, there is no indication of how to 
choose the correct solution for a particular arm configuration [38]. 

 If the manipulator under consideration is simple, that is, it is a decoupled 
model, then the geometric approach presents a better approach to get a 
closed-form solution [38][39]. 

The existence of mechanical joint limits reduces the number of reachable 
solutions for the given manipulator. Actually, due to the workcell distribution 
and mainly the kind of work carried out on the rotary table, the manipulator 
studied in this Section has little multiplicity when solving the IKP: according to 
the previous definitions, only the right and above arm solutions will be taken into 
account when solving the gross positioning (Figure 2.6, 1-2)14.   

 

i) Geometric approach for the IKP of position 

To practical effects, this Section will introduce a geometric 
approach to get a consistent joint angle solution of the KR15/2 manipulator 
for a desired pose of the EE. At this point, the full workcell has infinite 
solutions due to its redundancy given by the Ld  and M  joints. This fact 
can provoke problems since the system has to be able to fix one. This 
suggests that an entry argument for the positioning IKP could be the 
current location of the manipulator (i.e. Ld  and M  values), choosing the 
closest15 position in the space of joints (taking into account a free-collision 
workspace over the table) [41][44].  

Let θ1-θ6 be the numerical angle values of the articulations A1-A6 
(see Figure 2.5, right). The IKP consists of finding these values. To 
practical effects, the operator uses these values to decide the relocation of 
the manipulator with regard to the workpiece, by moving the additional 
joints (θM and dL).  

The first three joints have a planar structure that allows obtaining 
the first three joint values {θ1, θ2, θ3}. Likewise, the last three joint values 
{θ4, θ5, θ6} orientate the tool and the problem can be solved after 
determining the first three joint values. With the observations made there is 

                                                      
14 In the KR15/2 model, the internal configuration of an status parameter also controls the preferred posture  (a 
combination of bits which are used to deal with ambiguities in the axis position), see [30]. 

15 Nevertheless, the notion of "closeness" could be defined in several different ways. In this particular case, it 
could be profitable to establish a consideration so that the selection was favoring the movement of the 
manipulator instead of moving the biggest θM and dL joints, when this option exists. It is due to reasons of 
precision and economy in the articulate motions. 
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feasible the resolution of the IKP in order to implement an effective 
control. 

 

ii) Resolution of the gross positioning 

First, it is necessary to obtain the position of the wrist (W, Figure 
2.8) when the values that specify the position and orientation of the TCP in 
the Cartesian working space {B} (Figure 2.18) are known with the 
homogeneous transformation matrix: 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

0 0 0 1

B B B B
TCP x TCP x TCP x TCP x

B B B B
B TCP y TCP y TCP y TCP y

TCP B B B B
TCP z TCP z TCP z TCP z

n s a p

n s a p
A

n s a p

 
 
 
 
 
  

 (2.45) 

in which the nomenclature is inherited from Section 2.1.2. In case of 
mounting a milling tool ({T}) instead a parallel-jaw gripper, the 
conventionalism can be applied as depicted in Figure 2.23. In it, the 
position vector BpTCP points from the origin of {B} to the origin of {T} (the 
TCP). Also the nTCP (normal), sTCP (sliding) and aTCP (approach) vectors of 
{T} are depicted in Figure 2.23. 

Let 6ATCP be the homogeneous transformation matrix defining the 
position and orientation of the TCP ({T} frame) regarding the robot flange 
frame ({F} frame), see Figure 2.23. This data are directly obtained from 
the characterization of the tool in memory of the controller. With 
analogous nomenclature, it is possible to obtain the position and orientation 
of the robot flange {F} with regard to the base frame {B} on the table as: 

6 1
6 ·( )B B

TCP TCPA A A   (2.46) 

thus [42] 

6 6·B B
Wp p d z   (2.47) 

is the position of W regarding {B}. Then, it is necessary to express those 
coordinates in the robot base frame {R} (Figure 2.23) in order to be able to 
solve the geometric problem. Namely, 
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3 3

1 3

cos( ) sin( ) 0 0

[ ] sin( ) cos( ) 0 0[ ] [ ]
· ·

[0] 0 0 1 01 1

1 0 0 0 1

M M M

R B
x L M MW W

x M

d

I dp p

h

 
 

   
                     
   

(2.48) 

In the previous expression, dM and hM are constant design values of 
the workcell whereas dL and θM are the known external joint values. [I]3x3 
is the identity matrix of size 3.  

 

 
Figure 2.23. Design parameters of the workcell (hM , dM) and additional external 
joint values (θM , dL). Significant position vectors in the workspace are shown.  

 

Given RpW = [Wx, Wy, Wz]
T, the value of the first joint is calculated 

as: 

1= - atan2 ( ,  )       (rad)y xW W  (2.49) 
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where the sign of θ1 is due to the definition of the positive sense of rotation 
given by the manufacturer. 

Preliminary additional calculations are required to obtain the 
angles θ2 and θ3. According to Figure 2.24, the following parameters can 
be determined: 

Thus,   

    

 

Figure 2.24. The resolution by triangulation in the plane defined by {θ1, θ2, θ3}. 
Measurements in millimetres. 

 

2 2( ) 300x yp W W    (2.50) 

675zh W   (2.51) 

2 2(155 600 )a    (2.52) 

650b   (2.53) 

= atan2 ( ,  )       (rad)h p  (2.54) 

2 2c h p   (2.55) 
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Let s  be the semiperimeter of the abc  triangle, and r  the radius 
of the inscribed circle: 

Now α y γ can be identified as: 

Due to the fact that θ5 is measured up to the straight line between 
the joints A3 and A5 and not up to the side a  of the abc  triangle, it is 
necessary to consider the correction angle φ: 

Given α y γ and φ, it is possible to obtain: 

where the negative sign of θ2 is due to the fact that the robot is employed at 
negative ranges (Figure 2.24). 

 

iii) Resolution of the fine positioning 

Let {R’W} be a coordinated system coaxial with {R} and linked to 
the wrist W (Figure 2.25). It is possible to appreciate that, by means of a 
rotation in z' with value ρ 1= -θ1 followed by a rotation in y’’ with value 
ρ2= π/2 +θ2 + θ3 , it is achieved a coordinate system {R’’’W} whose axis 
y’’’ is coaxial with the axis of the joint θ5 and with z’’’ in the direction of 
the forearm from the joint θ3 to W. The homogeneous matrix that gives the 
position and orientation of {R’’’W} regarding {R} has the following 
structure: 

2

a b c
s

 
  (2.56) 

( )·( )·( )s a s b s c
r

s

  
  (2.57) 

α = 2· atan (r/(s-a))   (2.58) 

γ = 2· atan (r/(s-c)) (2.59) 

φ = atan (155/600) (2.60) 

2 ( ) ( )rad      (2.61) 

3 ( )rad       (2.62) 
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where '''
R

R WA  will be denoted as R
WA  for simplicity. The vector RpW is 

known by means of (2.46), and sub-matrix '''
R

R WR  is given by 

 

1 1 2 2

1 1

2 2

' ' '

cos( ) sin( ) 0 0 cos( ) sin( ) 0 0

sin( ) cos( ) 0 0 0 1 0 0
·

0 0 1 0 sin( ) 0 cos( ) 0

0 0 0 1 0 0 0 1

R
R WR

   

 

 





   
   
   
   
   
   

 (2.64) 

 

 

Figure 2.25. Obtaining the coordinate system {R’’’W} linked to W 

 

For the following calculations, it becomes necessary to obtain the 
orientation of the robot flange regarding {R’’’W}, that is: 

1
6 6( ) ·W R R

WA A A  (2.65) 

''' 3 3
'''

1 3

[ ] [ ]

[0] 1

R R
R R W x W

R W

x

R p
A

 
  
 

 (2.63) 
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Thus, the position of the robot flange {F} with regard to {R} is 
needed (see Figure 2.23). From (2.46), RA6 is obtained as: 

3 3
6 6

1 3

cos( ) sin( ) 0 0

[ ] sin( ) cos( ) 0 0
· ·

[0] 0 0 1 0

1 0 0 0 1

M M M

x L M MR B

x M

d

I d
A A

h

 
 

   
   
   
   
   
   

 (2.66) 

According to the way in which the coordinate system {R’’’W} has 
been defined, the axis z’’’ makes a distal sense (towards the end of the 
forearm). The axes of rotation of the last three joints intersect within W 
and the axes of rotation of the joints θ4 and θ6 match with z’’’, whereas the 
axis of rotation of θ5  matches with y’’’. Therefore, the angles θ4 θ5 and θ6 
can be deduced from WA6 and the definition matrix of Euler's rotations 
ZYZ: 

4 6 6-atan2( (2,3), (1,3))W WA A   (2.67) 

2 2
5 6 6 6atan2( ( (3,1)) ( (3,2)) , (3,3))W W WA A A    (2.68) 

6 6 6atan2( (3,2), (3,1))W WA A    (2.69) 

The negative sign of θ4 is due to the criterion of the mechanical 
axis of the robot. With these values of the six joints, the inverse kinematics 
of the robot KUKA KR15/2 is solved for programming control purposes. 

 

2.4.4.  Workcell Jacobian 

While most trajectory planning methods in Cartesian-coordinate level 
focus on position on the path followed by the operation point (the TCP), the 
essential inverse kinematic of a six-axis robotic manipulator for milling tasks 
requires the specification of the orientation of the EE as well.  

For some simple industrial labours, the position and the orientation tasks 
are separable; hence, the planning of the two tasks can be done independently. 
This is the case of usual pick-and-place operations done with common decoupled 
industrial manipulators. This kinematic analysis was introduced at the end of 
section 2.2.2. iii). More detailed explanation for an isolated KUKA KR15/2 
manipulator can be found in [14]. However, this separation is not possible for 
most robotic operations, and thus both tasks must be planned concurrently [1]. 
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Therefore, in the particular case of the workcell studied for milling tasks, (2.17) 
and (2.18) would become, respectively,  

1 1 1 2 2 2 3 3 3M M M L Lv e r v e e r e r e r                (2.70) 

1 2 3 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

M

M Me e e e e e e

       

      

       

              (2.71) 

where it can be appreciated the linear velocity contribution 2v  of the track. The 
6x8 Jacobian matrix (J) would be completed as done in (2.20), with 

   
 

11 1 2 3 12 4 5 6

21 1 1 2 2 3 3

0 ;M

M M L

J e e e e J e e e

J e r e e r e r e r

 

    
 (2.72) 

1 2 3 4 5 6

T

M Lv          
         (2.73) 

A common misconception in the robotics literature is to confuse aJ , 

which maps joint rates into the EE location velocities (eq. (2.14)), with gJ  

defined by Whitney and introduced in (2.15), which maps joint rates into the EE 
twist [11]. Thus, the difference between the two Jacobians is essential: aJ  is an 

actual Jacobian matrix, while gJ , properly speaking, is not [1]. 

From (2.5), a toolpath can be expressed as a function of the form 

( ) df q s  (2.74) 

In order to find aJ  in eq. (2.74), by application of the chain rule we get 

·a

f
f q J q

q


 


    (2.75) 

From the definition of f , we have that f  is the time-derivative of the 

pose array of the EE, i.e., ds . Moreover, it is well known [11] the relation 
between the two Jacobians, namely  

·a gJ M J  (2.76) 

with M defined as 



 Chapter 2. Workcell Kinematic Characterization 80 

0

0

Q
M

I

 
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 

 (2.77) 

where the sub-matrix Q takes on various forms, depending on the type of rotation 
representation adopted. Thus, from (2.76) we get 

· · · ·a g dJ q M J q s M t      (2.78) 

and, therefore, the time-derivative of the toolpath can be expressed as a linear 
transformation of the twist t of the EE, being it easier to compute with the 
appropriate gJ , i.e. mapping joint rates into the EE twist (as described at the first 

part of Section 2.2.2. iii). 
  

2.4.5.  Tool-holder characterization 

For the resolution of the DKP and the IKP it is necessary to establish the 
relationship between the robot flange and the TCP of the tool, i.e. the 6ATCP 
homogeneous transformation matrix defining the position and orientation of the 
TCP with regard to the robot flange frame (Figure 2.27). On delivery of the 
robot, the mechanical robot flange frame is located as shown in Figure 2.26. Note 
that the direction assigned to the Z axis is contrary to the rotation sense depicted 
in Figure 2.5, and therefore it is opposed to the natural one of the DH models of 
Figure 2.20 and Figure 2.21. 

 

 

Figure 2.26. Location of the robot flange frame on delivery.  
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Figure 2.27. Tool holder designed for milling tasks at the IDF. 

 

To practical effects, the KRC2 controller implements a routine to 
measure the tool by touching a fixed reference point at   with the TCP by four 
different orientations [45]. This measurement method, a calibration of the tool 
itself, follows the closed-loop chain methods described in Chapter 3. As a result, 
the controller memorizes the position and orientation of the TCP regarding the 
robot flange frame with 6 values: the position coordinates and the RPY16 values 
(ABC), as shown in Table 2.4. 

 
X -43.30 mm A -22.67º 
Y 17.30 mm B -19.52º 
Z 414.24 mm C -180.04º

Table 2.4. Position and orientation measured for the tool-holder regarding the robot 
flange frame. 

 

                                                      
16 In the KRC2 controller, the RPY values are defined as three consecutive rotations in Z, Y and X axes, 
respectively. 
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For the calculations considered in previous sections, 6ATCP is easily 
achieved: 

6

6 6
6 3 3

6

0.8697 -0.3856 0.3081 -43.30
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 (2.79) 

with    

6  = rotz(A) · roty(B) · rotx(C)=

cos(A) -sin(A) 0 cos(B) 0 sin(B) 1 0 0

sin(A) cos(A) 0 · 0 1 0 · 0 cos(C) -sin(C)

0 0 1 -sin(B) 0 cos(B) 0 sin(C) cos(C)

TCPR

     
           
          

 (2.80) 

As previously introduced, an additional rotation in the X-axis, rotx( )  
would be required to match both mechanical an DH-modelled {F} frames. 

For the scope of this thesis, the full DH model can be directly deduced 
from Figure 2.21 and Table 2.3, including the particular geometry of the tool, as 
depicted in Figure 2.28. Measures are directly obtained from the CAD model. 

 
Figure 2.28. and Table 2.5. Robot {EE} frame assignments and parameters for the 
complete DH model of the IDF workcell, with the tool holder designed for milling 
purposes. 

Link 
αi 

(rad) 

ai 

(mm) 

θi 

(rad) 

di 
(mm) 

1 π/2 803 θM -305    
2 π/2 0 0 dL 
3 π/2 300 θ1 -675 
4 0 650 θ2 0 
5 π/2 155 θ3 0 
6 π/2 0 θ4 -600 
7 π/2 0 θ5 0 
8 0.3564 0 θ6 -443.4 

TCP 0 0 0 -119.7 
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2.4.6.  Characteristic length L of the KUKA KR-15/2 

Given the manipulator DH parameters (section 2.4.2. ), finding its 
characteristic length L and, hence, its associated minimum condition number is 
known as the direct problem [19], as stated in section 2.3.2. -i). 

Prior to the formulation of the optimization problem at hand, it is 
remarkable that not all DH architecture parameters and not all posture variables 
influence the condition number adopted [1][19]. In fact, if a subset of the joint 
variables of a manipulator amount to a rigid-body motion of the overall 
manipulator, such as in the case of the prismatic joints of a Cartesian 
manipulator, then these joint variables do not affect the condition number of the 
manipulator [47]. Also, Khan [19] states that “the first joint variable of a serial, 
n-revolute homogeneous manipulator does not influence the condition number 
(kF or k2) of its homogeneous Jacobian; neither do the architecture parameters 

ld  and n .”  

Therefore, in the case of the first joint variable ( M , the rotary table), it 
is equivalent to a pure translation of the manipulator as if it was a rigid body. The 
linear track ( Ld ) also does a pure translation and, thus, it can be left apart when 
evaluating the conditioning of the manipulator managed. It also matches with the 
real purpose of the additional external joints, i.e. relocating the manipulator to get 
a more convenient (or better conditioned) posture of the  1 6, ...,   main chain. 

As a consequence, the straightforward problem of determining the characteristic 
length of the KR 15/2 will be planned as follows [19]. Taking into account 
Figure 2.20, let  

 max ,M MM a b  (2.81) 

with  

 1
max

n

M i
i

a b ,    
2

max
n

M i
i

b b  (2.82) 

From table 2.2 and with the value of M, it is possible to redefine a non-
dimensional DH table of the KR 15/2 as follows 

i
i

aa M ,   i
i

bb M  (2.83) 

for 1,...,6i  . 
Additionally, let 
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MM L  (2.84) 

with L being the still unknown characteristic length. Hence,  

i
i

aa L ,    i
i

bb L         ·i ia a M  ,    ·i ib b M     (2.85) 

for 1,...,6i  , which is a set of unknown dimensionless parameters as M  is still 
an unknown. Analogously, from the definition of the homogeneous Jacobian 
matrix (H), eq. (2.38), ih  can be redefined as 

·
·

ii
i i i

i i

er
M h

e ML
 


 

      



 (2.86) 

for 1,...,6i  . 
 Hence, to find the characteristic length L, all we need is to find the value 
of M  that will render the condition number of H a minimum with a suitable set 
of values for the last five joint variables. Let all these design variables be grouped 
in a design vector  x , namely (Figure 2.21) 

 2 3 4 5 6, , , , ,x M       (2.87) 

The value of vector x  is found as the solution to the optimization 
problem: 

2min ( )F
x

k H


        , with17 0M   (2.88) 

To practical effects, Matlab was used for solving the problem by means 
of the function fminsearch, which uses the Nelder-Mead simplex (direct 
search) method18. The algorithm and specific sintaxis can be resumed as follows 
(Figure 2.29). In each particular configuration of the tool holder, the 
characteristic length will be obtained by following the same scheme. 

For the generic KR 15/2, without any tool attached to the robot flange, 
the characteristic length obtained was L=350.6 mm and the best conditioning 
achieved was kF=1.2477, which corresponds with the posture depicted in Figure 
2.30. 

                                                      
17 2 ( )Fk H  is an even function of M , 2 2( ) ( )F Fk M k M  , and hence if M  is a solution to the optimization 

problem, then so is M . 

18 MATLAB Function Reference: fminsearch 
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Figure 2.29. Algorithm in Matlab to find the characteristic length (L) of a 
manipulator. In this particular case, table 2.2 refers to the KR 15/2 without any tool 
attached, giving a value of L=350.6 mm.  

 

 

Figure 2.30. Left, best conditioned poture for the 6R KR 15/2 manipulator without 
any tool attached to the robot flange. Right, same result obtained with the RSV4W 
[48].
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CHAPTER 3.  WORKCELL CALIBRATION 

 

 

 

3.1.  CONCEPTS ON ACCURACY CRITERIA AND ERROR SOURCES 

The international standard ISO 9283 [1] sets different performance 
criteria for industrial manipulators and suggests test procedures in order to 
obtain appropriate parameter values. The most important criteria, and also the 
most commonly used, are accuracy of pose (AP) and repeatability of pose (RP). 
It is well known that industrial robots have high RP but not AP [2] (Figure 3.1). 

 

 
Figure 3.1. Repeteability and accuracy issues for a commanded target. 

 

Repeatability is particularly important when the robot is moved towards 
the command positions manually (Teach-In, e.g. pick and place operations). 
Most of the robotic applications that capitalize on repeatability have already been 
done. However, if the robot program is generated by a 3D simulation absolute 
accuracy is particularly relevant (i.e., off-line programming of advanced precision 
applications, such as milling or even robotic surgery.). Both are generally 
influenced in a negative way by kinematic factors. Here especially the joint 
offsets and deviations in lengths and angles between the individual robot links 
take effect.  

It has been shown that as much as 95% of robot positioning inaccuracy 
arises from the inaccuracy in its kinematic model description, i.e., the parameters 
used to compute the position and orientation [3]. Consequently, a simple, fast and 
accurate robot geometric model adjusted through a calibration process is needed. 
The position and orientation of the robot is usually determined using forward 
kinematics with Denavit–Hartenberg (DH) parameters for each link of the robot. 
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Thus, robot accuracy ultimately depends on the accuracy of these DH 
parameters. 

Robot kinematic calibration is defined as a “process of improving robot’s 
EE positioning accuracy through modification of its kinematic control model 
without changing its hardware configurations” [4]. Basically it consists in 
identifying the differences between geometrical parameters of models given by 
manufacturers and those of the real robot. These differences come from 
imprecise knowledge of robot geometry: link length, angle between successive 
axes, joint off-sets, gear ratio. Some variation comes from the manufacturing 
process, primarily due to machining inaccuracy. Other variation comes from the 
assembly process, where the precise position and orientation of links and joints is 
not perfectly repeatable. Most manufacturers of robots do not focus on accuracy 
because if accuracy is achieved by higher tolerance in machining, the cost of 
robot increases spectacularly, affecting the sales negatively.  

As a consequence, a calibration approach to identify the DH parameter 
values is needed to advance the state of the art in robotics. After a calibration 
procedure, the robot controller can be updated with the correct robot-specific DH 
parameter values instead of the standard design values. This calibrated robot has 
a higher absolute positioning accuracy than an uncalibrated one, i.e., the real 
position of the robot’s EE corresponds better to the position calculated from the 
mathematical model of the robot. 

 

3.1.1.  State of art in robotic calibration 

There has been considerable research in the field of robotic calibration, 
as stated in [5]. Existing techniques can be classified into open-loop (or pose-
measuring) and closed-loop (or pose-matching) approaches [6]. 
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Figure 3.2. Several open (up) and closed (down) loop methods for robot calibration. 

 

On one hand, conventional open-loop methods involve measuring the EE 
pose, which traditionally requires expensive and complicated pose measuring 
devices (such as theodolites [7], inclinometers, coordinate measuring machines 
[8][9], sonic and visual sensors [10][11], and laser tracking system [12][13]). 
Therefore, the resolution of measurements near the EE is limited by the 
equipment used. It has been reported that partial pose information is sufficient for 
complete parameter identification [3]. Generally, these calibration methods 
involve the following procedures [4] (see Figure 3.3):  

a) Choose a proper kinematic model to describe the relationship 
between robot joint space   and its operational coordinates at 
 ;  

b) Take experimental measurements of robot EE locations using 
external measuring devices (the requirements of measurement 
phase are particularly demanding);  

c) Identify the parameter errors based on the differences between 
the measured locations and those predicted by the kinematic 
model.  

d) Implement the identified model in the robot controller (i.e., 
compensation).  
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Figure 3.3. Generic procedure in a robot calibration using an open-loop method [6] 

 

On the other hand, closed-loop methods are defined as the automated 
process of determining a robot's model by using only its internal sensors, and 
thereby, can be named self-calibrating or autonomous methods [3][14][15]. It has 
been observed that autonomous calibrations are possible for robot manipulators 
with either some a priori knowledge of the task constraint. These methods 
impose some constraints or some sort of motion on the EE, and the joint readings 
alone are used to calibrate the robot using kinematic closed-loop equations. A 
standard procedure is depicted in Figure 3.4. 

 

 

Figure 3.4. Generic procedure in a robot calibration using a closed-loop method [6]  

 

Some researchers in the past have used linear constraints allowing the EE 
to slide along a straight line, e.g., Newman et al. [14] used a laser line tracking in 
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the robot workspace. Bennett and Hollerbach [16] and Meggiolaro et al. [17] 
proposed a closed-loop calibration method in which the robot endpoint is fixed at 
a single point contact constraint, equivalent to a ball joint. In that case, the robot 
moves to different configurations that satisfy the contact constraint. However, it 
is difficult to move a physically closed kinematic chain from one posture to 
another while maintaining the physical constraints. Hence, it is difficult to collect 
accurate joint readings. A profuse description of the algorithms associated to the 
methods constraining the EE is carried out by Khalil et al. [18][19][20]. Gatla et 
al. [5] proposed a Virtual Closed Kinematic Chain method, in which the 
approach does not require any physical constraint. In this case, a laser tool is 
attached to the EE. This laser tool aims at an arbitrary but fixed point on a distant 
plane; thus, creating a virtual closed kinematic chain. The calibration procedure 
requires many different robot joint configurations and the process can be time-
consuming. The authors propose a feedback system in which a camera detects the 
laser spot on the plane and it is used as feedback to adjust the robot joint angles 
so as to move the laser spot to the desired fixed point. 

Ikits and Hollerbach [21] extended their Implicit Loop Method to the use 
of a planar constraint, where the robot endpoint is constrained to lie on a plane. 
Zhuang et al. [22] also imposed plane constraints on the EE positions. These 
authors showed that a single-plane constraint is normally insufficient for 
calibrating a robot. It was also shown that by using a three-plane constraint, the 
constrained system is equivalent to an unconstrained point-measurement system 
under certain conditions. The significance of this result is that the three-plane 
constraint setup can be used to successfully calibrate a robot. A profuse 
description of the planar methods is carried out by Khalil and his co-workers 
[19][20][23]. In the planar constraint methods, the use of a contact probe is 
problematic because it is difficult to be certain that the tip-point of the probe is 
exactly on the surface, neither above it nor indenting it.  

Based on the planar constraint procedure and the open-loop methods, a 
new robot kinematic calibration scheme is presented at Section 3.3.  It can be 
implemented autonomously and is suitable for on-site calibration in an industrial 
environment at regular intervals, in contrast with other open-loop methods 
requiring extensive human intervention and expensive or demanding devices 
such as those previously mentioned. By holding a laser displacement sensor, the 
robot sweeps three orthogonal constraint planes in its workspace while measuring 
the distance, which is supposed to be constant. Only the distance readings are 
recorded. A non-linear least-squares (NLSQ) identification model has been 
derived from the consistency conditions of the planes, and is presented. 
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3.2.  CALIBRATION. MATHEMATICAL BACKGROUND 

The robot errors gathered by pose measurements can be minimized by 
numerical optimization. For kinematic calibration, a complete kinematical model 
of the geometric structure must be developed, whose parameters then can be 
adjusted by mathematical optimization.  

In practice, for the general problem of calibrating a mechanical system, it 
can be shown that the main objective of the procedure consists on determining a 
best approximation of a calibration matrix, C, by taking many data samples of the 
actual variables and the real sensed variables: 

[ ] [ ][ ]Actual C Sensed   (3.1) 

Given a large number of sensor readings and the corresponding actual 
inputs, least-squares descent methods fitting these data points have demonstrate 
its convenience for solving the kinematical optimization problems [19][20][24]. 
The method of least-squares is used to approximately solve such overdetermined 
systems, i.e. systems of equations in which there are more equations than 
unknowns. This is done by creating a single matrix equation from linear 
approximations of the relationships between sensor responses and actual inputs.  

This procedure supplies corrected kinematical parameters for the 
measured machine, which then for example can be used to update the system 
variables in the controller in order to adapt the used robot model to the real 
kinematics. 

 

3.2.1.  Problem statement 

The objective consists of adjusting the parameters of a model function so 
as to best fit a data set. A simple data set consists of np points (data 
pairs) ( , )i i

Sq p , i = 1, ..., np; where iq  is an independent variable and i
Sp  is a 

dependent variable whose value is found by observation. This model function has 
the form 

1( ; ,..., ) ( , )i i i
M mpp f q f q     (3.2) 

where the mp adjustable parameters are held in the vector  . It is desirable to 
find those parameter values for which the model best fits the data. In summary, 
the common behaviour of the system to adjust can be described with the vector 
model function as well as the input and output vectors, as described: 
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1

1

1
1

1

( ,..., ) , ;
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( ,..., ) , ,

np T i k npxk

T mp
mp

np T i i i i l npxl
M M M M M M l M

np T i l npxl
S S S S S

q q q q R q R

R

p p p p p p f q R p R

p p p p R p R

   



  

 

    

  

 (3.3) 

The variables k, l, mp, np describe the dimensions of the single vector 
spaces. For a common manipulator we have: 

1 2 1 2

1,..., ; number of observations,

1,..., ;number of joints associated to each -observation (at ) 

                (e.g., ( , ) ( , ) for a 2-DOF manipulator),

1,..., ; ( 6) DOF's of the EE ob

i i i i

i np

t k i

q q

h l l

 


 


  served at  (e.g. ),

1,..., ;  number of model parameters to adjust.

xyzABC

j mp




 

A residual r is defined as the difference between the observed values of 
the dependent variable and the predicted values from the estimated model, 

1( , ); ( ,..., )i i i i i i T l
S lr p f q r r r R     (3.4) 

Minimization of the residual error ri for the purpose of identification of 
the optimal parameter vector   follows from the difference between both output 
vectors using the Euclidean norm. The least-squares method defines best as when 
the sum, Si, of squared residuals is a minimum. 

2 2 2

1

( ) ;
l

i i i i i i
S M h

h

S p p r r S R


      (3.5) 

Such in the case of robot calibration, a data point may consist of more 
than one independent variable. In the most general case there may be one or more 
independent variables and one or more dependent variables at each data point.  

 

3.2.2.  Solving the least-squares problem 

Least-squares problems fall into two categories, linear and non-linear. 
The linear least-squares problem has a closed form solution, but the non-linear 
problem does not and is usually solved by iterative refinement; at each iteration 
the system is approximated by a linear one, so the core calculation is similar in 
both cases. 
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The minimum of the sum of squares is found by setting the gradient to 
zero. Since the model contains mp parameters, there are mp gradient equations 
for each of the np data pairs ( , )i i

Sq p . 

2
i i

i

ij j

S r
r

 
 


   (3.6) 

and substituting (3.4) the gradient equations become 

( , )
2 0

i i

i
ij j

S f q
r


 
 

  
   (3.7) 

The gradient equations apply to all least-squares problems. Each 
particular problem requires particular expressions for the model and its partial 
derivatives. 

 

i) Linear least-squares 

A regression model is a linear one when the model function 
comprises a linear combination of the parameters, i.e. 

1

( , ) ( )
mp

i i i
M j j

j

p f q q  


   (3.8) 

where the coefficients, j , are functions of iq . 

Letting 

( , )
( )

i i
i i lxmpM h h

f hj hj
j j

p f q
J q R




 
 

   
 

 (3.9) 

be the Jacobian matrix of the model function (Jf), it can be shown that, in 
this case, the least-square estimated   is given by 

1( )T T
f f f MJ J J p   (3.10) 
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ii) Non-Linear Least-Squares (NLSQ) 

In a non-linear system, the derivatives i
jr    are functions of 

both the independent variable iq  and the parameters  , so these gradient 
equations do not have a closed solution. Thus, there is no closed-form 
solution to a NLSQ problem. Instead, initial values must be chosen for the 
mp parameters and numerical algorithms are used to find the value of the 
parameters   which minimize the objective. Then, the parameters are 
refined iteratively, that is, the values are obtained by successive 
approximation: 

( 1) ( )s s        (3.11) 

where s is an iteration number and the vector of increments,  , is 
known as the shift vector.  

In commonly used algorithms [19][20][24], at each iteration the 
model is linearized by approximation to a first-order Taylor series 
expansion about ( )s . 

( )
( ) ( )( , )

( , ) ( , ) ( )
i s

i i s s
j j

j j

f q
f q f q

   



  

  (3.12) 

Substituting at (3.4), the residuals are given by 

( )
( ) ( )( , )

( , ) ( )
i s

i i i s s
S j j

j j

f q
r p f q

  


 
      

   (3.13) 

In terms of this linearized model, for the l components of r, we 
define 

( )( , )
; ,

i i s
i i i i lxmph h

r hj f hj r f
j j

r f q
J J J J R


 
 

     
 

 (3.14) 

For each observed i-point, the Jacobian of the model function, Jf, is 
a function of constants (the independent variables and the estimated 
parameters) so it changes from one iteration to the next. Thus, 
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1 1

· · ; 1,...,
mp mp

i i i i i
h h r hj j h f hj j

j j

r p J p J h l 
 

           (3.15) 

with  

( )( , )i i i s l
Sp p f q R     (3.16) 

( )( )s mpR       (3.17) 

Substituting expressions (3.14) and (3.15) into the gradient 
equations (3.7) and setting the gradient to zero to get the minimum of the 
sum S of squared residuals (3.4), they become: 

  1 1

2 2 ·

0

ii mpl
i i i ih

h f hj h f ht j
h h tj j

i
j

rS
r J p J

S


 


 

  
           

    

  
(3.18) 

which, on rearrangement, become mp simultaneous linear equations, 
named as the normal equations. 

1 1 1

l m l
i i i i
f hj f t t f hj h

h t h

J J J p
  

     (3.19) 

The normal equations are written in matrix notation as 

( )T T
f f fJ J J p    (3.20) 

The superscript T denotes the matrix transpose. These equations 
form the basis for the Gauss-Newton algorithm for a NLSQ problem.  

 

3.2.3.  Gauss-Newton algorithm and its application to calibration algorithms 

The Gauss–Newton algorithm is a method used to solve NLSQ problems. 
It can be seen as a modification of Newton's method for finding a minimum of a 
function. Unlike Newton's method, the Gauss–Newton algorithm can only be 
used to minimize a sum of squared function values, but it has the advantage that 
second derivatives, which can be challenging to compute, are not required. 
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i) Description of the iterative method 

For calibration purposes, the above described algorithm can be 
extended when np functions r1, …, rnp of mp variables β = (β1, …, βmp) are 
given, corresponding to np observations done (with np ≥ mp). The Gauss–
Newton algorithm finds iteratively the minimum of the sum of squares 

 2

1 1 1

( ) ( ) ; ; ;
np np l

i i
h

i
i i h

S S r S R min S 
  

     (3.21) 

Starting with an initial guess (0) for the minimum, the method 
proceeds by the iterations 

( 1) ( ) ( 1) ( )s s s s              (3.22) 

where the increment   is the solution to the normal equations: 

( )T TW W W r    (3.23) 

The goal is to find the parameters β such that a given model 
function pM= f(q, β) fits best some data points ( , )Sq p , eq. (3.1). In robot 
calibration, r is the vector of functions ri, e.g. the residuals of the position 
and/or orientation. For each estimation of ( )s     

( ) ( ) 1( ) ( ) ( )( ) ( ,..., ) ( , )s s s n s T s
Sr p p p p f q         (3.24) 

To identify  , this equation can be performed for a sufficient 
number of np configurations, q.  

1( ,..., )n Tq q q  (3.25) 

The resulting linear system of equations will be represented by: 

( , )p W q      (3.26) 

W  is the Observation Matrix  [19] of dimension (np·l×mp) with 
np>>mp. 
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1 ( )

( )

( , )

...

( , )

s
f

n s
f

J q

W

J q





 
   
  

 (3.27) 

being it a composition of the Jf Jacobian matrices of the model function, 
( )( , )s

Mp f q  , for each observation, evaluated at β(s). 

Then, the increment   can be solved to get the least-squares 
errors solution as  

† ( )sW p    (3.28) 

where †W  is the left pseudo-inverse1 of W . 

† 1( )T TW W W W  (3.29) 

The geometric parameters   can be updated, eq. (3.22), after 

(3.28). By iteratively applying this procedure until the elements of   
become smaller than some prescribed limit. Therefore, a best-fit solution is 
obtained. The common sense criterion for convergence is somewhat 
arbitrary, as for example 

( )

0.001, 1,...,
s

j

j
s

j mp




 


 

(3.30) 

which is equivalent to specify that each parameter should be 
refined to 0.1% precision. This is reasonable when it is less than the largest 
relative standard deviation on the parameters. 

The procedure may not converge very well for some functions and 
it is often greatly improved by picking the initial value, (0) , close to the 

best-fit value. Equation (3.29) assumes that the inverse of the matrix TW W  
exists, as it can be considered for the postures adopted in a calibration 
procedure within the workspace range (for the scope of this thesis, over the 

                                                      

1 In fact [33], it verifies that ·W W I   
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table as depicted in following sections). A discussion of the singularity of 
this matrix is given in [25]. 

 

ii) Outline of the NLSQ Model-based calibration methods. 2D planar 
calibration example 

The aim of the calibration of the Denavit-Hartenberg (DH) 
geometric parameters by iterative methods is to minimize the difference 
between the measured EE location and the calculated location. Rearranging 
(3.20), a linear differential model defining the deviation of the EE location 
due to the differential error in the geometric parameters can be expressed 
as: 

fp J       (3.31) 

where: 

  defines the (mp x 1) vector of the errors of the geometric DH 
parameters to be adjusted. 
 p  represents the (l x 1) vector of the position and orientation error 

(difference between measured and calculated) with 6l   DOF’s in the 
Cartesian Operational Space  . 
 ( , )fJ q   is the (l x mp) Jacobian matrix of the homogeneous position 

matrix of the EE with respect to the DH geometric parameters. 

