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Universidad Politécnica de Valencia, 46022 Valencia, Spain

e-mail: mfelipe@mat.upv.es

Carmen Melchor
Departamento de Matemáticas,
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Abstract

We prove that if a finite group G contains a conjugacy class K whose
square is of the form 1 ∪D, where D is a conjugacy class of G, then 〈K〉
is a solvable proper normal subgroup of G and we completely determine
its structure. We also obtain the structure of those groups in which the
assumption above is true for all conjugacy classes and when every con-
jugacy class satisfies that its square is the union of all central conjugacy
classes except at most one.
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Mathematics Subject Classification (2010): 20E45, 20D15.

1 Introduction

In 1985, Arad and Herzog conjectured that in a non-abelian simple group, the
product of two non-trivial conjugacy classes can never be a single conjugacy
class. This conjecture is still open but many results have appeared in the liter-
ature concerning products of conjugacy classes in finite groups and the normal
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structure. For instance, Arad and Fisman proved that if the product of two
conjugacy classes of a group G is exactly the union of these two classes, then G
is not a non-abelian simple group. More recently, Navarro and Guralnick have
proved in [6] that when a conjugacy class K = xG of an element x in a finite
group G satisfies that K2 is again a conjugacy class then K = x[x,G], and what
is more relevant, they prove that [x,G] is a solvable (normal) subgroup of G by
means of the Classification of the Finite Simple Groups (CFSG). Furthermore,
in this case, it turns out 〈K〉 = 〈x〉[x,G] is solvable too. So, the fact that the
square of a conjugacy class is a conjugacy class implies the existence of certain
solvable normal subgroup in G, which is consistent with Arad and Herzog’s con-
jecture.

Suppose now that K is a non-trivial real conjugacy class of G, that is, a
conjugacy class satisfying that K−1 = K. It trivially follows that K2 can never
be a conjugacy class unless K consists exactly of a central involution of G. How-
ever, as K2 is always a G-invariant set, we can write K2 = 1 ∪ A, where A is
union of conjugacy classes of G. In this note, we study the extrem case in which
A is a single conjugacy class, and we wonder whether one may obtain somewhat
information concerning solvavility inside the group G. The answer is affirma-
tive: K generates a solvable (normal) subgroup and we determine its structure.
Notice that every class satisfying the property of the following theorem needs
to be a real class. In fact, this is not a very unsual situation in finite groups.

Theorem A. Let K = xG be a conjugacy class of a finite group G and
suppose that K2 = 1∪D, where D is a conjugacy class of G. Then 〈D〉 = [x,G]
is either cyclic or p-group for some prime p, and so 〈K〉 = 〈x〉[x,G] is solvable.
More precisely,

1. Suppose that |K| = 2.

1.1. If o(x) = 2, then 〈K〉 ∼= Z2 × Z2 and Z2
∼= 〈D〉 ⊆ Z(G).

1.2. If o(x) = n > 2, then 〈K〉 ∼= Zn and 〈D〉 is cyclic.

2. Suppose that |K| ≥ 3.

2.1. If o(x) = 2 then either 〈K〉 and 〈D〉 are 2-elementary abelian groups
or 〈D〉 is a p-group and |K| = pr with p an odd prime and r a positive
integer.

2.2. If o(x) > 2, then 〈D〉 is a p-elementary abelian group for some odd
prime p. Furthermore, either o(x) = p or o(x) = 2p.

In every case, |〈K〉/〈D〉| ≤ 2.

Observe that in case 2 of Theorem A we determine the order of the elements
of K that may be either 2, p or 2p with p and odd prime.
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All cases of Theorem A are feasible and we provide examples of each one.
Our techniques for proving Theorem A are quite elementary although we make
use of Glauberman’s Z∗ theorem [5] and a result of Berkovich and Kazarin in
[2]. Both results require techniques from modular representation theory, so our
results are based on it too. Other two main ingredients of the proof of Theorem
A are Burnside’s classification of finite 2-groups having exactly one involution
and the classification of groups of order 16. We remark that we do not use the
Classification of Finite Simple Groups.

As an application of Theorem A we obtain the following corollaries. The
first one is related to groups having every conjugacy class satisfying the hypoth-
esis of Theorem A and its proof is a trivial consequence. The second concerns
those groups in which there exists a conjugacy class whose square is union of
conjugacy classes all central except at most one.

