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Abstract In this paper, we present a multidimensional real dynamical study of the Ostrowsky-Chun family of
iterative methods to solve systems of nonlinear equations. This family was defined initially for solving scalar
equations but, in general, scalar methods can be transferred to make them suitable to solve nonlinear systems.
The complex dynamical behavior of the rational operator associated to a scalar method applied to low-degree
polynomials has shown to be an efficient tool for analyzing the stability and reliability of the methods. However,
a good scalar dynamical behavior does not guarantee a good one in multidimensional case. We found different
real intervals where both parameters can be defined assuring a completely stable performance and also other
regions where it is dangerous to select any of the parameters, as undesirable behavior as attracting elements
that are not solution of the problem to be solved appear. This performance is checked on a problem of chemical
wave propagation, Fisher’s equation, where the difference in numerical results provided by those elements of
the class with good stability properties and those showed to be unstable, is clear.

Keywords Nonlinear system of equations · Iterative method · Basin of attraction · Dynamical plane ·
Stability · Fisher’s equation

1 Introduction

Let us consider the problem of finding a real zero of a function F : D ⊆ Rn −→ Rn that is, a solution x̄ ∈ D of
the nonlinear system F (x) = 0, of n equations with n variables, being fi, i = 1, 2, . . . , n the coordinate functions
of F . This solution can be obtained as a fixed point of some function Ḡ : Rn −→ Rn by means of the fixed-point
iteration method

x(k+1) = Ḡ(x(k)), k = 0, 1, . . . , (1)

where x(0) is the initial estimation.
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Methods for solving nonlinear equations f(x) = 0, f : I ⊆ R −→ R can be transferred to systems F (x) = 0,
F : D ⊆ Rn −→ Rn. The extension of a scalar method to multidimensional case requires to rewrite the iterative
expression in such a way that there are no evaluations of the nonlinear function f in the denominator, as they
will become vectors in the extension to systems. To solve this problem the divided difference operator can be
used [x, y;F ], see [1]. Once the method has been transferred to multivariate case, a dynamical study can be
made to see if good methods for solving nonlinear equations are still stable when extended to systems.

In [1] the Ostrowski-Chun family of iterative biparametric methods is introduced, and this class is extended
for solving nonlinear systems by using the divided difference operator. Its iterative expression is

y(k) = x(k) − [F ′(x(k))]−1F (x(k)),

x(k+1) = y(k) −G(x(k), y(k))[F ′(x(k))]−1F (y(k)),

G(x(k), y(k)) =
1

a1

[
(1 + a1b2 − 2a1)I − a1(b2 − 2)[F ′(x(k))]−1[x(k), y(k);F ]

]−1
(2)

+
1

a1

(
(a1 + a1b2 − 1)I − a1b2[F ′(x(k))]−1[x(k), y(k);F ]

)
,

where y(k) is Newton’s step, [x(k), y(k);F ] is the divided difference operator of F on x(k) and y(k), I is the
identity matrix and F ′(x(k)) is the Jacobian matrix of the system.

In this paper, we analyze the real multidimensional dynamical behavior of the family, in order to get informa-
tion about the stability of the resulting schemes when suitable values of the parameters are selected. Depending
on the intervals where they are defined, completely different performance can be found, and to detect these
stable and unstable behaviors is a key fact in order to apply the members of this class for solving specific
problems.

This paper is organized as follows: in Section 2 some concepts of real multidimensional dynamics are in-
troduced. In Section 3 we study the dynamical behavior of the family of Ostrowski-Chun iterative schemes,
finding the subintervals of the domain of the parameters where strange fixed points appear and their stability
are analyzed in these cases with the aid of bifurcation diagrams. To get this aim, dynamical and convergence
planes are successfully used in Section 4. To check the performance of some elements of the family, those are
tested numerically on Fisher’s equation in Section 5. Finally, in Section 6 some conclusions are stated.

2 Basic concepts

Some dynamical studies by using complex dynamics tools have been made for scalar iterative methods for
solving nonlinear equations on low degree polynomials, see, for instance, [2–4]. These techniques have proved to
be efficient to analyze the stability of a method or to select the most stable members of a family.

In this work, we propose a real multidimensional dynamical study of the Ostrowski-Chun family of iterative
methods for solving systems of nonlinear equations. We analyze the dynamical behavior of a fixed-point iterative
method for nonlinear systems when applied to a n-variable polynomial p(x), p : Rn → Rn, x ∈ Rn, by using
the procedure stablished in [5]. We will start recalling some basic dynamical concepts; to deep in these concepts
see, for example, the text [6].

Definition 1 Let G : Rn → Rn be a vectorial rational fixed-point function associated to the iterative method
on polynomial p(x). The orbit of a point x(0) ∈ Rn is defined as the set of successive images of x(0) by G(x),{
x(0), G(x(0)), . . . , Gm(x(0)), . . .

}
.