Eq. (3.31) gives l linear equations in the unknown vector  .  

In classical calibration methods, we need an accurate external 
sensor to measure the real EE position or location. If this sensor gives only 
the position coordinates of the EE, then only the first three equations of 
relation (3.31) will be used. In this case 3n >> mp observations are taken 
as general rule. Analogously, in a planar motion 2n >> mp observations 
are taken. The identifiable parameters must be carried out on the 
corresponding observation matrix. 

The exposed calculations can be tested in the calibration of a 2D 
planar manipulator. This mechanism can represent the two links defining 
the gross positioning in the KUKA KR 15/2 manipulator (Figure 3.5). 
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Figure 3.5. 2D planar manipulator of two links simulating the gross positioning in 

the KUKA KR 15/2 manipulator. 

 

The forward kinematics of the robot is achieved by the DH method 
(see Chapter 2),  

( , )p f q   (3.32) 

where 1 2 3[ ]Tq     are the joint values and   the vector of the 
DH parameters,  

[ , , , ]a d    (3.33) 

which are shown in Table 3.1. These values will be referred as 
(0)  in the iterative process of calibration.  

 
i αi (rad) ai (mm) θi (rad) di (mm)  
1 0 1 650a   θ1 0 

2 0 2 2
2 600 155a    θ2 0 

Table 3.1. DH parameters for the mechanical system simulating the 
manipulator gross positioning. 

 

In this case, only the position coordinates in the plane of the 
motion, [ ]Tp x y , are observed (Figure 3.5). Consequently, only the first 
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two equations of (3.31) will be used. Both coordinates are resumed from 
the overall 4x4 DH homogeneous transformation matrix:  

12 12 1 1 2 12

12 12 1 1 2 12

0 · ·

0 · ·

0 0 1 0

0 0 0 1

c s a c a c

s c a s a s
T

  
  
 
 
 

 (3.34) 

with 

1 1 2 2

2 2 12 1 2 1 2

1 1 12 1 2 1 2

cos( ) sin( )

cos( )

sin( )

c s

c c c c s s

s s c s s c

 



 
  
  

 (3.35) 

Then, in this case the theoretical positioning values, Op , are 

(1,4)T and (2,4)T : It is easy to appreciate that they are non dependent on 

3 : 

1 1 2 12

1 1 2 12

· ·

· ·
O

O
O

x a c a c
p

y a s a s

   
      

 (3.36) 

In each link of the model, it can be considered an existing error. 
This error is propagated through the forward kinematics giving as a result a 
positioning error, being it the residual to minimize. Care must be taken to 
all of the DH parameters: none is assumed to be 0 and left out of the 
kinematic model or, on the contrary, the error in that parameter is not 
revealed itself in the calibration process. The identifiable parameters must 
be carried out on the corresponding observation matrix W, eq. (3.27). 

For the purpose of this example, let’s consider both errors of 0.2 
mm at link a1 and 1º at 1 : 

1

1

0.2

0.0175 ( 1º )
E

E
E

a mm

rad



   

       
 (3.37) 

With this supposition, there are two parameters to adjust: 
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1

1

( 2)
a

mp


 
    

  (3.38) 

 

 

Figure 3.6. Thirty observed points in the workspace 

 

Having in this case an mp=2, np=30 well-known locations in the 
workspace, 1 30( ,..., )T

M M Mp p p , constitute an enough number of 
configurations to carry out the calibration procedure. If those locations 
were commanded to the robot controller, the requested configurations 

1 30( ,..., )Tq q q would be internally calculated by means of the IK 
theorethical model programmed. In order to emulate the possible 
configurations of the real KUKA when working on the rotary table, only 
the elbow-up solution is considered (Figure 3.6, see Chapter 2). 

2 2 2 2
2 1 2 1 2

2
2 2

1 2 2 1 2 2

2 2 2

(( ) ( ) ) /(2· · )

1 ( )

2( , ) 2( · , · )

2( , )

i i i
S S

i i

i i i i i
S S

i i i

c x y a a a a

s c

arctg y x arctg a s a a c
q

arctg s c




   

  

    
    
   

(3.39) 

In the case studied, the well known locations and their theoretical 
configurations are:  
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271.2468

382.4231

343.8540

240.6678

(...)

237.3482

512.5508

322.9468

315.1908

 = = ;
i

M
M i

M

x
p

y

  
    
  
     
  
  
  
   
 
  
   

    1

2

2.0870

-2.3866

1.7772

-2.4694

(...)

2.1994

-2.2207

1.9186

-2.4164

= = ;
i

i
q




  
    
  
     
  
  
  
   
 
  
   

1, ..., 30i   (3.40) 

Due to the fact that the real robot has small differences with 
respect to the ideal DH model set into the controller, if q were the 
commanded values to the real non-calibrated manipulator the real positions 
achieved would be given by (3.36), but considering the implicit error of 
(3.37), that is: 

1 1 1 2 1 2

1 1 1 2 1 2

( )· ·

( )· ·

i i i
S E E E

S i i i
S E E E

x a a c a c
p

y a a s a s

    
       

 (3.41) 

with 

1 1 1 1 2 1 2 1 2

1 1 1 1 2 1 2 1 2

cos( + )

sin( + )

i i i i i i i
E E E E E
i i i i i i i
E E E E E

c c c c s s

s s c s s c

 
 

  
  

 (3.42) 

In the case studied, the values reached are: 

264.4295

387.2709

339.5570

246.8272

(...)

228.2464

516.7747

317.3253

320.9658

 = = ; 1,...,30
i

S
S i

S

x
p i

y

  
    
  
     
   
  
  
   
 
  
   

  (3.43) 
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The error p  is calculated like: 

-6.8173

4.8478

-4.2970

6.1594

(...)

-9.1018

4.2239

-5.6215

5.7750

; 1,...,30
i

S M i

x
p p p i

y

  
    
  
     
       
  
  
   
 
  
   

   (3.44) 

With the p  data and the DK model of the manipulator (3.36), an 
iterative procedure is applied. In the example that is being considered, the 
Jacobian matrix of (3.31) for consecutive s-iterations, ( ) ( )( , )s sJ q  , is a (2 
x 2) matrix calculated as: 

( ) ( ) ( )

1 1 2 1 1 2 1 1 1

1 1 1

( ) ( )

1 1 2 1 1 2 1 1

1 1

( )
1 1 1

1

( )
1 1 1

1

1 1

1 1

cos( )  - ·sin(( )+ )-sin( )·( )

sin( ) ·cos(( )+ )+cos( )·(

s s s
w w w

w w w

s s
w w

w w

s
w

w

s
w

w

f

a a a

a a a

a a

x x
a

J
y y

a   

     

     





  

 





  

  

     

   

  
     

    



  

  ( )

1

1

)
s

w

w

a


 

 
 
 
 
  



 (3.45) 

The observation matrix W for the first iteration is composed as 
(3.27), evaluated at each configuration qi, considering no-errors at 1  and 

1a , that is: 

(0)
(0) 1

(0)
1

0

0

a



   

        
  (3.46) 

It results in a 60x2 matrix, due to the fact that fJ gives a two rows 

sub-matrix, (3.45), for each observed configuration. 
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1 (0)

30 (0)

(0)

-0.4936 -382.4231

 0.8697  271.2468

-0.2049 -240.6678

 0.9788  343.8540

(...)

-0.3408 -315.1908

 0.9401  322.9468

( )

...

( )

,

  

,

f

f

J q

J q

W





  
  
  
             
     
  
  
   

 (3.47) 

then, eq. (3.31) is solved by means of the 2x60 pseudo-inverse of 
W (3.28),  

(0)† (0) (0) 1 (0)

    0.0117   -0.0001

    0.0527   -0.0001

    0.0198   -0.0001

    0.0523   -0.0000

               (...)

    0.0244   -0.0001

    0.0518   -0.0001

    0.0174   -0.0001

    0.0516   -0

( )T TW W W W 

.0000

T
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.48) 

Finally a first estimation of the error   in both considered DH 
parameters is obtained 

(1)
(1) (0)†1

2 60 60 1(1)
1

0.0269

0.0177
·x x

a
W p


             

 (3.49) 

The following step for this calibration consists of actualizing the 
DK model parameters by adding the obtained (1)  to the ideal DH 

parameters (0)  Table 3.2 shows the modifications. The new parameters 

will be referred as (1) : 
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i αi (rad) ai (mm) θi (rad) di (mm)  
1 0 (1)

1 1
650.0269a a   (1)

1 1 1
0.0177       0 

2 0 2 2
2 600 155a    θ2 0 

Table 3.2. MDH Matrix simulating the manipulator gross positioning. 

 

The DK model considered to actualize the Mp  positions achieved 
with these corrections, for the s-iteration, is  

( )
( ) 1 1 1 2 12

1( )

( )
1 1 1 2 12

1

( )· ·

( )· ·

s
w i i

si
ws M

M i s
w i iM

w

a a c a c
x

p
y

a a s a s

 


 


 
               

 




 (3.50) 

with 

( )

1 1
1

( )

1 1
1

1 12 1 2 1 2

1 12 1 2 1 2

cos( )

sin( )

s
i w

w

s
i w

w

i i i i i i

i i i i i i

c c c c s s

s s c s s c

 

 





   

   

 

 

  

  




 (3.51) 

After actualizing the actual error p  as in (3.44), a new 

observation matrix (1) (1)( , )W q   is obtained with (3.45) like in (3.47).  

Reconsidering (3.49), a new correction (2) is obtained. 

(2)
(2) †1

2 60 60 1(2)
1

0.1732

-0.0002
·   x x

a
W p


             

  (3.52) 

It can be appreciated that, in the second iteration, the error 
introduced (3.37) is reached, that is, (1) (2)

E       .  Consequently, 

in the following iterations, the corrections ( )s obtained are almost null, 
verifying (3.30) so the iterative process would end. Table 3.3 shows the 
final model achieved with the corrections done: 
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i αi (rad) ai (mm) θi (rad) di (mm)  
1 0 (1) ( 2 )

1 1 1
650.2a a a      (1) ( 2 )

1 1 1 1
0.0175          0 

2 0 2 2
2 600 155a    θ2 0 

Table 3.3. MDH Matrix simulating the manipulator gross positioning. 

 

3.3.  CALIBRATION OF THE ADDITIONAL JOINTS OF THE KUKA 
WORKCELL 

The main problem in many traditional calibration methods is the need to 
have an accurate, fast and not expensive equipment to measure the EE’s pose. It 
also has been exposed that autonomous calibrations methods are possible for 
robot manipulators with either some a priori knowledge of the task constraint or 
redundancy of the sensing systems (e.g., planar constraints).  

For this particular case, the open-loop method presented uses a set of 
positions of the terminal point of the robot which are assumed to be in the same 
plane, but avoiding any physical contact by using a laser displacement sensor. 
This technique arises from the fact that the use of a contact probe is problematic, 
because it is difficult to be certain that the tip-point of the probe is exactly on the 
surface. 

In this Non-contact Planar Constraint Calibration procedure, the laser 
sensor sweeps three orthogonal constraint planes (namely, a squared pattern) set 
in its workspace while measuring the distance. Only the distance readings are 
recorded. A NLSQ identification model has been derived from the consistency 
conditions of the planes, and is detailed below. The proposed method can be 
applied to the full-articulated chain by magnifying the observed parameters with 
the same guidelines and it is suitable for on-site calibration in an industrial 
environment at regular intervals. This calibration scheme can be implemented to 
be done autonomously. 

In this particular case, the method is implemented for the calibration of 
the external additional joints introduced in Chapter 2, namely the linear track Ld  

and the rotary table M , due to the fact that the assembling of the workcell in situ 
carried out by the operators left some misalignments while the manipulator has 
good accuracy itself. Nevertheless, the method can be applied to the full 
articulated chain by magnifying the Jacobian matrix. 

 

3.3.1.  Non-contact Planar Constraint Calibration procedure. Material and 
method.  
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A planar constraint method for robot calibration may be classified into 
single-plane and multiple-plane constraints. Zhuang et al. [22] showed that 
whenever a single plane constrains the robot motion, the calibration result is 
biased because the measurement data is projected to a particular direction. 
Furthermore, a single-plane constraint does not necessarily guarantee the 
observability of unknown kinematic parameters of the robot. These authors 
demonstrated that, if measurements are constrained to lie on three mutually non-
parallel planes, data collected by this multiple-plane constraint setup is 
equivalent to that by a point measurement device. The significance of this 
observation is that a 3D-position measurement system may be replaced by no less 
than three planes placed at a number of different orientations. Without loss of 
generality and in practical terms of industrial calibration, the calibration issue 
can be carried out on a mechanized squared corner (Figure 3.7) placed on the 
base frame of the workspace {B} in which accuracy is critical (i.e., it will be 
assumed that the plane parameters are known a priori).  

At this point, some authors [3][23] work by means of recording the joint 
readings enabling desirable and safe touch on the planes. Actually, the use of a 
contact probe is problematic because it is difficult to be certain that the tip-point 
of the probe is exactly on the surface, neither above it nor indenting it. In the 
scheme presented, a laser displacement sensor attached to the EE aims at 
arbitrary but fixed points on three orthogonal meshes placed in those three 
planes.  

 

 

Figure 3.7. Mechanized squared corner with high tolerance degree, placed on the 
base frame of the workspace {B} 
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The procedure capitalizes on the constraint that the laser line, being 
almost perpendicular to the plane, must be at a constant distance of each plane 
for all the respective points of the mesh commanded to the controller. The main 
advantage of the scheme presented in this Section is that the distant laser point is 
very sensitive and there is no physical contact, which facilitates acquiring more 
accurate readings for the calibration. Instead of working with the joint readings, 
the NLSQ identification model is derived only from the laser readings without 
external measures or joint recordings, see Figure 3.8. 

 

 

Figure 3.8. Open-loop procedure proposed for the workcell calibration. 

 

i) Laser displacement sensor 

A laser displacement sensor (mod. SICK OD100-35P840) is 
rigidly attached to the robot flange by means of a specific tool holder. It 
has a measuring range of 100 mm with 35 µm in resolution. The laser is 
supposed to be aligned with the Z-axis of the EE and a coordinate system 
({LR}) is chosen in the laser line. Both X-Y axes orientation and the origin 
(TCP) along the laser line are arbitrary, which can be set at some 
convenient location. As it is depicted at Figure 3.9 (right), the triangulation 
measurement is the physical basis of this displacement sensor: the site of 
the light spot on the position-sensitive device (PSD, a photodiode) is 
dependent on the distance of the detected object. The signals A and B (see 
Figure 3.9) change depending on the position of the light spot. The 
calculation of the signals in the microcontroller then gives a linear output 
signal depending on the distance of the object. 
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 Figure 3.9. View of the laser displacement sensor. 

 

The laser is supposed to be aligned with the Z8-axis of the EE and 
a coordinate system (SC{LR}) is chosen in the laser line, see Figure 3.9 
and Figure 3.10, left. Both the orientation of X-Y axes and the origin along 
the laser line are arbitrary. Then, the robot can aim the laser TCP at some 
location. 

It may be cumbersome to use planar methods if the calibration 
process includes the calibration of the laser itself. The observability of 
certain parameters is not possible with the EE being moved parallel over a 
plane as described. These unknown parameters are: two rotations about X8 
and Y8 (these angles of rotation are close to zeros) and two coordinates of 
translation in X8-Y8 plane (also close to zeros). Gatla et al. [5] integrate 
this calibration procedure into the whole calibration process, but in a 
different way the joint values are not recorded in the method proposed 
here. Zhu et al. [26] also isolate this problem and proposed an approach for 
calibrating robot tool center point (TCP) position relative to the robot-
mounting flange when using a noncontact sensor (such as the laser pointer 
tool) through the use of NLSQ optimization algorithms and simple 
geometry with known dimensions. Thus, we assume the availability of a 
fully calibrated laser sensor prior to the assembly of the new additional 

joints, i.e. 8
LRT  is known. 
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3.3.2.  Formulations 

i) Formulation of the Kinematic Identification Model 

The planar methods use a set of configurations of the manipulator 
where the position of the terminal point (the TCP) of the robot is in the 
same plane. In the Cartesian workspace {B}, the terminal points are 
commanded to the controller by setting the position and orientation of the 
TCP. For each commanded point, 

( , , , , , ) ( , ); 1,...,i i i i i i i i
M M x M y M z M A M B M Cp p p p p p p f q i np     (3.53) 

where np  is the total number of points and 

, ,  i i i
M x M y M zp p p represent the position in {B}, whereas the orientation is set 

by three RPY2 angles, , ,i i i
M A M B M Cp p p . The mp adjustable model 

parameters are held in the vector  . In the case studied, 

1 1 1 2[ ]T
M La d d     (mp=6).  

The general equation of a plane   containing the origin of {B} is: 

          0a x b y c z       (3.54) 

where a, b, c correspond to the plane coefficients. Since the TCP of the 
laser is supposed to be in the plane, each commanded point i

Mp  should 
accomplish: 

         0  i i i
M x M y M za p b p c p      (3.55) 

Equation (3.55) is exploited to carry out the calibration of the robot 
parameters. In practical terms of industrial calibration, it is useful to 
assume that the coefficients of the plane are known because the working 
space is well known and {B} is already identified in it. This base {B}, 
materialized with a squared pattern, can be placed easily using an external 
sensor where a very limited number of points is needed (theoretically only 
three points per plane are needed), see Figure 3.7. Moreover, the particular 
equations observed for the three pattern planes are, respectively: 

 0i
M xp      (3.56) 

  0i
M yp      (3.57) 

                                                      
2 RPY (roll-pitch-yaw) KUKA convention [34]. 
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 0i
M zp      (3.58) 

We name these planes respectively as X , Y  and Z . For each 
plane, a set of points in those planes can be easily done by commanding the 
robot controller the location of three different orthogonal meshes (Figure 
3.10, right), in which the corresponding coordinate ( i

M xp , i
M yp  or i

M zp ) is 

null and the orientation of the laser pointer is perpendicular to the plane, 
respectively: 

(0, , ,0, / 2,0)i i i
M M y M zp p p       (3.59) 

( ,0, ,0,0, / 2)i i i
M M x M zp p p       (3.60) 

( , ,0,0,0,0)i i i
M M x M yp p p     (3.61) 

 

   

Figure 3.10. Left, highlight of the DH model introduced in Chapter 2. Right, three 
commanded meshes on the three respective planes. 

 
The fact that each set is constrained to lie on its corresponding 

plane leads to the construction of the identification model. Let i
Sp  

represent the actual coordinates of the laser TCP in {B} that correspond to 
the configuration qi acquired for a commanded i

Mp . Due to the 

perpendicular orientation commanded, the distance iD  measured by the 
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laser device approximates to the respective actual coordinate i
S xp , i

S yp  or 
i

S zp  at {B} (Figure 3.10). For each plane, the other five coordinates are 
neither unknown nor approximated with any external measure. 

 

 

 
Figure 3.11. Coordinate i

S yp  approximated by the distance 
Y

iD  to Y . 

 

With this suppose, a residual, ir , can be defined as the difference 
between the actual observed values i

Sp  and the model predicted values, 

namely  ( , )i i i
Sr p f q   . For each plane   and each commanded i-

point, we approximate each residual to be minimized with the measure 
iD . Thus, the identification model relating the deviation of the EE 

location from the plane   with the differential error in the geometric 
parameters (  ) can be expressed as:  

fD J       (3.62) 

with fJ r      being the Jacobian matrix of the residual regarding the 

identifiable parameters. Reasonably, only the expression corresponding to 
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the residual error in the perpendicular direction of the plane  , r , is 
taken into account. 

In this non-linear system, the derivatives r    are functions of 
both the commanded postures and the identifiable parameters, so these 
gradient equations do not have a closed solution. Instead, the default values 
from the operator’s assembly are chosen as initial guess for the mp 
parameters, i.e. (0) . Then, while minimizing the residuals, the final value 

of   is refined iteratively by consecutive approximations, 
( 1) ( ) ( 1) ( )s s s s              (3.63) 

where s is an iteration number. As equation (3.62) is applied for a 
sufficient number np>>mp of commanded points arranged in the three 
orthogonal planes, exceeding the total number of parameters, the resulting 
system to identify   is 

( ) ( )( )s sp W      (3.64) 

where W  is the Observation Matrix of dimension np×mp. It is an ordered 
composition of the Jacobians associated to the corresponding observation 
at each plane, ( ) ( ) ( )[ ( ) ( ) ( )]

X Y Z

s s s T
f f fW J J J     . Consequently, 

care must be taken in the configuration of p  due to the fact that the 
measures taken in each plane must correspond with the significance of 
each row of W . The npx1 vector of the observed residuals in the three 
planes is ( ) ( ) ( ) ( )[ ]

X Y Z

s s s s Tp D D D    . 

As in previous sections, the increment   can be solved to get the 
least-squares errors solution,  

† ( )sW p    (3.65) 

where †W  is the left pseudo-inverse of W , namely  † 1( )T TW W W W . 

The geometric parameters   are iteratively updated in p  and †W , eq. 

(3.63), until the elements of   become smaller than some prescribed 

limit (see eq. (3.30)). This best-fit solution is kept in the controller. 
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Figure 3.12. Sweeping the reference planes with two configurations of Ld  and M . 

 

3.3.3.  Results 

The calibration procedure was run in an IntelTM Core Duo PC with MatlabTM 
2007c. It showed a good convergence for the studied workcell, with final values 
accomplishing the convergence criterion at the 18th iteration. The final 
corrections achieved were [0.01 0.06 0.07 0.05 0.01 0.08]T   (mm, rad)  
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Figure 3.13. Left, the values of the increment   show a final stable value; Right, 

the stop criterion is achieved after 18th iterations. 
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CHAPTER 4  

CAM TO WORKCELL 
POSTPROCESSING 

"One of the principal 
objects of theoretical research in 

my department of knowledge is to 
find the point of view from which 
the subject appears in its greatest 

simplicity." – 

J. W. Gibbs 
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CHAPTER 4.  CAM TO WORKCELL POSTPROCESSING 

 

4.1.  INTEGRATED PRODUCTION SYSTEMS 

In the latter years, a radical change has taken place in the design and 
manufacture of all industrial products. The CAD/CAM/CNC-ROB systems, 
which integrate the labours of piece design and generation of paths for its 
machining, are included into a wider concept of Computer Integrated 
Manufacturing (CIM) (Figure 4.1).  

 

 

Figure 4.1. The scope of CAD/CAM and CIM [2] 

 

CAD stands for Computer-Aided Design. These systems are meant for 
engineering drafting and drawing based mostly on lines, arcs, spline curves and, 
more recently, 3-D surfaces. Packages such as AutoCADTM, NXTM, 
SolidWorksTM, SolidEdgeTM, CatiaTM and ProEngineerTM are some of the more 
commonly used CAD systems on the market today.  

CAM systems (Computer-Aided Manufacturing) take the drawing to the 
final stage to produce machining instructions to make the part on a CNC 
(Computer Numerically Controlled) machine (milling machine, lathe, but also 
including manipulators as it is the scope of this thesis). 

Historically, CAD systems began as a technological computerized 
engineering, while the CAM were a semiautomatic technology for the control of 
machines of numerical form [1]. But these two disciplines, which were born 
separately, have been mixed gradually up to obtaining a technology sum of the 
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two, so that CAD/CAM systems are considered to be a unique discipline 
nowadays, see Figure 4.2. This means that the separation between design and 
manufacture has diminished to the minimum and the qualification of the 
technical staff has improved substantially with regard to a few years ago. The 
design process has changed itself and nowadays it is done by means of an 
interactive dialog between the designer and the computer. In this sense, the 
designer is released of the least creative processes to intensify his effort in those 
tasks that cannot automate (like the creative processes). It is important to note 
that the quality and efficiency of the CAD-models designed is the point of 
departure for applying the rest of computer assisted technologies, see Figure 4.3. 

 

 

Figure 4.2. View of the main window of NXTM while covering a complete CAD/CAM 
process. 

 

Due to particular characteristics of each manufacturing CNC-machine 
(kinematics, controller languages, etc), an important step has to be done between 
CAD/CAM and the final production stage, namely, the postprocessing to the 
specific machine to be used. This concept is discussed in Section 4.4.  

 

4.1.1.  Benefits of the integrated production systems  

The benefits in the adoption of integrated production systems can be 
summarized in [1][2]: 

 Ability to handle pieces with increased complexity, 
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 Notable increase of the productivity: reduction in errors, elimination 
of dry runs and time saving, 

 Decrease of the production costs, 

 Rapid adaptability of the production to the fluctuations and 
requirements of the market, 

 Considerable improvement in quality and reliability of the 
production, 

 Professional promotion of the technicians and skilled workers, and 
more effective utilization of the machinery. 

The simplicity in the flow of information between the production stages 
(Figure 4.3) is the most significant contribution of the CAD/CAM integration. In 
one hand, it implies that the information relating to the manufacturing process, to 
the quality or to the costs of the product becomes more visible to the engineering 
(CAD). On the other hand, it also implies that the information of the design of 
any product is more accessible when aiming for the manufacturing path-planning 
(CAM). 

 

 

Figure 4.3. CAD/CAM/CNC-ROB flow process: the quality of the CAD-model 
determines the efficiency of the results obtained in the following steps of the 
manufacturing process.  
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However, it seems to be that the direction of development of CAD/CAM 
systems is directed towards engineers rather than machinists. From the author’s 
point of view, and as it will be shown in following Sections, in some systems 
skill-based knowledge is not given the emphasis that it rightly deserves. The 
adaptation of the information to CNC-machines, including robots (ROB), makes 
more evident the feedback needed between the machinists and engineers.  

 

4.2.  COMPUTER NUMERICAL CONTROL (CNC) 

Machine tools have played a fundamental role in the technological 
development of the World up to the point that the rate of development of the 
machines tools is directly related to the rate of the industrial development. To a 
certain extent, it is what happened at the Industrial Revolution with the vapour 
machine. 

Day after day, numerous and new requirements forced the utilization of 
new computerized technologies partially replacing the human operator. About 
1942, the engineer John T. Parsons come up what might be called the first 
numerical control (NC), due to a need imposed by the aeronautical industry for 
the accomplishment of propellers of helicopters with different configurations. 
Since then, the Computer Numerical Control (CNC) has taken its place in 
industry for several reasons [3]: 

 Need to make products that could not be obtained in sufficient 
quantity and quality (precision) without an automation of the 
manufacturing process, 

 Need to obtain products very difficult to make or even impossible 
until then, for being excessively complex to be controlled by a 
human operator (see Figure 4.4). Even in case of small series the use 
of NC can be profitable when the piece is complex enough to justify 
its programming, 

 Need to make products with low prices, 

 Security:  NC is especially advisable for the work with dangerous 
products.   

Later, due to the new needs in industry other important factors appeared 
such as the flexibility, which also promoted the use of robotic manipulators 
(ROB).  
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Figure 4.4. CAD/CAM/ROB systems offer the possibility of producing very complex 
pieces 

 

4.2.1.  Definition 

CNC (Computer Numerical Control) refers specifically to the method of 
controlling machines by the application of digital electronic computers and 
circuitry [4]. Machine movements that are controlled by cams, gears, levers, or 
screws in conventional machines are directed by computers and digital circuitry 
in CNC-machines from a prepared program containing coded alphanumeric data. 
Thus, CNC-machine tools or manipulators are operated by programmed 
commands encoded on a storage medium, as opposed to manually controlled via 
handwheels or levers, or mechanically automated via cams alone. 

 

4.2.2.  Classification of the Numerical Control systems 

Generally, NC systems can be classified into: 

 Equipments of positioning numerical control or point-to-point (PTP). 

 Equipments of contouring (or continuous path, CP) numerical 
control.   
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In a PTP system, the control determines, from the information given by 
the program and before the movement, the complete distance to cover. Later the 
above mentioned positioning is done, without considering the crossed path, since 
the only thing that matters is to reach with accuracy and rapidity the point 
commanded.  

The equipments that allow generating curves receive the name of 
contourning systems. These machines govern not only the final position but also 
the movement in every instant of the axes in which the interpolation is realized. 
In these equipments a perfect synchronization exists among the different joints 
controlling, therefore, the CP that the tool must follow.  

 

          

Figure 4.5. Left, the path followed by PTP positioning to reach various programmed 
points (machining locations) on the XY axis. Right, complex contour tracking. 

 

While the PTP systems are conceived for tasks such as point welding or 
pick-and-place, more complex tracking can be generated with the contouring 
systems such as  straight lines with any slope, arcs of circumference or any 
combination of them. These systems are used, especially, for complex milling 
operations, lathe, etc. 

Originally this differentiation referred to different types of machine-
tools, since industrial robots were devoted to PTP operations. The evolution in 
recent years in informatics allowed the design of controllers for more complex 
robotic manipulators (Figure 4.6).  
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Figure 4.6. Left, resistance welding in the industry of automotion (PTP operation). 
Right, continuous path (CP) tracking to cut a stone (courtesy of Pedra Navas). 

 

i) Interpolation 

The method by which contouring machine-tools move from one 
programmed point to the next is known as interpolation. This ability to 
merge individual axis points into a predefined toolpath is built into most of 
today’s control units. There are five common methods of interpolation, 
namely: linear, circular, helical, parabolic, and cubic.  

In a linear interpolation, the end point of one segment becomes the 
start point for the next segment, and so on, throughout the entire program. 
Therefore, a very large number of points would have to be programmed to 
describe the curve in order to produce a contour shape. Circular 
interpolation has greatly simplified the process of programming arcs and 
circles. To program an arc, the control unit only requires the coordinate 
positions of the circle center, the radius of the circle, the start point and end 
point of the arc being cut, and the direction in which the arc is to be cut 
(clockwise or counterclockwise). The information required may vary with 
different controllers. 

All contouring controls provide linear interpolation, and most 
controls are capable of both linear and circular interpolation, such as in the 
controllers of the robots used for the purpose of this thesis (KUKATM 
robots, as those on Figure 4.6). Helical, parabolic, and cubic interpolation 
are used by industries that manufacture parts which have complex shapes, 
such as aerospace parts and dies for car bodies, by means of very specific 
machine-tools. 
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Figure 4.7. Compared with a linear controller (left), circular interpolation has 
greatly simplified the process of programming arcs and circles, and consequently 
the length of the codes. 

 

4.3.  CAM SYSTEMS FOR TOOLPATH GENERATION  

Once the part to be machined is represented by a CAD model, a set of 
machining instructions must be produced. These instructions are needed to guide 
the cutter TCP (tool center point) on the path over the raw material.  

CAM systems work in three stages [8]: the first is to generate cutter 
contact points (CC points), the second stage is to generate cutter location data 
(CL-data) and the last stage is to convert CL-data to machine code, for the 
desired CNC. CL-data contains the necessary information to generate, through 
any specific postprocessors, the numerical commands to drive any specific 
machine-tool.  

Traditionally, CAM has been considered as a numerical control 
programming tool, wherein CAD models are used to generate the code to drive 
CNC machine tools. Commercial CAM systems are applied off-line, that is, 
previously and independently from the machine tool which will manufacture the 
object. These systems do not eliminate the need for skilled professionals. In fact, 
leverages the value of the most skilled manufacturing professionals through 
advanced productivity tools. Users must select some input parameters such as the 
type of tool, machining process, tolerances, materials and strategies to be used, 
prior to the generation of the toolpath on the CAD part (Figure 4.8) 

 

4.4.  POSTPROCESSING  

The latest commercial CAD/CAM systems can design freeform surfaces 
and generate either the three-axis or five-axis toolpaths. The CL-data, composed 
of the cutter tip (TCP) position and orientation relative to the part frame ({B}, as 
seen in Chapter 2), can be obtained directly from a CAD model of a product 
design created in the CAD/CAM systems. However, difficulty frequently arises 
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in communication between the CAM systems and the NC-machine tools, 
especially when various machine tools are employed.  

The interface that links the CAM systems and NC-machines is called the 
postprocessor and it converts CL-data to the specific controller input code 
needed. Essentially, different combinations of machine tool and control unit 
require different postprocessors. Consequently, a manufacturing system with a 
variety of machine tools requires several postprocessors. 

Most CNC controller units are programmed using the widely established 
international standard ISO 6983 (G-code)1 language, also known as RS274D, but 
it is not the unique existing code. In fact, many machine-tool manufacturers have 
introduced special features with the justification of improving or meeting new 
performances. Moreover, with the augmented scope of robotic manipulators, 
each brand has developed newer and non-standarized languages to command its 
motion. 

 

4.4.1.  Concept of postprocessing  

A postprocessor is a software link in the CAD/CAM chain that 
communicates instructions from CAM to a CNC machine [7]. 

As a consequence, the postprocessing can be understood as the 
adaptation of the descriptive information of a machining process generated by a 
CAM system towards the specific numeric controller unit which drives the 
device used to machine a workpiece (Figure 4.9). 

This descriptive information not only includes the CL-data (TCP position 
and orientation relative to the part frame), but also additional information such as 
tool changes or the occasional use of coolant systems. In the case of redundant 
manipulators, the use of the undetermined additional joints is expected.  

As a conclusion, after the planning in a CAM system, a good 
postprocessor results in a code which fulfils a complete machining process, 
without need for editing and checking the code. On the contrary, it supposes a 
waste of time and entails risks which are non-desirable nowadays. 

 

                                                      

1 New standards are being introduced in industry the later years for the newest machine-tools, for example ISO 
10303 (also known as STEP) and ISO 14649 (STEP-CNC) [5]. Clearly both them are outside of the scope of 
this thesis due to the capabilities of current industrial robotic manipulators. 
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Figure 4.8.  Input parameters prior to the generation of the toolpath (NXTM) 
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Figure 4.9. Concept of postprocessing as link between CAD/CAM and the 
production sytem at the shopfloor. 

 

4.4.2.  Literature review in CNC Postprocessing 

The core research problems in NC appear to have been investigated in 
the 1970's and 1980's (i.e. path interpolation) and the emphasis of research 
activity has focused in applied NC in fields such as: 

 Linking CNC machines in CIM environments 

 Understanding of machining operations 

 Tool life and efficiency diagnosis (material and management 
design). 

For some authors, the first field (originally intended with the ISO-6983) 
has fallen behind due to the variety of machine configurations to which CNC has 
been applied. The required conversion or postprocessing is even more 
complicated because of the proliferation of CNC manufacturer-specific 
extensions [9].  

It is also remarkable that CNC controlled milling machines and milling 
programming techniques have not featured strongly in the literature. It is 
surprising since milling represents one of the most demanding of all CNC 
applications. This could be due to the highly specialized nature of this class of 
production systems, but also this is probably due to the very expensive 
machinery required to test theories, placing this topic away from the reach of 
many research institutes.  

A minimum of five axes are required in a milling machine to achieve the 
maximum possible position and orientation DOF’s in the cutter relative to the 
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part frame {B} (see Chapter 2). The cutter tool, as rigid body located in 
Euclidean space, has three translational degrees of freedom and three orientation 
degrees of freedom but the third orientation degree of freedom is not required 
since the cutting tool possesses rotational symmetry about the spindle axis. This 
functionally redundancy inherent to the pose of the cutting tool will be discussed 
in Chapter 5. Now, from a practical point of view, it is remarkable that the 
calculation of the position of the tool centre point (TCP) and orientation of the 
tool axis is solved for all commercial software with five-axis capabilities 
(UnigraphicsTM, CatiaTM, PowermillTM, GibbsCamTM and others) [20]. Therefore, 
this matter is outside of all skilled CAM users’ scope. The main trouble during 
toolpath generation appears in postprocessing steps, when the toolpath generated 
by the CAM system is translated into CNC code.   

There are many different configurations of milling machines, and post-
processors have to be adapted for each of them. A small numbers of researchers 
have recently worked on the basic architectural issues of CNC milling 
postprocessors. Bedi and Vickers [10] developed a postprocessor program for 
FANUC 6MB machine tool. In a similar way, Balaji [11] presented the 
development and implementation of a postprocessor by converting APT2 source 
codes to a machine code format. However, both works are focused towards three-
axis machines (i.e. static tool orientation). This fact makes the transformation 
from CL-data to NC-data straightforward and no additional coordinate 
transformation technique is necessary.  