Corollary B. Let G be a finite group such that every non-central conjugacy
class K satisfies that K2 = 1 ∪ D, where D is a conjugacy class of G. Then
G/F(G) is an elementary abelian 2-group.

Corollary C. Let K be a conjugacy class of a finite group G such that K2

is union of conjugacy classes all of them central except at most one. Then 〈K〉
is solvable.

Suppose now that every conjugacy class K of a group G satisfies that K2

is a conjugacy class too. It is trivial that every real element must lie in Z(G)
and must have order 2. In [3], Chillag and Mann described the groups in which
every real element is a central element. Particularly, in Remark 5.5. of [3], the
authors also assert, with omitted proof, that a group satisfying these proper-
ties is really nilpotent. We include here an extension of this result which will
be needed in order to obtain the structure of those groups in which all con-
jugacy classes satisfy the hypothesis of Corollary C. Notice that these groups
are solvable by Theorem A and we prove that they are close to nilpotent groups.

Corollary D. Let π be a set of primes. Suppose that K2 is a conjugacy class
for all conjugacy class K of π-elements of G. Then G/Oπ′(G) is nilpotent. In
particular, if π = π(G), then G is nilpotent.

Corollary E. Let G be a finite group such that every conjugacy class K
satisfies that K2 is union of conjugacy classes all of them central except at most
one. Let M/F(G) = O2(G/F(G)). Then G/M is nilpotent and, consequently,
G is solvable with Fitting length at most 3.
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2 Preliminary results

We begin by stating the Z∗ theorem version appearing in [7].

Theorem 2.1 (see Theorem 2 of [5]) Suppose that P ∈ Syl2(G) and
j ∈ P such that j2 = 1 6= j and P ∩ {jg|g ∈ G} = {j}. Then O2′(G)〈j〉�G.

The following elementary properties will be frequently used in the proofs.

Lemma 2.2 Let K be a real conjugacy class of a group G. Then

a) 〈K〉/〈K2〉 is trivial or cyclic of order 2.

b) If K2 = 1 ∪ K, then 〈K〉 is a minimal normal subgroup of G and it is
p-elementary abelian for some prime p.

Proof. We write N = 〈K2〉 and we consider the factor group 〈K〉/N which
is generated by elements xN with x ∈ K. But, if x, y ∈ K we know that
xy−1 ∈ K2 ⊆ N , so xN = yN , and consequently 〈K〉/N is generated by just
one element, say xN , with x ∈ K, and (xN)2 = N . Thus, a) is proved. State-
ment b) trivially follows because K2 is a subgroup and all non-trivial elements
of K2 are conjugate, so all of them have the same order. 2

As we have already indicated, we also use the following result of Berkovich
and Kazarin of [2], which is based on the well-known Kazarin’s Theorem (see
for instance [7]), which asserts that any conjugacy class with prime-power size
generates a solvable normal subgroup of G.

Lemma 2.3 (see Lemma 3 of [2]) Let x ∈ G. If |xG| is a power of
q ∈ π(G), then (〈x〉G)′ is a q-subgroup. In particular, 〈x〉G/Oq(〈x〉G) is an
abelian π(o(x))-group.

Finally, the following result to which we referred at the beginning of the
Introduction, will also be used in the proof of Theorem C.

Theorem 2.4 (see Theorem A of [6]) Let G be a finite group, let x ∈ G,
and let K = xG be the conjugacy class of x in G. Then the following are
equivalent:

a) K2 is a conjugacy class of G.

b) K = x[x,G] and CG(x) = CG(x2).

In this case, [x,G] is solvable. Furthermore, if x has order a power of a prime
p, then [x,G] has a normal p-complement.

The original result of [6] includes one more assertion related to Character
Theory but we do not use it in this paper. Furthermore, the proof of the equiv-
alence between a) and b) in the above theorem, although is omitted, can be
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easily obtained without using characters. The last assertion of Theorem 2.4
needs the Classification of Finite Simple Groups. We are not going to use it to
prove Theorem A, but we do it for proving Corollary C.

We will also use the following lemma for our puposes which is a known result
of Burnside whose proof can be found in Section 1.2. of [8].

Lemma 2.5 (see Theorem 1.2.6 of [8]) A non-cyclic 2-group P has only
one involution if and only if P is a generalized quaternion group.