We can classify the dynamical behavior of a point of Rn examining its asymptotic behavior. Hence, x∗ ∈ Rn

is a fixed point of G if G(x∗) = x∗.

Definition 2 A periodic point x of period k ≥ 1 is a point such that Gk(x) = x and Gk−p(x) 6= x, for p < k.

To check the stability of fixed or periodic fixed points for nonlinear operators we recall a known result in
real discrete dynamics.

Theorem 1 ([6], page 558) Let G from Rn to Rn be C2. Assume x∗ is a period-k point. Let λ1, λ1, . . . , λn be
the eigenvalues of G′(x∗).

a) If all the eigenvalues λj have |λj | < 1, then x∗ is attracting.
b) If one eigenvalue λj0 has |λj0 | > 1, then x∗ is unstable, that is, repelling or saddle.
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c) If all the eigenvalues λj have |λj | > 1, then x∗ is repelling.

Fixed points that are not a root of the polynomial p(x) are called strange fixed points. If x∗ is an attracting
fixed point of the rational function G, its basin of attraction A(x∗) is defined as the set of pre-images of any
order such that

A(x∗) =
{
x(0) ∈ Rn : Gm(x(0))→ x∗,m→∞

}
.

The set of points whose orbits tend to an attracting fixed point x∗ is called Fatou set, F(G), while the
complementary set, the closure of the set consisting of its repelling fixed points that establishes the borders
between the basins of attraction, is called Julia set, J (G)

3 Dynamical study of Ostrowski-Chun family of methods

In this section, we apply the previous dynamical concepts to the multidimensional rational function associated
4th-order Ostrowski-Chun family of methods designed in [1], whose iterative expression appears in (2).

In particular, we will analyze the dynamical behavior of these family of methods acting on the polynomial
system p(x) = 0, where

p1(x) = x21 − 1
p2(x) = x22 − 1

}
.

By applying the iterative expression of Ostrowski-Chun class (2) on p(x), we get its associate multidimen-
sional rational function; later we study its real fixed points in order to analyze their stability.

The jth-coordinate of the vectorial rational function associated to Ostrowski-Chun family on polynomial
p(x) is

λpj (x) =
1

8x3j

(
(b2 − 2)

(
x2j − 1

)3
a1(b2 − 2)

(
x2j − 1

)
+ 4x2j

−
b2
(
x2j − 1

)3
+ 4x2j − 12

(
x2j + 2

)
x4j

4x2j

)
, j = 1, 2. (3)

As fixed points are the solutions of λ̄pj (x) = xj , that is,

1

8x3j

(
(b2 − 2)

(
x2j − 1

)3
a1(b2 − 2)

(
x2j − 1

)
+ 4x2j

−
b2
(
x2j − 1

)3
+ 4x2j − 12

(
x2j + 2

)
x4j

4x2j

)
= xj , j = 1, 2,

or, in a equivalent form,

(xj − 1)(xj + 1)
(
x6j
(
a1b

2
2 + 18a1b2 − 40a1 + 88

)
+ x4j

(
−3a1b

2
2 − 18a1b2 + 48a1 − 32

)
+

+ x2j
(
3a1b

2
2 − 2a1b2 − 8a1 + 8

)
− a1b22 + 2a1b2

)
= 0 , j = 1, 2. (4)

the following result can be formulated.

Proposition 1 The fixed points of the vectorial rational function associated to Ostrowski-Chun class on polyno-
mial p(x) are the roots of p(x), (1, 1), (1,−1), (−1, 1) and (−1,−1) and also the pairs (ri, rj), i, j ∈ {1, 2, . . . , 6},
whose entries are roots of the polynomial

r(x, a1, b2) = x6
(
a1b

2
2 + 18a1b2 − 40a1 + 88

)
+ x4

(
−3a1b

2
2 − 18a1b2 + 48a1 − 32

)
+

+x2
(
3a1b

2
2 − 2a1b2 − 8a1 + 8

)
− a1b22 + 2a1b2.

These are strange fixed points that depend on a1 and b2.

Let us remark that xj = 1 and xj = −1 always satisfy expression (4). As we have two possible values for j,
that leads to the fixed points (1, 1), (1,−1), (−1, 1) and (−1,−1), the roots of p(x).

To calculate the rest of fixed points, as they are the roots of r(x, a1, b2) = 0 that has only even powers, a
simple change of variables t = x2 transform it in a 3rd-degree polynomial

p2(t) = (t− 1)a1
(
2
(
9t2 − 1

)
b2 + (t− 1)2b22 + 8t(1− 5t)

)
+ 8t

(
11t2 − 4t+ 1

)
,

whose roots r21, r22 and r23, can be calculated by exact procedures. Then the components of the strange fixed
points are ri ∈ {±

√
r21,±

√
r22,±

√
r23}, i ∈ {1, 2, . . . , 6}. Moreover, we are interested only in the real strange

fixed points, so depending on the values of the parameters we can have from none to 6 real different entries
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(besides of 1 and -1) of the vectorial strange fixed points. Therefore, strange fixed points are the combinations
of the roots of r with themselves and with 1 and -1. So if only one root is real we have 12 strange fixed points,
32 if two roots are real and 60 in case all three roots are real.