There are three typical five-axis machine tools proposed by Sakamoto 
and Inasaki [14], and different postprocessors have to be adapted for each of 
them. For example, using a machine with two rotary additional axes in bed 
(Figure 4.10, left) is totally different to those with two orientation angles (twist 
and tilt angles) in the tool head (Figure 4.10, right). Thus, the tool positions and 
orientations relative to the part frame require further transformations by the 
postprocessor before encoding it into the machine input language [20]. The 
transformation requires knowledge of the kinematic architecture of machine-tool 
in order to solve the inverse kinematics, i.e., transferring the tool positions and 
orientations (operation space) into machine axes positions (joint space). Lee and 
She [15] documented a postprocessor capable of converting cutter location CL-
data to machine control data for those machines, in order to establish an interface 
between CAM-systems and those machines. For this, they made an inverse 
kinematic analysis of each sort to obtain the analytical equations for the resulting 
NC data. Recently, She et al. [16][17] have made a revision of this work. 

                                                      
2 APT or Automatically Programmed Tool is a high-level computer programming language used to generate 
instructions for NC machine tools created by Douglas T. Ross during the late 1950's [19]. Today, it is an ISO 
standard of CL-file code [8][18] . 
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Figure 4.10. Three different configurations in a 5-axis machine tool [14]. 

 

Recent research have been done in some milling machines at the University of 
Montreal [21][22] to increase significantly their workspace by using its 
functionally redundant revolute joint, previously introduced. An optimization 
procedure was implemented within a postprocessor module and tested with the 
architecture of a generic five-axes milling machine [8]. They presented a 
functional Redundancy-Resolution Scheme (RRS) implemented within a 
postprocessor module of the generic B-Y-Z-X-C milling center Huron KX8-Five 
(Figure 4.11). The CL-data was generated with the commercial CATIA V5 
system.  

This previous research demonstrates that there is still tremendous scope 
for improvement in the basic machine modelling and postprocessing fields. 
Traditional CNCs are ill-suited to the demands of many of today's complex robotic 
workcells (including serial manipulators and parallel robots). Nowadays, these 
machines are characterized by intensive shop-floor level set-up and programming 
as opposed to the growing trend for CNC machines to be programmed off-line.  
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Figure 4.11.  Generic B-Y-Z-X-C milling center Huron KX8-Five, and view of the 
CAM software CATIA. 

 

Parallel Kinematic Machines (PKM) are clearly outside of the scope of 
this thesis, although it is remarkable the interest that they have achieved in a few 
years due to their major stability in fast milling machines, for example at [23][24]. 
For the author’s point of view, it is worth mentioning the work recently done by 
Guo et al. [28] (Figure 4.12). These authors implemented a special postprocessor 
in TCL/TK language and based on UG/POST (NX-Siemens Corp.), and it was 
applied for converting the CL-data to machine control data. 

 

 

Figure 4.12.  Guo et al. implemented a postprocessor for the NX system (Siemens 
Corp.) and to convert CL-data to PKM control data. 
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In case of serial robotic manipulators, as it is the scope of this thesis, the 
parameters and paths for the conventional CNC machining described above should 
be converted now into paths to be followed by a tool attached to the robot flange. 
Lorini and Meneghello [25] developed a computational application to translate 
CAD/CAM files into the programming language used in a 6R ABBTM-robot 
(RAPIDTM). In a similar way, Feng-yun and Tian-sheng [27] developed a 6R robot 
system for complex surface polishing based on CL-data generated by a CAM 
system. For the author’s point of view, it is worth mentioning the work recently 
done by Huang and Lin [26], since they developed a postprocessor to establish an 
interface between the UG (UnigraphicsTM) CAD/CAM system and the unique 
controller of a dual-robot workcell (Figure 4.13) by converting five-axis CL-data 
to robot control data. In order for both robots to perform cutting operations 
concurrently on the same workpiece, the original CL-data was divided into two 
parts, one for each robot in the workcell. 

 

 

Figure 4.13. Huang and Lin converted five-axis CL-data into robot control data 
readable by the unique controller of a dual-robot ABB workcell 

 

Finally, there is a discussion on the best way of programming 
postprocessors. The first way of developing postprocessors is based on the 
employment of sophisticated programming languages (Basic, Fortran, Pascal, 
C, C++, etc.) to develop the post-program in charge of the adaptation of the 
machine code according to several machine specifications (like the generalized 
NC postprocessor done by Ryu [29] by using Microsoft Visual C++) In general, 
this development requires a competent programmer. Whereas the method 
offers flexibility and potential to the developer, this way makes 
extraordinarily difficult and costly the creation and debugging of 
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postprocessors. Usually the last is a complex problem that could move in later 
responsibilities towards each particular user. 

The second way rises from the programming languages specially 
developed for postprocessing. These are known as interpreted languages such as 
the previously introduced TCL/TK [37]. This has been the solution for the main 
CAM developers, being able to separate the tasks of programming and 
debugging postprocessors. These interpreted languages allow the development 
of hybrid interfaces that optimize a simple managing (within a range) of 
postprocessors for each type of machine-tool (Figure 4.14). As a result, CAM 
software developers leave the difficulties of a good postprocessor debugging as a 
labour for every particular user but usually sacrificing flexibility and 
programming potential by the restrictions of the interface. Some of CAM 
developers even provide collections of standard postprocessors to be adjusted by 
the user of a particular CNC machine.  

 

 

Figure 4.14. Post Builder interface that allows a simple managing of 
postprocessors for different standard machine-tools (within a range). 

 

In case of complex mechanical systems like the robotic workcells shown 
previously (Huang and Lin; Guo et al.), or the one treated in this thesis, those 
commercial interfaces do not provide a way to implement the specific kinematic 
particularities. 
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4.4.3.  CAM-ROB postprocessing 

As introduced above, the NC programming code of a machine-tool can 
be generated directly for milling tasks up to 5-axes from any CAM system. The 
characteristics of these systems allow the automation of the process of NC 
programming through the introduction of operation parameters, manipulation of 
equipment or tool databases, and generation of the machining path (see Figure 
4.8). 

The CAM to ROB postprocessing considers the use of the above 
mentioned characteristics of the CAM systems for path generation (with the 
corresponding cutting parameters definition) and for the subsequent conversion 
of the toolpath to the specific robot language (KRL in the scope of this thesis). 
Thus, the postprocessor’s objective is to interpret and manipulate the text file 
with the CL-data, in order to relate the different functions of the NC through the 
motion commands in robot language (hence, converting this information into a 
robot program). 

As it will be shown in later sections, the application consists basically of 
programmed routines (such as TCL or C++ programming languages) with the 
purpose to automatically generate the robot language programming providing 
larger flexibility and automation to the operation of the robots, This allows 
diversifying their uses and reducing the processing time. The general structure of 
this application and its integration to the used systems is illustrated in Figure 
4.15, where the referred application developed for the CAM-ROB postprocessing 
is marked within a border.  

The graphical files generated in CAD systems are transferred to CAM 
systems by a graphical file transference standard format (iges, parasolid, step, …) 
or more directly with the specific format of the CAD/CAM platform (*.prt in 
NX, as it is the program used in the IDF). The CAM software interprets the 
information from the CAD file and the toolpath to be is automatically generated 
according to selected parameters and strategies. The processes of circular 
interpolation or linear path generation are made by the algorithms implemented 
in the CAM module. The set of path information and operation parameters is 
recorded as CL-data. 

From this point, the CAM-ROB postprocessor uses this CL-data or even 
the commonly generated CN program (usually G-code) as input data for the 
robotic system (see red border at Figure 4.15). The CAM-ROB postprocessor 
interprets this text file and correlates the functions in it with the specific 
functionalities and capabilities of the robotic system.  

Finally, it is important to note that most of the current robotic 
CAD/CAM systems have powerful graphic capabilities that allow robot motion 
simulation. These approaches use the trial and error loop that is a time consuming 



Chapter 4. CAM to Workcell postprocessing 144 

procedure applied by the technician, without use of any optimization concept, see 
Figure 5.12. It justifies the search of the optimum workpiece location with regard 
to the robot reference system {B} (see Figure 2.18) as done in Chapter 5, to 
automatically avoid poor manipulator postures (compared to other possible 
configurations). 

 

 
Figure 4.15. General structure of a CAM-ROB postprocessing 

 

4.5.  NX-CAM TOOLPATH GENERATION  

4.5.1.  NX-CAM module characteristics 

NXTM (Siemens Corp.) is a digital product development system that 
integrates and fully associates the labours of design (CAD), simulation (CAE) 
and manufacturing (CAM). The Computer Aided Manufacturing (CAM) module 
makes possible the planning of milling tasks (Figure 4.2). In addition to the 
generation of the path planning of the successive tools (cutting strategies, speeds, 
etc), NXTM also allows to automatically reformulate the order of the successive 
machining operations. 

 

i) Trajectory generation (CL-File). Linear and circular path tracking  

As stated in Section 4.4.3.  and even more with the advancing 
computer technology, commercial CAD/CAM systems can design complex 
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surfaces and directly generate their CL-data up to five-axis machining. In 
general, CAM systems work within three stages: the first is to generate 
cutter contact points on the CAD model, the second stage is to generate 
CL-data and the last stage is to convert CL-data to machine code. 

 Actually, with the parameters given by the designer (Figure 4.8) 
and to accomplish the two firsts stages, the CAM system automatically 
discretizes the path curve into small segments within the machining 
tolerance of the toolpath (Figure 4.16).  

 

 

Figure 4.16. Trajectory tolerances, intol and outol, in the NX-CAM system. 

 

Each of these end-points is saved in cutter location file (CL-file) 
under an ISO standard3. The five-axis CL-data consists of positions and 
orientations of the cutter with regard to the workpiece coordinate system 
{B}.  

In order to execute the five-axis CL-data on the robotic workcell, 
the data are required to be transformed into different reference inputs. 
These reference inputs are normally linear motions or circular motions, 
although NURBS trajectories have been successfully implemented in the 
ultimate CN-machine tools and most CAM systems already are able to 
generate this approximation. For the scope of this thesis, only linear and 
circular motions are the possible CP trajectories most serial manipulators 
[26][33][34]. Thus, this would be the format data required from the NX-
CAM (Figure 4.17). 

                                                      
3 One of these standards is the APT format (Automatically Programmed Tools), previously introduced. 
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Figure 4.17. NX-CAM dialog window to determine the sort of CN inputs generated. 
Those inputs must describe linear and circular motions for most current industrial 
manipulators. 

 

 Linear and circular path tracking  

The most usual way to specify the toolpath in a milling operation 
consists of a succession of points with small linear interpolations between 
each two of them. Clearly, the approximation of a bended trajectory with 
small straight lines implies a loss of accuracy.  

 

 
Figure 4.18.  Influence of the tolerances (intol and outol) on the number of linear 
interpolations required to track a toolpath [38]. 
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In case of trajectories with a small curvature radius, the density of 
points is higher than in case of nearly straight ones. The dialog box of 
Figure 4.16 is the way to control the degree of accuracy specified by the 
designer (intol and outol tolerances). Higher tolerances entail higher 
discretization error, resulting in a faceted piece. On the contrary, narrow 
tolerances force the CAM to make a great amount of interpolations 
resulting in a very long program (Figure 4.18). The influence of this 
discretization on the surface finish was recently documented by Helleno 
and Schützer [38], using the same CAM-system than in the current thesis. 

An immediate solution to this problem consists of using arcs in 
each of the coordinate planes of the (XY-XZ-YZ) to approximate the 
toolpath (see Figure 4.19). It also reduces the size of the NC-program. 

Although it is immediate to define the linear movement by the 
location of the destination point from the actual point, the definition of the 
circular movement depends on the controller unit. It varies with different 
criterion to define the arc center, the radius, the amplitude of the arc and 
the motion sense. 

 

 
Figure 4.19. Toolpath interpolated with arcs and lines. 

 

ii) NXTM-Post 

As it was mentioned, the last stage of CAD/CAM systems is to 
convert CL-data to machine code, and the interface that links the CAM 
systems and NC-machines was already introduced as the postprocessor.  

NXTM can also be considered as configurable postprocessing 
software [31][32], specifically named NX-Post. It uses the stored toolpath 
as input data, and provides a legible NC code. The Post postprocessor 
consists of several parts [40]: the Event Generator, the Event Handler, the 
Definition File and the Output File. The Event Generator is the NX core 
program that cycles through the events in a CL-file and communicates the 
data associated with each event to the Post postprocessor. An event of path 
is a collection of data, that when processed by Post, causes the NC machine 
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to perform some specific action [30][31]. For example, a basic 
Linear_Move event will cause the NC machine to move the tool along a 
straight line to a position specified by the information stored in the position 
parameters (X, Y and Z coordinates at {B}). In this case the Event 
Generator will trigger the Linear_Move event and will load the 
corresponding parameters X, Y, and Z with the values that represent the 
end position of the straight move postprocessed.  A complete description of 
recognized events, and the variables associated with each, is described in 
[40] (at Events sub-section). By the way, the Output File is the file where 
the postprocessor writes the postprocessed instructions that will be read 
and executed by the NC-machine or robot. 

 

 

Figure 4.20. Integrated postprocessing in the NX-CAM system. The Definition File 
and the Event Handler are programmed in TCL to adapt NX's CAM towards the 
KUKA KRC2 controller. The Event Handler is able to interact with executable 
modules programmed in C++. 

 

The great configurability of the NXTM integrated postprocessor is 
achieved by means of the interactivity of the system with two programs 
that manipulate the event variables and adapt the CAM data towards the 
particularities of the NC-machine (or the robotic workcell, Figure 4.20):  

 Event Handler (.tcl): It is a file containing principally of a succession 
of procedures and calculations to carry out with the associated event 
variables to get the information required by the NC controller. For 
example, tool pose data relative to the part frame {B} may require 
further transformations before encoding it into the specific NC-file. 
For example, these transformations can be based on the machine tool 
architecture or the robot inverse kinematics transformations (as 
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studied by some authors, section 4.4.2. ). For the scope of the IDF’s 
workcell, special treatment is required by the KUKATM KRC2 
controller [33], see Section 4.6.3.  

 Definition File (.def): It is a static file that gives the required format 
to the output information, namely the desired toolpath. As example, 
the KRL structure [33][34] is the format required for the scope of this 
thesis, see Section 4.6. and 4.6.3.  

Both programs are programmed in TCL (Tool Command 
Language), previously introduced in section 4.4.2. It is an interpreted 
programming language with capacity of connecting in a flexible way 
certain number of modules in other programming languages like C++ 
[35][36][37]. 

The Event Generator, the Event Handler, and the Definition File 
are dependent upon each other. Together they transform the tool path data 
contained in the part file into a set of formatted instructions that they can 
be read and executed by a specific machine tool/controller combination. 

 

4.6.  Industrial NXTM to KUKATM workcell Postprocessing 

4.6.1.  KUKATM Workcell programming 

As the scope of this thesis is about using a KUKATM robotic workcell for 
milling tasks, in addition of the architecture and kinematics of the workcell the 
input format required by the workcell controller must be known. 

KUKATM KRC2 controller uses textual language commands which are 
written in English-like statements to perform the motion program. The motion 
instructions can be subdivided into commands for simple PTP motions and 
commands for CP movements. Whereas, with CP, the EE describes a 
geometrically defined path in space (straight line or arc), the motion path in PTP 
movements is dependent on the robot’s kinematic system and cannot, therefore, 
be accurately predicted in this industrial robot (see [34]). Common to both these 
types of motion is the fact that programming takes place from the current 
position to a new position. For this reason, a motion instruction generally only 
requires the specification of the end position (with the exception of CP circular 
motions) 

Position coordinates can be specified either as text (writing the numeric 
values of the joints or tool coordinates) or by moving the robot to them and 
saving the actual values (by using an electronic keypad known as a teach-
pendant). However, the last method cannot enter a program into the controller 
while the robot is off-line, and it is devoted to pick & place or welding 
programming. 
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Off-line programming has the advantage of preparing the robot program 
at a remote computer terminal, prior to it is deployed to the robot controller for 
its execution. Off-line programming systems generally include a computer 
graphic interface (a PC or laptop), which allows the robots to be programmed 
without access to the robot itself during the programming. It means the robot cell 
can be taught to perform a task via a computer while it continues to perform a 
separate task. Without off-line programming, workers must stop production, 
enter into the cell and manually walk the robot through the motions required to 
perform a task. Put succinctly, off-line programming has at least the following 
advantages [39]: 

 reducing down-time caused by robot reprogramming; 

 avoiding the risk of damage to real robot by checking the motion 
on a graphic simulator in advance; 

 it becomes possible that existing CAD and CAM information are 
incorporate into the control functions. 

Concerning these advantages, it is justified the attraction that the off-line 
programming has attracted a lot of robot developers (as shown in section 4.4.2. ).  

 

4.6.2.  KRL for PTP motions (synchronous PTP) 

In a KUKATM manipulator, the PTP motion is the quickest way of 
moving the TCP from the current position to a programmed end position [34]. To 
do this, the KRC2 controller calculates the necessary angle differences for each 
joint. The motions of the joints are synchronized in such a way that all of them 
start and stop moving at the same time (synchronous PTP).  

The KRL (KUKA Robot Language) provides a specific command for 
PTP motions [34]: 

PTP {destination_point} (4.1) 

The structure of the point required has two possible syntaxes:  

{E6POS: X, Y, Z, A, B, C, E1, E2} (4.2) 

{E6AXIS: A1, A2, A3, A4, A5, A6, E1, E2} (4.3) 

In (4.2), the TCP positioning and orientation coordinates (X, Y, Z, A, B, 
C) are referred to the workpiece Cartesian coordinate system {B} placed on the 
rotary table (Figure 2.18).  
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In (4.3), {A1, …, A6} set the desired final mechanical values for each 
joint of the main 6R manipulator. Those values correspond to the 

 1 6, ...,  values calculated in the kinematic models of Chapter 2, respectively. 

In both cases, E1 and E2 set the external joint values. In the case of the 
workcell studied in this thesis (Figure 2.14), they are the linear track Ld  and 

rotary table M  joint values also calculated in Chapter 2, respectively. To 
practical effects, both additional external joint values are requested only in case 
of avoiding singularities or limit of range in the motion of the A1-A6 chain 
(Figure 2.5). This criterion in the KRC2 controller attends to reasons of precision 
in the tasks (i.e., putting the calibration procedure on one side as treated in 
Chapter 3) and economy in the articulate motions. Also to avoid the 
mathematical problem that redundancy introduces, it is the criterion that 
KUKATM takes, namely, leaving them aside and behaving as a 6R manipulator 
until the skilled technician perceives the convenience of its employment. 

It is important to note that, as the mechanical origin or the rotation sense 
may show a discrepancy from the ones established in the DH modelling, some of 
them are offset by a constant. Moreover, the controller works with sexagesimal 
degrees (º) instead radians (rad). Thus, readings from the controller (in º) must be 
converted to rad and the values of the following table must be added to get the 
values in the DH kinematic model. 

 

Mechanical joint E2 E1 A1 A2 A3 A4 A5 A6 

DH joint M  Ld  1  2  3  4  5  6  

Offset (rad)   0   0 2
        

Table 4.1. Offset between the mechanical and the DH modelled joint values 

 

Finally, it is noteworthy that the precise path of a PTP motion between two 
points cannot be predicted exactly as the robot uses the quickest path it can. This 
path is influenced slightly by a number of factors [34]. This is the reason why 
PTP commands do not apply for controlling the actual industrial workcell for 
precise path tracking, as it cannot guarantee the precision and constant velocity 
required in the TCP for milling tasks. 

 

4.6.3.  KUKA KRL for Continuous Path Tracking 

The KRL provides specific commands for Continuous Path tracking (CP 
commands). Unlike with PTP motions, in the case of CP motions it is not just 
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start and end positions what is predefined. Additionally, the accurate movement 
of the TCP along a path between these points is also mandatory. This path 
tracking may be a combination of straight-linear and circular TCP motions at a 
constant speed, commanded with the following templates [34]:  

LIN {destination_point} (4.4) 

CIRC {auxiliary_point }{ destination_point } CA (4.5) 

In both cases, the points required must follow the syntax of (4.2). The 
velocities to be entered do not relate any longer, to the individual axes, but to the 
motion of the TCP. The TCP is thereby moved at a precisely defined velocity. 

In KRL, a circular movement has the peculiarity of that the sign of the 
circular angle (CA) does not indicate the rotation sense (like in the most common 
G-codes) but the order with which the TCP should move to the points. Figure 
4.21 shows the effect of the CA sign in the CIRC command for the same points 
(PAUX={auxiliary_point}; PPROGRAMED END={destination_point}) and amplitude 
(CA). 

 

 
Figure 4.21. The actual end position (PACTUAL END) on the arc is determined by the 
programmed CA sign and value, and not by the destination point (PPROGRAMED END) 

 

Therefore, a circular movement is defined by three points different from 
one another and not on a straight line and a circular angle (CA) in degrees. 
Similarly, the variables that describe a circular movement in NXTM referred to a 
Cartesian Coordinate System {B} (Figure 2.23) are well known [40], and 
represented in Table 4.2. and Figure 4.22: 
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CONCEPT VARIABLE 
NAME OF THE EVENT HANDLER 
VARIABLE 

Initial point  P1 [$mom_prev_pos]3x1 
Arc center PC [$mom_pos_arc_center] 3x1 
Unitary vector, normal to the arc 
plane 

N [$mom_pos_arc_axis] 3x1   (left hand rule) 

Arc angle CA $mom_arc_angle (degrees) 

Table 4.2. NX Event Handler variables for circular movements. 

 

 

Figure 4.22. Left, Arc of circumference and arc plane. Right, definition points. 

 

Thus, in order to obtain three points giving the equivalent circular motion 
at the manipulator, let ri be the vector of position associated with Pi. Then: 

10 rrR   (4.6) 

1003 ·2 rrRrr   (4.7) 

PRrr  02
 (4.8) 

with              · ·P P
P

R R
R R N V

R N V
  


 (4.9) 

Those expressions allow getting the requested points. Additionally, the 
absolute value of the arc angle (CA) is well known, and always positive due to 
the way in which the points of destination and auxiliary have been defined.  

 

4.6.4.  Post programming 

The information above, suitably treated by the Event Handler, is passed 
to the Definition File, which gives the required format for the output code ((4.4) 
and (4.5)). Appendix I shows the TCL code of both the Event Handler and the 
Definition File configuring a postprocessor from NX to a KUKA 6R 
manipulator, as the redundancy problem is treated in Chapter 5. 
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CHAPTER 5  

REDUNDANCY RESOLUTION 
SCHEMES 

 

“No scientist thinks 
with formulae: before the 

physician begins to calculate 
he must have in his brain the 

course of his reasonings. 
Those, in most cases, can be 

expressed with simple words. 
Calculations and formulae 

arise later” - A. Einstein 
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CHAPTER 5.  REDUNDANCY RESOLUTION SCHEMES 

 

5.1.  KINEMATIC REDUNDANCY 

At Chapter 2, the operational space ( ) was defined as the physical 
space where the manipulator changes the pose of its EE, with regard to a Base 
frame of reference {B}, in order to perform a task. 

For a specific task, the motion of the EE may require the whole 
operational space   or only a subspace of  . In any case, the space in which 
the task is undergoing can be named as the task space, , with dim( ) t  .  

In addition, m was presented as the dimension of the operational space1; 
therefore, if the robot is required to position and orient its EE in three-
dimensional Euclidean space, m = 6. Thus, for the final scope of this thesis, the 
following condition must be accomplished to perform a milling operation: 

6 ,t n     (5.1) 

While most 6R manipulators have enough DOF’s to perform a position 
and orientation tracking, it is known that their conditioning (and also its 
manipulability) may be frustrated due to mechanical limits or even worst, due to 
internal singularities (see Chapter 2). 

 

5.1.1.  Definition of Kinematic Redundancy 

A manipulator is said to be redundant when the dimension of the task 
space t is less than the dimension of the joint space n [19], that is 

, ( dim( ); dim( ) 6)n t with n t          (5.2) 

The degree of kinematic redundancy of the pair of serial manipulator-
task, namely rK, is computed as 

Kr n t   (5.3) 

                                                      

1 Although it could be considered dim( ) 6m   , for the shake of this thesis only 6m   will be taken into 

account. This is the case of general milling tasks, in which the milling tool can be positioned in all the 
ix  

coordinates of  (2.2). 
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It is also known that a redundant n-axis manipulator meant to perform 
tasks in the m-dimensional Cartesian-space has an mxn Jacobian matrix with 
m<n, as it was highlighted for the IDF’s milling workcell in Chapter 2. 

In contrast to non-redundant manipulators, it becomes now possible to 
avoid the above frustrating situations that could arise during a task. But at the 
same time, the control of a kinematically redundant manipulator is challenging 
since there are infinite possible joint trajectories for a given task.  

 

 

Figure 5.1. Anatomical studies of the arm showing the movements, by Leonardo Da 
Vinci (1510) 

 

A typical example of a redundant manipulator is the human arm (Figure 
5.1), which has 7 DOF from the shoulder to the wrist. If the shoulder and hand 
position and orientation are both fixed, requiring 6 DOF; the elbow can still be 
moved due to the additional mobility associate with the redundant DOF.  

Previously introduced decoupled 6R manipulators (Figure 5.2) are 
widely used in industry because they are multipurpose. In fact, they can produce 
any position and orientation of the EE in their workspace. However, the concept 
of redundancy also can be related to the definition of the task instead as an 
intrinsic characteristic of the structure of the robot. Even if a manipulator is 
kinematically redundant for a specific task, it may not be redundant for another 
one.  

For the scope of this thesis, devoted to milling tasks, it is interesting the 
visit the considerations that Huo and Baron [23][20] made on the concept of 
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redundancy. They distinguish two types of redundancy:  intrinsic and functional. 
This classification, with different names is assumed by other authors [56].  

 

          

Figure 5.2. Left, decoupled 6R manipulator. Right, the same manipulator combined 
with two additional joints (linear track and rotary table) 

 

i) Intrinsic redundancy 

A serial manipulator for milling tasks is intrinsically redundant if  

6 ( dim( ); dim( ) 6)n with n m       (5.4) 

that is, the dimension of the joint space,  , is greater than the dimension 
of the resulting operational space of the EE,  , that is considered to be 
equal to six. The degree of intrinsic redundancy of a serial manipulator, 
namely rI, is computed as 

6Ir n   (5.5) 

 

ii) Functional redundancy 

The pair of serial milling manipulator and task are said to be functionally 
redundant when 

6 ,  dim( ), dim( ) 6t with t m         (5.6) 
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that is, the dimension of the operational space,  , is greater than the 
dimension of the task space,  , to be carried out by the milling tool 
attached to the EE. The milling task is also supposed to be totally included 
into the operation space of the manipulator, i.e.,  .  

The degree of functional redundancy of a serial manipulator, namely rF, is 
computed as  

6Fr t   (5.7) 

 

From (5.5) and (5.7) the kinematic redundancy (5.2) can be rewritten as 

K I Fr r r   (5.8) 

which makes clear that kinematic redundancy comes from two different sources: 
the functional redundancy and the intrinsic redundancy.  

Milling tasks have a t=5, i.e. labours controlling position and two 
orientations of the tool (being these orientations constant or variable, namely 3-
axes or 5-axes milling, respectively).  In this case, there exists an axis around 
which a rotation of the EE is irrelevant, as shown in Figure 5.3. 

 

 

Figure 5.3. Irrelevant axis of symmetry of the tool at milling tasks. 

 

If we reconsider the 6R manipulator of Figure 5.2 alone (left), it can be 
redundant when the task requires less than the full 6 DOF mobility of the EE, 
even more when additional joints are provided. For example, the RP-6R serial 
manipulator shown in Figure 5.2-right has a dim( ) 8n    in an operational 
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space of dim( ) 6  . Hence, this manipulator has a degree of intrinsic 

redundancy of 2, i.e. 6 8 6 2Ir n     . To define the pose of the milling tool, 
five reference inputs are required (i.e. three linear motions plus two rotational 
motions) and so dim( ) 5t    . Hence, the degree of functional redundancy is 

6 6 5 1Fr t     . As a conclusion, the kinematic redundancy of this pair 

manipulator-task is three: 2 1 3K I Fr r r     , as depicted in Figure 5.4. 

 

 

Figure 5.4. Intrinsic and functional redundancies of serial robotic tasks, with 
references to the studied workcell. 

 

Summarizing, redundant manipulators have extra DOF’s than those 
required to perform a main task. Solution strategies exploiting the potential 
benefits of these additional DOF’s, are termed as Redundancy Resolution 
Schemes (RRS). To the author knowledge, it is notable that most of the reported 
RRS have been tested on simulations, while only a few implementations on real 
robots have been reported as Honegger and Codourey [24]. In many industries, 
the skilled operator is still who evaluates the best posture of the robot according 
to experience. 

 

5.2.  CONTINUOUS PATH PLANNING AND TRACKING 

Once a continuous trajectory space is generated at  , the EE of the robot 
should track this trajectory, and hence, the joint angles of the robot have to be 
calculated along this continuous set of poses of the EE. In practice, the 
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continuous trajectory is sampled at a discrete set of close-enough poses  1

N

ks . A 

tangent, normal, and binormal unit vectors ({t, n, b}, respectively) can be 
associated with every sample point of the trajectory, namely the Frenet-Serret 
vectors, indicating the required pose (Figure 5.5). 

 

 

Figure 5.5. Milling toolpath with Frenet-Serret frames (tangent t, normal n and 
binormal b) indicating the required pose at each point in the toolpath. Again, it can 
be appreciated the irrelevant axis of symmetry of the milling tool. 

 

In principle, an IKP of position could be solved at each sampled pose. If 
the manipulator is non-redundant and of the decoupled type these calculations are 
feasible in a fraction of a millisecond, as described in Chapter 2. However, if the 
manipulator has an architecture not lending itself to a simple solution, like the 
redundant workcell studied, an alternative approach is needed. 
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In order to deal with these inconveniences when solving the IKP, an 
iteratively approach can be applied as proposed by Angeles [48]. The procedure 
is based on Newton-Gauss method [47]. Recalling the DK statement, eq. (2.74), 
the desired toolpath at each pose can be expressed as a nonlinear algebraic 
system of the form 

( ) kf q s  (5.9) 

Upon application of the Newton-Gauss method to find a solution of eq. 
(5.9) we assume an initial guess 0q  (usually a previous actual pose), and based 

on this value we generate a sequence 0 1,..., ,i iq q q   until either a convergence or 
an abortion criterion is met2. This sequence is generated in the form 

1i i iq q q     (5.10) 

with iq  calculated from 

( )· ( )i i i
a kJ q q s f q    (5.11) 

where aJ  is defined as in (2.14). 

Alternatively, the use of this differential form of the Jacobian matrix can 
be avoided as explained in Section 2.4.4., by using gJ  [48][49]:  

( )i i i
gJ q q t    (5.12) 

with it  defined as 

· ( )T
i k k dQ vect Q Q

t
p

 
    

 (5.13) 

where Qk represents the actual rotation matrix from base frame to EE frame, Qd 
represents the desired rotation matrix, and they have a relation as 

· ·T
d k k dQ Q Q Q Q Q     (5.14) 

                                                      
2 It is common practice in all Newton methods to assume that a good enough approximation to the root wanted 
is available, and hence,   is "small." Since any norm can be used to calculate the vector norm  , we can 

choose the norm that is fastest to compute, namely, the Chebyshev norm (this norm only requires comparisons 
and no floating-point operations):   max i

i
 


   
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Function ( )vect Q  represents the axial vector of a 3x3 rotation matrix 

Q , and is calculated as [48]  

32 23

13 31

21 12

1
( )

2

Q Q

vect Q Q Q

Q Q

   
      
    

 (5.15) 

Vector p  is defined as the difference between the prescribed value pd of 
the position vector of the operation point and its actual value pk.  

The relations amongst Qd, pd, Qk, pk, and Q , p  are shown in Figure 
5.6.  

 

 

Figure 5.6. Relation between the desired and the current pose. 

 

From Angeles [48], Baron and Huo [20][22][23] sketched an algorithm applied it 
to their RRS (exposed in the following section). For the scope of this thesis, a 
generic algorithm (5.16) can be deduced, from which some variations in the 8th 
step will be done in following sections: 



Chapter 5. Redundancy Resolution Schemes  167 

 
 

1)   initial joint position
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4)   ·

5)   
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6)   
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8)   Redundancy Resolution Scheme

9)   if  STOP, else

10)  
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q 


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
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 
    



 

  

 + ,  and go to step 3q q q 

 (5.16) 

 

 

Figure 5.7. Highlight of the loop leading from an initial current pose (k) to a desired 
final pose. 

 

5.3.  REDUNDANCY RESOLUTION SCHEMES (RRS) 

Depending on the application requirements and choice of controller, 
redundancy can be resolved at joint-position [13], velocity [15], or acceleration 
level [19]. In practical terms, at most robot controllers the control input is written 
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in form of a joint-position or 
EE-position values, but due to 
the fact that this problem is 
highly non-linear, a proper 
analysis of position can be 
done from the RRS at joint-
rate level.  

At Figure 5.8, the 
vector nq R  is mapped into 

( 6)mt R m  . Two 
fundamental subspaces 
associated with a linear 
transformation are its Null 
Space ( ( )J ) [3] and its 

Range ( ( )J ), namely 

 1( ) · 0n
nxJ q R J q      (5.17) 

 ( ) · nJ J q q R     (5.18) 

From the fact that J is a linear transformation of nR , Equation (5.17) 
means that ( )J  is the set of all vectors q  such that are mapped to the null 

vector, 10nx . On the other side, only a sub-space of the Operational Space will be 

reachable, being it ( )J .  

From a mathematical point of view, the SVD3 of an mxn Jacobian matrix 
J can be written in the form 

TJ U V   (5.19) 

where U is the mxm orthonormal matrix of the output singular vectors 

 iu , V is the nxn orthonormal matrix of the input singular vectors  iv , and Σ = 

[S 0] is the mxn matrix whose mxm diagonal submatrix S contains the singular 
values i  of the matrix J (strictly positive). Letting rank(J) = r, the following 
holds: 

                                                      

3 http://mathworld.wolfram.com/SingularValueDecomposition.html  

 

Figure 5.8. Mapping at velocity level, from the 
Joint Space ( )  to the accessible workspace 

( ( ))J  in the Operational Space ( ) . 
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From a practical point of view, the joint velocities belonging to ( )J , 
can be specified without affecting the task space velocities, since the do not 
affect the motion of the EE. They are referred to as internal joint motion or self-
motions, and there are infinite options. This shows the major advantage of 
redundant manipulators: additional objectives can be satisfied while executing a 
main task specified via positions and orientations of the EE, such as occurs in 
milling tasks. 

Several authors [17][19] classify the RRS into two trends, namely local 
and global methods:  

 The global methods need all the required data before the movement 
is realized in a time invariant workspace, for tasks requiring strict 
optimality. Those methods, involve a great amount of computations 
making prohibitive a fast resolution scheme [17][19].  

 The local methods search a solution for every instant with the use of 
the available data. Those schemes would be found the more 
convenient for the treatment of a CAM-Rob postprocessing task, for 
two reasons: the immense amount of data and the major flexibility in 
the treatment of the process. 

 

5.3.1.  Local Optimization Algorithms for intrinsically-redundant 
manipulators (rI) 

Most of the RRS focus on the solution of intrinsically-redundant 
manipulators, by using ( )J  to select an optimized solution, and use the Moore-
Penrose pseudo inverse (or a weighted pseudo inverse) of the Jacobian matrix. 

 

i) Schemes with the Moore-Penrose Pseudo-Inverse 

For a redundant manipulator, the dimension of ( )J  is equal to n-
r, where r is the rank of the matrix J. If J  has full column rank (r=m), then 
the dimension of ( )J  is equal to the degree of redundancy [33]. 

For these RRS, we recall the eq. (2.13), namely 
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 Homogeneous solutionMinimum-norm solution

† †· ( )q J t I J J h  


  
(5.20) 

Equation (5.20) has been used by many researchers in order to 
solve redundant tasks (see [1][2][5][9][25]). The ability of the pseudo-
inverse to provide a meaningful solution in the least-squares sense 
regardless of whether equation ·t J q   is underspecified, square, or over-
specified makes it the most attractive technique in redundancy resolution.  

The first part of (5.20) is the minimum-norm solution4 or base 
solution and the second part is an arbitrary vector from the Null Space5 of 
the Jacobian, being †( )I J J the projection operator on ( )J .  

Vector h of (5.20) is an optimized performance criterion vector 
(performance vector for shake of brevity). Namely, the manipulator is 
required to track a desired target positions as primary task, but in addition 
one can try to accomplish secondary goals by properly choosing h. In this 
case, the performance vector can be taken as a virtual force which attempts 
to push the configuration of the manipulator away from the critical area of 
configuration space [38]. 