3 Proofs

Recall that the conjugacy classes K and D of the statement of Theorem A are
real classes.

We start by proving the equalities concerning commutators that appear in
Theorem A.

Lemma 3.1 Let K = xG be a conjugacy class of a finite group G and sup-
pose that K2 = 1 ∪D, where D is a conjugacy class of G. Then 〈D〉 = [x,G]
and 〈K〉 = 〈x〉[x,G].

Proof. If K = {x1, . . . , xn} we trivially have K2 = x1K ∪ · · · ∪ xnK. Let
y ∈ xiK so, since K is real, y = xig

−1x−1i g ∈ [x−1i , G] = [〈x−1i 〉, G] = [〈xi〉, G] =
[xi, G] for some g ∈ G. Furthermore, if i 6= j, then xj = xhi for some h ∈ G.
Thus, [xj , G] = [xhi , G] = [xi, G]h = [xi, G]. Consequently, K2 ⊆ [x,G] and
〈D〉 ⊆ [x,G]. On the other hand, if [x, t] is a generator of [x,G], then [x, t] ∈ K2

so [x,G] ⊆ 〈K2〉 = 〈D〉 and hence, 〈D〉 = [x,G]. The equality 〈K〉 = 〈x〉[x,G] is
standard, since the normal closure 〈x〉G of a subgroup 〈x〉 is equal to 〈x〉[x,G]. 2

Proof Theorem A. The proof is divided into two cases: when |K| = 2 and
when |K| ≥ 3.

Case 1: Suppose that |K| = 2.

Case 1.1. Let K = {x, xg} with g ∈ G. If o(x) = 2, then K2 = 1∪{xxg, xgx}
but observe that since CG(x) � G, we have CG(x) = CG(xg), so xxg = xgx.
Thus, K2 = 1 ∪ {xxg}, so xxg ∈ Z(G) and 〈D〉 = 〈xxg〉 ⊆ Z(G). Furthermore,
〈K〉 = 〈x, xg〉 = 〈x〉 × 〈xg〉 ∼= Z2 × Z2 and |〈K〉/〈D〉| = 2. So, 1.1 is proved.

Case 1.2. If o(x) = n > 2, then K = {x, x−1} and as a consequence,
〈K〉 = 〈x〉 � G, which is cyclic of order n and 〈D〉 = 〈x2〉. If n is odd, then
〈D〉 = 〈x〉 = 〈D〉. If n is even, then |〈K〉/〈D〉| = 2. Therefore, 1.2 is proved.
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Case 2: Suppose that |K| ≥ 3.

Case 2.1. Suppose that o(x) = 2 and let t ∈ D. We distinguish two cases de-
pending on the order of t. Suppose that o(t) = 2. We set K = {x1, · · · , xs} and
we have K2 = 1∪{xixj |i 6= j}. Since o(xixj) = 2 for every 1 6 i, j 6 s and i 6= j
we obtain that 1 = x2ix

2
j = xixixjxj = xixjxixj so xi and xj commute. Con-

sequently, 〈K〉 = 〈x1, . . . , xs〉 is generated by two pairwise commuting elements
of order 2, so 〈K〉 is 2-elementary abelian and we obtain the first assertion of 2.1.

Suppose now that o(t) > 2. Observe that any two distinct elements of K
do not commute. Otherwise, the order of t would be necessarily 2. As a conse-
quence, each xi ∈ K acts via conjugation on K in such a way that it fixes only
the element xi and permutes in pairs the elements of K\{xi}. As a result, |K| is
odd. This implies that x ∈ Z(P ) for some P ∈ Syl2(G). Therefore, P ∩K = {x}
and we have O2′(G)〈x〉�G by Theorem 2.1.

By applying Frattini’s argument it follows that G = NG(〈x〉)O2′(G). But
observe that NG(〈x〉) = CG(x) because o(x) = 2. Thus, G = CG(x)O2′(G).
As a result,

K2 = {x−1xg|x ∈ K, g ∈ G} = {[x, g]|x ∈ K, g ∈ O2′(G)} ⊆ O2′(G).

Then D ⊆ O2′(G) and in particular, |〈D〉| is odd.