The number of real strange fixed points depends on the values of a1 and b2. We get the real roots of r
depending on the value of b2 first, and then analyzing each case depending on the value of a1.

1. If b2 <
1
63

(
−820− 176

√
22
)
, then the number of strange fixed points depends on a1 and also on the roots

r1j , j = 1, 2, 3, 4 of p1(t) = t4(b2 − 2)4(4b2 − 1) − 2t3(b2 − 2)3(3b2 + 1) + t2(b2 − 2)2
(
27b22 − 42b2 + 11

)
−

4t
(
8b22 − 25b2 + 18

)
+ 28 and of r2j , j = 1, 2, 3 that are the roots of p2(t).

a) If a1 < r11 or a1 > r12, then there exist six real different entries of the strange fixed points±√r21,±
√
r22,±

√
r23,

giving a total of sixty points.
b) For a1 = r11 or a1 = r12, there are four possible real entries ±√r21 and ±√r23 or ±√r22, respectively.

c) If r11 < a1 <
−88

−40 + 18b2 + b22
or 0 ≤ a1 < r12 then there are only two real entries, ±√r21.

d) When
−88

−40 + 18b2 + b22
≤ a1 < 0, there not exist strange fixed points.

2. For b2 = 1
63

(
−820− 176

√
22
)
, different cases must be analyzed:

a) If a1 <
−88

−40 + 18b2 + b22
or a1 > r12, then there exist six real possible entries for the strange fixed points,

±√r21,±
√
r22,±

√
r23.

b) If a1 = r12, there are four real different entries ±√r21,±
√
r22.

c) For a1 =
−88

−40 + 18b2 + b22
or 0 ≤ a1 < r12, there are only two real entries, ±√r21.

d) When
−88

−40 + 18b2 + b22
< a1 < 0, there are not strange fixed points.

3. For 1
63

(
−820− 176

√
22
)
< b2 < −20, there are several possibilities:

a) If a1 <
−88

−40 + 18b2 + b22
or a1 > r12, there are six different entries for the strange fixed points:

±√r21,±
√
r22,±

√
r23.

b) When a1 =
−88

−40 + 18b2 + b22
≤ a1 < r11 or a1 = r12, there are four different real entries, ±√r22 and

±√r21 or ±√r23, respectively.
c) If a1 = r11 or 0 ≤ a1 < r12 there exist only two different entries, that is ±√r22 or ±√r21, respectively.
d) For r11 < a1 < 0 there are not strange fixed points.

4. The number of real strange fixed points for b2 = −20 depends on the relative position of parameter a1 and
the roots of polynomials p3 = 4743684t4 + 314116t3 − 1409771t2 + 3718t− 7 and p2(t), denoted by r31, r32
and r2j , j = 1, 2, 3, respectively.
a) For a1 > r32, there are six real entries ±√r21,±

√
r22,±

√
r23.

b) If a1 < r31 of a1 = r32,then ±√r22,±
√
r23 or ±√r21,±

√
r22, respectively, are the real entries of the

strange fixed points.
c) When a1 = r31 or 0 ≤ a1 < r32, there exist two real entries ±√r22 or ±√r21, respectively.
d) For r31 < a1 < 0 there not exist strange fixed points.

5. If b2 is defined in the range −20 < b2 < −
184

29
, then:

a) If r12 < a1 <
−88

−40 + 18b2 + b22
then there are six real entries for the strange fixed points,±√r21,±

√
r22,±

√
r23.

b) For a1 < r11 or a1 >
−88

−40 + 18b2 + b22
, the real entries are ±√r22,±

√
r23.

c) When a1 = r12 or a1 =
−88

−40 + 18b2 + b22
, the real entries of the strange fixed points ±√r21,±

√
r22.

d) If a1 = r11 or 0 ≤ a1 < r12 then there are only two real entries, ±√r22 or ±√r21, respectively.
e) For r11 < a1 < 0, there not exist strange fixed points.

6. When b2 = −184

29
, the number of real entries of the fixed points depends again on a1 and also on the first

root of polynomial p4(t) = 602330740t3 + 563854192t2 − 11941127t + 170723, denoted by r41 and on r2j
j = 1, 2, 3 that denote the roots of p2(t).

a) If a1 < r41 or a1 >
841

1089
, then the real entries are ±√r22,±

√
r23.
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b) For a1 = r41 or 0 ≤ a1 ≤
841

1089
, there are only two real entries: ±√r22 or ±√r21, respectively. In

particular, the case corresponds to the entry ±
√

23

59
.

c) When r41 < a1 < 0, there are not strange fixed points.