 

 Selection of the performance vector, h  

Different selections of h result in different performance methods, 
most related to various applications of RRS. 

The most widespread method used to apply such a secondary 
motion criterion through the Null Space (the primary requirement being a 
prescribed end point motion in the workspace) is the Gradient projection 
method (GPM), introduced by Liégeois [4]. It takes the minimization a 

                                                      
4 If t is in the range of J, t Jq  , q is the unique vector solution of smallest magnitude. If t is not in the range 

of J, q  is the unique vector of smallest magnitude which minimizes Jq t , or equivalently, which minimizes 

2
Jq t . [29] 

5 Clearly: 

 
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† †
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0
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I I

J q J J t I J J h

J q JJ t J I J J h
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  

  

   


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position-dependent scalar performance criterion (or virtual potential 
function [38], p(q)), by means of its gradient vector (h), namely 

·h k p    (5.21) 

1 2

( ) ( ) ( )
, ,...,

T

n

p q p q p q
p

q q q

   
      

 (5.22) 

With the aim of avoiding joint limits, Liégeois [4] introduced a 
performance criterion that helps joint-limit avoidance with the lower and 
upper joint limits known ( min

iq  and max
iq , respectively)  

     
2mid min max

mid
mid max

1

1
, with 

2

n
i i i i

i
i i i

q q q q
p q

n q q

  
   
  (5.23) 

A variation of this criterion has been recently applied by Huo et al. 
[23]. 

With the aim of avoiding singularities, Yoshikawa [5] suggested 
the measure of manipulability (  ), introduced in Chapter 2, as 

performance criterion (i.e., ( )p q ). Several authors have used the 
manipulability as the distance criterion to stay away from manipulator 
singularities [36]. He also introduced a performance index for obstacle 
avoidance, namely 

1
( ) ( )

2
T

r rp q q W q q    (5.24) 

where W is a diagonal weighting matrix and rq  is a given arm reference 
posture. 

Also the condition number of J, has been referred as singularity 
avoidance criterion [23] but, to the author’s knowledge, by using the 
matrix 2-norm (i.e., the ratio of the maximum and minimum singular 
values of J termed as 2 ( )k J ). No direct application of the condition 
number derived from weighted Frobenius norm (see Chapter 2) has been 
reported. Huo and Baron [23] combined the manipulability and the 2k -
condition number in a single index that they named as parameter of 
singularity ( ps ) 
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1

2
2

1 2 2

1

· ·...· ·...·
m

ps
m m

k




     

    (5.25) 

It is logical to activate the performance criterion related to 
singularity avoidance when the parameter of singularity considered passes 
over a preset threshold value Tsq . At that instant, the corresponding 

configuration q  is recorded. Thus, the parameter of singularity can be 
written as: 

( ) ( )
2
ps T

ps Ts Tsp q q W q q


    (5.26) 

In (5.24) and (5.26) the choice of the weight, W, is a major 
difficulty to implement due to the subjectivity for a given performance 
criterion, p. At the same time, it is critical for the performance of the RRS. 
In particular, a small value of the W may slow down the minimization of 
the performance criteria, but on the other hand a large value may even lead 
to an increase of p [33]. Therefore, W is usually set based on trial and error 
[23]. 

In practice, it seems to be desirable to identify an appropriate value 
of W at each configuration in a reasonable time.  

 

ii) Schemes using the Weighted Pseudo-Inverse 

Several authors [37] propose that rather than driving the robot 
away from singularities at very high demands in joint velocities, the GPM 
solution based on the ( )J  projection sometimes leads the robot to 
singularities. A weighted pseudo-inverse by the inertia matrix can be used 
instead.  Thus, a weighted solution is directly deduced from (5.20), namely 

† †· ( )·wq J t I J J h    (5.27) 

where a weighted pseudo-inverse (WPI) is used 

  1† 1 1T T
wJ W J JW J

   (5.28) 

and W is a positive-definite weighting matrix.  
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Recently, Honnegger [24] implemented this solution for the control 
of the redundant manipulator Robojet®. 

 

iii) Schemes using Householder Reflection 

Arenson, Angeles and Slutski [1][18] proposed to use Householder 
reflection in a RRS. At first, equation (5.20) can be rewritten as: 

q k h   (5.29) 

with 

† ( )k J t Jh   (5.30) 

Multiplying both members of (5.29) by J , then 

Jq Jk Jh   (5.31) 

Therefore,  

Jk r  (5.32) 

where r t Jh  . 

For solving (5.32), Householder reflection is used for the 
transposed Jacobian matrix TJ . The matrix H and U are reached, and they 
have a relation with TJ  in the form 

( )0
mxmT

nxn
n m xm

U
H J



 
  
 

           (5.33) 

where U is a m x m upper-triangular matrix, H is an orthogonal matrix6 (n 
x n), and n > m for redundancy7. Hence, from (5.32) there is 

 TT TJH Hk HJ Hk r          (5.34) 

                                                      
6 HTH=HHT=I 

7 in this research, m=6 
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As 

  [ 0 ]
0

TT T T TU
HJ HJ U

 
   
 

 (5.35) 

equation (5.34) is equal to 

0T TU Hk r         (5.36) 

If we define 1 2

TT THk y y y     , where 1y  is an m-dimensional 

vector and 2y  is an (n-m)-dimensional vector, then Arenson notes that k  

and y  have the same Euclidean norms. Hence, minimizing 
2

k  is 

equivalent to minimizing 
2

y . Then, if we want to minimize 
2

k , or 

equivalently, 
2

y , we can choose 2 0y   and 1y  will he found from (5.36)  

2 01
1

2

0 ·yT T Ty
U r U y r

y
 

      
 

     (5.37) 

Now, with y  known, k  can be found from the previous definition 
of y with the fact that H is an orthogonal matrix 

·Tk H y      (5.38) 

which we can substitute in (5.29) 

·Tq H y h   (5.39) 

We should not forget that these computations will be performed 
with finite precision, and hence, roundoff-error amplification is bound to 
occur. In order to keep roundoff-errors as low as possible, this algorithm 
avoids the direct calculation of the generalized inverse of the Jacobian 
matrix, as with (5.20). Hence, the squaring of the condition number of the 
J  is avoided and the round-off error of the algorithm is not amplified.  

It is an interesting solution for the calculation of ill-condition 
postures because here the Jacobian matrix J  may have a very high 
condition number. 
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iv) Schemes using the damped least-squares (DLS-) inverse 

In the field of RRS, a problem with (5.20) is its instability around a 
singularity: in some circumstances, postprocessing a toolpath tracking with 
(5.20) seems to be mathematically cumbersome. More precisely, the norm 
of the first term of (5.20) becomes very large in the immediate 
neighbourhood of these configurations. Thus, there are some velocities in 
task space which require physically unrealizable joint rates.  To deal with 
this inconvenience, Wampler [30], and Nakamura and Hanafusa [26], 
introduced the DLS-method. In essence, it minimizes 

2 22·J q t q    (5.40) 

where R , the damping factor, is used to specify the relative importance 
of the norms of joint rates and the tracking accuracy. This is equivalent to 
minimizing the quantity of a new augmented system of equations [29], 
namely 

0

J t
q

I
   

   
   

  (5.41) 

The corresponding normal equation is 

0

T T
J J J t

q
I I I  

       
       

       
  (5.42) 

This can be equivalently rewritten as 

2( )T TJ J I q J t   (5.43) 

which leads to 

† ·aq J t  (5.44) 

   with                            † 2 1( )T T
aJ J J I J     (5.45) 

It is easy to show [29] that 

2 1 2 1( ) ( )T T T TJ J I J J JJ I      (5.46) 

with                           † 2 1( )T T
bJ J JJ I     (5.47) 
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The advantage of †
bJ  over †

aJ   is that the matrix being inverted is 
mxm instead nxn, and m is less than n in redundant manipulators. Thus, we 
can rewrite (5.44) as 

† ·bq J t  (5.48) 

It is important to mention that it is a frequent mistake to use †J   
for the construction of the homogeneous term of (5.20), as the damped 
least squares inverse lacks various vital properties [27]. Instead, it must be 
built as done in (5.20), i.e., based on †J .  

The singular value decomposition (SVD), introduced at the 
beginning of this Section, provides a powerful method for analyzing the 
Pseudo-Inverse and the DLS-methods [26]. From the previous section (i), 
let’s consider J not having full column rank (i.e., r<m). With this 
consideration, the last r-m singular values of Σ  (5.19) are zero, ( )J  is an 

r-dimensional subspace of mR , and the dimension of ( )J increases to n-r. 
Recalling (5.19), the SVD of an mxn Jacobian matrix J of rank r can be 
written in the form: 

1

r
T

i i i
i

J u v


  (5.49) 

where i  are the singular values (strictly positive),  iu  and 

 iv are the basis of ( )J and the complementary space ( )J , see pages 

167 et sqq.  

The expression of the pseudo-inverse shows the strong influence of 
any small singular values, thus explaining the instability of the solution 
around the singularity, namely 

†

1

1r
T

i i
i i

J v u


  (5.50) 

in which the minimum singular value approaches zero ( 0i  ) as 
a singular configuration is approached, i.e., at a singular configuration, 
becomes ill-conditioned.   

In this context, the damping factor   transforms the ill-behaved 
inverse term in (5.20) into a damped term converging smoothly to zero 
when the singular value becomes small, namely 
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†
2 2

1

r
Ti

i i
i i

J v u 
 


  (5.51) 

This alternative pseudo-inverse provides continuous and feasible 
joint velocities even at the neighbourhood of singular points.  

Choosing the value of   is not straightforward. Several methods to 
determine   have been proposed in the literature [31], most of them based 
on some Jacobian-dependent measure such as the Yoshikawa’s 
manipulability value [26] or rate of change [32], as well as the smallest 
singular value of J [28] (although SVD has a high computational cost). All 
these methods act above a threshold value. 

Finally, a discussion arises about the convenience of this DLS-
method for postprocessing at milling tasks. It is easy to see that the 
constant λ introduces an algorithmic error, also away from a singular point. 
This error is introduced in terms of both direction and magnitude. DLS-
defenders argue that, if the singular values are much larger than the 
damping factor (which is likely to be true far from singularities), then there 
is little difference between the two solutions, since in this case 

2 2

1i

i i


  




 (5.52) 

Nevertheless, for the scope of this thesis (devoted to milling tasks) 
and taking profit from the redundant additional joints, it has been taken as 
more efficient and precise the previously introduced method.     

 

5.3.2.  Solution of functionally-redundant manipulators (rF) 

As presented in the previous section, most researchers use the pseudo 
inverse  †J  and the projection onto the ( )J  of the manipulator to solve the 
inverse kinematic problem at redundant manipulators. Those RRS are of direct 
application on many cases.  

However, in section 5.1.1. the concept of functional redundancy was 
introduced. It is more clearly highlighted in commonly used 6R manipulators in 
which J often is a full rank square matrix, i.e., its null space doesn't exist so the 
second term of (5.20), working on ( )J , can not be directly used. As a 
consequence, a new algorithms corresponding to the cases of full rank J have 
been recently developed in order to change (5.20) into an under-determined 
system. Two techniques are exposed: one by augmenting the dimension of joint-
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rate (namely, Virtual Joint Method) and another one by reducing the dimension 
of the twist (namely, Twist Decomposition Method). 

 

i) Virtual Joint Method (VJM) 

Baron [21] proposed a joint limits avoidance strategy by adding a 
virtual joint around the symmetry axis of the tool (Figure 5.9), in order to 
obtain an under-determined linear algebraic system with at least one DOF 
of redundancy.  

 

 

Figure 5.9. Additional virtual joint allowing a rotation around the symmetry axis of 
the tool. 

 

Therefore, equation (5.20) can be rewritten as 

† †
( 1) ( 1)· ( )·v v n x n v vq J t I J J h     (5.53) 

where vJ  is an augmented Jacobian matrix by a virtual joint-rate 1nq  , 
namely 

  1

1

; 1,...,i nx
v

n

q
q i n

q 

 
  
  





 (5.54) 

For example, in the explicit case of the IDF workcell, this additional virtual 

joint 7  implies having the joint-rate vector 1 6 7[ , , ,..., , ]T
v M Lq d        . 
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ii) Twist Decomposition Method (TDM) 

In general milling operations, the cutting tool has a symmetry axis. 
The tool holder can be rotated around this axis without affecting the task. 
This axis describes the geometry of the functional redundancy. In Figure 
5.10, the unit vector e  denotes the orientation of the symmetry axis along 
the milling tool. 

 

 

Figure 5.10. Decomposition of the angular velocity vector   into two orthogonal 

parts: one lying on the task subspace (  ) and another one lying on the orthogonal 

task subspace (   ). 

 

Huo and Baron [22] decomposed the angular velocity in the twist 
vector ( t , 32 R ) of the minimum norm solution (first term of (5.20)) into 
two orthogonal subspaces, one in the task subspace and another lying into 
the orthogonal task subspace (Figure 5.10), namely 

· ·t t t T t T t 


     (5.55) 

where T is a twist projector matrix. The twist projectors for a general 
milling task can be defined as 

3 3
6 6

3 3

( ) 0 0
;

0 0 0

T T
x

x

x

I ee ee
T T I T

I
   

      
  

 (5.56) 

Therefore, the first term of (5.20) can be rewritten as 
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 † †
6 6· ( )·xq J T t J I T t    (5.57) 

The first part of (5.57) represents the relevant task displacement 
and the second part represents the redundant displacement, i.e. those 
components not important for the task. In fact, the author reconsidered 
these components as a way to deal with the redundancy by replacing t  
with an arbitrary vector h  of joint spaces properly projected on the task 
space, allowing a secondary task to be satisfied. Thus, (5.57) is rewritten as  

 † †
6 6· ( )·xq J T t J I T Jh    (5.58) 

The TDM has great difference with the projection on ( )J (eq. 
(5.20)) on the theoretical base. Both of them consider a prior task and a 
secondary use of the redundancy, but the TDM projects the task from the 
robot base frame to the EE frame. Thus, the motion of the secondary task is 
always constant in the EE frame (the rotation around the symmetry axis of 
EE), while this secondary motion may or may not be constant in the base 
frame. Thus, TDM classifies the order of task priority in instantaneous EE 
frame instead of in robot base frame as by the previous null space 
approach, and the TDM was directly developed from the minimum-norm 
solution without considering the projection onto the null space of J. 

 

5.3.3.  Consideration for functionally-redundant (rF) and  intrinsically-
redundant (rI) manipulators 

A final consideration must be done for the workcell studied in the present 
thesis, where both intrinsic and functional redundancies exist (Figure 5.4). Thus, 
it is very interesting to study the combination of the TDM and the projection on 

( )J  in order to take advantage from both types of redundancy, namely 

 † † †
1 2· ( )· ( )·q J T t J I T Jh I J J h      (5.59) 

where h1 and h2 are the two possible performance vectors for the redundant task. 
Clearly, h1 is projected onto the functional redundancy, while h2 is projected onto 
the intrinsic redundancy.  

To the author’s knowledge, a solution like (5.59) has not been studied. 
Clearly, (5.58) is a particular case of (5.59) with h2 =0. 
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Figure 5.11. In the TDM, the motion of the secondary task is always constant in the 
EE frame (the rotation around the symmetry axis of EE). 

 

Recalling Section 2.4.5., it is remarkable that the DH representation of 
the manipulators depends on the RRS selected, according to the significance 
explained in Section 5.3.2. , by adding the additional joint or considering a fixed 
displacement up to the tool tip. For the VJM (Figure 5.12, left), and additional 
line is added in the DH-model (Table 5.1). The TDM uses the actual DH-model, 
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and therefore a final constant displacement matrix is required to know the 
position of the EE (Figure 5.12, right). 

 

 

 

Figure 5.12. Comparison of the DH frame assignment for the VJM (left) and the 
TDM (right).     

 

  

 

 

 

 

 

 

 

Table 5.1. Table summarizing the parameters for both standard DH-models. 

 

 

 

 

Link 
αi 

(rad) 

ai 

(mm) 

θi 

(rad) 

di 
(mm) 

1 π/2 803 θM -305   
2 π/2 0 0 dL 
3 π/2 300 θ1 -675 
4 0 650 θ2 0 
5 π/2 155 θ3 0 
6 π/2 0 θ4 -600 
7 π/2 0 θ5 0 
8 0.3564 0 θ6 -443.4 

TCP 0 0 θ7(VJM) -119.7 
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5.3.4.  Redundant manipulator controlling process 

The usual control flowchart to control an industrial redundant workcell is 
based on the experience of the workman in charge of the system. Such methods 
are directly deduced from the position IK problem that, in most industrial 
manipulators, can be solved rapidly (for example, by using geometric methods as 
those described in Chapter 2). 

 

 

Figure 5.13. Usual flowchart for a redundant manipulator controlling process. 

 

From the described RRS, another controlling process is deduced as 
shown in Figure 5.14, where the resolution is done at the joint rate level. In 
Chapter 6 several case studies will be developed following this reasoning. In the 
following, it can be interesting to highlight how the experience of the workman 
can be placed in such a flowchart. For that, a previous revision of the expert 
fuzzy systems is done in the next Section. 

 

5.4.  INTELLIGENT CONTROL IN REDUNDANCY RESOLUTION  

Intelligent control is a new research direction making control systems to 
have higher degree of autonomy. The intelligent control methods applied on the 
Redundancy Resolution problems may include fuzzy logics (FL), neural networks 
(NN), and genetic algorithms (GAs).  
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Figure 5.14. Proposed flowchart for a redundant manipulator controlling process. 

 

There are many researches that want to replace some or all of the 
physical kinematic and dynamic modelling usually needed to implement 
conventional control techniques in robotics. With proper development, intelligent 
control approaches are supposed to have great potential for solving difficult 
control problems considering the complexity and computational cost of most of 
the mathematical models. Those goals are mainly pursued by training and 
learning processes of the NN or GAs, which then can be used to control the 
manipulator. This posture is reinforced with the argument not only of the 
simplicity but also of the failure robustness of these techniques just like in 
humans, i.e. not computing exact inverse kinematics but solving precise 
positioning from heuristics. 

On the contrary, there are also many researchers who believe that this 
approach is not a good use of intelligent control algorithms. They argument that 
control techniques should keep as much physical modelling as possible, and let 
the intelligent control algorithm to handle the uncertainties or the unknown 
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physical phenomenon of the mechanical system at hand. This posture is 
reinforced with the support of the rapid development in computer technology. 

Both perspectives find good reasons to keep going on, and in many cases 
they found each other in an intermediate point, taking mutual benefits. From this 
point of view, FL can find the reason for its use when tuning several aspects of 
the kinematic control which take into account an expert knowledge. 

 

5.4.1.  Fuzzy-Based Redundancy-Resolution Approaches 

Considering the facts mentioned in the previous section, some efforts 
have been done to solve the inverse kinematics problem using FL methods 
[39][40][41][42][43]. 

Kim and Lee [39][40], and Xu and Nechyba [41], proposed two different 
approaches for fuzzifying the differential relationship between the differential 
twist and joint motions in the homogeneous solution of (5.20). In a similar way, 
Beheshti et al. [43] developed an optimized IK solving method through FL for 
real time applications, with a rule base indicating whenever one of the joint 
variables increases or decreases, which corresponding variables of the Cartesian 
space should increase or decrease. They applied this to a redundant 4R planar 
manipulator. Graca [44] proposed a FL algorithm for non-redundant robotic 
manipulators to track specified trajectories in Cartesian space. This algorithm 
consisted of treating the inverse of the Jacobian matrix as a matrix of fuzzy 
numbers, which was solved using fuzzy regression to obtain a fuzzy version of 
the Jacobian inverse matrix. In [45], he extended these inferencing techniques for 
optimizing the secondary task at redundant manipulators, i.e. for determining a 
fuzzy model for the performance index (h). For this, he constructed the rule base 
based on the desired subtask (singularity avoidance) by mean of observations on 
the determined symbolically Jacobian. 

From a critical point of view, most of them do not propose a systematic 
method for generating and adjusting membership functions of fuzzy sets. The 
reason is that finding a fuzzy rule base for inverse kinematics of a redundant 
robot is a difficult task and the approaches exposed result as complex as the 
many corresponding analytical methods. Thus, creating and tuning these models 
are at the same level of complexity that other well-know mathematical models, 
even for the simplest cases such as planar manipulators that they deal with. From 
the author’s point of view, it is also noteworthy the fact that many of these 
exclusive-fuzzy models lead efforts to develop the model but forgetting the real 
raison d'être of the fuzzy inference (i.e. the use of the expert knowledge of a 
skilled operator). In this sense, efforts can be senseless if they do not have a 
reasonably advantage in front of mathematical models or are founded in the 
observation of the same equations.  
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In the following Chapter, FL is included from two practical points of 
view: first, by implementing a control based on the IK positioning analysis of the 
workcell, and second by dynamically tuning several aspects of a RRS while 
taking into account an expert knowledge. 

  

5.4.2.  Fuzzy Logic Overview 

A Fuzzy Logic Controller (FLC) is a controller that works internally with 
fuzzy variables. It comprises a knowledge base with definitions of membership 
functions and a rule-base (i.e. a set of If-Then statements), a decision-making 
logic (or inference mechanism), and interfaces to and from the physical world 
which allow the conversion from crisp values into fuzzy values and vice versa 
(i.e. fuzzification and defuzzification interfaces).  

The rule-base contains a fuzzy logic quantification of the expert’s 
linguistic description of how to achieve good control, while the inference 
mechanism (also known as inference engine or inference module) emulates the 
expert’s decision making in interpreting and applying knowledge about how best 
to control a process. A block diagram of a fuzzy control system is shown in 
Figure 5.15. 

A control cycle typically consists of taking process variables as input, 
converting them to fuzzy values (fuzzification), applying the input to the rule-
base and deriving a fuzzy control action, converting this fuzzy control action to a 
crisp value (defuzzification), and giving this crisp value to the controlled process 
as control action. 

 

 

Figure 5.15. Block diagram of a fuzzy control. The inference mechanism interprets 
the values in the input vector and, based on some set of rules, assigns values to the 
system inputs. 

 

The following subsections review briefly some of the concepts 
introduced, and the inference process. 
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i) Fuzzy sets and membership functions 

Fuzzy logic starts with the concept of fuzzy set. A fuzzy set is a set 
without a clearly defined boundary. A fuzzy set admits the possibility of 
partial membership in it. In other words, this is the major advantage that 
fuzzy reasoning, namely the ability to reply to a yes-no question with a 
not-quite-yes-or-no answer. Humans do this kind of thing commonly, but it 
is a rather new trick for computers.  

In fuzzy logics, the input space is sometimes referred to as the 
universe of discourse. Thus, if X is the universe of discourse and its 
elements are denoted by x, then a fuzzy set A in X is defined as a set of 
ordered pairs 

 , ( ) |AA x x x X   (5.60) 

where ( )A x  is called the membership function (MF) of x in A. It is a 
curve that defines how each point in the input space is mapped to a 
membership value between 0 and 1. These membership functions are, in 
turn, built from several basic functions [54]: piecewise linear functions, 
Gaussian distribution functions, sigmoid curves and polynomial curves 
(see Figure 5.16). The simplest membership functions are formed using 
straight lines and, of these, the simplest is the triangular membership 
function. 

 

 

Figure 5.16. Types of Membership Functions: triangular MF, trapezoidal MF, 
Gaussian MF and Sigmoidal MF. 
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ii) Logical Operations 

FL reasoning is a superset of standard Boolean logic. In other 
words, standard logical operations will hold by keeping the fuzzy values at 
their extremes of 1 (completely true), and 0 (completely false).  

 

 
Figure 5.17. Standard truth tables adapted to FL reasoning: because there is a 
function behind the truth table rather than just the truth table itself, values between 
1 and 0 can be considered now. 

 
Due to the fact that in FL the truth of any statement is a matter of 

degree, the input values can be real numbers between 0 and 1 as previously 
stated. In this case, the min(A,B) operation preserves the results of the A 
AND B truth table and also extend to all real numbers between 0 and 1. 
With the same reasoning, the OR operator can be replaced with the max 
function, so that A OR B becomes equivalent to max(A,B). Finally, the 
operation NOT A becomes equivalent to the operation 1-A (Figure 5.17). In 
the Figure 5.18, the truth table is converted to a plot of two triangular fuzzy 
sets applied together to create one fuzzy set.  

 

 
Figure 5.18. The upper fuzzy sets (A, B) are managed with the fuzzy operations 
defined, to get the result displayed below. 
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iii) If-Then Rules 

The expert knowledge of the workman in charge of the system to 
manage (the robotic manipulator for the scope of this thesis) has to be 
considered in the design of the central core of the fuzzy controller.  

To practical effects, this knowledge can be collected in fuzzy 
association matrixes, relating the control variables, the adjectives that 
describe those variables and the action associated to an expert managing. 
This information is necessary for the accomplishment of a set of rules, 
known as rule-base. In it, the stand alone controller will uphold the 
criterion for the decisions taken when managing the system. 

These rules combine one or more fuzzy sets of entry (antecedents) 
and associate it with one or more output fuzzy sets (consequents). They are 
basically of the type of “IF <antecedents> THEN <consequents>”, being 
both fuzzy sets associated by fuzzy operators AND, OR, NOT.  

 

iv) Fuzzy Inference Process 

The process of fuzzy inference involves all of the pieces previously 
introduced. It is the process of formulating the mapping from a given input 
to an output using fuzzy logic. 

Two types of fuzzy inference systems are commonly used, namely 
the Mamdani-type and Sugeno-type [50][51][54]. These two types of 
inference systems vary somewhat in the way outputs are determined. 
Ebrahim Mamdani’s fuzzy inference method is the most commonly seen 
fuzzy methodology [50], and it will be the inference method used in this 
thesis.  

Fuzzy inference process comprises of five steps:  

 Fuzzification of the input variables 

The first step is to take the inputs and determine the degree to 
which they belong to each of the appropriate fuzzy sets via evaluation of the 
membership functions. The input is always a crisp numerical value limited 
to the universe of discourse of the input variable and the output is a fuzzy 
degree of membership in the qualifying linguistic set (always the interval 
between 0 and 1). In this manner, each input is fuzzified over all the 
qualifying membership functions required by the rules. 

 Application of the fuzzy operator (AND, OR, NOT) in the antecedent 

If there is only one part to the antecedent, then this is the degree of 
support for the rule.If there are multiple antecedent parts, after the inputs 
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are fuzzified, the fuzzy operator is applied to obtain one number that 
represents the result of the antecedents for that rule. This number is then 
applied to the output function.  

 Implication from the antecedent to the consequent 

The output fuzzy set is also represented by a membership function. 
The input for the implication process is the single number resulting from 
the previous step. If the antecedent is only partially true, (i.e., is assigned a 
value less than 1), then the output fuzzy set is truncated according to the 
implication method. Implication is implemented for each rule. 

 

 

Figure 5.19. Fuzzification, application of the fuzzy operator (OR) and implication 
processes for a single if-then rule 

 

 Aggregation of the consequents across the rules 

In general, one rule alone is not effective. Two or more rules that 
can interact amongst them are needed. All rules are evaluated in parallel, 
the order of the rules is unimportant, and the output of each rule is a fuzzy 
set. 

Because decisions are based on the evaluation of all of the rules, 
the rules must be combined in some manner in order to make a decision. 
Therefore, aggregation is the process by which the fuzzy sets that represent 
the outputs of each rule are combined into a single output fuzzy set for 
each output variable (Figure 5.20).   
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 Defuzzification 

As much as fuzziness helps the rule evaluation during the 
intermediate steps, the final desired output for each variable is generally a 
single number. Therefore, from the previous aggregated output fuzzy set, 
the defuzzification process gives as a result a crisp value. 

The most popular defuzzification method is the centroid 
calculation (Figure 5.20), which returns the center of area under the 
aggregated curve defining the single output fuzzy set. 

 

 
Figure 5.20. Aggregation of the consequents across the rules a single output fuzzy 
set, and final defuzzification by means of the centroid method. In summary, 
information flows through the fuzzy inference process as shown. 
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CHAPTER 6  

ANALYSIS AND RESULTS 

“I'm so happy 'cause today / I 
found my friends / They're in my head / 
I'm so ugly, that's okay / 'Cause so are 

you / Broke our mirrors / Sunday morning 
is everyday / For all I care / And I'm not 

scared / Light my candles, in a daze / 
'Cause I've found God” 

Kurt Cobain 
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6.1.  INTRODUCTION 

The main difficulty of postprocessing a toolpath generated by a CAM 
platform for a complex robotic cell focuses on the treatment to give to the 
redundant joints in order to avoid singularities and limits of range (Figure 6.1). 
With the inherent redundancy stated previously, the aim is to reach the 
successive positions of the toolpath in the Cartesian Operational space   
following a criterion of precision and economy in the whole motion of the 
manipulator. This raises two differentiated tasks referring to both tool pose and 
manipulator posture: 

 Translation of the tool pose information generated by the CAM platform 
in agreement with the requirements of the robot language. 

 Kinematics analysis of the robotic cell for the required the cutting tool 
pose at  , in order to include the treatment of the manipulator posture at   
with the additional joints. 

Chapter 6 is focused on the implementation of a control system for the 
redundant workcell previously described in Chapter 2, by following the 
algorithms and methods described in Chapter 5.  

Traditionally, several robot manufacturers solve the problem by means of 
graphic simulator interfaces as an intermediate step between the CAM platform 
and the robot execution. An expert operator fixes the additional joints and checks 
the motions of the robot during the planned tracking, in order to know if a limit 
of range or a singular configuration is reached at any point. Figure 6.1 shows two 
singular configurations concerning the milling processes on the rotary table [1], 
and also different practical expert solutions to avoid both the widespread 
singularity (by means of a linear axis displacement) and the wrist singularity (by 
means of a table rotation).  

As first attempt, it may be desirable the employment of such a fast and 
robust methodology that emulates the expert reasoning like the fuzzy control 
[2][3]. It is exposed in the following Section. Nevertheless, due to the fact that 
the positioning problem is highly non-linear, it results cumbersome to deal with. 
Thus, a second attempt is described in Section 6.3. with the RRS described in 
Chapter 5, namely the VJM and the TDM, which are compared. Additionally, 
some improvements on these methods are done, also taking benefit of the fuzzy 
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logic (see Section 6.3.2. ). It can be applied on some tips that normally are 
subjected to author’s estimation. 

 

 

Figure 6.1. Wrist singularity (top) and widespread position singularity (bottom) 
concerning the milling processes on the rotary table.  

 

6.2.  FUZZY LOGIC FOR IK POSITIONING (IKP) PROBLEM 

To practical effects, when the control the KUKATM industrial workcell is 
carried out by an expert operator, both additional joints (external linear track E1 
and rotary table E2) are requested only in case of avoiding singularities or limits 
of range in the chain A1-A6 (Figure 6.1). This main chain must be understand as 
the part of the robotic system devoted to locate the tool in  . Both additional 
joints should be placed taking profit from the fact that, after fixing whatever 
optimal valid values of E1 ( Ld ) and E2 ( M ) to reach the proper tool pose, the 
path tracking is not affected since the controller adapts the A1-A6 values 
(namely,  1 6,...,  ). 

Nevertheless, due to the KRC2 characteristics and the entry data 
structure required for CP tracking (Section 3.1.2.), the IKP analysis of the 
manipulator is necessary for the expert fuzzy evaluation of the optimal location of 
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E1 and E2. To make feasible the IKP resolution of this redundant system, the 
previous E1 and E2 joint values were considered to be known, being Ld  and M , 
respectively (see Chapter 2)1. It is logical as it allows rapidly taking the 
successive toolpath coordinates at   to  , where the convenience of a new 
robot posture may be assessed. In other words, a fuzzy engine can just decide if 
the current posture is convenient for the milling operation or, on the contrary, if it 
is better to relocate the robot (by means of the linear track) or the workpiece 
(with a table rotation). 

In the following paragraphs, the development of the structure for the 
controller will be explained, whereas its implementation inside NX's 
postprocessor will be developed in the following section. This controller will be 
implemented with Matlab (The MathWorks, Inc.) by means of its Fuzzy Logic 
Toolbox [6]. 

 

 

Figure 6.2. Overview of the Matlab’s Fuzzy Logic Toolbox, which allows the design 
and testing of a fuzzy controller. 

                                                      

1 To face the problem of the existence of infinite possible solutions and with the aim of automate the problem, it 
seems to be logical and profitable to take a solution near to the previous one [4]. Therefore, it is natural to store 
the previous position to minimize displacements of the additional joints E1 and E2. 
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 This toolbox generates a .fis file (namely, fuzzy inference system file) in 
which the characteristics of the fuzzy model are saved. In addition, two C++ files 
(fismain.c and fis.c) are provided as the source codes to implement a stand-alone 
fuzzy inference engine.  

 

6.2.1.  Development of the fuzzy controller 

This section approaches the design of the brain that controls the 
automated cell, that is, the fuzzy controller. It is expected to have the capacity to 
take decisions and therefore to govern the robotic mechanism. As the fuzzy logic 
admits different degrees of membership of any information inside the diffuse sets 
(see Chapter 5), a fuzzy controller can analogously determine different degrees of 
actuation of the robotic system.   

The flow of the information of the joints in the expert system proposed is 
shown in Figure 6.3. The point of departure for all milling processes is a known 
posture of the workcell (HOME), which is prior and common to the execution of 
any subsequent program. From this posture, and depending on the point in the 
Cartesian space to which the TCP of the tool must come, the positioning of the 
external axes is reconsidered on the basis of the programmed fuzzy controller. 

 

i) Variable definition 

The output variables of the fuzzy system are clearly identified by 
the data structure required by the KRC2 controller: M  and Ld , that is, 
the incremental values to adequate the position of E1 and E2 (in addition to 
the tool pose that is a unavoidable data given by the CAM)2.  

On the basis of those data and after studying which robot joints are 
more affected applying the previous output variables, the input variables 
are structured. These variables are strongly dependent on the architecture 
of the workcell and the shape of the tool holder (Chapter 2). Two input 
variables are defined: 3  and 5 , both directly concerning the singular 
configurations that affect the operability of the arm on the table. They can 
be obtained with the previous IKP geometric computation described in 
Chapter 2.  

 

                                                      
2 For CP commands, with the six coordinates of the tool pose and the values of the external joints (E1 and E2) 
the KRC2 internally solves the posture of the manipulator (Chapter 2).  
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ii) Clusterization of input and output spaces 

As much the input space as the output spaces can be divided in five 
triangular clusters. This type of clusterization presents a major simplicity in 
its representation, managing and evaluation (Figure 6.4). The number of 
clusters is related to the linguistic etiquettes assigned, according to the 
experience. 

It can be noticed that the functions neither are equidistant nor have 
identical form. It depends on the expected reactions, such as a steady state 
in intermediate values in the case of 3  but a greater displacement if 5  is 

almost aligned (0º).  In case of 3 , it may be convenient the existence of a 
few dead zone without overlapping in which only a set for universe, and in 
consequence an alone rule, would be activated.  

 

 

Figure 6.3. Flow of the heuristic reasoning in the control of the automated cell and 
its interaction with the expert system implemented in NXTM. 

 

iii) Fuzzification of the input variables 

Figure 6.4 represents graphically the fuzzification process. The 
inputs to the fuzzy controller are discreet values in the range of the 
mechanical joint limits. For each of the input variables 3  and 5 , the 
value is compared with its respective space and associated with a cluster. 
Subsequently, the controller calculates the membership value   of every 
input in each of the clusters being affected. Due to the particular partition 
of the spaces shown, the variable only could belong to one or two clusters, 
resulting in only one or two membership functions for space. 

 

iv) Knowledge base 

As justified in the previous Chapter 5, the expert knowledge of the 
operator in charge of the robots can be collected in two fuzzy association 
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matrixes (Table 6.1 and Table 6.2), which are necessary for the 
accomplishment of the rule-base. With two outputs it has been necessary 
to establish control for each one (i.e., two association matrixes), even when 
they have relative dependence on the same inputs.  

It is easy to detect the vicinity of a wrist singularity configuration 
by means of the value of 5 . The expert system is supposed to reconsider 
this value when it is near to zero.  

To practical effects, 3  should be considered when its value is near 

to provoke an extended position singularity, i.e. if    (Figure 2.24), so 

that 3  . In this case, the optimal position is considered to be in the 
intermediate position between the extended position and the closer limit to 
the robot base (namely, when 3  160º). 