Now, we prove that |K| is a power of an odd prime. Since x 6∈ Z(G), we
can take an odd prime p dividing |O2′(G) : CO2′ (G)(x)|. Since O2′(G) has odd
order, then the number of Sylow p-subgroups of O2′(G) is also odd, and hence
x, which acts on this set of subgroups, must fix one of them for the prime p.
Let P ∈ Sylp(O2′(G)) such that P x = P . Thus, we have [x, P ] ⊆ P . Now,
if [x, P ] = 1 this contradicts that p divides the index |O2′(G) : CO2′ (G)(x)| so
[x, g] is a non-trivial p-element for some g ∈ P . Therefore, [x, g] = xxg ∈ K2 is
a p-element in D, so all elements of D are p-elements. Consequently, the prime
p is unique. Moreover,

pm = |O2′(G) : CO2′ (G)(x)| = |CG(x)O2′(G) : CG(x)| = |G : CG(x)| = |K|

for some m ≥ 1. By applying Lemma 2.3 we get

〈K〉′ ⊆ Op(〈K〉) ⊆ O2′(〈K〉) = 〈D〉 ⊆ 〈K〉

and that 〈K〉/Op(〈K〉) is an abelian 2-group. Therefore, 〈D〉 = O2′(〈K〉) =
Op(〈K〉) is a p-group. As a consequence, by Lemma 2.2.(i), 〈K〉/〈D〉 is cyclic of
order 2 because it is non-trivial. Hence, the second assertion of case 2.1 follows.

Case 2.2. Suppose that o(x) > 2. We prove first that |D| = |K|. We know
that |K| 6 |K2| = 1+ |D| and D = (x2)G. Observe that |D| divides |K| because
CG(x) ⊆ CG(x2). Thus, either |D| = |K| or |D| 6 |K|/2. But, if |D| 6 |K|/2,
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the first inequality implies that |K| ≤ 1 + |K|/2, so |K| ≤ 2, a contradiction.
Consequently, |K| = |D| as wanted. Furthermore, notice that xK∪x−1K ⊆ K2

and we claim that xK 6= x−1K. Indeed, if we suppose that xK = x−1K, then
x2K = K. Hence for all g ∈ G, it follows that (xg)2K = (x2K)g = Kg = K,
which means that DK = K. As a result, 〈D〉K = K. This implies that |〈D〉|
divides |K|, but this is a contradiction because |D| = |K| and |D| < |〈D〉|.

Hence, xK 6= x−1K with xK ∪ x−1K ⊆ K2. Since |K2| = |K| + 1 and
|K| = |xK| = |x−1K|, there exists only just one element z ∈ xK \ x−1K.
Moreover, it is easy to prove that z−1 is the only element contained in x−1K\xK.
So, K2 can be decomposed as follows:

K2 = xK ∪ x−1K = (xK ∩ x−1K) ∪ {z} ∪ {z−1}.

Since (xK)(x−1K) = K2 and K4 = (1 ∪D)(1 ∪D) = K2 ∪D2, we deduce
that

K4 = K2 ∪ {z2} ∪ {z−2} = 1 ∪D ∪ {z2} ∪ {z−2}.
Let us see that K4 = D2. We know that D2 is a G-invariant set, so we

can write D2 = 1 ∪ A1 ∪ · · · ∪ Ar with Ai a conjugacy class for 1 ≤ i ≤ r.
On the other hand, since xK ⊆ K2 = 1 ∪ D then xK = 1 ∪ D′ with D′ ⊆ D
and similarly x−1K = 1 ∪ D′′ with D′′ ⊆ D. Thus, D′D′′ ⊆ K2 ∩ D2 and
|D′D′′| ≥ |D′| = |K| − 1 ≥ 2. We conclude that there exists 1 6= g ∈ K2 ∩D2.
As a result, g ∈ D. Also, we have that g ∈ Ai for some 1 ≤ i ≤ r. Consequently,
D = Ai and hence D ⊆ D2. Accordingly, K4 = 1 ∪D ∪D2 = D2, as wanted.
Therefore,

D2 = 1 ∪D ∪ {z2} ∪ {z−2}.
We distinguish two subcases depending on whether z2 ∈ K2, subcase a), or
z2 6∈ K2, subcase b).

a) If z2 ∈ K2, we have either z2 = 1 or z2 ∈ D (and z−2 ∈ D). In both cases,
it follows D2 = K2 = 1 ∪D and then 〈D〉 is a p-elementary abelian group
for some prime p by applying Lemma 2.2(b). Furthermore, 〈D〉 = 〈K2〉, so
|〈K〉/〈D〉| ≤ 2 by Lemma 2.2(a). Observe that (x2)G = D, so o(x) divides
2p and hence, either o(x) = p or o(x) = 2p. It o(x) = p > 2, then 〈x〉 = 〈x2〉
and 〈K〉 = 〈D〉 is p-elementary abelian.