7. If −184

29
< b2 < 0,

a) When a1 < r11 or a1 >
−88

−40 + 18b2 + b22
, the real entries of the strange fixed points are ±√r22,±

√
r23.

b) If a1 = r11 or a1 =
−88

−40 + 18b2 + b22
then the only real entries are ±√r22.

c) For 0 ≤ a1 < r12 or r12 ≤ a1 <
−88

−40 + 18b2 + b22
there are also two real entries, that correspond to

±√r21 or ±√r23, respectively.
d) If r11 < a1 < 0,there there are not strange fixed points.

8. For the case b2 = 0, the number of real entries of the strange fixed points depend on a1 and also on the
roots of p2(t), denoted by r2j j = 1, 2, 3.

a) If a1 < −1−
√

2 or a1 >
11

5
, then the number of real different entries is six: ±√r21,±

√
r22,±

√
r23

b) When a1 = −1−
√

2 or 1 < a1 <
11

5
, there are four real entries, ±√r22 and ±√r21 or ±√r23, respectively.

c) If −1−
√

2 < a1 < −1 +
√

2, −1 +
√

2 ≤ a1 < 1 or a1 =
11

5
, then the real entries are two, that is: ±√r21,

±√r23 or ±
√

3

23
, respectively.

d) For a1 = 1, there not exist real strange fixed points.

9. When 0 < b2 <
1

90

(
33− 7

√
21
)
, the number of strange fixed points depends on the relation among a1 and

the roots of p1(t) and p2(t), previously defined.

a) If a1 < r11 or a1 >
−88

−40 + 18b2 + b22
, there are six different entries for the strange fixed points±√r21,±

√
r22,±

√
r23.

b) For a1 = r11, a1 =
−88

−40 + 18b2 + b22
or r14 < a1 <

−88

−40 + 18b2 + b22
, there are four real entries:

±√r21,±
√
r22 in the first two cases and ±√r22,±

√
r23 in the last one.

c) If r11 < a1 ≤ 0 or a1 = r14, there only exist two real entries, ±√r21 and ±√r22 respectively.
d) When 0 < a1 < r14, there are not strange fixed points.

10. If
1

90

(
33− 7

√
21
)
< b2 <

4
63

(
44
√

22− 205
)
, the following cases appear:

a) For a1 < r11 or a1 >
−88

−40 + 18b2 + b22
, there are six real entries of the strange fixed points:±√r21,±

√
r22,±

√
r23.

b) If a1 = r11, a1 =
−88

−40 + 18b2 + b22
or r12 < a1 <

−88

−40 + 18b2 + b22
, four real entries exist: ±√r21,±

√
r22

in the first two cases and ±√r22,±
√
r23 in the last one.

c) When r11 < a1 ≤ 0 or a1 = r12, only two real entries appear: ±√r21 or ±√r22, respectively.
d) For 0 < a1 < r12, there not exist strange fixed points.

11. If b2 = 4
63

(
44
√

22− 205
)
, then some cases appear:

a) For a1 < r11 or a1 >
−88

−40 + 18b2 + b22
, the number of real entries of the strange fixed points is six, being

±√r21,±
√
r22,±

√
r23.

b) If a1 = r11, then four different real entries exist: ±√r21,±
√
r22.

c) When r11 < a1 ≤ 0 or a1 =
−88

−40 + 18b2 + b22
, there are only two real entries ±√r21.

d) Finally, if 0 < a1 <
−88

−40 + 18b2 + b22
then there are not strange fixed points.

12. For values of b2 in the interval 4
63

(
44
√

22− 205
)
< b2 <

1

4
, different cases are analyzed:

a) If a1 < r11 or a1 > r12, there exist six real entries for the strange fixed points, ±√r21,±
√
r22,±

√
r23.

b) For a1 = r11 or a1 = r12, four real entries appear ±√r21 and ±√r22 or ±√r23, respectively.
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c) When r11 < a1 ≤ 0 or
−88

−40 + 18b2 + b22
< a1 < r12, there are only two real entries, ±√r21.

d) If 0 < a1 ≤
−88

−40 + 18b2 + b22
, there are not strange fixed points.

13. When b2 =
1

4
, the relation among parameter a1 and the first root of p5(t) = 686t3 + 245t2 − 1792t+ 1024,

denoted by r51 and the roots of p2(t), denoted by r2j j = 1, 2, 3, is a key fact in the number of real entries
of the strange fixed points.
a) If a1 < r51 then there exist six real different entries, ±√r21,±

√
r22,±

√
r23.

b) For a1 = r51 there are four real entries ±√r21 and ±√r22.

c) When a1 < r51 ≤ 0 or a1 >
1408

567
, then the number of real entries reduces to two: ±√r21.

d) If 0 < a1 ≤
1408

567
, then there are not strange fixed points.