 

3  
M  

VC C R O VO 
VN Q Q Q Q Q 
N Q Q Q Q Q 

ALI CCW CCW CW CW VCW 
P Q Q Q Q Q 

5  

VP Q Q Q Q Q 

Table 6.1. Knowledge base for M  

 

3  
Ld  

VC C R O VO 
VN MFA FA Q AP MAP 
N MFA FA Q AP MAP 

ALI MFA FA Q AP MAP 
P MFA FA Q AP MAP 

5  

VP MFA FA Q AP MAP 

Table 6.2. Knowledge base for Ld  

a. Abbreviations. ((V)C=(Very) Closed, R=Relaxed, (V)O=(Very) Opened, (V)N=(Very) Negative, ALI=Aligned, (V)P=(Very) Positive, 
(M)AP=(Much) Approach, Q=Quiet, (M)FA=(Much) Far Away, (V)CCW=(Very) Counter-Clockwise, (V)CW=(Very) Clockwise. 

 

v) Inference engine 

The process of inference used is that of Minimum-Maximum 
(Mandami), as described in Chapter 5. The result of the fuzzification gives 
certain membership values in different clusters at every space of entry ( 3  

and 5 ). These values (considered as the antecedents) are leaked on the 
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base of rules to know in which clusters of the output spaces take place the 
consequents. The membership value inherited to the output clusters of 
every fulfilled rule is the minimal membership value of the clusters of the 
input spaces (antecedents) involved in that rule (Figure 6.4, in red).  

Finally, it is necessary to compose the output polygon (Figure 6.4, 
in blue), which reflects the membership values in the clusters of the output 
spaces ( M and Ld ) along the set of fulfilled rules. For this, it is 
necessary to review every cluster of the output spaces at all applied rules 
where the consequents coincide, taking the maximum membership value 
which it presents at any rule. 

 

 

Figure 6.4. Min-Max inference process for two rules: two discrete input values 
( 3 , 5 ) are fuzzificated ( 3 , 5 ) by the corresponding clusters involved in both rule. 

The minimum degree of membership in each case is taken as output membership 
value in the implied output clusters (red), and then aggregated (blue) into a single 
fuzzy set for the overall output. 

 

vi) Defuzzification 

As final part of the fuzzy process, the defuzzification is carried out 
by means of the centroid method applied to the figure that results from the 
prior composition, as described in Chapter 5 (Figure 6.5). The resultant 
position on the horizontal axis is the defuzzificated value of the output 
variable (crisp output). 
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Figure 6.5. The centroid calculation returns the center of area under the aggregated 
curve as crisp output value. 

 

vii) Interactivity with fuzzy controller module. 

As shown in Figure 6.6 (whose origins are in Figure 4.20.), the 
Event Handler has been programmed to pass the next desired tool pose 
coordinates at {B} and the current external joint values (i.e., from the 
current position prior to any relocation of the tool possibly requiring a 
movement of the external joints) to a C++ programmed module. It makes 
two tasks: 

 The inverse kinematics calculation, to obtain the  1 2 3 4 5 6, , , , ,       

joint values, corresponding to the next desired position with the current 

Ld  and M  values. 

 The fuzzy control: with the calculated joint values, the embedded fuzzy 
inference engine reads the .fis model and returns the estimated M  

and Ld to reach the desired position of the TCP with an optimal 
configuration. 

These values are checked as valid by means of an iterative cycle 
(Figure 6.3), and then returned to the Event Handler, which passes the final 
values to the Definition File for its publication.  

It is important to note that, to practical effects and due to the 
architecture of the KRC2 controller, the values passed are the same tool 
pose coordinates at {B} but with the recalculated values of the additional 
external joints E1 and E2, as justified in the previous section i.1) and  [5]. 
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Figure 6.6. Integrated postprocessing in NX. The Definition File and the Event 
Handler are programmed in TCL to adapt NX's CAM to the KUKA KRC2 
controller. The Event Handler is able to interact with executable modules 
programmed in C++. 

 

6.2.2.  Analysis and results 

After the implementation of the postprocessor, further simulation was 
carried out in order to verify if it realizes satisfactory control actions. This 
simulation was first run with Matlab’s toolbox Hemero [10], and then the result 
was compared with the real robot movement.  

Figure 6.7 and Table 6.3 illustrate the behaviour of the previously 
described controller when an adjustment of 3  is obviously required (case A), or 

both 3  and 5  (case B).  

 

 CASE A CASE B 

iP  [0, 0, 10] [-75, 10, 0] 

 Before After Before After 

Ld  -2970 -2603 -2800 -2346 

M  0 0 -75 -51 

1  13.65 33.21 25.93 50.24 

2  -65.94 -55.72 -84.66 -59.46 

3  129.02 111.44 157.66 119.32 

4  -19.86 -7.79 -67.72 -26.96 

5  53.85 63.31 31.99 54.07 

6  33.18 42.42 18.09 23.87 

Table 6.3. Case studied  
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As it can be appreciated, in both cases the result was the desirable with 
the first iteration, obtaining the same values for M  and Ld  in a second 
calculation with the values previously obtained. In this sense, the implemented 
fuzzy control works as desired in terms of rapidity in the response. 

 

  

Figure 6.7. Matlab simulation of the readjustment of the workcell after the 
actuation of the implemented fuzzy controller for Case A (left) and B (right). 

  

However, it is easy to highlight some limitations for this implementation. 
First, the rule base should be wider enough to consider all the possible poses of 
the tool when milling on the table. This is the reason why it has been only 
performed successfully for a 3-axis milling (i.e. with a constant tool orientation 
like shown in Figure 6.7). Even in this case, the configuration of a rule base is 
cumbersome due to the high non-linearity of this system which makes it 
unpredictable in a certain way and in some situations, even for an experienced 
workman. For that reason, the previous fuzzy implementation may be re-
considered for its use at the rate level, where the problem becomes linear. 

 

6.3.  IK PROBLEM IMPLEMENTATION AT RATE LEVEL 

6.3.1.  Discussion 

In the previous Section, the IK problem was managed at the position 
level. Clearly, despite the obtained results are discussed in a later section, that 
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problem was highly non-linear. Thus, it can be deduced that despite the 
application of fuzzy logic to deal with these non-linearities, some difficulties will 
appear when configuring such a wide rule-base foreseeing all possible situations 
in a complex milling task. Moreover, it can be criticized the employment of the 
fuzzy logic itself when some other control methods for redundant manipulators 
have been developed, as shown in Chapter 5. 

In this sense, the IK problem at joint-rate level was introduced at Section 
2.2.2-ii). In addition, this problem was highlighted for the case of redundant 
manipulators, by means of eq. (2.13). Nevertheless, it was in Section 5.3.1 when 
several methods derived from this equation where introduced.  

It is important to note that the great acceptance of these RRS founded on 
the joint-rate level is justified by the fact that the non-linear position problem is 
converted to a linear problem at the velocity level. In fact, in Section 2.2.2-iii), 
Whitney's geometric Jacobian matrix was described as the mapping between the 
joint rates and the twist of the tool tip. From a practical point of view, this 
Jacobian can be easily evaluated numerically for each given posture of the robot. 

This section deals with the control of the workcell with some of these 
methods by comparing two of them, namely the TDM and the VJM described in 
Chapter 5. The implementation by using the Householder-Reflections will be 
taken into account in both cases as described in Section 5.3.1-iii). As justified 
there, both methods are more suitable for milling applications than any other 
based on the DLS-inverse, since the position and orientation of the TCP are 
highly compulsory3.  

Finally, several considerations on the utility of fuzzy logics for the 
assignment of the performance vector h are done. Thus, some valid 
improvements for both methods are implemented and tested. 

 

6.3.2.  TDM and VJM test implementation  

i) Method 

A challenging 5-axis milling was done as test to compare the 
performance of the TDM and the VJM. It consists of a spherical shape to 
be milled through a continuous spiral path. As shown in Figure 6.8, the 
symmetry axis of the tool (in red) is required to point constantly the center 
of the sphere, while the successive TCP positions are depicted in blue. This 
shape is supposed to be located into the manipulator’s workspace on the 

                                                      
3 As exposed in Chapter 5, the damping factor (λ) would introduce an algorithmic error, also away from a 
singular point, in terms of both direction and magnitude. 
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rotary table, namely the base {B}. For the test, the center has been 
somehow located at an arbitrary point in the workspace, with the 
coordinates  

 100, 200, 250 ( )C mm  (6.1) 

and the radius of the sphere has been set in R=150 mm. For the scope of 
this thesis, the tool holder designed at the IDF for milling purposes 
(described at Figure 2.28 and Table 2.5) is considered in this comparison, 
as depicted in Figure 6.8. 

 

 
Figure 6.8.Workcell at HOME posture and main parameters of the experimental 
toolpath.  

 

It is important to remark that this test is highly demanding. In fact, 
common milling paths are composed of relatively short trajectories which 
are concatenated by means of other void motions (i.e. motions with the tool 
not touching the workpiece) in which the robot or machine tool is 
relocated. Instead, we are aiming for this relocation of the additional 
external joints meanwhile a long and challenging path-tracking is being 
followed.  
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This test has been programmed in Matlab for both TDM and VJM 
methods, within the same suppositions. The trajectory data, generated with 
NXTM, is kept as TCAM.  Starting from the HOME posture shown in Figure 
6.8 ( 0 [+ , 0, + ,  - /2, 0, 0, + /2, 0]Tq      rad) and with the DH models of 
both the KR15/2 manipulator (DH-KR15/2, Table 2.2) and the complete 
workcell (DH-Workcell, Table 2.3) at hand, the programmed algorithm is 
summarized as follows on the basis of (5.16): 

where the sub-index Workcell refers to the kinematic chain of the complete 
kinematic chain of the workcell, i.e. including the linear track and the 
rotary table. 

To determine the convenience of a given posture, the condition 
number of the Jacobian (with the Frobenius norm, i.e. kF) was introduced 
in Section 2.3.2. Moreover, this calculus is going to be done for the 
isolated 6R KR15/2 manipulator, that is, leaving aside the external joints as 
justified in 2.4.6. Therefore, the 8th step can be detailed as: 

 

 

0

CAM

CAM

g Workcell

1)   

 ( each -point of the trajectory, T ( ))

2)  , T
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 (6.2) 
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 (6.3) 

Algorithm (6.2) is customized in the 9th step for each of the two 
RRS studied, as it will be described in next sub-sections. It is remarkable 
that the DH representation of the manipulators depends on the RRS 
selected, see Section 5.3.3. At this point, it is noteworthy the great 
influence on the result of the performance vector, h.  

 

ii) Performance criterion vector, h 

As explained in Section 5.3.1, the manipulator is required to track 
successive target positions as primary task, but in addition one can try to 
achieve secondary goals by suitably choosing h. It could be considered as 
having a virtual force which attempts to push the configuration of the 
manipulator away from a critical area in the configuration space [9].  

Nevertheless, as explained in Chapter 5, it is important to remark 
the different signification of h in both VJM and TDM. In case of the VJM, 
fully based on eq. (5.20), h is a motion projected on ( )J  (i.e., the tool tip 
is not moved by the action of h), but in case of the TDM this secondary 
motion may not be constant in the base frame (i.e., from the base frame, a 
movement can be appreciated trough the symmetry axis of the tool tip). It 
was depicted in Figure 5.11. 

 

 Joint-limit avoidance 

When considering the performance vector (h) for joint-limits 
avoidance, the Yoshikawa’s formulation (5.24) is widely used [8]. In this 
case the performance criterion can be written as to maintain the 
manipulator as close as possible to the mid-joint posture, i.e. as far as 
possible from its mechanical joint limits, namely 

min max
mid mid mid1

( ) ( ), with 
2 2

T
jnt jnt

q q
p q q W q q q


    (6.4) 
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It is remarkable that the mid-joint posture of the KR 15/2 is such a 
non-functional posture that it is not appropriate as a reference (Figure 6.9, 
right). Also the best conditioned posture could be considered as reference 
(in fact, it seems to be more logical and desirable) but, as shown in Figure 
6.9 (left), it is quite near of some mechanical joint limits. Thus, and for the 
scope of this thesis, the commonly used HOME posture depicted in Figure 
6.8 will be taken as the reference posture ( ref

0q q ) for eq. (6.4) as a 
compromise between both objectives. 

 

 

Figure 6.9. Left, best conditioned posture for the 6R KR 15/2 manipulator deduced 
in Section 2.4.6. Right, mechanical mid-joint posture. 

 

The setting of the weighting diagonal matrix jntW  of equation (6.4) 

is very important for the success, as demonstrated below.  

 

 Best conditioning (kF) 

In addition, the Fk -condition number is also taken into account to 
achieve a definitive h. Thus, for the scope of this thesis, the performance 
criterion (5.26) can be rewritten by using the Fk -condition number as 
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( ) ( )
2

TF
cond Ts cond Ts

k
p q q W q q    (6.5) 

This performance criterion is activated when the Fk -condition 

number passes over a preset threshold value,  . At this instant, the 

corresponding configuration, Tsq , is recorded. Thus, the algorithm 
considered takes the form: 

1 

      

         

     

    · ·( )

     

     

F

Ts

Ts actual

cond cond F Ts

Ts

if k

if q

q q

end

h p W k q q

else

q

h

end



 


    




 (6.6) 

Compared to Fk , the inverse of Fk  has the advantage of being 
comprised between 0 and 1 (best conditioned). It also makes easier the 
graphical representation and comparison in further sections.  

Again, in (6.5) the choice of the weight, condW , is a major difficulty 
to implement due to the subjectivity. 

 

 Combined performance criterion 

Finally, the two secondary tasks described above, joint-limits and 
kinematic singularity avoidance can be combined into a unique 
performance criterion vector, which is to maintain the manipulator as close 
as possible to the reference posture (HOME) and as far as possible of bad 
conditioned postures at the same time. The objective function could be 
written as: 

jnt condp p p   (6.7) 
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By tuning both jntW  and condW , the relative importance between 

the two sub-tasks is adjusted. Vector h is thus chosen as the gradient of p, 
namely: 

 jnt cond jnt condh p p p h h        (6.8) 

 ref
jnt jnth W q q    (6.9) 

 · ·cond cond F Tsh W k q q    (6.10) 

Choosing both W can be critical for the performance of the RRS 
and traditionally this task has been set based on trial and error. This matter 
will be considered when performing the numerical tests. 

 

 
Figure 6.10. Additional virtual joint, associated with a rotation in Z9. 

 

iii) Algorithm for the VJM 

The VJM was profusely described in Section 5.3.2.i). In fact, the 
most significant implication is the consideration of an additional rotary 
joint in the tool tip around the tool symmetry axis. Therefore, the DH 
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model for the IDF’s workcell has an additional line more than expected in 
the real model (namely, the virtual joint). It was detailed at Section 5.3.3 
(see Figure 6.10). 

The RRS in the 9th step of the algorithm (6.2) is programmed with 
Matlab following the scheme of Section 5.3.1.v), by using Householder 
reflections. Again, it is justified by the fact that these computations are 
performed with finite precision. Hence, in order to keep round-off errors as 
low as possible, this algorithm avoids the direct calculation of the 
generalized inverse of the Jacobian matrix. The Matlab algorithm can be 
resumed as follows [7]: 

 
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2) [ ]   (Matlab's function  makes the 
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 (6.11) 

 

iv) Algorithm for the TDM 

The TDM was also described in Section 5.3.2.ii) and 
complemented in Section 5.3.3 with the projection on ( )J . In this case, 
the DH model is the one described in Chapter 2, but with the adequate 
attached length of the final link until the tool tip. Thus, the position and 
orientation of the tool tip regarding the tool-holder is known by means of 
the corresponding homogeneous matrix (9TTCP), as detailed at Section 5.3.3 
and Figure 6.11. 

  Again, it is justified the use of the Householder reflections to 
solve (5.65), but with some modifications as shown in the following 
algorithm: 
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Figure 6.11. Represetation of the EE in the TDM test. The transformation matrix 
towards the tool tip is expressed as a displacement on Z9 in mm. 
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6.3.3.  Analysis and results. 

The exposed algorithms were run in Matlab for the test described 
previously. At the same time, the workcell was sketched and virtually animated 
with the aid of the Matlab’s Toolbox Hemero [10]. 

For each possible treatment, namely: 

(a) the VJM,  

(b) the TDM,  

(c) the TDM combined with a projection on ( )J , eq. (5.65); 

the joint values and the inverse of  Fk  were recorded. Moreover, in the case (c), 

it may be possible to highlight the convenience of evaluating as 1h  and 2h (at 

(5.65)) the respective values of  jnth  and condh  (of (6.8)). 

For a value of 0.5   in algorithm (6.6), the following tests were 
performed: 

 

i) Constant weighting vector for the combined performance criterion. 

In order to perform the first attempt of evaluation of the VJM and 
TDM methods, two constant diagonal weighting matrixes are assumed [8], 
namely 

 

 M  Ld  1  2  3  4  5  6  7( )VJM  

jntW  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

condW  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table 6.4. From left (element (1,1)) to right (element (8,8)), diagonal weighting 
matrixes for the combined performance criterion.  

 

The results and comparison amongst the cases studied are 
graphically depicted in the Table 6.5: 
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 VJM 

TDM         

1

2

(

, (6.12))

jnt condwith h h h

and h in

 


 

TDM 

1 2(

(6.12))

jnt condwith h h and h h
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 

 

TDM 

1 2(

(6.12))

cond jntwith h h and h h
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1
Fk

 

mean: 0.4776 0.4051 0.3275 
 

0.3187 

M  
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Table 6.5. Experimental results for the simulation in the studied workcell of the VJM and TDM algorithms. In the TDM, two 
variations including a projection in ( )J  are studied, according to case (c). 
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From the analysis above, the VJM seems to be more robust 
configuring the consecutive postures along the path and taking into account 
the criterion of the proximity to the reference posture and best kF.  

A second attempt can be done varying the magnitude of the 
weights. It is noteworthy that the more weight, the faster reaction can be 
expected in the manipulator. Thus, two constant diagonal weighting 
matrixes are assumed, namely, with a 10-times bigger order of magnitude: 

 

 M  Ld  1  2  3  4  5  6  7( )VJM

jntW  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

condW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 6.6. From left (element (1,1)) to right (element (8,8)), diagonal 
weighting matrixes for the combined performance criterion.  

 

The results and comparison amongst the cases studied are 
graphically depicted in the Table 6.7: 
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Table 6.7. Experimental results for the simulation in the studied workcell of the VJM and TDM algorithms, with the constant weights 
of Table 6.6. In the TDM, two variations including a projection in ( )J  are studied, according to case (c). 
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The VJM shows the more robust behaviour, and almost similar to 
the previous study. Nevertheless, 3  goes out of a mechanical limits so the 
first attempt of VJM can be regarded as most convenient. Again, the TDM 
shows a more unstable and even unpredictable behaviour, much sensible 
to the weight performance.  

 

ii) Adapted Fuzzy weighting vector for the combined performance criterion. 

As recommended by several authors [8][11][12][13], higher 
weights are assigned to those joints that are supposed to be more reactive 
when lowering the condition number or being far of the reference posture. 
Those studies assigned the weights depending on the significance of the 
joints and according to an expert knowledge. Nevertheless, in case of 
milling tasks where the tool pose (and hence the robot posture) changes 
constantly, it seems to be desirable to identify an appropriate value for the 
weights at each configuration and in a reasonable time.  

In practice, the implementation reported for the configuration of a 
fuzzy engine controlling the position (Section 6.2. ) gives the key to 
configure a similar one but performing, on the basis of a rule base, the 
importance (namely, the weight) to be associated to each joint. 

The steps to develop such a fuzzy controller with the Matlab’s 
Fuzzy Toolbox were described in Section 6.2.1. , and the interactivity with 
this controller from the postprocessor module was shown more explicitly 
in sub-section vii). Therefore, the description to be done in this section 
points to the variable and knowledge base definitions. 

 

 Variable definition 

The condition number is expected to be decrease when the robot 
acquires a posture near the extended arm or the wrist singularities 
(described in Chapter 2). In this case, joints 3  and 5  had a direct 

implication, and also the additional joints ( ,M Ld ) in order to avoid this 
posture.  

In the case of the maintenance of a reference posture, where all 
joints are implied, different weights are assigned to the joints articulating 
the gross and fine positioning described in Chapter 2, as well as the 
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additional joints. In fact, it can be convenient to work near a reference 
posture of the joints doing the gross positioning while a fine orientation is 
being done, so it seems to be logical making different assignments. 

Based this reasoning, the output variables of the fuzzy system are 
those weights associated to the joints which are more related to a critical 
change in both aspects described (from Table 6.3): 

 

 M  Ld  1  2  3  4  5  6  7( )VJM  

jntW  wMjnt wLjnt 0.01 0.01 w3jnt 0.01 w5jnt 0.01 0.01 

condW  wMcond wLcond wgross wgross wgross wfine wfine wfine 0.01 

Table 6.8. From left (element (1,1)) to right (element (8,8)), diagonal weighting 
matrixes for the combined performance criterion. The fuzzyfied weights are 
assigned to the most significant joints according to experience.  

 

On the basis of those data and after studying which robot joints 
affect the most the conditioning and the risk of joint limit reaching, the 
input variables are structured. Two input variables are defined in case of 
the conditioning ( 3 5,  , as justified in Section 6.2.1. ) and three in case of 

the maintenance of the reference posture ( 2 3 5, ,   ), (Figure 6.12, in 

yellow). Moreover, it is noteworthy that the absolute value of 5 , namely 

5 , will be considered due to symmetry in the range of this joint. 

 

 

Figure 6.12. Left, graphical representation of the fuzzy engine determining the 
weights for the reference posture manteinance criterion. Right, the fuzzy engine 
giving the weights for the singularity avoidance criterion.  
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 Clusterization of input and output spaces 

In each input and output spaces, the number of clusters is related 
to the linguistic etiquettes assigned, according to the experience. In case of 
the input spaces ( 2 3 5, or   ), they are divided in three triangular clusters 
(Figure 6.13). It can be noticed that the functions neither are equidistant 
nor have identical form. It depends on the expected reactions. 

 

 

Figure 6.13. From left to right, representation of the peak posture of each of the 
three clusters in which the input spaces are divided. 

 

The output spaces are different for each fuzzy inference system, 
depending also on the experience. In each case, the weights are comprised 
between 0 and 0.05 (0.025 for the additional joints when considering the 
reference posture maintenance).  

Moreover, in practice the additional joints are considered after the 
most adequate solutions involving the main chain of the manipulator. As a 
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result, only two clusters are considered for the external joints (one giving 
a very low weight, almost 0) while three clusters are considered in the 
case of the joints of the main chain ( 1 6to  ), the one on the left giving a 
major weight if required (Figure 6.14). 

 

 

Figure 6.14. Output spaces for the weight assignment: left, for the reference 
posture criterion; right, for the singularity avoidance criterion. 
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 Knowledge base 

The last requirement to run the inference engine consists in the 
rule base relating the input and output spaces. Those “if-then” rules 
comprise a number of 4-5 up to a maximum of 12. Teorically, giving more 
rules can be cumbersome and comes up with the desired simplicity of a 
fuzzy inference system.  

In case of this trial, some basic rules are taken into account, as 
shown in Figure 6.15. Next, with those simple rules, the results obtained 
are shown.  

 

 

Figure 6.15. MATLAB’s Fuzzy Toolbox has a Rule Editor to easily manage the if-
then rules relating the input and output spaces. Four rules were created for the 
reference posture criterion (up), and two for the singularity avoidance criterion 
(down). 

 

 Results with the adapted fuzzy weighting vector 

Due to the fact that previous studies showed a better performance 
of the VJM, the implementation of the adapted fuzzy weighting vector 
was done only for this method.  

With the suppositions of the preliminary sections, the results and 
comparison amongst the cases studied are graphically depicted in the 
Table 6.9: 
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Table 6.9. Experimental results for the simulation in the studied workcell of the VJM and TDM algorithms, with the adapted 
weights of Table 6.8 via fuzzy inference. In the TDM, two variations including a projection in ( )J  are studied, according to case 

(c). 
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From the analysis above, it can be observed that the VJM again 
offers the best kF average, but also the more robust behaviour. In this trial, 
the TDM has a quite unstable behaviour again, although resulting in a 
better conditioned final posture compared to VJM. The worst conditioned 
point in the TDM is achieved due to wrist singularities, as depicted in 
Table 6.9. 

Following attempts are going to be done with the VJM, taking profit 
from its robustness but considering a periodic IKP revision to perform a better 
control on the final kF. 

 

 

Figure 6.16. Proposed Fuzzy revision for the studied workcell. 

 

6.3.4.  Periodic revision by fuzzified IK analysis. 

Common milling tasks are compound of a succession of toolpath 
trackings allowing a posture revision between them. In previous trials, a 
continuous toolpath has been considered showing the robustness of VJM when 
compared to TDM. 

However, to practical effects, it can be convenient to take profit from a 
periodic revision of the posture. It can be done at a set of points on the toolpath 
by means of the IK of position, as shown in Section 6.2. For this, the rotary table 
and the track are moved at those points to try to radically improve the kF, taking 
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into account the desired pose of the TCP, the actual position on this additional 
joints and the resulting IKP analysis. 

As shown in Figure 6.16, different criteria can be considered for this 
periodic revision, namely the time from the previous revision, a kF threshold or 
reaching any of the joint limits in the kinematic chain of the manipulator. In all 
those cases, the position of the table can be first revised to get better posture. 
This is due to the fact that with this, the major improvement is achieved without 
moving track. Thus, in a certain manner, it is also an observation done from 
experience attending to precision of the manipulator (as noted in Chapter 3). 
After that, another fuzzified track motion can be considered, which for this case 
will be smaller than on the contrary. 

With this supposition and with the more robust of the previous methods 
tested, the VJM, the results obtained are shown in the following table: 
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Table 6.10. Experimental results for the simulation in the studied workcell of the VJM with the implementation of the adapted fuzzy 
weighting vector and a periodic IKP position analysis as depicted in Figure 6.16 
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6.3.5.  Comparison of the previous VJM improvements 

Figure 6.17 compares the conditioning achieved with the different VJM 
trials of the previous sections. It can be appreciated the progressive better 
conditioning of each of the successive improvements done. 

 

 

Figure 6.17. Comparison of the conditioning achieved with the different VJM 
trials: blue, with constant weighting vector (w=0.01); green, with fuzzy adapted 
weighting vector; and red with fuzzy adapted weighting vector and a periodic 
revision of the IKP. 

 

Moreover, the last method, assisted by the IKP revision, can be 
considered more robust than the previous implementations. In fact, the worst 
conditioned posture, at t=180s, is about 0.4 like the method only using a fuzzy 
adapted weighting vector, but in this case this posture is rapidly corrected in the 
following revision at t=200s to continue with the milling process.  

In addition, the implementation of those methods is to be done in the 
real robot, and the last one guarantees the postures that are most continuously 
approachable in the real workcell (Figure 6.18). 
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Figure 6.18.  While the condition number is almost the same (kF=0.4), the worst 
posture achieved with the periodically revised method (right) has a better 
performance for continuous milling purposes. 
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CHAPTER 7  

APPLICATIONS 

"False facts are 
highly injurious to the 

progress of science, for they 
often endure long; but false 
views, if supported by some 
evidence, do little harm, for 

every one takes a salutary 
pleasure in proving their 

falseness." –  

 Charles Darwin  
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CHAPTER 7.  APPLICATIONS 

 

 

 

7.1.  INTRODUCTION 

Prior to the motivation of the present thesis, there was a permanent 
partnership agreement between the IDF and the official NXTM dealer in the 
Valencian Community (Avantek, currently converted to Procue). Therefore, 
leaving aside the standard applications on CN milling centres, NXTM provided an 
open environment for CAD/CAM/ROB integration research. All possible 
applications of robotics in machining industry started to be investigated by means 
of the KUKATM complex robotic workcell introduced in Chapter 2. 

After studying the RRS for such a workcell and the implementation of 
the treatment to give to the code generated by the CAM, the present Chapter 
deals with two practical cases studied at the IDF. As first case studied, the 
workcell is intended to machine a full 8x13 meters orographic model of a 
reservoir in the Mijares River (Spain), and afterwards the applicability of the 
CAM/ROB integration into traditional processes is tackled in the second case 
studied, in partnership agreement with the Comité de Artistas Falleros de 
Valencia. 

At next section, a brief presentation of the specific materials used to 
carry out both works is done. A guideline of the specific treatment of the CAD 
file in each case studied is also highlighted. 

 

7.2.  MATERIAL AND METHODS 

Besides the specific treatment of the CAD file imported to the NXTM 
platform, some common guidelines about the material (distinguishing between 
software and hardware) and methods used in both cases studied are exposed in 
this Section. 

 

7.2.1.  Material 

i) Software 

In addition to the NXTM platform, KUKATM provides a basic 
graphical simulator which helps the operator when preparing a milling 
task. As first attempt, this software (RobomoveTM, Qdesign [5]) can be 
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profitable to visualize postures and possible interferences, validating the 
result of the RSS implemented (Figure 7.1).  

Nevertheless, NXTM itself has a graphic simulator. NXTM-Motion is 
a CAE package integrated within NXTM allowing the kinematic simulation 
of complex mechanisms modelled or imported to the CAD module [2], like 
the exposed workcell. This package has been tested with good results and 
with the aimed advantage that the CAD and CAM work done is profitable 
within the same software. The input for NXTM-Motion is a two columns 
matrix containing a time counter and the associated joint values. However, 
it is still more cumbersome to manage due to the large weight of the CAD 
parts when compared with the lower weight of the parts managed by 
RobomoveTM. Different views of the workcell simulated in Motion and 
RobomoveTM are shown in Figure 7.1. 

 

 

 
Figure 7.1. Up, different views of the workcell simulated in NXTM MOTION; down, 
two views of the simulation done with RobomoveTM. 
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ii) Hardware 

Apart from the KUKATM workcell (with the KRC2 controller [4]) 
used for the scope of this thesis and introduced in Chapter 2, some specific 
tools designed at the IDF where utilized to carry out the milling tasks, 
namely: the milling tool holder on the robot flange, and the workpiece 
holder on the rotary table. 

The geometry of the milling tool (and the tool holder) was 
described in Chapter 2, and it has been made from a 15 mm aluminium 
sheet as shown in Figure 7.2-left. However, and due to the fact that CAM-
softwares only consider the tool as revolute shapes (due to axial symmetry 
of the tool, see Chapter 4), it is modelled according to Figure 7.2-right. It 
gives the criterion of highest possible safety due to the fact that NXTM 
calculates the toolpath while detecting possible collisions of the tool holder 
modelled [1][2]. In fact, the orientation that the current tool could take 
regarding its +Z axis is not determined in NXTM at first, but fixed in the 
DH-model of the workcell (and consequently, to practical effects, in the 
measurement of the tool within the KRC2 controller).  

 

  

Figure 7.2. Left, real tool: an air turbine moves a 20 mm diameter spherical-tip tool; 
right, revolute model in NXTM. 

 

The workpiece holder (on the rotary table, Figure 7.3) fixes it 
during the milling work. Like the milling tool, it is also fed by means of a 
pneumatic system. 
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Figure 7.3.  A pressurized air system (right) pushes the pistons against the opposite 
angle (left) to fix the workpiece. 

 

When describing the materials utilized for the case studied, a 
special mention must be done abut the blank composition. In this thesis, 
expanded polystyrene (EPS) was chosen. There are several advantages of 
modelling with EPS: it is a cheap material, it is also easier and quicker to 
machine, more stable over time, and less prone to damage than other 
materials. If needed, it is easy to divide the model into separate sections, 
and chop and change various elements. Finally, EPS can be treated with 
many different surface finishes and so can provide a more realistic model. 

  

   

Figure 7.4. Left, EPS blanks; right, machining process of one piece in EPS. 

 

7.2.2.  Methods 

The designs are developed by means of the NXTM-CAD module, in some 
cases after importing the original data source file. In these cases, any 
discontinuity or defect is restored. It is remarkable that the quality of the CAD 
model always determines the efficiency of the results that could be obtained later 
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in the following steps of the manufacturing process (Figure 7.5). Therefore, this 
is always the point of departure for applying the rest of computer assisted 
technologies. 

With the cases studied, particular attention is to be paid for the very 
common processes starting with a CAD translation (namely, coming from 
different CAD systems) or a digitalization process. For each case studied, the 
particularities during the processing are explained at subsequent sections. 

 

 

Figure 7.5. Flow process for the cases studied 

 

Finally, as explained in Chapter 2, KUKATM KRC2 control cabinet 
contains all the components and functions required to operate the robot. 
However, this cabinet is oriented to industrial environments so the control 
software is normally protected, having a limited access during processing a work. 
In fact, the externally programmed KRL codes (.src) must be compiled before its 
execution by updating them in a specific folder (KRC:\R1\Program). In addition, 
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this cabinet, more oriented to pick-and-place tasks, has a limited memory of 3 
Mb. 

To avoid both limitations, the more convenient solutions consists of 
executing a generic program in the specified folder (thus previously compiled) 
but reading the sequence of CP points from an external .dat file, as done with the 
extended version of the RobomoveTM package [5]. 

 

 

 

Figure 7.6. Up, sketch of the scaled model (factor 1:75) of the reservoir used to 
simulate flows, refluxes and water retentions; down, Valencian Falla. 

 

7.3.  CASES STUDIED 

With the aim of validating the postprocessor designed, two cases are 
studied in the workcell of the IDF. 

 In the first case, the workcell is intended to machine a full 8x13 meters 
orographic model of a reservoir in the Mijares River (Puebla de Arenoso, 
Spain), with the aim of simulating water avenues in order to study the 
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position of the wave that is formed when this avenue collides with the 
water stored in the reservoir (Figure 7.6, up). 

 In the second case, the workcell is devoted to machine an EPS carving 
(namely, a Valencian Falla) being part of a partnership study with the 
Comité de Artistas Falleros de Valencia to evaluate the applicability of 
the current CAM/ROB integration into traditional processes (Figure 7.6, 
down). 

 

7.3.1.  Orographic model 

Due to the dimensions of the model, it is obtained by assembling 120 
blocks of 1x1x0.5 meters of EPS. The design is developed by means of the 
NXTM-CAD module after importing the original data source file from 
AUTOCADTM with MDTTM v4 (the most commonly used system in topography). 
The contour lines must be fixed and then a surface mesh is interpolated. Then, 
this surface is divided to obtain the blocks (Figure 7.7).  

 

 

Figure 7.7. The model is obtained by assembling 120 blocks of 1x1x0.5 meters of 
EPS, after fixing the contour lines and interpolating mesh for each block. 

 

Due to the relatively simple geometry of the blocks and the length of the 
tool (Figure 7.2), this first case studied was profited to validate the postprocessor 
in 3-axis milling operations (used for both cavity milling and surface finishing), 
previous to the second case studied (see Figure 7.8).   
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Figure 7.8. CAM/Rob process for the construction of each block, validating the 
postprocessor for 3-axis milling operations. 

 

Thus, following the previous CAD process to obtain each block, the 
CAM process is summarized as follows: 

 

i) Trajectory generation 

After introducing the cutting parameters exposed in Chapter 4, 
both trajectories for Cavity Mill and Mill Finish operations are generated in 
NX, as it would be done for a conventional CN-machine, Figure 7.9.  

 

 

Figure 7.9. Trajectories for Cavity Milling and Finish Milling are generated in NX.  

 

ii) Trajectory postprocessing 

Figure 7.10, left, shows the generated toolpath directly passed to 
the graphical simulator RobomoveTM for a specific initial position. It can 
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be appreciated that the end of the workpiece could not be reached without 
moving the additional external joints (E1 and E2), and so the trajectory is 
red-coloured in that part (Figure 7.10, left). Thus, the same toolpath is 
postprocessed with the algorithms implemented and simulated within 
RobomoveTM (Figure 7.10, right).  

 

 
Figure 7.10. With the programmed algorithm, the additional joints are moved to 
reach the complete toolpath while maintaining a well conditioned posture. 

 

As it can be appreciated, all joints are maintained between the 
allowable limits, while the condition number is kept between reasonable 
values. 
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Table  7.1. Range of motion and conditioning of the manipulator while the execution 
of the task. 

 

After milling all the blocks of the model, the final result was placed at 
the Hydraulic Engineering Department (DIHMA) of the Universidad Politécnica 
de Valencia (Figure 7.11). 
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Figure 7.11. Final model in EPS with scaled factor 1:75 for flowing simulation (real 
dimensions of 8x13 m). 