Let us see that if o(x) = 2p, then p is odd. If p = 2, then o(x) = 4 and we
know that 2a = |〈D〉| = 1 + |D| for some a > 1. Thus, |D| = 2a − 1 = |K| is
odd and, since 〈K〉/〈D〉 is trivial or cyclic of order 2 by Lemma 2.2(a), we
have that 〈K〉 is a 2-group, so 〈K〉 ⊆ CG(x) and, in particular, xxg = xgx
for every g ∈ G. Since xxg ∈ D2, either xxg ∈ D or xxg = 1. If xxg 6= 1,
then o(xxg) = 2 and 1 = (xxg)2 = x2(xg)2 and (x2)g = x2. In the other
case, if xxg = 1, then xg = x−1 = x3 and (x2)g = (xg)2 = x3x3 = x2. Thus,
in both cases x2 ∈ Z(G), which means that 1 = |D| = |K|, a contradiction.
We obtain, as a consequence, the assertion of 2.2, as wanted.
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b) Suppose that z2 6∈ K2, what is equivalent to claim that either {z2} and
{z−2} are central classes or {z2, z−2} is a single conjugacy class of cardinal-
ity 2. The rest of the proof consists in getting a contradiction by following
a series of steps.

Step 1: 〈D〉/〈z2〉 is a 2-elementary abelian group. Moreover, 〈D〉 is nilpotent
of class at most 2. Therefore, we write 〈D〉 = P × H with P ∈ Syl2(〈D〉)
and H a 2-complement of 〈D〉 with H ⊆ 〈z2〉 ⊆ Z(〈D〉).

By the hypotheses of b), it follows that 〈z2〉 � G. We denote G = G/〈z2〉
and consider D. We have D

2
= D2 = 1 ∪ D. So, by Lemma 2.2(ii), 〈D〉

is a p-elementary abelian group for some prime p. Observe that if d ∈ D,
then d = zg for some g ∈ G and d2 = (zg)2 = (z2)g ∈ {z2, z−2}. Thus,

d
2

= d2 = 1 and p = 2. Furthermore, z ∈ CG(z2) � G and D ⊆ CG(z2).
This means that 〈z2〉 ⊆ Z(〈D〉), and 〈D〉/Z(〈D〉) is abelian, and 〈D〉 is nilpo-
tent of class at most 2. Thus, the decomposition for 〈D〉 of the statement
holds.

Step 2: We can assume that o(z2) is even.

If z2 ∈ Z(G), since z ∈ D and D is real, we have that z2 and z−2 are
also conjugate and hence z2 = z−2. Thus, o(z2) = 2. Consequently, we
can assume that {z2, z−2} is a conjugacy class for the rest of this step.
Suppose that o(z2) = k is odd and we will get a contradiction. We know
that o(z) = 2k, so we can write z = zkz2 where zk and z2 are the 2′-part
and the 2-part of z, respectively. Moreover, there exists g ∈ G such that
(z2)g = z−2. We know that zzg ∈ D2 = 1 ∪ D ∪ {z2, z−2}. Furthermore,
zzg = zkz2(zk)gz−2 = zk(zk)g ∈ P by taking into account that P � G,
so zzg is a 2-element. As a consequence, zzg can only be equal to 1, z2

or z−2 because the elements of D have odd order. Now, if zzg = 1, then
z−1 = zg = (zk)g(z2)g = (zk)gz−2 what means that z = (zk)g, a contradic-
tion. If zzg is equal to either z2 or z−2 we can easily compute that o(z) = 4,
again a contradiction. Thus, o(z2) is even, as wanted.

Step 3: 〈D〉 = 〈z2〉 ∪D〈z2〉 and 〈D〉 has just one element of order 2 that is
the involution of 〈z2〉.