14. If
1

4
< b2 <

1
90

(
33 + 7

√
21
)
, the following cases are analyzed to deduce the number of strange fixed points.

a) If a1 < r11, r12 < a1 ≤ 0 or a1 >
−88

−40 + 18b2 + b22
, then there are two real entries, ±√r21.

b) For a1 = r11 or a1 = r12, the number of real entries is four, ±√r21 and ±√r23 or ±√r22, respectively.
c) On the other hand, if r11 < a1 < r12 then there are six real entries: ±√r21,±

√
r22,±

√
r23.

d) If 0 < a1 ≤
−88

−40 + 18b2 + b22
, then there are not strange fixed points.

15. When 1
90

(
33 + 7

√
21
)
≤ b2 ≤ 2, the analysis is simpler:

a) For b2 < 2, a1 ≤ 0 or a1 >
−88

−40 + 18b2 + b22
, the only real entries are ±√r21.

b) If b2 = 2 or if b2 < 2 and 0 < a1 ≤
−88

−40 + 18b2 + b22
, there not exist strange fixed points.

16. When b2 > 2, the number of cases is also reduced:

a) If a1 <
−88

−40 + 18b2 + b22
or a1 ≥ 0, the only real entries of the strange fixed points are ±√r21.

b) When
−88

−40 + 18b2 + b22
≤ a1 < 0 there are not strange fixed points.

3.1 Stability analysis of the fixed points

To check the stability of the fixed points we need to calculate the Jacobian matrix and evaluate their eigenvalues
in each fixed point,

J(x1, x2) =

(
J1 0
0 J2

)
where

Jj = − (xj − 1)3(xj + 1)3sj

32x6j
(
a1b2x2j − a1b2 − 2a1x2j + 2a1 + 4x2j

)2
and

sj = −5a21b
3
2 + 20a21b

2
2 − 20a21b2 + x2j

(
4a21b

3
2 − 4a21b

2
2 − 32a21b2 + 48a21 + 28a1b

2
2 − 32a1b2 − 48a1

)
+x4j

(
a21b

3
2 − 16a21b

2
2 + 52a21b2 − 48a21 + 4a1b

2
2 − 96a1b2 + 176a1 − 160

)
with eigenvalues αj = Jj , j = 1, 2. It is clear that by evaluating these eigenvalues in the roots of the polynomial
we obtain Jj(±1) = 0, j = 1, 2 which means that all the roots are attractive.

The stability of the rest of fixed points is specially tedious for analyzing, as the intervals (the domain of
the parameters a1 and b2) where the strange fixed points are real must be taken into account. For the sake of
simplicity, we study the case b2 = 0.

As it was stated in the previous section, there are at most six different components of the strange fixed points
depending on a1, so the different cases where the number of real strange fixed points change must be detailed.
To check their stability we will draw 2D stability diagrams, that consist of plotting the curves described by
|Jj(ri)| j = 1, 2, i ∈ {1, 2, . . . , 6} respect the values of parameter a1.
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Theorem 2 The stability of the real strange fixed points of vectorial fixed point operator associated to Ostrowski-
Chun family for the case b2 = 0 is:

i) All the strange fixed points whose components belong to {√r22,±1} are attractive if −1.9809 < a1 < −1.981
or 0.91415 < a1 < 0.9196.

ii) Strange fixed points of entries belonging to {√r23,±1} are attractive for
11

5
< a1 < 2.4899.

iii) The rest of strange fixed points are repulsive or saddle.

Summarizing, for values of a1 established in cases i) and ii) there are 12 attractive strange fixed points, 24
repulsive and 24 saddle. For values of a1 out of these regions there are 36 repulsive fixed points and 24 are
saddle.

An sketch of the proof is presented in what follows. To prove the theorem we need to draw 2D stability diagrams
for the components r2j of the strange fixed points. Let us remark that r21 = 0 and Jj(0) is not defined for
j = 1, 2. So, the stability of this point must be deduced from the bifurcation diagram.

Stability diagrams show the absolute value of Jj , j = 1, 2 on a component of an strange fixed point. As the
operator and its eigenvalues have symmetry about x and y axis we will only use the positive square roots of the
zeros of p2(t), that is

√
r21,
√
r22 and

√
r23. That means if we have 3 attractive fixed points in the first quadrant

we will have total 12 attractive strange fixed points.
The stability of the strange fixed points must be studied taking into account all the different subintervals

where the number of real fixed points varies:

a) If a1 < −1−
√

2, both points satisfy |Jj(
√
r2i)| > 1 for j = 1, 2, i = 2, 3 as can be observed in Figure 1. The

same behavior is observed for
√
r22 and

√
r23 in the interval 1 < a1 <

11

5
.

(a) |Jj(
√
r22)| (b) |Jj(

√
r23)|

Fig. 1: Stability diagrams for
√
r22 and

√
r23 with b2 = 0 and a1 < −1−

√
2

b) For a1 >
11

5
, then |Jj(

√
r22)| > 1 j = 1, 2 meanwhile |Jj(

√
r23)| < 1 in the interval

11

5
< a1 < 2.4899, as

can be observed in Figure 2.