 

7.3.2.  Valencian Ninot 

The Fallas are a Valencian traditional celebration in praise of St. Joseph 
in Valencia, Spain (on March 19th). The term Fallas refers to both the celebration 
and the monuments created for the celebration. Prior to the celebration, much 
time has been spent preparing the ninots (namely, puppets or dolls) that are 
assembled to compose the Falla (Figure 7.12). 

The ninots and their falles are developed according to an agreed upon 
theme to be a satirical joke at anything drawing the attention of the critical eyes 
of the celebrants (fallers). In modern times, this celebration has spawned a huge 
local industry (Ciutat fallera) where the artists elaborate the constructions with 
EPS, wood, paper and wax. 
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Figure 7.12. Valencian Falla composed of fanciful ninots in outrageous poses 
arranged in a gravity-defying architecture. 

 

For the purpose of this case studied, the model of a ninot was provided 
by the Comité de Artistas falleros de Valencia. This model was given as a 
stereolitography (.stl) original file, a standard in scanning software. First of all, it 
had to be enlarged with an scale factor of 12,2:1 (based on particular 
requirements of the real Falla). This is due to the fact that most models are first 
done on a small size by traditional skills for its later digitalization. Then, it 
seemed profitable the smoothing of some regions to get a better milling result. 
This softening was carried out within the NX’s CAD interface with the 
appropriate plug-ins for the treatment of faceted bodies (Figure 7.13). 
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Figure 7.13. From left to right, the effects of the softening operation are shown. It 
has great relevance as it determines the rest of operations until the final milling. 

 

The analysis of the geometry of the workpiece, its dimensions and the 
geometry of the tool determine number of milling operations to be planned and 
the related parameters.  

Cavity milling operations are always done with a constant orientation to 
avoid the collision of the tool with the walls being generated between different 
levels (Figure 7.14). Thus, they consist of a series of 3-axes operations with the 
convenient tool orientation (namely, 3+2 milling operations, Figure 7.15 and 
Figure 7.16), but following the pattern of Section 7.3.1.   
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Figure 7.14. For the cavity milling, the workpiece is necessarily divided in different 
cutting areas (upper and lower zones). This treatment optimizes the use of the 
additional joints, and is strongly dependent on the tool’s lenght. 

 

 
Figure 7.15. The successive cavity mill operations will be carried out with variable 
orientation of the tool, in order to reach all the parts of the ninot. 
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Figure 7.16. The attachment of the blank directly over the table makes the access to 
the lower parts difficult. Therefore, the blank is fixed by means of an intermediate 
piece which raises the height. 

 

For comparison purposes, this section now focuses on a 5-axes milling 
operation on the ninot’s surface. The toolpath is shown at Figure 7.17, in which 
the tool orientation is defined as normal to the surface along the tracking. Care 
must be taken in this case, where sudden changes must be prevented mainly due 
to surface defects from the scanning. Thus, not only the CAD treatment but also 
the graphical simulation is very supportive in these cases1.  

 

 
Figure 7.17. A 5-axes toolpath is planned on the eyes to test the postprocessor. 

                                                      

1 It is noteworthy that, in many cases and to practical effects, it is preferable the use of a spherical-tip tool 
(namely, a ball-nose end mill) to get the same result than with variable orientation but with a 3+2 operation, 
leaving aside the profuse revision because of the visually negligible defects in the scanned surface.  
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For this experience, the same initial posture (HOME) is considered, 
namely  

   1 2 3 4 5 6, , , , , , , 0º, 0.5 m, -90º, -90º, 0º, 0º, 70º, 0º, 0ºM Ld         

and the same task is attempted without and with the implemented postprocessor 
(Figure 7.18). Clearly, it can be appreciated much better performance within the 
second case. 

 

Figure 7.18. With the programmed algorithm, the additional joints are moved to 
obtain a better performance while maintaining a well conditioned posture. 

 

As it can be appreciated, all joints are maintained between the allowable 
limits, while the condition number is kept between reasonable values. 
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Table  7.2. Range of motion and conditioning of the manipulator while the execution 
of the task. 

 

It can be considered a valuable result due to the fact that the limitations 
are found only in those surfaces where the orientation changes rapidly (Figure 
7.19, up). As stated previously, special care must be taken in those cases. 
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Figure 7.19.  In some regions, where the orientation of the surfaces changes rapidly, 
the orientation of the tool associated to them can be problematic not only for the fast 
reaction of the posture required but also for the collision of the tool itself. 

 

Although the case studied demonstrate the better performance achieved, 
to practical effects it is preferable the use of a spherical-tip tool (see note 1). The 
same consideration can be done when gaining access to regions where the surface 
is not a good reference for orientation (Figure 7.19, down).  

Therefore, the experience could be repeated with a 3+2 operation. In this 
case, after estimating the most convenient orientation of the tool axis, it can be 
appreciated that the full surface could be machined almost completely (Figure 
7.20). 
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Figure 7.20. After estimating the most convenient ZTOOL axis (left), the full surface 
could be machined almost completely (right) with a 3+2 milling operation. 
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CHAPTER 8.  CONCLUSIONS AND FUTURE WORK 

 

 

 

8.1.  CONCLUSIONS  

After introducing the capabilities of an industrial serial robotic workcell, 
the present thesis has been focused on the postprocessing of the information 
generated by NXTM-CAM platform towards the KUKATM KRC2 controller for 
the workcell set at the IDF. Next, the most relevant conclusions and contributions 
of the present thesis are exposed: 

 Both direct and inverse kinematic problems at the displacement and at 
joint-rate level have been obtained for a redundant workcell, 
contextualised in the postprocessing step from a CAM to the 
particular requirements of an industrial workcell (Chapter 2).  

o At the displacement level, due to redundancy, a known value 
for the external additional joints must be supposed in order to 
solve the inverse kinematic problem. With this consideration, 
a geometric resolution has been described as the best chance 
for a fast computation (Chapter 2).  

o Also the model at joint rate level has been documented, 
developing the concept of geometric Jacobian for the 
workcell studied. With it, the condition number of the 
Homogeneous Jacobian has been described as criteria to 
evaluate the efficiency of a manipulator posture. The 
characteristic length of the KUKATM KR15/2 has been 
obtained for this purpose. 

 To study in depth in the architecture of the workcell, also the 
singularities that affect the workspace have been characterized with a 
geometric interpretation (Chapter 2). 

 A due to the particular requirements of the industrial KUKATM 
workcell, which is assembled in situ and it is programmed by moving 
preferably the last six joints (see Chapter 4), a Non-contact Planar 
Constraint Calibration Method has been developed in Chapter 3 for 
the calibration of the external additional joints. It uses a three planar 
pattern fixed at the corresponding workplace, and a laser 
displacement sensor, and uses a Non-Linear Least Squares (NLSQ) 
procedure based on the sensor readings. It can be implemented 
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autonomously and is suitable for on-site calibration in an industrial 
environment at regular intervals, in contrast with other open-loop 
methods requiring extensive human intervention and expensive or 
demanding devices  

 From the previous model at displacement level, a first approach to 
control the redundant joints has been done by means of a fuzzy 
inference engine integrated within the CAM system. It analyses the 
convenience of moving the additional joints like a skilled operator 
would do. Nevertheless, due to the high non-linearity and complexity 
of the model, and the variety of milling operations that exists, a 
growing number of rules for complex milling makes cumbersome the 
control (Chapters 4 and 5). 

 The managing of the additional external joints and the redundancy 
due to the symmetry of the cutter tool: a functional postprocessor 
have been programmed inside the CAM system for the control of the 
redundancies at milling tasks. It is also expected to be easily 
applicable not only on any industrial robot, but also for different 
applications such as welding or painting labours. 

 At joint rate level, where the problem becomes linear, the 
management of redundancies, with the use of a Redundancy 
Resolution Scheme (RSS), has been discussed. Previously, different 
types of redundancy (functional and intrinsic) have been identified in 
the workcell (Chapter 5) 

 Different RRS were exposed in Chapter 5. Also the convenience of 
adjusting the weighting matrix which balances the joint behaviour in 
the achievement of secondary tasks is exposed. For that, a fuzzy 
inference engine is implemented to automatically tune this matrix, 
according to the actual robot posture. The secondary tasks mentioned 
above can be resumed as the maintenance of a well-conditioned 
posture and the avoidance of joint-limits by the maintenance of a 
reference posture. 

 Previously selected RRS (Virtual Joint Method VJM and Twist 
Decomposition Method TDM) are implemented and tested in Chapter 
6. VJM shows a more desirable behaviour (more stable and with a 
better conditioning during the trials done). This RRS deals with the 
functional redundancy (the one due to the symmetry axis of the 
cutter) by considering an additional (virtual) joint in the referred 
symmetry axis. 

 VJM behaviour is improved by tuning the weights as introduced 
above, with a programmed fuzzy inference engine. 
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 Taking into account the current requirements of a challenging milling 
task (a continuous sphere), the VJM programmed greatly improves its 
performance by periodically using the inverse kinematic problem at 
displacement level. It periodically sets a point of departure with a 
significantly much better conditioned posture (Chapter 6). 

 A functional postprocessor have been programmed inside the NXTM-
CAM, improving the communication between software and the 
KUKATM robotic workcell. 

 The implemented postprocessor is proven first in graphical simulation 
and then with real milling tasks at Chapters 6 and 7, by setting the 
additional external joints as required by the resolution of the 
implemented RRS. Two works, an orographic model (3-axes milling) 
and a Valencian Falla (5-axes milling) are described with special 
attention to the complete flow procedure of the CAD/CAM/ROB 
operations. 

Therefore, the following reflections can be added: 

 With the previous described work, the cycle in which the data 
generated by a CAM system are translated into a directly 
understandable language for an industrial controller is closed. In 
addition, the motion of the external additional joints (linear track and 
rotary table) and the spin on the tool symmetry axis is automatically 
reconsidered on the basis of a set of rules derived form skilled 
experience. 

 It is also worth mentioning the great influence on the result of the 
performance vector h that tunes the secondary tasks (hence, also the 
relevance of the weighting matrix). 

 The practical cases studied validate the effectiveness of these 
production systems for the milling of large prototypes with the use of 
soft materials. 

 

8.2.  FUTURE WORK 

Next, some directions for future works are considered: 

 Further study may be done with other RRS: the Schemes using the 
Damped Least-Squares (DLS-) Inverse have been rejected at first due 
to the fact that, clearly, the error introduced affects the precision at 
milling tasks. However, comparison with a Scheme directly using a 
Weighted Pseudo-Inverse in the same conditions is the next study to 
be published. 
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 The modus operandi applied explodes the capabilities of commercial 
CAM systems and the industrial robot controllers. It is expected to be 
easily applicable on any industrial robot configurations if the need 
arises, by the same guidelines. Thus, further investigation is to be 
done with different configurations and systems.  

 With the same guidelines, this postprocessor is expected to be easily 
profitable not only on any industrial robot, but also for different 
applications tracking a toolpath, such as welding or painting labours.  

 As stated in Chapter 2, the best conditioned posture, the best the robot 
behaves the with regard to force (and motion) transmission. A 
Force/Torque sensor has been acquired by the IDF to be mounted in 
the robot flange. Further implementation must be done to tune the 
speed of the TCP during the tracking accordingly to the sensed 
efforts, mostly at weak conditioned postures. First attempts with OPC 
(Ole Process Control) technologies were not profitable, but new 
modules have been acquired to KUKATM. 

 Without losing sight of the importance of obtaining a more efficient 
expert control, it is also interesting to have a tool to visually validate 
the motions of the robotic manipulator. As mentioned before, NXTM is 
a powerful CAD system in which the workcell has been modelled. 
Further efforts may be done to lighten the CAD-parts as done in 
RobomoveTM.   

 Commercial robot controllers, more prepared for pick and place or 
assembly tasks, suffer from lack of memory when a long milling 
program is to be executed. The implementation of a buffer may 
override this problem, but at the same time this problem is solved in 
the incoming new robots.  

 

 

 



_ 

Appendices   269 

 
 
 
 
 
 
 
 

  
APPENDICES 

 
 
 

A.1. IK POSITIONING PROBLEM. MATLAB CODE. .................. 271 
A.2. CALIBRATION OF THE ADDITIONAL EXTERNAL AXES 
    …………………………………………………………………………….. 274 
A.3. TCL CONCEPTS FOR THE PROGRAMMING OF A 

POSTPROCESSOR IN THE PLATFORM NX ............................ 285 
A.4. CHARACTERISTIC LENGTH L OF THE KUKA KR-15/2 

(CORRESPONDING TO SECTION 2.4.6.) ................................... 304 
A.5. MATLAB CODE FOR THE POSTPROCESSING OF CLSF 

FOUNDED ON THE VJM WITH PERIODIC RE-EVALUATION.
............................................................................................................. 305 

 
 
 
 
 



 



Appendices  
 

271 

 

A.1.  IK POSITIONING PROBLEM. MATLAB CODE. 

The following lines resume the Matlab code solving the IKP of the IDF’s 
KUKA workcell. Some comments are done directly on the code, but more 
precise understanding is achieved by following the explanations given in Section 
2.4.3. 

 
function q=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaVJM,T_CAMM) 
  
% MOVIMIENTO GRUESO (t1 t2 t3) 
tm=thetamesa-pi; % E2 (rad) 
dl=dtrack;  % E1 (m) 
A_Base_a_TCP=T_CAMM*rotz(-thetaVJM); % SC TCP expresado en la mesa SC 
Base;   
A_Brida_a_TCP=rotx(0.3564)*transl(0,0,-0.1197); % SC TCP expresado en el 
SC Brida 
A_TCP_a_Brida=inv(A_Brida_a_TCP); % SC Brida expresado en el SC TCP 
  
A_Base_a_Brida=A_Base_a_TCP*A_TCP_a_Brida; % SC Brida respecto de SC BAse 
B en la mesa 
  
% Con la matriz recien calculada ya puedo hallar la posicion de la munyeca 
% W respecto de la Base, por Pieper (hago el calculo en m) 
Pos_Base_a_Wrist=([A_Base_a_Brida(1,4) A_Base_a_Brida(2,4) 
A_Base_a_Brida(3,4)]'+0.4434*[A_Base_a_Brida(1,3) A_Base_a_Brida(2,3) 
A_Base_a_Brida(3,3)]'); 
  
% Con esto, tengo las coordenadas de la munyeca en la MESA, pero quiero 
% aplicar el metodo geometrico desde la base del robot $robroot. Primero 
% hacer la rotacion y luego la trastacion de las coordenadas: 
% a) ROTACION (en Z) 
Pos_Base_a_Wrist_rotada=rotz(-tm)*[Pos_Base_a_Wrist(1) Pos_Base_a_Wrist(2) 
Pos_Base_a_Wrist(3) 1]'; 
% b)TRASLACION 
Pos_Robot_a_Wrist=[1 0 0 0.803;0 1 0 -dl;0 0 1 0.305;0 0 0 
1]*Pos_Base_a_Wrist_rotada; 
  
Mx=Pos_Robot_a_Wrist(1); 
My=Pos_Robot_a_Wrist(2); 
Mz=Pos_Robot_a_Wrist(3); 
  
%%%%%%%%%%%%% MOVIMIENTO GRUESO (t1 t2 t3) %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%% t1 
t1=-atan2(My,Mx)+pi; 
  
aprox_cero=1e-5; 
% if abs(t1)<=aprox_cero 
%     t1=0; 
% end 
  
%%%%%%%%%%%%%% t2 y t3 
p=sqrt(Mx^2+My^2)-0.300; 
h=(Mz-0.675); 
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eps=atan2(h,p); 
a=sqrt(0.155^2+0.600^2); 
b=0.650; 
c=sqrt(h^2+p^2); 
fi=atan(0.155/0.600); 
  
if c>=(a+b) 
   t3=0; % este es el límite de brazo estirado en el mecanizado (ver 
dibujo articulo ICM) 
   t2=eps; % el triangulo abc no existe     
   warning('punto fuera del alcance, brazo estirado') 
   q=q0; 
   return 
else 
    s=(a+b+c)/2; 
    r=sqrt((s-a)*(s-b)*(s-c)/s);  
    alfa=2*atan(r/(s-a)); 
    sig=2*atan(r/(s-c)); 
  
    t2=-eps-alfa; 
    t3=pi-sig+fi-pi/2; % resto pi/2 para trabajar modelo DH, no el angulo 
mecanico KUKA 
end 
  
if abs(t2)<=aprox_cero 
    t2=0; 
end 
if abs(t3)<=aprox_cero 
    t3=0; 
end 
  
% MOVIMIENTO FINO (t4 t5 t6) 
  
ro1=-t1-pi; % resto pi por motivos del DH   
Rzt1=rotz(ro1); 
  
ro2=pi/2+(t2+(t3+pi/2)); 
R_yprima_ro2=roty(ro2); 
  
% con la composicion de estas rotaciones y la posicion de la muñeca 
% referida a Robroot tengo la matriz homogenea T_RM que me define la 
posicion y 
% orientacion en ese punto M, osea T_RM= [[R_RM][Pos_Robot_a_Wrist]';0 0 0 
1] 
T_RM=Rzt1*R_yprima_ro2; 
T_RM(:,4)=Pos_Robot_a_Wrist; 
  
% Ahora voy a posicionar la brida  
% (que la conozco respecto de la mesa como A_Base_a_Brida) respecto del 
Robroot. Para 
% ello hago lo mismo que hice con la muñeca (deshacer la rotacion de la 
% mesa y la traslacion del lineal) 
T_R6=[1 0 0 0.803;0 1 0 -dl;0 0 1 0.305;0 0 0 1]*rotz(-tm)*A_Base_a_Brida; 
T_M6=inv(T_RM)*T_R6; 
  
% Finalmente 
t4=-atan2(-T_M6(2,3),-T_M6(1,3)); 
t5=atan2(sqrt(T_M6(3,1)^2+T_M6(3,2)^2),T_M6(3,3)); 
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t6=-atan2(-T_M6(3,2),-T_M6(3,1)); 
  
if abs(t4)<=aprox_cero 
    t4=0; 
end 
if abs(t5)<=aprox_cero 
    t5=0; 
end 
if abs(t6)<=aprox_cero 
    t6=0; 
end 
  
% theta 
q=[tm+pi dl t1 t2 t3 t4 t5 t6]; 
end 
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A.2. CALIBRATION OF THE ADDITIONAL EXTERNAL AXES  

In this Matlab code, a NLSQ iterative procedure is carried out to obtain 
the errors E  in the assembly DH parameters of the additional external joints 
(linear track and rotary table) that are previously introduced on purpose, namely,  
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It corresponds to the study done at Section 3.3., as follows: 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%% EXT JOINTS CALIBRATION %%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
clear all 
% format long g 
format short g 
  
deg2rad=(2*pi)/360; % multiplicador para pasar a rads 
rad2deg=360/(2*pi); % multiplicador para pasar a degs 
rotacion_de_brida_a_tool=rotx(pi); 
traslacion_de_brida_a_tool=transl(0,0,250); 
T_6LASER=traslacion_de_brida_a_tool*rotacion_de_brida_a_tool; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% KUKA MODEL    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
syms tm E2 real; % para T0M (mm, t rads, E y A en º) 
syms dl E1 real; % para TML 
syms t1 A1 real; % para TL1 
syms t2 A2 real; % para T12 
syms t3 A3 real; % para T23 
syms t4 A4 real; % para T34 
syms t5 A5 real; % para T45 
syms t6 A6 real; % para T56 
  
DH_KUKA=[pi 0 0 305 0;  
            pi/2 -803 0 0 1; 
            -pi/2 0 0 -675 0; 
            pi/2 300 0 0 0; 
            0 650 0 0 0; 
            pi/2 155 0 -600 0; 
            -pi/2 0 0 0 0; 
            -pi/2 0 0 140 0]; 
  
Q=[tm dl t1 t2 t3 t4 t5 t6];    
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T06=fkine(DH_KUKA,Q); % transformacion a la brida,   
  
% offsets con las lecturas reales de la consola (modelo mecanico): 
tm=deg2rad*E2; 
dl=E1+2977.17; 
t1=deg2rad*A1; 
t2=deg2rad*A2; 
t3=(deg2rad*A3)-pi/2; 
t4=deg2rad*A4; 
t5=deg2rad*A5; 
t6=(deg2rad*A6); 
  
T06_KUKA=subs(T06); 
Q_KUKA=[E2 E1 A1 A2 A3 A4 A5 A6]; % parametros de articulacion en degs y 
mm 
  
% Solo consideramos la posicion (x,y,z)' (no medimos orientacion) 
Pideal=[T06_KUKA(1,4),T06_KUKA(2,4),T06_KUKA(3,4)]'; 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% suponer errores en todos los parametros de montaje de los ejes 
% externos (altura d1, alejamiento a1, inclinacion lateral del rail 
alpha1, 
% inclinacion frontal del rail theta2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
syms d1 delta_d1 a1 delta_a1 alpha1 delta_alpha1 theta2 delta_theta2 
delta_E2 delta_E1 real 
syms tm E2 real; % para T0M 
syms dl E1 real; % para TML 
syms t1 A1 real; % para TL1 
syms t2 A2 real; % para T12 
syms t3 A3 real; % para T23 
syms t4 A4 real; % para T34 
syms t5 A5 real; % para T45 
syms t6 A6 real; % para T56 
  
DH_KUKA_con_delta_beta=[pi 0 0 (305+delta_d1) 0;  
            (pi/2+delta_alpha1) (-803+delta_a1) (0+delta_theta2) 0 1; 
            -pi/2 0 0 -675 0; 
            pi/2 300 0 0 0; 
            0 650 0 0 0; 
            pi/2 155 0 -600 0;   
            -pi/2 0 0 0 0; 
            -pi/2 0 0 140 0]; 
  
T06_con_delta_beta=fkine(DH_KUKA_con_delta_beta,Q); % transformacion al 
efector final 
  
% offsets con lecturas "reales" de la consola KUKA, y los deltas de los 
ejes externos para hallar  
% el posible error: 
tm=deg2rad*(E2+delta_E2); 
dl=E1+2977.17+delta_E1; 
t1=deg2rad*A1; 
t2=deg2rad*A2; 
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t3=(deg2rad*A3)-pi/2; 
t4=deg2rad*A4; 
t5=deg2rad*A5; 
t6=(deg2rad*A6); 
  
T06_KUKA_con_delta_beta=subs(T06_con_delta_beta); % transformacion al 
efector final 
Q_KUKA=[E2 E1 A1 A2 A3 A4 A5 A6]; 
  
% Para este ajuste, considero la posicion (x,y,z)' sobre la mesa y la 
% orientacion ABC sobre la mesa 
P_con_delta_beta=[T06_KUKA_con_delta_beta(1,4),T06_KUKA_con_delta_beta(2,4
),T06_KUKA_con_delta_beta(3,4)]'; 
r_con_delta_beta=T06_KUKA_con_delta_beta(1:3,1:3); 
  
PO_LASER_con_delta_beta=eval(T06_KUKA_con_delta_beta)*T_6LASER; 
  
% Modelo con supuesto de error (para comprobar la convergencia, supongo 
estos errores a los  
% que deberá converger): 
%       - error de altura d1: 0.05 mm 
delta_d1=0.05 % 0; 
%       - error de inclinacion lateral del rail alpha1: 0.01 rad (= 0.57º) 
delta_alpha1=0.01 % 0; 
%       - error de alejamiento a1: 0.06 mm 
delta_a1=0.06 % 0; 
%       - error de inclinacion frontal del rail theta2: 0.01 rad (= 0.57º) 
delta_theta2=0.01 % 0; 
%       - error angular en el giro de la mesa: 0.07º (= 0.012 rad), en la 
ecuacion  
% lo entro en grados, siendo ahí pasado a radianes dentro del modelado de 
la celula. 
delta_E2=0.07 % 0; 
%       - error de desplazamiento del lineal: 0.08 mm  
delta_E1=0.08 % 0; 
  
T06_KUKA_con_error=subs(T06_KUKA_con_delta_beta); 
P_con_error=subs(P_con_delta_beta); 
r_con_error=subs(r_con_delta_beta); 
  
PO_LASER_con_error=eval(T06_KUKA_con_error)*T_6LASER; 
  
syms delta_d1 delta_a1 delta_alpha1 delta_theta2 delta_E1 delta_E2 real  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% MEDICION DE PUNTOS DE CALIBRACION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% A) Puntos ideales (cinematica inversa ideal) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Vamos a trabajar con 3 planos ortogonales sobre los que barreré el laser 
% con el programa de la carita. El objetivo es 
% repasar las siguientes matrices de puntos en cada plano (cada una de 16 
% puntos) 
  
dimensiones_matriz_puntos_Pm_gen=[4,4]; 
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numero_de_puntos_Pm_gen=dimensiones_matriz_puntos_Pm_gen(1)*dimensiones_ma
triz_puntos_Pm_gen(2); 
espaciado_puntos_Pm=100; %mm 
       
    [M,N]=meshgrid(-
espaciado_puntos_Pm*((dimensiones_matriz_puntos_Pm_gen(1)-
1)/2):espaciado_puntos_Pm:espaciado_puntos_Pm*((dimensiones_matriz_puntos_
Pm_gen(1)-1)/2),-
espaciado_puntos_Pm*((dimensiones_matriz_puntos_Pm_gen(2)-
1)/2):espaciado_puntos_Pm:espaciado_puntos_Pm*((dimensiones_matriz_puntos_
Pm_gen(2)-1)/2)); 
    cont_Pm=1; 
    for j=1:dimensiones_matriz_puntos_Pm_gen(1) 
        for i=1:dimensiones_matriz_puntos_Pm_gen(2) 
            Pm_gen(cont_Pm,:)=[M(i,j) N(i,j)];  % Pm_generador   
            cont_Pm=cont_Pm+1;        
        end 
    end 
     
    % 16 Puntos en Plano XY (superficie mesa, un cuadrado de 200 + 200 mm) 
    ABC_xy=[0 0 0]; % este dato es para la IK que voy a hacer, y es la 
posicion del tool con Z entrante  
    Pm_xy=[Pm_gen zeros(size(Pm_gen,1),1)];  %la tercera columna es 0, 
porque el punto esta en el plano XY 
    % plot3(Pm(:,1),Pm(:,2),Pm(:,3)); hold; 
    for i=1:size(Pm_xy,1) 
        Pm_xy_ABC(i,:)=[Pm_xy(i,:) ABC_xy]; 
    end 
     
    % 16 Puntos en Plano XZ (plano vertical paralelo al lado corto de la 
mesa) 
    ABC_xz=[0 0 -pi/2];  % idem 
    Pm_xz=[Pm_gen(:,1) zeros(size(Pm_gen,1),1) Pm_gen(:,2)];  %la segunda 
columna es 0, porque el punto esta en el plano XZ 
    for i=1:size(Pm_xz,1) 
        Pm_xz_ABC(i,:)=[Pm_xz(i,:) ABC_xz]; 
    end     
     
    % 16 Puntos en Plano YZ (plano vertical paralelo al lado largo de la 
mesa) 
    ABC_yz=[0 -pi/2 0];  % idem 
    Pm_yz=[zeros(size(Pm_gen,1),1) Pm_gen];  %la primera columna es 0, 
porque el punto esta en el plano YZ 
    for i=1:size(Pm_yz,1) 
        Pm_yz_ABC(i,:)=[Pm_yz(i,:) ABC_yz]; 
    end 
     
    Pm=[[Pm_yz_ABC];[Pm_xz_ABC];[Pm_xy_ABC]];  
  
% Vamos a considerar dos casos de los ejes externos [E1 E2], 
casos=[[-2000 0]; [-2400 45]];  % empiricamente hemos comprobado que esta 
dentro del campo de trabajo 
  
for cont_casos=1:size(casos,1) 
    for i=1:size(Pm,1) 
        
q_caso(i,:)=IK_KUKA_laser_cualquier_ori(Pm(i,1),Pm(i,2),Pm(i,3),Pm(i,4),Pm
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(i,5),Pm(i,6),casos(cont_casos,1),casos(cont_casos,2))*rad2deg; % 
coordenadas articulación A1-A6 para cada punto 
    end 
    q(cont_casos,:,:)=q_caso; 
end 
  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% A) Puntos alcanzados  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Al robot le pedimos esos puntos y lo va a hacer mal por los   
% errores anteriormente supuestos en los parametros de montaje de los ejes 
% externos 
  
% En primer lugar, con los siguientes bucles anidados voy a ver donde se 
situaría el 
% hipotetico TCP del laser (recordemos que esta a 250mm de la brida) 
  
  
for cont_casos=1:size(casos,1) 
    for i=1:size(Pm,1) 
    E2=casos(cont_casos,2); 
    E1=casos(cont_casos,1);  
    A1=q(cont_casos,i,1);       
    A2=q(cont_casos,i,2); 
    A3=q(cont_casos,i,3);      
    A4=q(cont_casos,i,4); 
    A5=q(cont_casos,i,5); 
    A6=q(cont_casos,i,6); 
     
    plotbot(DH_KUKA,[deg2rad*E2 E1+2977.17 deg2rad*A1 deg2rad*A2 
deg2rad*(A3-90) deg2rad*A4 deg2rad*A5 deg2rad*A6],'flw'); 
frame(eye(4),'y',500); 
  
    PO_LASER=eval(T06_KUKA_con_error)*T_6LASER; 
     
    % ABC_alcanzada=KUKAtr2rpy(PO_LASER);  
    Pos_alcanzada=subs(PO_LASER(1:3,4))'; 
    Vector_del_laser_respecto_BASE=subs(PO_LASER(1:3,3))'; 
     
    % Ps(cont_casos,i,:)=[Pos_alcanzada ABC_alcanzada]; % Para q(numero de 
caso,punto Pm del plano de 1 a 75),articulacion) <--> Ps(numero de 
caso,punto Pm del plano de 1 a 12),coordenada xyzABC de 1 a 6) 
    Ps(cont_casos,i,:)=[Pos_alcanzada Vector_del_laser_respecto_BASE]; % 
Para q(numero de caso,punto Pm del plano de 1 a 75),articulacion) <--> 
Ps(numero de caso,punto Pm del plano de 1 a 12),coordenada xyzABC de 1 a 
6) 
    end 
end 
  
% Para hacer mis minimos cuadrados, la unica medición de que dispongo es 
la 
% la distancia que mide el laser (cuasi perpendicular al plano y cuanto 
mas se corrijan lo errores del robot,  
% mas cierta será esta perpendicularidad). VAMOS A MEDIR LA DISTANCIA QUE 
LEE EL LASER que, en 
% definitiva, quiero que sea 0. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PROCEDIMIENTO DE CALIBRACION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% delta_P=J·delta_beta  --> delta_beta=(J+)·delta_P 
  
syms d1 delta_d1 a1 delta_a1 alpha1 delta_alpha1 theta2 delta_theta2 
delta_E2 delta_E1 real 
syms tm E2 real; % para T0M 
syms dl E1 real; % para TML 
syms t1 A1 real; % para TL1 
syms t2 A2 real; % para T12 
syms t3 A3 real; % para T23 
syms t4 A4 real; % para T34 
syms t5 A5 real; % para T45 
syms t6 A6 real; % para T56 
  
Q=[tm dl t1 t2 t3 t4 t5 t6]; 
Q_KUKA=[E2 E1 A1 A2 A3 A4 A5 A6]; 
  
DH_KUKA_param=[pi 0 0 (d1) 0;  
            (alpha1) (a1) (theta2) 0 1; 
            -pi/2 0 0 -675 0; 
            pi/2 300 0 0 0; 
            0 650 0 0 0; 
            pi/2 155 0 -600 0;   
            -pi/2 0 0 0 0; 
            -pi/2 0 0 140 0]; 
  
T06_param=fkine(DH_KUKA_param,Q); 
PO_LASER_param=eval(T06_param)*T_6LASER; 
  
tm=deg2rad*E2; 
dl=E1+2977.17; 
t1=deg2rad*A1; 
t2=deg2rad*A2; 
t3=(deg2rad*A3)-pi/2; 
t4=deg2rad*A4; 
t5=deg2rad*A5; 
t6=(deg2rad*A6)+pi; 
  
PO_LASER_KUKA_param=subs(PO_LASER_param); 
  
D_LASER_KUKA_param=PO_LASER_KUKA_param(1:3,4); % fijate que, según el 
plano, la D hace referencia a la coordenada X Y o Z de la base. 
  