Since D ⊆ D2, it is easy to prove by induction on k that for every k > 2,
Dk−1 ⊆ Dk ⊆ 1 ∪D ∪ 〈z2〉 ∪D〈z2〉. We can deduce that there exists l ∈ N,
depending on the order of z, such that 〈D〉 = Dl ⊆ 1∪D∪〈z2〉∪D〈z2〉 ⊆ 〈D〉.
We conclude that

〈D〉 = 1 ∪D ∪ 〈z2〉 ∪D〈z2〉 = 〈z2〉 ∪D〈z2〉
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Accordingly, it is enough to conside that there exists an element dz2i ∈ Dz2i
with d ∈ D such that o(dz2i) = 2. Thus, (dz2i)2 = d2z4i = 1 and notice
that d2 = (zg)2 = (z2)g ∈ {z2, z−2} for some g ∈ G. Consequently, either
z4i+2 = z2(2i+1) = 1 or z4i−2 = z2(2i−1) = 1. In both cases, o(z2) would be
odd, which contradicts Step 2. As a result, the unique element of order 2 in
〈D〉 is the involution of 〈z2〉.

Step 4: Final contradiction.

By Step 3 and Lemma 2.5, we have that P is cyclic or generalized quater-
nion. We will get a contradiction in both cases. Assume first that P is
cyclic. Since 〈D〉/〈z2〉 ∼= P/P ∩ 〈z2〉 is 2-elementary abelian by Step 1 and
P is cyclic, either 〈D〉 ∼= Z2 or 〈D〉 is trivial. Furthermore, 〈z〉 6= 〈z2〉.
Otherwise, CG(z) = CG(z2) and |zG| = |D| = |K| is either 1 or 2, which
contradicts the fact that |K| ≥ 3. Thus, 〈z2〉 < 〈z〉 ≤ 〈D〉 and 〈D〉 = 〈z〉.
As the elements of D have ever order, this equality implies that they are odd
powers of z and, as a consequence, the elements of D2 are even powers of z.
This contradicts that D ⊆ D2, as wanted.

Consequently, we can assume that P is generalized quaternion. We denote

G̃ = G/H and we have 〈D̃〉 = 〈̃D〉 ∼= P . Notice that Z(P ) = Z(〈D̃〉) =

Z(〈D〉/H) = Z(〈D〉)/H, because 〈D〉 = P ×H, and 〈D̃〉/Z(〈D̃〉) is dihedral.

Also, 〈D̃〉/Z(〈D̃〉) ∼= 〈D〉/Z(〈D〉) is 2-elementary abelian by Step 1. By

joining both facts, we conclude that 〈D̃〉/〈Z(D̃)〉 ∼= Z2 × Z2. Therefore,

〈D̃〉 ∼= Q8 and 〈D〉 ∼= Q8 ×H. Notice that, 〈z̃2〉 ⊆ Z(〈D̃〉) which has order
2 because it is the center of a generalized quaterion group. This forces that
the order of 〈z̃2〉 is either 1 or 2. If 〈z̃2〉 is trivial, from Step 3, we have

〈D̃〉 = 〈z̃2〉 ∪ D̃〈z̃2〉 = 1̃ ∪ D̃

and by Lemma 2.2, 〈D̃〉 is elementary abelian, a contradiction. Thus, we
assume that o(z̃2) = 2 and from Step 3, we have

〈D̃〉 = 〈z̃2〉 ∪ D̃〈z̃2〉 = 1̃ ∪ D̃ ∪ D̃z̃2 ∪ {z̃2}

We distinguish two cases. If D̃ 6= D̃z̃2, then 23 = 2 + 2|D̃| = 2(1 + |D̃|),
what means that |D̃| is odd and, since D̃ is real, this forces that o(z̃) = 2,

a contradiciton. Therefore, D̃ = D̃z̃2 and 8 = |〈D̃〉| = 2 + |D̃|, so |D̃| = 6.