(a) |Jj(
√
r22)| (b) |Jj(

√
r23)|

Fig. 2: Stability diagrams for
√
r22 and

√
r23 with b2 = 0 and a1 >

11

5
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c) If −1−
√

2 < a1 < −1 +
√

2, |Jj(
√
r23)| > 1 and |Jj(

√
r22)| < 1 in the interval −1.9809 < a1 < −1.981. This

behavior can be observed in Figure 3.

(a) |Jj(
√
r22)| (b) |Jj(

√
r23)|

Fig. 3: Stability diagrams for
√
r22 and

√
r23 with b2 = 0 and −1−

√
2 < a1 < −1 +

√
2

d) When −1 +
√

2 ≤ a1 < 1 then |Jj(
√
r23| > 1 and |Jj(

√
r22| < 1 in the interval 0.91415 < a1 < 0.9196 (see

Figure 4).

(a) |Jj(
√
r22)| (b) |Jj(

√
r23)|

Fig. 4: Stability diagrams for r22 and r23 with b2 = 0 and −1 +
√

2 ≤ a1 < 1

3.2 Bifurcation diagrams

Bifurcation diagrams show the behavior of a method when the initial estimation is near a strange fixed point.
To study the bifurcation phenomena, we use Feigenbaum diagrams of each coordinate function of fixed point
function λpj (x), j = 1, 2 by using as a starting point each one of the strange fixed points of the map and observing
the ranges of the parameter a1 where changes of stability or other behaviors happen. As both coordinate
functions coincide, it is enough to represent the ”scalar” bifurcation diagram of one of the coordinate function
on each possible component of the strange fixed point.

To draw these Feigenbaum diagrams, 500 elements of the orbit of each strange fixed point are calculated,
plotting the last 200, for each value of parameter a1 (after a partition of the analyzed interval in 5000 subinter-
vals).

In the previous section it was analyzed the stability of these points and in Figure 5 the diagrams corre-
sponding to r3 =

√
r22, r4 = −√r22, r5 =

√
r23 and r6 =

√
r23 i = 3, 4, 5, 6 are presented. The reason why the

diagrams of r1 and r2 do not appear is that the coordinate functions of the fixed point operator are not defined
on ±√r21 = 0. However, its stability can be deduced from the rest of bifurcation diagrams.

As the abscissas axis correspond to the value of the parameter a1 and the ordinate axis show the value of
the last hundred iterations (of a total of 500), the first observed aspect is the symmetry respect a1 axis. Iterates
can converge to 1 and -1, components of the roots of p(x), or to attracting strange fixed points (including the
zero, that is attracting for a1 ∈ (1, 2)), for the parameter defined in the intervals obtained in Theorem 2, or to
other attracting structures.
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(a) r3 (b) r4

(c) r5 (d) r6

Fig. 5: Bifurcation diagrams for b2 = 0

In Figure 6, some details of diagrams of r4 and r5 (appearing in Figures 5b and 5c) are showed. In them, it is
observed that, when an attracting fixed point changes its stability, period-doubling bifurcation appears yielding
cascades of attracting periodic orbits of period 2,4,8,... Then, in blue regions, chaos appears. In the following
section some of these periodic cases appear in the dynamical planes; also strange attractors appear in some of
these blue regions and they also will be found.

(a) r4 (b) r5

Fig. 6: Some details of bifurcation diagrams corresponding to r4 and r5

4 Convergence and Dynamical planes of the family

Convergence planes (see [11]) are a useful tool to check the behavior of a family of iterative methods near
strange fixed points. The convergence space is obtained by associating each point of the plane with real values
of a1 (axis OX) and b2 (axis OY). We have used 800 × 800 different combinations of a1 and b2. The points of
the plane shown in black correspond to the parameter values for which the associated iterative method does
not converge to a root with a tolerance of 10−3 after 500 iterations, taking as the initial estimate every strange
fixed point. Points shown in red converge to a root of the polynomial.
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(a) (b)

Fig. 7: Convergence plane and a detail of its central region

A dynamical plane is a visual representation of a method that gives qualitative information about its behav-
ior. Dynamical planes are built by applying the iterative method with different initial estimations distributed in
a mesh. If the numerical method converges to a root of the system the point of the plane is painted in different
colors depending on the root they converge to, while the points painted in black mean no convergence to any
root after 40 iterations.

The dynamical planes of this manuscript have been obtained by using 400 × 400 subintervals, a maximum
of 40 iterations and an error estimation of 10−3, when the iterates tend to a fixed point.

(a) Ostrowski (b) Chun

Fig. 8: Dynamical planes for Ostroswki’ and Chun’s methods on p(x)

Figure 8 shows the dynamical plane for Ostrowski’ and Chun’s schemes on p(x). We can see four basins of
attraction, one for each root of the polynomial. Both methods show a stable behavior, as the only fixed points
with a basin of attraction are the roots of the polynomial.