% Directamente obtengo Jr, dado que J completa es enorme 
  
dhparam=[d1 alpha1 a1 theta2 E2 E1]; 
for i=1:size(dhparam,2) 
    Jr(:,i)=diff(D_LASER_KUKA_param,dhparam(i)); % dependencia de la 
posicion xyz respecto a cada parametro de DH a ajustar; 
end 
  
% ya estan sustituidos en Jr los parametros de dh que NO son variables y 
que asumimos  
% que no tienen error, osea que quedará en funcion de E2 & E1  
% (por ser joints del robot) y tambien de d1, alpha1, a1, theta2 (que 
consideramos que  
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% tienen error).  
  
          d1=305+delta_d1; 
          alpha1=pi/2+delta_alpha1; 
          a1=-803+delta_a1; 
          theta2=0+delta_theta2; 
          E2=E2+delta_E2; 
          E1=E1+delta_E1;   
           
Jr_con_delta=subs(Jr); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ITERACION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
numero_de_iteraciones=20; 
  
clear delta_d1 delta_alpha1 delta_a1 delta_theta2 delta_E1 delta_E2 
V_correc_acumuladas V_correc_tras_cada_iteracion V_errores_posic 
  
% inicialmente se supone no-error en los parametros de DH  
delta_d1=0; delta_alpha1=0; delta_a1=0; delta_theta2=0; delta_E2=0; 
delta_E1=0; 
j=1; 
for cont_casos=1:size(casos,1) 
    for i=1:numero_de_puntos_Pm_gen 
        syms DistXbase DistYbase DistZbase real 
          
delta_P_filas(j,1)=eval(solve(Ps(cont_casos,i,1)+DistXbase*Ps(cont_casos,i
,4),DistXbase)); 
          delta_P_filas(j,2)=-
eval(solve(Ps(cont_casos,numero_de_puntos_Pm_gen+i,2)+DistYbase*Ps(cont_ca
sos,numero_de_puntos_Pm_gen+i,5),DistYbase)); 
          delta_P_filas(j,3)=-
eval(solve(Ps(cont_casos,2*numero_de_puntos_Pm_gen+i,3)+DistZbase*Ps(cont_
casos,2*numero_de_puntos_Pm_gen+i,6),DistZbase)); 
    
          j=j+1; 
    end 
end 
  
for iter=1:numero_de_iteraciones 
   
% OJO, reset en delta_P y delta_beta porque se calculan de nuevo, pero 
% no delta_theta1 ni delta_a1 porque acumulan la correccion 
clear delta_P delta_beta Dpi b   
  
% los nuevos errores de posicion se calcularán de nuevo al iniciar el 
bucle 
  
delta_P_cols=delta_P_filas'; % en columnas 
num_filas_delta_P_cols=size(delta_P_cols,1); % 3, D en Xbase, en Ybase y 
en Zbase 
num_columnas_delta_P_cols=size(delta_P_cols,2); % 50, la mitad son del 
caso 1 y otra mitad del caso 2 
  
  
for h=1:num_columnas_delta_P_cols   
    clear aux 
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    aux=delta_P_cols(:,h); 
    for k=0:(num_filas_delta_P_cols-1) 
    delta_P(num_filas_delta_P_cols*h-k,:)=aux(num_filas_delta_P_cols-k,:); 
    end 
end 
  
V_errores_posic(:,iter)=delta_P; 
  
% damos forma a la matriz de observacion (Jacobiano, para cada punto 
% ensayado), W, con Jr_con_delta 
  
num_filas_Jr_con_delta=size(Jr_con_delta,1); 
  
for cont_casos=1:size(casos,1) 
    for i=1:numero_de_puntos_Pm_gen 
    syms E2 E1 A1 A2 A3 A4 A5 A6 real 
    clear J_o 
     
    E2=casos(cont_casos,2); E1=casos(cont_casos,1); A1=q(cont_casos,i,1); 
A2=q(cont_casos,i,2);  
    A3=q(cont_casos,i,3); A4=q(cont_casos,i,4); A5=q(cont_casos,i,5); 
A6=q(cont_casos,i,6); 
    J_o(1,:)=subs(Jr_con_delta(1,:)); 
  
    E2=casos(cont_casos,2); E1=casos(cont_casos,1); 
A1=q(cont_casos,numero_de_puntos_Pm_gen+i,1); 
A2=q(cont_casos,numero_de_puntos_Pm_gen+i,2);  
    A3=q(cont_casos,numero_de_puntos_Pm_gen+i,3); 
A4=q(cont_casos,numero_de_puntos_Pm_gen+i,4); 
A5=q(cont_casos,numero_de_puntos_Pm_gen+i,5); 
A6=q(cont_casos,numero_de_puntos_Pm_gen+i,6); 
    J_o(2,:)=subs(Jr_con_delta(2,:)); 
     
    E2=casos(cont_casos,2); E1=casos(cont_casos,1); 
A1=q(cont_casos,2*numero_de_puntos_Pm_gen+i,1); 
A2=q(cont_casos,2*numero_de_puntos_Pm_gen+i,2);  
    A3=q(cont_casos,2*numero_de_puntos_Pm_gen+i,3); 
A4=q(cont_casos,2*numero_de_puntos_Pm_gen+i,4); 
A5=q(cont_casos,2*numero_de_puntos_Pm_gen+i,5); 
A6=q(cont_casos,2*numero_de_puntos_Pm_gen+i,6); 
    J_o(3,:)=subs(Jr_con_delta(3,:)); 
     
        for j=0:(num_filas_Jr_con_delta-1) 
        W(cont_casos*num_filas_Jr_con_delta*i-
j,:)=J_o(num_filas_Jr_con_delta-j,:); % matriz de observacion 
        end 
    end 
end 
  
% Pmeudo-inversa de la matriz de observacion 
Pseinv_W=(inv(W'*W))*W'; 
 
% correcciones para el DH: delta_beta=[delta_a1 delta_theta1]' 
delta_beta=Pseinv_W*delta_P; 
     
% Vector de correcciones calculadas en cada iteracion (debe converger a 0) 
V_correc_tras_cada_iteracion(:,iter)=delta_beta; 
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% Vector de correcciones acumuladas tras un numero 'iter' de iteraciones  
% (debe converger a los errores supuestos antes) 
  
delta_d1=delta_d1+delta_beta(1);  
delta_alpha1=delta_alpha1+delta_beta(2);  
delta_a1=delta_a1+delta_beta(3);  
delta_theta2=delta_theta2+delta_beta(4);  
delta_E2=delta_E2+delta_beta(5);  
delta_E1=delta_E1+delta_beta(6); 
  
V_correc_acumuladas(:,iter)=[delta_d1 delta_alpha1 delta_a1 delta_theta2 
delta_E2 delta_E1]'; 
  
% Nuevos valores para P_con_delta_beta con las correcciones realizadas al 
% modelo.  
  
clear delta_P_filas; 
j=1; 
for cont_casos=1:size(casos,1) 
    for i=1:numero_de_puntos_Pm_gen 
        E2=casos(cont_casos,2); E1=casos(cont_casos,1); 
A1=q(cont_casos,i,1); A2=q(cont_casos,i,2);  
        A3=q(cont_casos,i,3); A4=q(cont_casos,i,4); A5=q(cont_casos,i,5); 
A6=q(cont_casos,i,6); 
        delta_P_filas(j,1)=Ps(cont_casos,i,1)-
subs(PO_LASER_con_delta_beta(1,4));  % 16 Puntos en Plano YZ (plano 
vertical paralelo al lado largo de la mesa, con lo que el error esta en 
Xbase) 
         
        E2=casos(cont_casos,2); E1=casos(cont_casos,1); 
A1=q(cont_casos,numero_de_puntos_Pm_gen+i,1); 
A2=q(cont_casos,numero_de_puntos_Pm_gen+i,2);  
        A3=q(cont_casos,numero_de_puntos_Pm_gen+i,3); 
A4=q(cont_casos,numero_de_puntos_Pm_gen+i,4); 
A5=q(cont_casos,numero_de_puntos_Pm_gen+i,5); 
A6=q(cont_casos,numero_de_puntos_Pm_gen+i,6); 
        delta_P_filas(j,2)=Ps(cont_casos,numero_de_puntos_Pm_gen+i,2)-
subs(PO_LASER_con_delta_beta(2,4));     % 16 Puntos en Plano XZ (plano 
vertical paralelo al lado corto de la mesa, con lo que el error esta en 
Ybase) 
         
        E2=casos(cont_casos,2); E1=casos(cont_casos,1); 
A1=q(cont_casos,2*numero_de_puntos_Pm_gen+i,1); 
A2=q(cont_casos,2*numero_de_puntos_Pm_gen+i,2);  
        A3=q(cont_casos,2*numero_de_puntos_Pm_gen+i,3); 
A4=q(cont_casos,2*numero_de_puntos_Pm_gen+i,4); 
A5=q(cont_casos,2*numero_de_puntos_Pm_gen+i,5); 
A6=q(cont_casos,2*numero_de_puntos_Pm_gen+i,6); 
        delta_P_filas(j,3)=Ps(cont_casos,2*numero_de_puntos_Pm_gen+i,3)-
subs(PO_LASER_con_delta_beta(3,4)); % 16 Puntos en Plano XY (superficie 
mesa, con lo que el error está en la cota Zbase) 
        j=j+1; 
     end 
end 
end 
  
V_correc_tras_cada_iteracion 
V_correc_acumuladas 
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V_errores_posic; 

 
The desired result is achieved after 20 iterations. 
 

% V_correc_tras_cada_iteracion = 
% 
%   Columns 1 through 6 
% 
%        2.5261      -2.4744      -0.8153     0.046677      0.26192      0.22285 
%      0.003954    0.0032042    0.0017677   0.00080756   0.00029859  7.0228e-005 
%        1.7958      -1.2227     -0.72805    -0.097757     0.092338     0.093987 
%     0.0065782    0.0032192    0.0011285  5.4383e-006  -0.00030156   -0.0002715 
%      -0.10895   -0.0086977     0.098631     0.059879     0.021651    0.0061652 
%      -0.75614     -0.17527      0.49519      0.35682      0.14534      0.03935 
% 
%   Columns 7 through 12 
% 
%       0.14037      0.07674     0.038006     0.017183    0.0070109    0.0024844 
%  -1.1631e-005 -2.9501e-005 -2.5332e-005 -1.6791e-005 -9.7019e-006 -5.0865e-006 
%      0.061173     0.034333     0.017549    0.0082141      0.00349    0.0013119 
%   -0.00017534 -9.7566e-005 -4.9105e-005 -2.2592e-005 -9.4273e-006 -3.4615e-006 
%     0.0014933   0.00021234 -9.9251e-005  -0.00012604  -8.469e-005 -4.4372e-005 
%     0.0019563   -0.0075152   -0.0076546   -0.0054512   -0.0032938   -0.0017844 
% 
%   Columns 13 through 18 
% 
%    0.00067594  5.6418e-005 -9.8746e-005  -0.00010077 -6.8299e-005 -3.8797e-005 
%  -2.4554e-006 -1.0927e-006 -4.4303e-007 -1.5814e-007 -4.4887e-008 -5.7397e-009 
%    0.00040441  7.2713e-005 -2.4058e-005 -3.7516e-005 -2.8213e-005 -1.6927e-005 
%  -1.0202e-006  -1.501e-007  9.0399e-008  1.1376e-007  8.1667e-008  4.7839e-008 
%  -1.9357e-005 -6.8299e-006 -1.5418e-006   2.581e-007  6.2839e-007  5.2992e-007 
%   -0.00088563  -0.00040512  -0.00016967 -6.3452e-005 -1.9744e-005 -3.8307e-006 
% 
%   Columns 19 through 20 
% 
%  -1.9584e-005 -8.9244e-006 
%   4.5662e-009  5.2604e-009 
%   -8.892e-006 -4.2033e-006 
%   2.4696e-008  1.1487e-008 
%   3.4585e-007  1.9679e-007 
%   8.5922e-007  1.5828e-006  (almost zeroes) 
% 
% 
% V_correc_acumuladas = 
% 
%   Columns 1 through 6 
% 
%        2.5261     0.051669     -0.76363     -0.71696     -0.45504     -0.23219 
%      0.003954    0.0071582    0.0089258    0.0097334     0.010032     0.010102 
%        1.7958      0.57305     -0.15499     -0.25275     -0.16041    -0.066425 
%     0.0065782    0.0097974     0.010926     0.010931      0.01063     0.010358 
%      -0.10895     -0.11765     -0.01902     0.040858     0.062509     0.068674 
%      -0.75614     -0.93141     -0.43622    -0.079407     0.065935      0.10529 
% 
%   Columns 7 through 12 
% 
%     -0.091816    -0.015077      0.02293     0.040113     0.047123     0.049608 
%      0.010091     0.010061     0.010036     0.010019     0.010009     0.010004 
%     -0.005252     0.029081     0.046629     0.054843     0.058333     0.059645 
%      0.010183     0.010085     0.010036     0.010014     0.010004     0.010001 
%      0.070168      0.07038     0.070281     0.070155      0.07007     0.070026 
%       0.10724     0.099726     0.092072     0.086621     0.083327     0.081542 
% 
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%   Columns 13 through 18 
% 
%      0.050284      0.05034     0.050241     0.050141     0.050072     0.050034 
%      0.010002     0.010001         0.01         0.01         0.01         0.01 
%       0.06005     0.060122     0.060098     0.060061     0.060033     0.060016 
%     0.0099998    0.0099996    0.0099997    0.0099998    0.0099999         0.01 
%      0.070006     0.069999     0.069998     0.069998     0.069999     0.069999 
%      0.080657     0.080252     0.080082     0.080019     0.079999     0.079995 
% 
%   Columns 19 through 20 
% 
%      0.050014     0.050005   (delta_d1 = 0.05) 
%          0.01         0.01   (delta_alpha1 = 0.01) 
%      0.060007     0.060003   (delta_a1 = 0.06) 
%          0.01         0.01   (delta_theta2 = 0.01) 
%          0.07         0.07   (delta_E2 = 0.07) 
%      0.079996     0.079997   (delta_E1 = 0.08) 
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A.3. TCL CONCEPTS FOR THE PROGRAMMING OF A 
POSTPROCESSOR IN THE PLATFORM NX 

 

A.3.1. Introduction. General characteristics of the TCL.  

TCL (Tool Command Language) is a scripting language created by John 
Ousterhout (Berkeley Univ.)1. It is used for scripted applications, GUIs and 
testing. Tcl is used on embedded systems platforms, both in its full form and in 
several other small-footprinted versions. In the NXTM system, it is used to 
configure the NX/Post. 

A TCL script can connect several modules in different programming 
languajes (such as C++), without compiling them again, see Figure A3.1. The 
main difference between compiled and interpreted languajes, like the TCL, arises 
in the way in which the translation is done (instruction by instruction in this case, 
while in a compiler the translation is done for the full code after read). 

 

 

Figure A3.1. Connetion amongst modules in TCL and C++  

 

A.3.2. Format of the orders in Tcl 

The general syntax of an order in Tcl is of the form: 

order options argument 1 argument 2 argument n 

The word order is the name of the Tcl command or of a procedure Tcl 
developed previously. The options give to the TCL interpreter detailed 
instructions of the task that the order must develop. The arguments are any type 
of information that could be processed, changed or used somehow in the 
execution of the order.  

                                                 
1 J. K. Ousterhout; “Tcl and the Tk Toolkit”, Addison Wesley, 1994, ISBN  020163337X 
Other reference books are: 
B. B. Welch, K. Jones, J. Hobbs; “Practical programming in Tcl/Tk”. ISBN  0130385603 
F. Feito, R. J. Segura, F. de Asís; “Programación en Tcl/Tk”, Universidad de Jaén, 1997. ISBN  8488942966 
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Figure A3. 2. Some examples of orders and arguments. 

 
The order grouping in Tcl, or script, is realized by means of a sequence 

in different lines and between keys. The program comments are preceded by # in 
order that they are not considered by the TCL interpreter. 

 

 
Figure A3. 3. Script and comments in TCL 

 

The flow control structures are TCL orders that allow the control of the 
execution of the program. Like in many other languages, they can be selective or 
iterative. The first ones would contemplate conditional structures (if/elseif), or 
multiconditional alternatives like-a-menu (switch), whereas the second ones 
contemplate curls finished by counter (for) and for sentry (while). 

 

A.3.3. TCL Variables. Substitution.  
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The order set is used for the assignment of values, without need to 
initialize them before being used provided that the TCL interpreter creates it 
simultaneously. 

set <variable> <value> 

A variable can keep numbers or chains of characters (letters, numbers, 
symbols or combination of them). Nevertheless, in TCL everything is interpreted 
as character chains which makes necessary to use the mechanism of substitution 
(by means of the operator $). 

Tcl allows local and global variables. The local variables are used inside 
a procedure (proc). When the procedure is called, the variable is created, and 
when it finishes the variable is deleted (unset <variable>). A global variable 
(global <variable>) allows to store information amongst calls to different 
procedures, and has the same identifier independently of its location in the 
program 

 

A.3.4. Event Handler syntax for the KUKA KRC2 controller 

This section analyzes the morphology of the .tcl file adapted to the 
control KUKA KRC2 for a 6R KR15/2. Basically, the Event Handler has two 
differentiated parts: 

a)   An initialization of variables, in many cases describing the machine or 
the functioning of the NC. These variables, together with the global 
variables that NX associates with every event, will be used by the 
described procedures later. 

b) Una sucesión de procedimientos (proc) que, ante un evento a 
postprocesar, realizan las siguientes tareas: 

c)   A succession of procedures (proc) that, with an event to postprocess, 
realize the following tasks: 

i. Load the variables that are going to be indispensable for the data 
processing that has to be offered to the controller of the machine 
tool or robot. 

ii. Realize the necessary operations with the above mentioned 
variables. 

iii. After having all the necessary information in order that the 
machine tool could materialize the event that wants to be 
postprocessed, puts all this information to disposition on the 
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Definition File to be able to write the Output File (with the 
necessary format, as it will be described later on) 

 

i) Variable definition  

A full list (and its explanation) of the variables coming from the 
generation of the toolpath is available with the installation of the NXTM 
system (see mom variables at {UGII_BASE_DIR} \UGDOC \html_files 
\ugpost \index.html). These ones and some other user variables are defined 
as global at the beginning of the program, before any proc (see code 
below).  

 

ii) Procedure definition 

As explained in the paragraph dedicated to Event Handler's 
concept, it is necessary to to define a procedure (proc) for every event to be 
carried out in the machine. Some of these events come implicitly defined 
by the way of handling the information of the module of mechanized the 
platform NX (like the concepts of start of program, start of group or start 
of path) and necessarily we will find the procedure that will develop the 
corresponding actions to realize in each of them. Others will be defined by 
the user according to the characteristics of the machine and of the process, 
like in the case of the motions in CP tracking (see Section 4.6.3.). 

In the most elementary version of proc for a linear move, this 
block of process just sends the infotmation of the destination point and 
TCP rate to the corresponding templates of the Definition File, that will 
give KUKA KRL format to the output file as explained later. In this case, it 
is not be necessary to invoke variables since they are global and the call is 
done directly from the Block_Template of the Definition File (see 
paragraph 1.3.2.).  

 
Figure A3. 4. Basic processing at the Event Handler of a linear motion. 

 

 

proc MOM_linear_move {} { 

   MOM_do_template Velocidad 

   MOM_do_template Linear 

} 
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As an improvement of this processing, and at the expense of the 
existence of a linear track and a rotary table, it is proposed a review of the 
previous basic process that solves the adoption of extreme configurations 
in the robot for remote points of the same one, by means of a fuzzy2,3 
controller, implemented in Matlab4. 

The call is done by means of the TCL command catch, by which 
the values of EE’s position and of the additional external joints (vertor k) 
are passed to the executable containing the fuzzy model. The increments 
obtained for the additional external joints are the last two values of the 
vector a. 

 
Figure A3. 5. Event Handler processing of a linear motion relocating the external 
joints.  

                                                 
2 J. Andres, L. Gracia, J.Tornero; “Inverse kinematics of a redundant manipulator for CAM integration. An 
industrial perspective of implementation”, ICM09. 
3 J. Andres, L. Gracia, J.Tornero; “TOOLPATH POSTPROCESSING FOR THREE AXES MILLING IN 
REDUNDANT ROBOTIC WORKCELLS BY MEANS OF FUZZY INTEGRATION IN A CAM 
PLATFORM”, ICM09. 
4 J.-S. Roger Jang, N. Gulley; “Fuzzy Logic Toolbox: User’s Guide”; Revised for Version 2.2.7 (Release 
2008a), The MathWorks, Inc. 2008 

proc MOM_linear_move {} { 
  global mom_pos mom_prev_pos 
  global mov_carro mov_mesa 
  global k E2 E1 a t  
 
# Five values passed to the .exe with the IKP and the fuzzy engine.  
  set k(0) $E2 
  set k(1) $E1 
  set k(2) $mom_pos(0) 
  set k(3) $mom_pos(1) 
  set k(4) $mom_pos(2) 
 
  MOM_output_to_listing_device "k: $k(0) , $k(1) , $k(2) , $k(3) , $k(4)" 
    
 catch {exec C:\\NX5\\MACH\\auxiliary\\javi2_matlabfuzz [array get k]} a 
   
  set t(6) [lindex $a 0]        
  set t(7) [lindex $a 1]  
 
  set E2 [expr $k(0) + $t(7)] 
  set E1 [expr $k(1) + $t(6)] 
 
  set mov_mesa $E2 
  set mov_carro $E1 
 
   MOM_do_template Velocidad 
   MOM_do_template Linear 
} 
} 
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Finally and after all these calculations in which the obtained values 
are kept as new definite variables, all the information is at the disposal of 
the Definition File: MOM_do_template Linear                

 

iii) Transcription of the Event Handler of the NX-KUKA 
KRC2postprocessor  

########################################################## 

# CN:          KR15/2 – KRC2 KUKA (_v3) 
# Revisiones  20-3-2010 # Javier Andres #  
########################################################### 
 
# Global vble def 
# Machine Kinematic 
set mom_kin_machine_resolution             0.001 
set mom_kin_arc_output_mode                FULL_CIRCLE 
## Defines how circles will be output by the post.  Only circles generated 
in the operation can be output as circles.  LINEAR will output linear 
moves based on the tolerances defined on the arc in the operation.  
QUADRANT will output circles only on quadrant boundaries (divide arcos en 
cuadrantes).  FULL_CIRCLE will output arcs up to 360 degrees (Kuka 
controller stands for full_circle) 
set mom_kin_helical_arc_output_mode        LINEAR 
## linearizes helix motions, not allowed at KRC2 
set mom_kin_arc_valid_plane                ANY 
set mom_kin_min_arc_length    0.01 
set mom_kin_min_arc_radius              0.1 
set mom_kin_max_arc_radius           5000 
# below or above these values, it inearizes.  
set mom_kin_machine_type                   5_axis_dual_head 
set mom_kin_4th_axis_direction 

   "MAGNITUDE_DETERMINES_DIRECTION" 
#set mom_kin_4th_axis_plane                "ZX" 
set mom_kin_4th_axis_leader               "B" 
set mom_kin_4th_axis_rotation             "standard" 
set mom_kin_4th_axis_type                 "Head" 
set mom_kin_5th_axis_direction 

   "MAGNITUDE_DETERMINES_DIRECTION" 
#set mom_kin_5th_axis_plane                "YZ" 
set mom_kin_5th_axis_leader               "C" 
set mom_kin_5th_axis_rotation             "standard" 
set mom_kin_5th_axis_type                 "Head" 
set mom_kin_rapid_feed_rate                12000 
set mom_kin_tool_change_time               30.0 
set mom_sys_spindle_direction_code(OFF)    "FALSE" 
set mom_sys_output_file_suffix        ".src" 

 
set pto_sim(0)     0 
set pto_sim(1)     0 
set pto_sim(2)     0 
set pto_per(0)     0 
set pto_per(1)     0 
set pto_per(2)     0 
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set angulo_arco_circ   0 
set abs_ang_giro        0 
set R(0)   0 
set R(1)   0 
set R(2)   0 
set mod_R   0 
set Vp(0)   0 
set Vp(1)   0 
set Vp(2)   0 
set mod_Vp   0 
set div_mod    0 
set Rp(0)   0 
set Rp(1)   0 
set Rp(2)   0 
set num_despl    0 
set despl      200 
set sentido   1 
set cero_carro   -2100 
set mov_carro   0 
set mov_mesa   0 
set k(0) 0 
set k(1) 0 
set k(2) 0 
set k(3) 0 
set k(4) 0 
# HOME: 
set E2 45 
# set E1 -2977.17 E2 0 
set E1 -2500 
set a "void" 
set t(0) 0 
set t(1) 90 
set t(2) 0 
set t(3) -90 
set t(4) 90 
set t(5) 0 
set t(6) 0 
set t(7) 0 
 
########################################################### 
proc  MOM_start_of_program {} {} 
########################################################### 
proc MOM_start_of_group {} { 
 global mom_group_name mom_parent_group_name 
 if { $mom_group_name == $mom_parent_group_name } { 
 
   MOM_output_to_listing_device  

"PROGRAM: $mom_parent_group_name\n" 
  MOM_output_text "&ACCESS RVP" 
  MOM_output_literal "&PARAM TEMPLATE = 
C:\\KRC\\Roboter\\Template\\ExpertVorgabe" 
  MOM_output_text "&PARAM EDITMASK = *" 
  MOM_output_text "DEF $mom_parent_group_name ()" 
  MOM_output_text "BAS (#INITMOV,0)"  
  MOM_output_text "PTP XHOME"    
  MOM_output_text "\$APO.CVEL = 100" 
 } else { 
      MOM_output_to_listing_device  
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   "SUB-PROG: $mom_group_name" 
   } 
} 
 
########################################################### 
proc MOM_machine_mode { } { } 
########################################################### 
proc MOM_start_of_path { } { 
  global mom_path_name mom_parent_group_name mom_group_name 
mom_fixture_offset_value   
  global mom_csys_matrix   
  if {[info exists mom_parent_group_name]} { 

    MOM_output_to_listing_device    
"OPERATION: $mom_path_name 

} else { 
          set mom_parent_group_name $mom_path_name 
        set mom_group_name $mom_path_name 
         MOM_start_of_group 

   } 
 if { $mom_fixture_offset_value == 0 } {  
     set mom_fixture_offset_value 1 
 }   
     MOM_do_template base 
  MOM_do_template tool 
} 
 
########################################################### 
proc MOM_set_csys { } {  
 global mom_csys_matrix  
} 
########################################################### 
proc MOM_msys { } {  
global mom_msys_matrix mom_msys_origin  
 
 
 } 
########################################################### 
proc MOM_first_tool {} { 
  global mom_tool_number 
} 
########################################################### 
proc MOM_tool_change {} { 
  global mom_tool_number mom_next_tool_number mom_next_tool_status 
 MOM_output_text "PTP HOME" 
  MOM_first_tool 
 MOM_output_text "PTP HOME" 
} 
########################################################### 
proc MOM_rapid_move {} { 
 MOM_linear_move 
} 
########################################################### 
proc MOM_linear_move {} { 
  global mom_pos mom_prev_pos 
  global mov_carro mov_mesa 
  global k E2 E1 a t  
# Asignation of the 5 values passed to the IKP.exe  
  set k(0) $E2 
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  set k(1) $E1 
  set k(2) $mom_pos(0) 
  set k(3) $mom_pos(1) 
  set k(4) $mom_pos(2) 

 MOM_output_to_listing_device "k: $k(0) , $k(1) , $k(2) , $k(3) , 
$k(4)" 
   
# given k, .exe gives back the increments for E1 & E2 within the chain a. 
  catch {exec C:\\NX5\\MACH\\auxiliary\\javi2_matlabfuzz [array get 
k]} a 
   

 set t(6) [lindex $a 0]        
  set t(7) [lindex $a 1]  
 
# new ext. Joint values 
  set E2 [expr $k(0) + $t(7)] 
  set E1 [expr $k(1) + $t(6)] 
      
  set mov_mesa $E2 
  set mov_carro $E1 
 
   MOM_do_template Velocidad 
   MOM_do_template Linear 
} 
 
########################################################### 
proc MOM_circular_move {} { 
global mom_arc_direction mom_arc_angle mom_pos_arc_center mom_prev_pos 
mom_pos mom_arc_radius 
global gb_sim gb_per angulo_arco_circ pruebatan 
global R mod_R pto_sim Vp mod_Vp div_mod Rp pto_per angulo_arco_circ 
global mom_pos_arc_plane mom_out_angle_pos mom_tool_axis mom_pos_arc_axis 
 

MOM_do_template Velocidad 
 
# Calculo del Radio entre en Punto Inicial y el Centro del Arco, y de su 
modulo 
  set R(0) [expr $mom_pos_arc_center(0) - $mom_prev_pos(0)] 
 set R(1) [expr $mom_pos_arc_center(1) - $mom_prev_pos(1)] 
  set R(2) [expr $mom_pos_arc_center(2) - $mom_prev_pos(2)]   
  set mod_R [expr sqrt(pow($R(0),2)+pow($R(1),2)+pow($R(2),2))] 
 
# a) Cálculo del Punto Simétrico del Punto Inicial 
  set pto_sim(0) [expr 2*$mom_pos_arc_center(0) - $mom_prev_pos(0)] 
 set pto_sim(1) [expr 2*$mom_pos_arc_center(1) - $mom_prev_pos(1)] 
  set pto_sim(2) [expr 2*$mom_pos_arc_center(2) - $mom_prev_pos(2)] 
   
# b) Cálculo del Punto Perpendicular. 
# b.1.) Calculo de un vector perpendicular (Vp) a R y al vector normal al 
plano del arco (mom_pos_arc_axis), y de su modulo 
  set Vp(0) [expr $R(1)*(-$mom_pos_arc_axis(2)) - $R(2)*(-
$mom_pos_arc_axis(1))] 
  set Vp(1) [expr $R(2)*(-$mom_pos_arc_axis(0)) - $R(0)*(-
$mom_pos_arc_axis(2))] 
  set Vp(2) [expr $R(0)*(-$mom_pos_arc_axis(1)) - $R(1)*(-
$mom_pos_arc_axis(0))] 
  set mod_Vp [expr sqrt(pow($Vp(0),2)+pow($Vp(1),2)+pow($Vp(2),2))] 
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# b.2) Calculo del vector Rp (perpendicular a R y en el plano del arco), y 
del mismo modulo que R 
 set div_mod [expr $mod_R / $mod_Vp] 
 set Rp(0) [expr $Vp(0)*$div_mod] 
 set Rp(1) [expr $Vp(1)*$div_mod] 
 set Rp(2) [expr $Vp(2)*$div_mod] 
 
# b.3) Calculo del punto auxiliar (pto_per) para el comando CIRC en KRL 
  set pto_per(0) [expr $mom_pos_arc_center(0)+$Rp(0)] 
  set pto_per(1) [expr $mom_pos_arc_center(1)+$Rp(1)] 
  set pto_per(2) [expr $mom_pos_arc_center(2)+$Rp(2)] 
 
# c) Angulo 
        set abs_ang_giro [expr abs($mom_arc_angle)] 

    set angulo_arco_circ [expr $abs_ang_giro] 
      MOM_do_template Circular 

} 
########################################################### 
proc MOM_end_of_path { } { 
   proc hiset { v1 } { 
    upvar $v1 v2 
    if { [info exists v2] } { return 1 } else { return 0 } 
 } 
} 
########################################################### 
proc MOM_end_of_group { } { } 
########################################################### 
proc  MOM_end_of_program {} { 
   global mom_parent_group_name mom_sys_output_file_suffix 
mom_output_file_full_name mom_output_file_directory 
   MOM_output_text "PTP HOME" 
   MOM_output_text "END" 
   MOM_close_output_file $mom_output_file_full_name 
 
   set new_file 
$mom_output_file_directory$mom_parent_group_name$mom_sys_output_file_suffi
x 
 
   file rename -force $mom_output_file_full_name  $new_file 
    
   MOM_output_to_listing_device "\nFichero de mecanizado: $new_file\n" 
} 
########################################################### 
proc MOM_catch_warning { } { 
  global mom_warning_info 
 
  if { $mom_warning_info == "WARNING: ONE AXIS ARC MOVE; ABORTED TO LINEAR 
MOVE" } { 
 
    # IGNORE 
 
  } else { 

   MOM_output_to_listing_device " * ERROR * $mom_warning_info *" 
  } 
} 
########################################################### 
# END OF PROGRAM 
########################################################### 
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A.3.5. Definition File syntax for the KUKA KRC2 controller 

The Definition File, as a TCL extension of the Event Handler, mainly 
contains static information about a specific machine tool or robot so that the Post 
could give exit format towards the Output File of the event that is postprocessed, 
namely: general attributes of the machine (FORMAT), addresses of commands 
supported by the controller (ADDRESS) with the attributes of every address 
(format, max, min) and a set of templates (BLOCK_TEMPLATE) that describe 
how the addresses of previous commands conjugate to shape a specific action in 
the robot. 

In the following, we revise the most significant lines before the 
transcription of the complete code of the Definition File 

 

i) General attributes of the machine (FORMATTING) 

The first lines of a definition file are as follows: 

 
           Figure A3. 6. First lines of a definition file 

 
 WORD_SEPARATOR     " "  

It forces to the Postprocessor to insert a chain of characters (in this 
case a space) between all the other chains of the ADDRESS overturned in 
the Output File. 

 
 END_OF_LINE        "" 

It forces to the Postprocessor to place a chain of characters (none 
in this case) at the end of other chains of the ADDRESS overturned in the 
Output File. 

 
 FORMAT <name> &abcdef 

FORMATTING 
{ 
 
 WORD_SEPARATOR     " " 
 END_OF_LINE        "" 
 
 FORMAT  Block_num  "&__4_00" 
 FORMAT  Coordinate "&__4.30" 
 FORMAT  Socket     "%02d" 
 FORMAT  Feed       "&__4_00" 
 FORMAT  Str      "%s" 
 FORMAT  Zero_int   "&_01_0_" 
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It defines data formats (decimal, integer, chain of characters) to the 
type of datum <name>. The analysis of the characters after the name is the 
following: 

o a = + ó _ (+ forces + at positive values, _ do not) 

o b = 0 ó _ (0, zeroes fulfil the digits reserved for the integer 
part, _ do not) 

o c = {0, 1, 2, ..., 9} (number of digits of the integer part) 

o d = . or _ (‘.’ Forces the decimal point, _ do not) 

o e = {0,1,2, ..., 9} (number of digits of the decimal part) 

o f = 0 or _  (0, zeroes fulfil the digits reserved for the decimal 
part, _ do not) 

o FORMAT  Str      "%s", for chains of characters 

 

ii) ADDRESS 

Following lines of the Definition File establish the addresses that 
will be used in the Output File, as they could be the addresses X, Y, or Z 
for the position coordinates of the TCP. With the syntaxes that shown 
below there are defined the attributes of the above mentioned addresses: 

 

 
Figure A3. 7. Address definition in the .def code. Right, addresses to command the X 
position of the TCP. 

 
 ADDRESS name:  

It is the name of the address 
 

ADDRESS X { 
             FORMAT Coordinate 
             ZERO_FORMAT Zero_int 
             FORCE  always 
             LEADER "X " 
             TRAILER "," 
           } 
 ADDRESS Y { 
(…) 
 ADDRESS Z { 
(…)

ADDRESS name 

{ 

   FORMAT name  

   FORCE < Always | Once | Off >  

   MAX number <Abort | Warning | Truncate>  

   MIN number <Abort | Warning | Truncate>  

   LEADER < string | [TCL_expression] >  

   TRAILER string  

   } 



Appendices  
 

297 

 FORMAT name:  
Instructs NX/Post to use format name to print the value of the 

address expression to the output. 
 

 FORCE:  
Always (Instructs Post to always output the value of an address 

expression)/ Once (Instructs Post to output the value of the next address 
expression, (Default)) / Off (Instructs Post to not force the output of the 
value of an address expression. Instead, output the value of an address 
expression if and only if the value is different than the previous address 
expression value for this address.) 

 
 MAX number :  

Instructs Post to use number as the maximum value to be output by 
this address. The options are: Abort, if Max is violated then Abort creation 
of NC file; Warning, if Max is violated then write a warning message to 
the system log file and continue; Truncate, if Max is violated then write a 
warning message to the system log and continue using the Max value as 
the output value of the address. 

 
 MIN number:  

Instructs Post to use number as the minimum value to be output by 
this address. The options are: Abort, if Min is violated then Abort creation 
of NC file; Warning, if Min is violated then write a warning message to the 
system log file and continue; Truncate, if Min is violated then write a 
warning message to the system log and continue using the Min value as the 
output value of the address. 

 
 LEADER string:  

Precede this address with string in every template in which the 
address appears. Default is the Address name. 

 
 TRAILER string:  

Follow this address with string in every template in which the 
address appears. Default is the empty string. 

 

iii) BLOCK_TEMPLATE 

Finally the addresses with the formats of the beginning are inserted 
in the template that gives the definitive form to the proper commands of 
the language KRL in the Output File. The above mentioned form is given 



  Appendices  298 

definitively in the successive Block Templates that are called from the 
Event Handler (by means of the procedure MOM_do_template). The 
structure of a Block template is the following: 

 

      
Figure A3. 8. Structure of a Block template. 

 
 
 Address_Name 

The name of a previously defined Address. The attributes of that 
Address determine the format of the output for this Block Template 
member. 

 
 Address_Expression (ae) 

A TCL expression whose value should be sent to the output. This 
expression can be any valid TCL expression. Post will ask TCL to evaluate 
this expression and then output its value using the format indicated by the 
Address Format attribute. 

 
 \nows 

An optional switch. If present then the value is not followed by the 
WORD_SEPARATOR in the generated output. If not present then the 
value is followed by the WORD_SEPARATOR in the generated output. 

 
 \opt 

An optional switch. If present and the ae can not be evaluated then 
ignore this address. If it is not present and the ae cannot be evaluated an 
error is issued. 

 
 \ldr=string1 

BLOCK_TEMPLATE name 
{ 
 Address_Name [Address_Expression]  
 \nows  
 \opt  
 \ldr=string1  
 \trlr=string 
 "string"  
} 
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An optional switch. If present then precede this address with 
string1 in this Block Template (not in every template in which the address 
appears; use LEADER in the address definition for that). 

 
 \trlr=string1 

An optional switch. If present then follow this address with string1 
in this Block Template (not in every template in which the address 
appears; use TRAILER in the address definition for that). 

 
 "string" 

A string to output literally. This string follows the octal rule. This 
string may also be qualified with switches. 