Now, we prove that |K̃| = |D̃|. Moreover, we have that K̃2 = 1̃ ∪ D̃. Since

o(z̃2) = 2 and x̃2 and z̃ are G̃-conjugate, we know that o(x̃) > 2. So,

D̃ = (x̃2)G̃ and, since CG̃(x̃) ⊆ CG̃(x̃2) ⊆ G̃, we conclude that |D̃| divides

|K̃|. Since 6 = |D̃| ≤ |K̃| ≤ |K̃2| = 1 + |D̃|, we get |D̃| = |K̃|.
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On the other hand, taking into account that K̃ is a real class, by Lemma
2.2(i) we know that 〈K̃〉/〈K̃2〉 = 〈K̃〉/〈D̃〉 is trivial or cyclic of order 2. In

the former case, that is, if 〈K̃〉 = 〈D̃〉 = 1̃∪{z̃2}∪D̃, let us see that this leads

to a contradiction. We know that 1̃ 6= x̃ ∈ 〈K̃〉. If x̃ = z̃2, then o(x̃) = 2
so x2 ∈ H which implies that z ∈ H and o(z2) is odd, a contradiction. So

x̃ ∈ D̃ and we can write x = dh with d ∈ D and h ∈ H ⊆ 〈z2〉 ⊆ Z(〈D〉).
Then x2 = d2h2 ∈ 〈z2〉 and we conclude that z = (x2)g ∈ 〈z2〉 and 〈z〉 = 〈z2〉
so CG(z) = CG(z2) ⊆ G and |D| = |zG| = |(z2)G| = 2, which contradicts

that |K| > 3. We can assume that 〈K̃〉/〈D̃〉 ∼= Z2. Therefore, 〈K̃〉 is a
2-group of order 16, which has a normal subgroup isomorphic to Q8, and
moreover, 〈K̃〉 possesses at least 6 elements of order 8 (the elements of K).
However, the only groups of order 16 having a normal subgroup isomorphic
to Q8 are: SD16 the semidihedral group; Q16, the generalized quaternion
group; the central product of D8 and Z4; and the direct product Q8 × Z2.
The latter two groups have no elements of order 8 and the former two groups
have exactly 4 elements of order 8. In all cases, we get a contradiction. 2

Examples. Let us show several examples illustrating every case of Theorem
A. In some cases, we use the SmallGroups library of GAP [4]. The m-th group
of order n in the SmallGroups library is identified by n#m.

Case 1.1. We take the dihedral group

D8 = 〈a, b | a4 = b2 = 1, b−1ab = a−1〉

and we consider the conjugacy class K = {b, a2b} so we have that K2 = 1 ∪D
where D is the conjugacy class of the element {a2}.

Case 1.2. We consider the dihedral group of order 2n for every n ≥ 3

D2n = 〈x, y | xn = y2 = 1, y−1xy = x−1〉

and we consider K = xG. Then K2 = 1 ∪D where D = (x2)G. Remark that if
n is odd we have 〈D〉 = 〈K〉 whereas if it is not it follows |〈K〉/〈D〉| = 2.

Case 2.1. Let N = 〈x1〉× · · ·×〈xr〉 = Z2×· · ·×Z2 and consider the natural
action of Sr on N , that is, G = NSr is the wreath product of N and Sr. In
this case, K = {x1, · · · , xr} is a conjugacy class of G such that K2 = 1 ∪ D
where D = {xixj |i 6= j} is a conjugacy class, because Sr acts transitively on D,
and o(xixj) = 2 for every i 6= j and |K| = r. This is an example of case 2.1 of
Theorem A in which 〈D〉 is 2-elementary abelian and |〈K〉/〈D〉| = 2.

The alternating group A4 with the conjugacy class K of elements of order 2
is another example of this case but with 〈K〉 = 〈D〉.
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Let G = 216#8(∼= ((Z3×Z3)oZ3)oQ8) which is generated by two elements
x, y of order 4 and an element z of order 3. The conjugacy class K = (x2)G sat-
isfies that K2 = 1 ∪D where D = zG. Moreover, o(x2) = 2, o(z) = 3, |K| = 9
and |D| = 24. This is an example of case 2.1 in which 〈D〉 is a non-abelian
3-group of order 27.

Case 2.2. Let 〈a〉 ∼= Z5 and let 〈b〉 ∼= Z8 acting on 〈a〉 in the following way:
ab = a2. Let G be the associated semidirect product G = 〈a〉 o 〈b〉 and take
K = (b4a)G. We have K2 = 1 ∪ D where D = aG, o(b4a) = 10, o(a) = 5,
|K| = 4 and |D| = 4. This shows case 2.2 of Theorem A with 〈D〉 ∼= Z5 and
〈K〉 ∼= Z10.