Other methods don’t show a stable behavior if any strange fixed point is attractive, as we can see in Figure
9, that shows two combination of parameters that have 12 attractive fixed points.

The stability of a method depends not only on the existence of attracting strange fixed points but also on
possible attracting periodic orbits. Figure 10 shows a combination of parameters that lead to six periodic orbits.
In Figure 10 we have modified the dynamical plane program to paint in different colors the points that tend to
every periodic orbit.

For b2 = 0 the bifurcation diagram shows blue chaotic regions where strange attractors can appear, for some
values of a1. To visualize strange attractors we use a 2-D plot, in which parameter a1 is fixed in a blue region
value and the asymptotic behavior of the iterative method with many initial estimatations are shown. In Figure
11a, a dynamical plane showing chaotic behavior is shown, for the method a1 = 2.59.

In order to get more details about this chaotic element, we plot in Figure 11b the iteration of the multidi-
mensional fixed point operator of the family, for a value of parameter a1 in one of the blue chaotic regions of
Figure 5 close to a1 = 2.5. So, symmetric strange attractors have been found, (see Figure 11b). The way these
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(a) a1 = 2.3, b2 = 0 (b) a1 = −1.95, b2 = 0

Fig. 9: Dynamical planes with attracting fixed points

(a) (b)

Fig. 10: Dynamical planes for the method a1 = −2.5, b2 = 3.7

X

Y

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) Dynamical plane (b) Strange attractors

Fig. 11: Dynamical plane and strange attractors for the method a1 = 2.59, b2 = 0

pictures have been obtained is the following: fixing the value of parameter a1, 10000 different initial estimations
have been taken in a small rectangle close to the origin. The method has been used on each of them, plotting
one point per iteration. The resulting image show how the some attracting strange fixed points appearing in
the bifurcation diagrams change into attracting regions. However, the set of initial estimations that belong to
their respective basins of attraction is very reduced, as well as the interval of real values of a1 that induces this
behavior.
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5 Numerical tests

In this section, we are going to apply different elements of the proposed family for solving the nonlinear system
obtained by using the divided differences technique for approximating the solution of a diffusion problem with
may applications in several fields. We use members of (2) with stable properties and other ones with bad
dynamical behavior, following the results obtained in the previous section.

Fisher’s equation

ut = Duxx + ru
(

1− u

k

)
, (5)

was proposed by Fisher [8] as a model of diffusion in population dynamics, where D > 0 is the diffusion constant,
r is the growth rate of the species and k is the carrying capacity. In recent years, the equation has been used
as a basis for a wide variety of models for the spatial spread of genes in a population. This equation has also
interesting applications in chemical waves propagation, financial mathematics and economics (it estimates the
relationship between nominal and real interest rates inflation).

We analyze a particular case of Fisher’s equation, corresponding to D = k = r = 1, x ∈ [−25, 50], the
boundary conditions u(−25, t) = 1, u(50, t) = 0, t > 0, and the initial condition

u(x, 0) =


1, x < −10
0, −10 ≤ x ≤ 10
1/4, 10 < x < 20
0, x ≥ 20

By applying an implicit method of finite differences we transform problem (5) in a family of nonlinear
systems, which provides the approximated solution in a time tk from the approximated solution in tk−1. We
choose the spacial step h = 75/nx and the temporal step k = Tmax/nt, where nx and nt are the number of
x-subintervals and t-subintervals, respectively, and Tmax is the final time of our study. So, we have selected a
grid of domain [−25, 50]× [0, Tmax] with points (xi, tj),

xi = 0 + ih, i = 0, 1, . . . , nx, tj = 0 + jk, j = 0, 1, . . . , nt.

We want to estimate the solution of (5) at these points, by transforming it in many nonlinear systems, as much
as the number of tj . To do that, we use the following approximations:

ut(x, t) ≈
u(x, t)− u(x, t− k)

k
,

uxx(x, t) ≈ u(x+ h, t)− 2u(x, t) + u(x− h, t)
h2

,

Denoting by ui,j the estimation of the solution at (xi, tj) and by replacing them in (5), we construct the following
nonlinear system

ui,j − ui,j−1
k

=
ui+1,j − 2ui,j + ui−1,j

h2
+ ui,j − u2i,j ,

for i = 1, 2, . . . , nx− 1 and t = 1, 2, . . . , nt. After some algebraic manipulations we transform this system in:

kui+1,j + (kh2 − 2k − h2)ui,j − (kh2)u2i,j + kui−1,j = −h2ui,j−1,

for i = 1, 2, . . . , nx − 1 and j = 1, 2, . . . , nt. For a fixed j, we have the following nonlinear system of size
(nx− 1)× (nx− 1):

ku2,j + (kh2 − 2k − h2)u1,j − kh2u21,j = −h2u1,j−1 − k,
kui+1,j + (kh2 − 2k − h2)ui,j − kh2u2i,j + kui−1,j = −h2ui,j−1, i = 2, 3, . . . , nx− 2,

(kh2 − 2k − h2)unx−1,j − kh2u2nx−1,j + kunx−2,j = −h2u1,j−1 − k.
(6)

The unknowns of this system are u1,j , u2,j , . . . , unx−1,j , that is, the approximations of the solution in tj . We
observe that for solving this system we need the solution in tj−1.