 
There can be any number of Address members and any number of string 

members in a Block Template. They may appear in any order. 
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Figure A3. 9. Block Templates that give exit format to the circular and linear 
motions. 
 

iv) Transcription of the Definition File of the NX-KUKA 
KRC2postprocessor  

 
########################################################### 
# CN:          KR15/2 – KRC2 
# 20-3-2010 # JAVIER ANDRES #  
########################################################### 
MACHINE GENERIC_MACHINE 
FORMATTING 
{ 
 
 ORD_SEPARATOR     " " 
 END_OF_LINE        "" 
 FORMAT  BLOCK_NUM  "&__4_00" 

BLOCK_TEMPLATE Linear { 
"LIN {E6POS:" 
X[$mom_pos(0)] 
Y[$mom_pos(1)] 
Z[$mom_pos(2)] 
"A 0," 
A1[$mom_out_angle_pos(0)] 
A2[$mom_out_angle_pos(1)] 
E1[$mov_carro] 
E2[$mov_mesa]\nows                        
"} C_VEL" 

    } 
          
 BLOCK_TEMPLATE Circular { 

“CIRC {E6POS:" 
X[$pto_per(0)] 
Y[$pto_per(1)] 
Z[$pto_per(2)] 
"A 0,"  
A1[$mom_out_angle_pos(0)] 
A2[$mom_out_angle_pos(1)] 
E1[$mov_carro] 
E2[$mov_mesa]\nows 
"}, {E6POS: " 
X[$pto_sim(0)] 
Y[$pto_sim(1)] 
Z[$pto_sim(2)] 
"A 0,"  
A1[$mom_out_angle_pos(0)] 
A2[$mom_out_angle_pos(1)] 
E1[$mov_carro] 
E2[$mov_mesa]\nows 
"}," 
CA[$angulo_arco_circ] 
"C_VEL" 

   } 
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 FORMAT  COORDINATE "&__4.30" 
 FORMAT  SOCKET     "%02D" 
 FORMAT  FEED       "&__4_00" 
 FORMAT  STR      "%S" 
 FORMAT  ZERO_INT   "&_01_0_" 
 ##################################### 
 # ADRESSES       
 ##################################### 
 ADDRESS STR { 
 FORMAT STR 
 FORCE ALWAYS 
 LEADER ""   } 
 ADDRESS X { 
             FORMAT COORDINATE 
    ZERO_FORMAT ZERO_INT 
             FORCE  ALWAYS 
             LEADER "X " 
             TRAILER ","    } 
 ADDRESS Y { 
             FORMAT COORDINATE 
    ZERO_FORMAT ZERO_INT 
             FORCE  ALWAYS 
             LEADER "Y " 
             TRAILER ","         } 
 ADDRESS Z { 
             FORMAT COORDINATE 
    ZERO_FORMAT ZERO_INT 
             FORCE  ALWAYS 
             LEADER "Z " 
             TRAILER ","        } 
ADDRESS CA { 
              FORMAT COORDINATE 
       ZERO_FORMAT ZERO_INT 
              FORCE  ALWAYS 
              LEADER "CA " 
              TRAILER ""  } 
ADDRESS A0 { 
              FORMAT COORDINATE 
      ZERO_FORMAT ZERO_INT 
     FORCE  ALWAYS 
              LEADER "A " 
         TRAILER ","        } 
            
ADDRESS A1 { 
     FORMAT COORDINATE 
     ZERO_FORMAT ZERO_INT 
     FORCE ALWAYS 
     LEADER [$MOM_KIN_4TH_AXIS_LEADER ] 
     TRAILER ","  } 
ADDRESS A2 { 
    FORMAT COORDINATE 
     ZERO_FORMAT ZERO_INT 
     FORCE ALWAYS 
     LEADER [$MOM_KIN_5TH_AXIS_LEADER ] 
    TRAILER ","  } 
ADDRESS E1 { 
             FORMAT COORDINATE 
    ZERO_FORMAT ZERO_INT 
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             FORCE  ALWAYS 
             LEADER "E1 " 
           TRAILER ","         } 
ADDRESS E2 { 
             FORMAT COORDINATE 
     ZERO_FORMAT ZERO_INT 
             FORCE  ALWAYS 
             LEADER "E2 "            } 
ADDRESS M_SPIN { 
                  FORMAT SOCKET 
                  FORCE  OFF 
                  LEADER "$OUT[" 
                  TRAILER "]"       } 
ADDRESS VEL { 
            FORMAT COORDINATE 
  ZERO_FORMAT ZERO_INT 
             FORCE  OFF 
             LEADER "$VEL.CP="  } 
ADDRESS B { 
   FORMAT BLOCK_NUM 
   MAX  999999 TRUNCATE 
   MIN  1 
   FORCE  OFF 
   LEADER "$BASE = BASE_DATA["   
   TRAILER "]"   } 
 ADDRESS T { 
   FORMAT BLOCK_NUM 
   MAX  999999 TRUNCATE 
   MIN  1 
   FORCE  OFF 
   LEADER "$TOOL = TOOL_DATA[" 
   TRAILER "]"    } 
 
##################################### 
# BLOCK_TEMPLATES      
#####################################  
BLOCK_TEMPLATE BASE { 
 B[$MOM_FIXTURE_OFFSET_VALUE] 
} 
        
 BLOCK_TEMPLATE TOOL { 
  T[$MOM_TOOL_NUMBER] 
} 
 
BLOCK_TEMPLATE LINEAR { 

"LIN {E6POS:" 
X[$MOM_POS(0)] 
Y[$MOM_POS(1)] 
Z[$MOM_POS(2)] 
A0[-$MOV_MESA] 
A1[$MOM_OUT_ANGLE_POS(0)] 
A2[$MOM_OUT_ANGLE_POS(1)] 
E1[$MOV_CARRO] 
E2[$MOV_MESA]\NOWS                        
"} C_VEL" } 

# See KUKA Expert programming manual for C_VEL information 
          
BLOCK_TEMPLATE CIRCULAR { 
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"CIRC {E6POS:" 
X[$PTO_PER(0)] 
Y[$PTO_PER(1)] 
Z[$PTO_PER(2)] 
A0[-$MOV_MESA]  
A1[$MOM_OUT_ANGLE_POS(0)] 
A2[$MOM_OUT_ANGLE_POS(1)] 
E1[$MOV_CARRO] 
E2[$MOV_MESA]\NOWS 
"}, {E6POS: " 
X[$PTO_SIM(0)] 
Y[$PTO_SIM(1)] 
Z[$PTO_SIM(2)] 
A0[-$MOV_MESA] 
A1[$MOM_OUT_ANGLE_POS(0)] 
A2[$MOM_OUT_ANGLE_POS(1)] 
E1[$MOV_CARRO] 
E2[$MOV_MESA]\NOWS 
"}," 
CA[$ANGULO_ARCO_CIRC] 
"C_VEL" 
} 

           
BLOCK_TEMPLATE VELOCIDAD { 

VEL[$MOM_FEED_RATE/60000] 
 } 

    
BLOCK_TEMPLATE SPINDLE_OFF {  
 M_SPIN[$MOM_SYS_SPINDLE_DIRECTION_CODE(OFF)] } 
} 
 
########################################################### 
# END OF PROGRAM 
########################################################### 
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A.4. CHARACTERISTIC LENGTH L OF THE KUKA KR-15/2 
(CORRESPONDING TO SECTION 2.4.6.) 

clear all 
clc 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    KUKA_SDH_solo=   [-pi/2     .300    0  .675         0; 
                          0     .650    0  0            0; 
                       pi/2     .155    0  0            0; 
                       pi/2       0     0   -0.600      0; 
                       pi/2       0     0   0           0; 
                         0        0     0    -0.140     0]; 
 % TO PLOT THE ROBOT WITH CORKE's PLOT 
L1_SDH_solo=link([-pi/2     .300    0   .675    0],'standard'); 
L2_SDH_solo=link([0         .650    0   0       0],'standard'); 
L3_SDH_solo=link([pi/2      .155    0   0       0],'standard'); 
L4_SDH_solo=link([pi/2      0       0   -.600   0],'standard'); 
L5_SDH_solo=link([pi/2      0       0   0       0],'standard'); 
L6_SDH_solo=link([0         0       0   -.140   0],'standard'); 
ROB_KUKA_SDH_solo=robot({L1_SDH_solo L2_SDH_solo L3_SDH_solo L4_SDH_solo 
L5_SDH_solo L6_SDH_solo}); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
% drivebot(ROB_KUKA_SDH_solo)  
% q_SDH_solo=[0 -pi/2 0 0 pi/2 0]; 
% T_SDH_solo=fkine(ROB_KUKA_SDH_solo,q_SDH_solo); 
  
% from the DH parameters 
aM=max(abs(KUKA_SDH_solo(:,2))); 
bM=max(abs(KUKA_SDH_solo(2:end,4))); 
M=max(aM,bM); 
  
% thus, with M we calculate the non-dimensional DH params 
KUKA_non_dimens=[KUKA_SDH_solo(:,1) KUKA_SDH_solo(:,2)/M 
KUKA_SDH_solo(:,3) KUKA_SDH_solo(:,4)/M KUKA_SDH_solo(:,5)]; %we dont mind 
the value of b1 
  
% So now, i'm implementing the search of eq. (35) of Khan and Angeles 2006 
% After defining my fuction kF2, lets do 
init_guess=[1.5 -pi/2 pi/2 0 pi/2]; % of [Mraya theta2 theta3 theta4 
theta5], dont miss it 
[x,FVAL]=fminsearch(@(x) kF2(x,KUKA_non_dimens),init_guess); 
  
% x = 1.8543   -1.9280    1.0530    0.0000    1.8299 
% o lo que es lo mismo, pasando los angulos a grados 
% x = (Mraya=1.8543) [-110.4667   60.3314    0.0002  104.8436]  
Mraya=x(1); 
q=[0 x(2:end) 0] % theta6 was not included, as it does not affect the 
condition number for this particular architecture. 
  
figure(1) 
plot(ROB_KUKA_SDH_solo,q); 
  
% The characteristic length is thus computed as 
L=M/Mraya % L=0.3506 m (el RSW4 da .350572 m) OK!!! 
kF=sqrt(FVAL) 
KCI=inv(kF)*100; 
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% the KCI of this manipulator can still be improved dramatically by noting  
% that the condition number is highly dependent on the location of the 
operation  
% point of the end-effector. The robot DH parameters given in Table 5.2 do 
not  
% account for the geometry of the EE. 
  
% Finally, rms of distances "ro" from 1 to n of the OP to the n axes of 
the R joints 
  
        n=size(KUKA_non_dimens,1); 
        [G,T,ei]=dirkin(q, KUKA_non_dimens); 
  
        sumatorio=0; 
        for i = 1:n   
            ro_i=norm((G(:,end-1) - G(:,i))); 
            sumatorio=sumatorio+ro_i^2; 
        end 
  
rms_ro_raya=sqrt(1/n*(sumatorio)); % homog 
rms_ro=L*rms_ro_raya; % en mm 

 

A.5. MATLAB CODE FOR THE POSTPROCESSING OF CLSF 
FOUNDED ON THE VJM WITH PERIODIC RE-EVALUATION. 

A.5.1. Code base (founded on algorithms 6.2 and 6.11) 

close all 
clear all; clc 
%%% CARGO DATOS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Definicion_modelos_DHidf_VJMidf 
T_brida_TCP=eye(4); T_brida_TCP_MDH=eye(4); 
Definicion_trayectoria_espiesferica_para_el_estudio_desplazada_2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% a) initial guess of joint position 
    theta=[pi 0 pi -pi/2 0 0 +pi/2 0 0]; % El HOME de simpre 
    figure(1) 
    AZ = -37.5; EL = 10; VIEW(AZ,EL); set(gca,'DataAspectRatio',[2 2 2]) 
    plot(KUKA_SDH_todo, theta); 
    % drivebot(KUKA_SDH_todo) 
    hold on 
    for i=1:size(T_CAM,3) 

point_TCP=[T_CAM(1,4,i),T_CAM(2,4,i),T_CAM(3,4,i)]; 
plot3(point_TCP(1),point_TCP(2),point_TCP(3),'+');  % TCP position 
point_HEADtool=[T_CAM(1,4,i)+T_CAM(1,3,i),T_CAM(2,4,i)+T_CAM(2,3,i)
,T_CAM(3,4,i)+T_CAM(3,3,i)]; % tool head 
line_tool=[[point_TCP];[point_HEADtool]]; 
plot3(line_tool(:,1),line_tool(:,2),line_tool(:,3),'r'); % tool 
vector 

    end 
    hold off 
  
    figure(2)     
    AXIS ([-1 1 -1 1 -1 1]) 
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    AZ = -37.5; EL = 10; VIEW(AZ,EL); %set(gca,'DataAspectRatio',[2 2 2]) 
    clear time q_plot  
    cont=0; 
  
    theta_threshold_ref=zeros(1,9);   
    for i=1:(pose-1)   
    cont=cont+1;  
    h=gca; 
    cla(h);   
    % b) desired pose of the EE 
    Td=T_CAM(:,:,i); 
    pd=Td(1:3,4); 
    Qd=Td(1:3,1:3); 
    incr_theta=ones(1,8); % para que entre en el while 
    theta_previo=theta; 
  
    while norm(incr_theta,inf)>0.2   % uso la norma infinito (Chebychev)  
 
% c){p Q T}<--DKP(theta) 
    [G,T_brida,ei]=dirkin(theta, KUKAstd_todo);   
    T=T_brida*T_brida_TCP;   
    Q=T(1:3,1:3); % tool orientation!! 
    p=T(1:3,4); % tool position!! 
    ei(:,end)=T(1:3,3); % ei_tool = ztool!! 
    G(:,end)=T(1:3,4);   
             
% d) incrQ <-- Q' * Qd 
    incrQ=Q'*Qd; 
  
% e) incrp <-- pd-p 
    incrp=pd-p; 
  
% f) incrt 
    Vector_incrQ=1/2*[incrQ(3,2)-incrQ(2,3);incrQ(1,3)-
incrQ(3,1);incrQ(2,1)-incrQ(1,2)]; 
    incr_t=[Q*Vector_incrQ; incrp]; 
  
% g)DKP(theta) 
  % g.1) ==> saco los vector projectors y el Jacobiano 
    e=T(1:3,3);  % este el el eje de la tool 
    J_mio=jacobianEE_0(KUKAstd_todo, G, theta);   
    A=J_mio(1:3,:); 
    B=J_mio(4:6,:); 
    J=[A; B]; 
             
  % ---> para evaluar la posicion que tiene el manipulador 6R 
    theta_solo=[0 theta(4:8)];  
    [G_solo,T_brida_solo,ei_solo]=dirkin(theta_solo, KUKAstd_solo);  
    T_solo=T_brida_solo;   
    Q_solo=T_solo(1:3,1:3); 
    p_solo=T_solo(1:3,4); 
    ei_solo(:,end)=T_solo(1:3,3);   
    G_solo(:,end)=T_solo(1:3,4);   
  % J_Kf_to_decide=jacobianEE_0(KUKAstd_solo, G_solo, theta_solo); % 
tienen que dar idem, efectivamente.  
    J_Kf_to_decide=jacobianTCP_0(KUKAstd_solo, G_solo, ei_solo, T_solo);  
    A_Kf_to_decide=J_Kf_to_decide(1:3,:); 
    B_Kf_to_decide=J_Kf_to_decide(4:6,:);        
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    BH_Kf_to_decide=(1/L_solo)*B_Kf_to_decide;  % L_solo es la long caract  
    H_Kf_to_decide=[A_Kf_to_decide; BH_Kf_to_decide]; 
    Kf_to_decide=kF(H_Kf_to_decide(:,1:6)); % el joint virtual no lo pongo 
en el jacobiano, para que coincida el valor con v12b4 de Huo! 
    inv_Kf_to_decide=1/Kf_to_decide; 
  % ---> fin evaluacion posicion 
    inv_Kf_to_decide_threshold=0.5; % umbral 
  
% h) algoritmo de resolucion VIRTUAL JOINT METHOD (dara incr_theta) 
  % h.1) la pseudoinv de J y de J_21  
    weights_fuzzy_psiJ=diag([1 1 1 1 1 1 1 1 1]); 
    invWeightsJ=inv(weights_fuzzy_psiJ); 
    psiJ=J'*inv(J*J');  
    psiJw=invWeightsJ*J'*inv(J*invWeightsJ*J');  
           
% h.3) aprovechamiento de los grado de libertad 
  % h.3.1) recolocacion de la cadena lejos de limites articulares 
    weights_fuzzy_referenceposture=readfis('fuzzy_refposture'); 
    values_to_watch_referenceposture=[theta(5) abs(theta(7)) theta(4)]; %  
en el .fis doy valores limites articulares del modelo de SDH que empleo en 
el calculo no mecanicos --> theta3=[-74(+16),70(+160)], theta5=[+/-135] 
pp=evalfis(values_to_watch_referenceposture,weights_fuzzy_referenceposture
); 
    weights1=[pp(1) pp(2) 0.01 pp(5) pp(3) 0.02 pp(4) 0.01 0.01] ; 
    weights1=[pp(1) pp(2) 0.01 0.01 pp(3) 0.01 pp(4) 0.01 0.01] ; 
    % weights1=[0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.1 0.1]*0.1; % bueno 
    % weights1=[0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]; 
    % weights1=[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]; 
    theta_ref=[pi 0.5 pi -pi/2 0 0 +pi/2 0 0];   
    h1=-diag(weights1)*(theta-theta_ref)'; 
                             
  % h.3.2) tendencia a mantener una postura bien condicionada  
    weights_fuzzy_singularities=readfis('fuzzy_singularities'); 
    values_to_watch_singularities=[theta(5) abs(theta(7))]; %  en el .fis 
doy valores limites articulares del modelo de SDH que empleo en el calculo 
no mecanicos 
    aa=evalfis(values_to_watch_singularities,weights_fuzzy_singularities); 
    weights2=[aa(1) aa(2) aa(3) aa(3) aa(3) aa(4) aa(4) aa(4) 0.01]; 
    % weights_fuzzy_singularities=readfis('fuzzy_refposture'); 
    if inv_Kf_to_decide<inv_Kf_to_decide_threshold  % quiero 0.4 a 1  
        if theta_threshold_ref==zeros(1,9) 
           theta_threshold_ref=theta; 
        end 
        h2=-diag(weights2)*Kf_to_decide*(theta-theta_threshold_ref)'; 
    else 
        theta_threshold_ref=zeros(1,9);  % si no me paso del umbral kF 
deseado o he vuelto dentro de los valores deseados, lo "reseteo" 
        h2=zeros(9,1);  
    end 
    h=h1+h2; 
% h.4) incr_theta que precisamos 
  % h.4.1) Metodo tradicional 
    % original 
      % % incr_theta_orig=psiJw*incr_t+(eye(9)-psiJ*J)*h; 
      % % incr_theta=incr_theta_orig;  
  % h.4.2) Metodo AA_98 (basado en algoritmo 6.2 del doc de tesis, da idem 
que el tradicional) 
      % Primer sub-problema 
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        J_T=J'; 
        [Q R]=qr(J_T); 
        % H=Q'; 
        U=R(1:6,:); 
        % O=R(7:9,:); 
        r=incr_t-J*h; 
        % v1=inv(U')*t_asterisco; % mejor resolverlo  by forward 
substitution (http://www.math.sc.edu/~meade/math706/MATLAB-
files/index.html) 
        v1=forward(U',r); % found by forward substitution because U_21 is 
a lower triangular matrix. 
        v=[v1; zeros(3,1)]; 
        omega=Q*v; 
        incr_theta=omega+h; 
             
% i) actualizo el valor de theta antes de repetir el proceso o salir 
del bucle (con el valor de theta actualizado con el último incremento)  
    theta=theta+incr_theta'; 
    end    
     
clear G_solo T_brida_solo ei_solo theta_solo theta_pose_muny 
inv_Kf_to_decide 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Calculo_de_Condicionamentos_kF_para_plotear 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% ANALISIS POSICIONAMIENTO PERIORIZADO 100S %%%%%%%%%%%%%% 
Analisis_posicionamiento_periorizado_100s 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
time(cont)=cont*incr_tiempo;  
q_plot(cont,:)=theta; 
%   plot(KUKA_SDH_todo, theta); 
    
theta_plotbot_mdh=de_theta_a_theta_plotbot_mdh_VIRTUAL_JOINT_METHOD(theta)
;    
q_plotbot(cont,:)=theta_plotbot_mdh; % para guardar sucesion de datos 
plotbot_mdh(KUKA_MDH_todo,theta_plotbot_mdh','fw',T_brida_TCP);  
F = getframe(gca); 
end 
  
hold on 
for i=1:size(T_CAM,3) 
point_TCP=[T_CAM(1,4,i),T_CAM(2,4,i),T_CAM(3,4,i)]; 
plot3(point_TCP(1),point_TCP(2),point_TCP(3),'+');  % TCP position 
point_HEADtool=[T_CAM(1,4,i)+T_CAM(1,3,i),T_CAM(2,4,i)+T_CAM(2,3,i),T_CAM(
3,4,i)+T_CAM(3,3,i)]; % tool head 
line_tool=[[point_TCP];[point_HEADtool]]; 
plot3(line_tool(:,1),line_tool(:,2),line_tool(:,3),'r'); % tool vector 
end 
hold off 
  
%%%%%%%%%%%%%%%% FIGURAS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
Figuras_plots_para_el_estudio_idf 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%% NCL para ROBOMOVE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
escribir_ncl 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A.5.2. Additional sub-functions  

The following sub-functions are requested at certain stages in the code 
described in the previous section: 

 Definicion_modelos_DHidf_VJMidf 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% CELULA SDH %%%%%%%%%%%%%%%%%%%%%%%% 
KUKAstd_todo=   [pi/2     .803  0   -.305     0; 
                 pi/2        0  0   0         1; 
                 +pi/2      .3  0   -0.675    0; 
                   0       .65  0   0         0; 
                 +pi/2    .155  0   0         0; 
                 +pi/2       0  0   -0.6      0; 
                  pi/2       0  0   0         0; 
                 0.3564       0 0   -0.4434   0; 
                   0         0  0   -0.1197   0];   % del RSW   
          
LM_SDH_todo=link([pi/2  .803    0   -.305   0],'standard'); 
LL_SDH_todo=link([pi/2    0 0   0   1],'standard'); 
L1_SDH_todo=link([pi/2  .300    0   -.675   0],'standard'); 
L2_SDH_todo=link([0     .650    0   0 0],'standard'); 
L3_SDH_todo=link([pi/2  .155    0   0 0],'standard'); 
L4_SDH_todo=link([pi/2  0   0   -.600 0],'standard'); 
L5_SDH_todo=link([pi/2  0   0   0 0],'standard'); 
L6_SDH_todo=link([0.3564       0    0   -0.4434   0],'standard'); 
L7_SDH_todo=link([0         0  0   -0.1197   0],'standard'); 
KUKA_SDH_todo=robot({LM_SDH_todo LL_SDH_todo L1_SDH_todo L2_SDH_todo 
L3_SDH_todo L4_SDH_todo L5_SDH_todo L6_SDH_todo L7_SDH_todo}); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L_todo=0.348; % metros  
  
%%%% PLOT MDH HEMERO (EN METROS y MDH) %%%%%%%%%%%%%%%%%% 
KUKA_MDH_todo=[  pi 0 0 .305 0; 
            pi/2 -.803 0 0 1; 
            -pi/2 0 0 -.675 0; 
            pi/2 .300 0 0 0; 
            0 .650 0 0 0; 
            pi/2 .155 0 -.600 0; 
            -pi/2 0 0 0 0; 
           +pi/2 0 0 -.4434 0;  
            -0.3564  0 0 -.1197 0];  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
KUKAstd_hasta_munyeca=   [pi/2  .803    0   -.305   0; 
                 pi/2        0  0   0       1; 
                 +pi/2      .3  0   -0.675  0; 
                   0       .65  0   0       0; 
                 +pi/2    .155  0   0       0; 
                 +pi/2       0  0   -0.6    0];    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
KUKAstd_solo=   [-pi/2     .300    0  .675         0; 
                      0     .650    0  0            0; 
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                   pi/2     .155    0  0            0; 
                   pi/2       0     0   -0.600      0; 
                   pi/2       0     0   0           0; 
                   0.3564     0     0   -0.140   0]; 
                  
 % TO PLOT THE ROBOT WITH CORKE's PLOT 
L1_SDH_solo=link([-pi/2     .300    0   .675    0],'standard'); 
L2_SDH_solo=link([0         .650    0   0       0],'standard'); 
L3_SDH_solo=link([pi/2      .155    0   0       0],'standard'); 
L4_SDH_solo=link([pi/2      0       0   -.600   0],'standard'); 
L5_SDH_solo=link([pi/2      0       0   0       0],'standard'); 
L6_SDH_solo=link([0.3564       0    0   -0.140   0],'standard'); 
KUKA_SDH_solo=robot({L1_SDH_solo L2_SDH_solo L3_SDH_solo L4_SDH_solo 
L5_SDH_solo L6_SDH_solo}); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L_solo=0.3506; % metros  
 

 Definicion_trayectoria_espiesferica_para_el_estudio_desplazada
_2 

t=0; pose=0; 
tfin=2*400; % segs 
incr_tiempo=5; 
sph_center=[0.1; 0.2; 0.25]; % situacion del centro de la trayectoria 
esferica 
sph_radius=0.15; 
for t=0:incr_tiempo:tfin   
    pose=pose+1; 
    t=t+150; % para que no empiece exactamente en la vertical, donde la mz 
de orientacion que defino abajo tendría indeterminacion al no existir r 
    p_tool=[sph_radius*cos((2*pi/285)*t)*sin(pi*t/(2*tfin)); 
sph_radius*sin((2*pi/285)*t)*sin(pi*t/(2*tfin)); 
sph_radius*cos(pi*t/(2*tfin))]+sph_center; 
    % vectores que formaran la matriz de orientacion: [ex_tool ey_tool 
ez_tool]  
            % tomando la esfera con centro [0 0 0], claramente el vector 
de posicion de p_tool es lo que quiero que sea ztool 
            ztool=[sph_radius*cos((2*pi/285)*t)*sin(pi*t/(2*tfin)); 
sph_radius*sin((2*pi/285)*t)*sin(pi*t/(2*tfin)); 
sph_radius*cos(pi*t/(2*tfin))]; 
            norma_ztool=norm(ztool); 
            ez_tool=ztool/norma_ztool; 
            % luego, el ytool será paralelo al plano z=0, y perpendicular 
a ztool. Si consirdero el radio r en el plano z=0 haré el producto r x 
ztool 
            r=[sph_radius*cos((2*pi/285)*t)*sin(pi*t/(2*tfin)); 
sph_radius*sin((2*pi/285)*t)*sin(pi*t/(2*tfin)); 0]; 
            ytool=cross(ztool,r);  
            norma_ytool=norm(ytool); 
            ey_tool=ytool/norma_ytool; 
            % Finalmente, perpendicular a estos dos tengo 
            ex_tool=cross(ey_tool,ez_tool);  
            % finalmete, formo la matriz   
            Q_tool=[ex_tool ey_tool ez_tool];   
            % Q_tool=eye(3); % este de aqui tiene una orientacion vertical 
    T_CAM_i=eye(4); T_CAM_i(1:3,1:3)=Q_tool; T_CAM_i(1:3,4)=p_tool; 
    T_CAM(:,:,pose)=T_CAM_i;  
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end   

 

 Calculo_de_Condicionamentos_kF_para_plotear 

%%%% Condition number achieved after the Method %%%%%%%%%% 
theta_solo=[0 theta(4:8)]; % para evaluar la posicion que tiene el 
manipulador en sí, sin rail ni mesa 
[G_solo,T_brida_solo,ei_solo]=dirkin(theta_solo, KUKAstd_solo);  
T_solo=T_brida_solo;   
Q_solo=T_solo(1:3,1:3); 
p_solo=T_solo(1:3,4); 
ei_solo(:,end)=T_solo(1:3,3);   
G_solo(:,end)=T_solo(1:3,4); % aprovecho el hueco ultimo de este vector 
para meter p, que es de nuevo la brida por no haber tool 
J_Kf_to_plot=jacobianEE_0(KUKAstd_solo, G_solo, theta_solo); 
A_Kf_to_plot=J_Kf_to_plot(1:3,:); 
B_Kf_to_plot=J_Kf_to_plot(4:6,:); BH_Kf_to_plot=(1/L_solo)*B_Kf_to_plot; % 
L_solo es dato, junto con los modelos de DH 
H_Kf_to_plot=[A_Kf_to_plot; BH_Kf_to_plot];  
    inv_w_cond_plot_solo(cont)=1/kF(H_Kf_to_plot); 
    clear G_solo T_brida_solo ei_solo theta_solo T_solo Q_solo p_solo 
J_Kf_to_plot A_Kf_to_plot B_Kf_to_plot BH_Kf_to_plot H_Kf_to_plot 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 Analisis_posicionamiento_periorizado_100s 

 

if i==20 | i==40 | i==60 | i==80 | i==100 | i==120 | i==140 | i==160 
     
    thetaold=theta; 
    miro_A3=theta(5);   
    miro_A5=abs(theta(7)); 
    fuzzy_table=readfis('fuzzy_movtable'); 
    ttable=evalfis([miro_A3 miro_A5],fuzzy_table); 
    ttable=pi/8; 
    sentido_giro=+1; 
    thetamesa=sentido_giro*ttable+thetaold(1); 
    dtrack=thetaold(2); 
    
new_theta1=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold(9),T_CAM(:,
:,i)); 
    theta=[new_theta1 thetaold(9)]; 
     
    %%%% better kF? 
    inv_kF_orig=inv_w_cond_plot_solo(cont); 
    Calculo_de_Condicionamentos_kF_para_plotear   
    inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont); 
    if inv_kF_despues_fuzzy<inv_kF_orig   
        sentido_giro=-1; 
        thetamesa=sentido_giro*ttable+thetaold(1);   
        dtrack=thetaold(2);       
new_theta1=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold(9),T_CAM(:,
:,i)); 
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        theta=[new_theta1 thetaold(9)]; 
        Calculo_de_Condicionamentos_kF_para_plotear   
        inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont); %   
    end 
         
    %%%% repeated? 
    inv_kF1=0.35; 
    inv_kF2=inv_kF_despues_fuzzy; 
    subo_inv_kF=1; 
    while inv_kF2>inv_kF1   
      subo_inv_kF=subo_inv_kF+1;  
      thetamesa=subo_inv_kF*sentido_giro*ttable+thetaold(1); 
      dtrack=thetaold(2);      
new_theta1=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold(9),T_CAM(:,
:,i)); 
      theta=[new_theta1 thetaold(9)]; 
      inv_kF1=inv_kF2; 
      Calculo_de_Condicionamentos_kF_para_plotear       
inv_kF2=inv_w_cond_plot_solo(cont); 
    end 
    theta; 
     
    if theta(4)<-2.5 | theta(4)>0.4 | theta(5)<-1.3 | theta(5)>1.3 | 
abs(theta(7))<0.7 % comprobar que no he rebasado ningún limite 
        theta=thetaold;  
    end 
     
    % TRACK   
    thetaold2=theta; 
    miro_A3=theta(5);   
    miro_A5=abs(theta(7)); 
    fuzzy_table=readfis('fuzzy_movtrack'); 
    ttrack=evalfis([miro_A3 miro_A5],fuzzy_table); 
    ttrack=0.1; 
    sentido_despl=-1; 
    thetamesa=thetaold2(1); 
    dtrack=sentido_despl*ttrack+thetaold2(2);    
new_theta2=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold2(9),T_CAM(:
,:,i)); 
    theta=[new_theta2 thetaold2(9)]; 
     
    %%%% better kF? 
    inv_kF_orig=inv_kF2;   
    Calculo_de_Condicionamentos_kF_para_plotear   
    inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont); 
    if inv_kF_despues_fuzzy<inv_kF_orig 
        sentido_despl=+1; 
        thetamesa=thetaold2(1); 
        dtrack=sentido_despl*ttrack+thetaold2(2);          
new_theta2=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold2(9),T_CAM(:
,:,i)); 
        theta=[new_theta2 thetaold2(9)]; 
        Calculo_de_Condicionamentos_kF_para_plotear 
        inv_kF_despues_fuzzy=inv_w_cond_plot_solo(cont);   
    end 
 
    %%%% repeated? 
    inv_kF1=inv_kF_orig; 
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    inv_kF2=inv_kF_despues_fuzzy; 
    subo_inv_kF=1; 
    while inv_kF2>inv_kF1     
      subo_inv_kF=subo_inv_kF+1;  
      thetamesa=thetaold2(1); 
      dtrack=subo_inv_kF*sentido_despl*ttrack+thetaold2(2);      
new_theta2=IK_KUKA_periorizacion100s(thetamesa,dtrack,thetaold2(9),T_CAM(:
,:,i)); 
      theta=[new_theta2 thetaold2(9)]; 
      inv_kF1=inv_kF2; 
      Calculo_de_Condicionamentos_kF_para_plotear   
      inv_kF2=inv_w_cond_plot_solo(cont); 
    end 
      
    if theta(4)<-2.5 | theta(4)>0.4 | theta(5)<-1.3 | theta(5)>1.3 | 
abs(theta(7))<0.7 % comprobar que no he rebasado ningún limite 
        theta=thetaold2;   
    end 
end 

 

 Figuras_plots_para_el_estudio_idf 

figure(5)  
for i=1:size(T_CAM,3) 
        point_TCP=[T_CAM(1,4,i),T_CAM(2,4,i),T_CAM(3,4,i)]; 
plot3(point_TCP(1),point_TCP(2),point_TCP(3),'+');  % TCP position 
        % 
point_HEADtool=[T_CAM(1,4,i)+T_CAM(1,3,i),T_CAM(2,4,i)+T_CAM(2,3,i),T_CAM(
3,4,i)+T_CAM(3,3,i)]; % tool head 
        point_HEADtool=[T_CAM(1:3,4,i)+0.05*T_CAM(1:3,3,i)]'; % tool head 
        line_tool=[[point_TCP];[point_HEADtool]]; 
plot3(line_tool(:,1),line_tool(:,2),line_tool(:,3),'r'); % tool vector 
end 
hold on 
%%%%%%%%%%%%%%%%% 
% tpeor=175; 
% 
plotbot_mdh2(KUKA_MDH_todo,q_plotbot(tpeor/5,:),'fw',T_brida_TCP_MDH,T_CAM
) % 
% en tpeor pongo el tiempo en que la kf es mas mala. 5 es el incrtime que 
% he usado 
% plot(KUKA_SDH_todo, q_plot(tpeor/5,:));  
%%%%%%%%%%%%%%%%%% 
plotbot_mdh2(KUKA_MDH_todo,q_plotbot,'fw',T_brida_TCP_MDH,T_CAM) 
% plot(KUKA_SDH_todo, q_plot); 
hold off 
  
%%% EJES MECANICOS, POR SEPARADO 
  
figure(6) 
hold on 
    xlabel('Time t (s)') 
    ylabel(['MECHANICAL \theta_M (º)']) 
    plot(time,q_plotbot(:,1)*180/pi, 'r')  % la mesa no tiene límite     
hold off 
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figure(9) 
hold on 
    xlabel('Time t (s)') 
    ylabel(['MECHANICAL d_L (m)']) 
    plot(time,q_plotbot(:,2),'g'); % plot(time,0,'g'); plot(time,3,'g');  
% rail y sus límites  
hold off 
  
figure(7) 
hold on 
    xlabel('Time t (s)') 
    ylabel(['DEGREES MECHANICAL \theta_' num2str(3)  '\circ, \theta_' 
num2str(4)  '\circ, \theta_' num2str(5)  '\circ']) 
    plot(time,q_plotbot(:,3)*180/pi, 'r'); plot(time,180,'r'); plot(time,-
180,'r');  % A1 y sus limites     
    plot(time,q_plotbot(:,4)*180/pi, 'c'); plot(time,25,'c'); plot(time,-
145,'c');  % A2 y sus limites  
    plot(time,q_plotbot(:,5)*180/pi, 'g'); plot(time,70,'g'); plot(time,-
210,'g');  % A3 y sus limites  
hold off 
  
figure(8) 
hold on 
    xlabel('Time t (s)') 
    ylabel(['DEGREES MECHANICAL \theta_' num2str(6)  '\circ, \theta_' 
num2str(7)  '\circ, \theta_' num2str(8)  '\circ']) 
    plot(time,q_plotbot(:,6)*180/pi, 'r'); plot(time,360,'r'); 
plot(time,0,'r');  % A4 y sus limites     
    plot(time,q_plotbot(:,7)*180/pi, 'c'); plot(time,495,'c'); 
plot(time,225,'c');  % A5 y sus limites  
    plot(time,q_plotbot(:,8)*180/pi, 'g'); plot(time,360,'g'); plot(time,-
360,'g');  % A6 y sus limites  
hold off 
  
figure(4) 
hold on 
    xlabel('Time t (s)') 
    ylabel('1/Kf (Kf=Condition number(Frob))') 
    plot(time,inv_w_cond_plot_solo,'g') % la cadena A1-A6 solamente 
    % plot(time,inv_w_cond_plot_workcell,'g') % todo el workcell 
hold off 
    inv_kf_promedio=(sum(inv_w_cond_plot_solo))/(size(time,2)) 

 

 escribir_ncl 

fi = fopen('salida.ncl', 'wt');  
fprintf(fi, 'UNITS/MM\nMODE/MILL\nLOADTL/1, IN, 0, LENGTH, 0.000000, 
OSETNO, 0\n'); 
fprintf(fi, 'CUTTER/20.000000, 10.000000, 0.000000, 0.000000, 0.000000, 
0.000000, 75.000000\n'); 
fprintf(fi, 'LINTOL/0.030000\n'); 
fprintf(fi, 'MULTAX/ON\n'); 
fprintf(fi, 'RAPID/\n'); 
for k=1:(size(T_CAM,3)-1) % porque el ultimo punto no lo llego a usar 
fprintf(fi, 'GOTO/%f, %f, %f, %f, %f, 
%f\n',T_CAM(1,4,k)*1000,T_CAM(2,4,k)*1000,T_CAM(3,4,k)*1000,T_CAM(1,3,k),T
_CAM(2,3,k),T_CAM(3,3,k));  
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fprintf(fi, 'EXTAXISTURN / %f\n',q_plotbot(k,1)*180/pi); 
fprintf(fi, 'EXTAXISTRACK / %f\n',q_plotbot(k,2)*1000-3000); 
end 
fprintf(fi, 'MULTAX/OFF \nEND \nFINI \n'); 
fclose(fi)  
open('salida.ncl') 
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