We get another example if we take G = 72#41(∼= (Z3 × Z3) oQ8). In this
case, K = sG, with s being an element of order 3, satisfies that K2 = 1 ∪ K
with |K| = 8. Furthermore, 〈K〉 ∼= Z3 × Z3.

Observe that in both examples of this case we have |K| = |D| as it us showed
in the proof of Theorem A.

Proof of Corollary B. For every element x ∈ G, we know that (xG)2 = 1∪D
for some conjugacy class D. Then x2 ∈ 〈D〉 and 〈D〉 is nilpotent by Theorem
A. Thus, x2 ∈ F(G) for every x ∈ G. Consequently, G/F(G) is 2-elementary
abelian group. 2

Proof of Corollary C. Under the hypothesis it can occur that K2 is a conju-
gacy class and by applying Theorem 2.4. we have that 〈K〉 is solvable. Other-
wise, it happens that either K2 = A1∪A2∪· · ·An or K2 = A1∪A2∪· · ·An∪D
with Ai a central classs for every i and D a non-central class. We consider

G = G/Z(G) and it follows that either K
2

= 1 or K
2

= 1 ∪D. In the former
case, 〈K〉 is cyclic of order 2 and as a consequence, 〈K〉 is solvable. In the
second case, by applying Theorem A, 〈K〉 = 〈K〉Z(G)/Z(G) is solvable and
consequently 〈K〉 is solvable too.2

Proof of Corollary D. Taking into account that if N �G and x ∈ G = G/N
π′-element, we can consider that x is π′-element we can easily prove that the
hypotheses are inherited by factor groups and we work by induction on the or-
der of G. If Oπ′(G) 6= 1 it easily follows by induction that G = G/Oπ′(G) is
nilpotent. So we can assume that Oπ′(G) = 1 and let us see that G is nilpotent.
Let p ∈ π and P ∈ Sylp(G). Then there exists 1 6= xp ∈ Z(P ), what means
that P ⊆ CG(xp). The hypotheses imply that (xGp )2 is a conjugacy class and

by Theorem 2.4 we have that |xGp | = |[xp, G]| is p′-number.

Let Kp′/[xp, G] = Oπ′(G/[xp, G])) which is a p′-group. Since [xp, G] is p′-
group, then Kp′ is a p′-group too. Furthermore, Kp′ � G thus, Kp′ ⊆ Op′(G).
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By induction, we have that

G/[xp, G]/Oπ′(G/[xp, G]) ∼= G/Kp′

is nilpotent. Now, we consider the natural monomorphism

φ : G −→ G/Kp′1
× · · · ×G/Kp′s

where π = {p1, · · · , ps}. Since
⋂s
i=1Kp′i

⊆
⋂s
i=1 Op′i

(G) = Oπ′(G) = 1, we
deduce that G is nilpotent. 2

Proof of Corollary E. The hypotheses are inherited by taking factor groups.
Let us see that we can assume Z(G) = 1. Indeed, if we consider G = G/Z(G)
we have

O2(G/F(G)) = O2(G/F(G)) ∼=

O2(G/F(G)) = M/F(G) ∼= M/F(G).

If Z(G) > 1, arguing by induction on the order of G, we have that

G/M ∼= G/M

is nilpotent and then the theorem is proved. Thus, we can assume Z(G) = 1,
as wanted.

Let Ĝ = G/F(G) and suppose that for every non-trivial 2′-element x̂ of Ĝ

we have that (x̂Ĝ)2 is a conjugacy class of Ĝ. We can certainly assume that x is
a 2′-element of G such that x 6∈ F(G) and that (xG)2 is a conjugacy class. We

apply Theorem D with π = {2}′ to obtain that Ĝ/O2(Ĝ) is nilpotent, which
implies that G/M is nilpotent, and the proof is finished.

Therefore, we can assume that there exists a 2′-element x in G with x 6∈ F(G)
such that (xG)2 is not a class. However, (xG)2 is union of conjugacy classes,
all of them central except at most one. As Z(G) = 1, we have (xG)2 = 1 ∪D,
where D is a non-central class of G. By Theorem A we have x2 ∈ 〈D〉 ⊆ F(G)
and, since 〈x〉 = 〈x2〉, we get a contradiction. 2
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