We are going to solve this system for different values of Tmax, using in each case nx = 20 and methods M1
(a = b = 1), M2 (Chun’s method), M3 (a = 2.3, b = 0) and M4 that corresponds to a = −2.5 b = 3.7. The last
two schemes have been selected in the black unstable region of the convergence plane showed in the previous
section, meanwhile M1 and M2 correspond to the red stable region. As initial guess we use the approximated
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solution of the previous tj . In Tables 1 and 2, we calculate the approximated solution at different Tmax showing
‖F (x(k+1))‖, the mean number of iterations needed for solving the nonlinear systems appearing for each instant
tj in the whole process and the elapsed time, in order to analyze the stability and consistence of the new method.

All computations are performed using variable precision arithmetics with 500 digits of mantissa. For ev-
ery value of Tmax, we analyze the number of iterations (iter) needed to converge to the solution such that
‖F (x(k+1))‖ < 10−12 is satisfied, where ‖ · ‖ denotes the Euclidean norm.

Tmax = 0.1 M1 M2 M3 M4
nt = 100 iter 1 2 2 1

‖F (x(k+1))‖ 1.61e-13 3.39e-24 3.68e-22 1.52e-13
e-time 94.65 171.98 509.57 283.30

nt = 500 iter 1 2 nc 1

‖F (x(k+1))‖ 2.57e-16 3.64e-31 2.54e-16
e-time 464.85 856.44 1405.43

Tmax = 0.3 M1 M2 M3 M4
nt = 100 iter 2.01 2 2 2

‖F (x(k+1))‖ 2.21e-29 2.21e-29 1.03e-18 1.88e-29
e-time 492.92 175.31 513.66 547.91

nt = 500 iter 1 1 2 1.002

‖F (x(k+1))‖ 2.23e-18 2.25e-14 1.31e-23 2.12e-14
e-time 437.80 1221.66 2384.80 1375.31

Tmax = 0.5 M1 M2 M3 M4
nt = 100 iter 2.01 2 2 2

‖F (x(k+1))‖ 4.02e-27 3.99e-27 4.32e-17 5.06e-27
e-time 496.80 554.01 554.01 581.26

nt = 500 iter 1.002 2 2 1.0060

‖F (x(k+1))‖ 1.82e-13 5.52e-22 5.52e-22 1.56e-13
e-time 1322.68 2587.08 2587.08 1502.13

Table 1: Numerical results for different values of Tmax

Tmax = 0.7 M1 M2 M3 M4
nt = 100 iter 2.0100 2 2 2

‖F (x(k+1))‖ 1.17e-25 1.15e-25 4.95e-16 7.06e-16
e-time 540.12 527.59 543.90 495.37

nt = 500 iter nc nc nc nc

‖F (x(k+1))‖ - - - -
e-time - - - -

Tmax = 1 M1 M2 M3 M4
nt = 100 iter 2.01 2 2 2

‖F (x(k+1))‖ 3.48e-24 3.39e-24 5.83e-15 8.31e-15
e-time 519.36 521.74 536.57 509.08

nt = 500 iter 2.002 2 2 2

‖F (x(k+1))‖ 3.75e-31 3.64e-31 7.46e-20 1.07e-19
e-time 2489.67 2464.47 2631.47 2424.11

Table 2: Numerical results for different values of Tmax

Let us remark that, as can be seen at Tables 1 and 2, the number of temporal subintervals do not need to
be increased when Tmax is higher. Moreover, due to the high order of convergence of the methods, the mean
number of required iterations is very small, as well as the value of ‖F (x(k+1))‖. Respect to the stability of the
methods, it is noticed that methods M1 and M2 have similar behavior, meanwhile M3 and M4 take much more
elapse time in converging, if they do it.

In Figure 12 we show the approximated solution of the problem when Tmax = 5, by taking nt = 100 and
nx = 20. It is observed that there not exist attenuation after this time, showing the expected behavior of a
traveling wave.
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Fig. 12: Graphics of the approximated and exact solutions for t ∈ [0, 5] with nt = 100

6 Conclusions

The dynamical analysis of the Ostrowski-Chun family gives us qualitative information about the stability and
reliability of its elements. From this study, we can select the members of the class with good stability properties
and avoid those with chaotic or unstable behavior. Both type of examples have been selected for solving the
problem of traveling waves, confirming the information given by the dynamical study.
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