
Summary

An important area of Applied Mathematics is Matrix Analysis due to the fact

that many problems can be reformulated in terms of matrices and, in this

way, their resolution is facilitated. The inverse eigenvalue problem consists of

the reconstruction of a matrix from given spectral data. This type of problems

occurs in di�erent engineering areas and arises in numerous applications where

the parameters of a particular physical system are determined from previous

knowledge or expected dynamic behavior. In this thesis the inverse eigenvalue

problem for three speci�c sets of matrices is solved.

Inverse eigenvalue problems have been studied from theoretical and numerical

points of view as well as from their applications. The list of applications is

vast. For instance, we can mention control theory, identi�cation of systems,

analysis and design of structures, geophysical studies, molecular spectroscopy,

and circuit theory, among others. Some of these applications will be described

in Chapter 1 of this thesis.

In several cases, in order to make the inverse eigenvalue problem reasonable,

it is necessary to impose some additional conditions on the solution matrices,

that is, those matrices must have a speci�c structure. In summary, an inverse

xxi



eigenvalue problem properly posed must satisfy two constraints: one referring

to the spectral data and the other to the desirable structure.

Given a matrix X and a diagonal matrix D, solutions of the equation AX =

XD are searched, where A is a matrix with a prescribed structure and a

prede�ned spectrum. Based on these restrictions on matrix A, a variety of

inverse eigenvalue problems arise.

For example, the inverse eigenvalue problem for centrosymmetric matrices was

addressed by F. Zhou, X. Hu, and L. Zhang in [49]. Using the singular va-

lue decomposition and the Moore-Penrose inverse, they found conditions to

guarantee the existence of solution. The centrosymmetric matrices have appli-

cations in information theory and in theory of linear systems, among others.

In the article [38] appeared in 2005, Z. Y. Peng considered the inverse eigenva-

lue problem for the case where A is a hermitian and antire�exive matrix with

respect to a generalized re�exion matrix. Five years later, M. Liang and L. Dai

stated in [32] the solvability conditions for the left and right inverse eigenva-

lue problem for generalized re�exive and antire�exive matrices. The general

expression of the solution was also given. In the same year, L. Lebtahi and N.

Thome solved in [28] the problem for the case of a matrix A that is hermitian

and re�exive or antire�exive with respect to a matrix J that is tripotent and

hermitian.

In Chapter 2 of this work the results of [28] are extended to the case of a

matrix A that is hermitian and re�exive with respect to a matrix J which is

{k+1}-potent and normal. Theorem 2.2.1 provides conditions under which the

problem has a solution and the explicit form of the general solution is given.

In addition, in case of the set of solutions of the inverse eigenvalue problem is

not empty, the associated Procrustes problem is solved.

The Procrustes problem, or the best approximation problem, associated to

the inverse eigenvalue one can be described synthetically as follows: given an

experimentally obtained matrix, the problem consists on �nding a matrix from
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the problem solution set (and, therefore, with the desired structure), such that

it is the best approximation to the data matrix. For simplicity, the Frobenius

norm is generally used.

On the other hand, Hamiltonian and skewHamiltonian matrices appear in the

resolution of important problems of Systems and Control Theory. They arise,

for example, in optimal linear quadratic control [34, 42], in the calculation of

the norm H∞ of a stable system [50], and in the resolution of the algebraic

Riccati equations [27], among others. The inverse eigenvalue problem for her-

mitian and generalized Hamiltonian matrices was analyzed by Z. Zhang, X.

Hu and L. Zang in [48] and, afterwards, the case of hermitian and skewHamil-

tonian generalized matrices by Z. Bai was considered. In both cases, not only

the inverse eigenvalue problem was studied but also uniqueness of solution for

the best approximation problem was proved and the solution was presented.

An extension of the Hamiltonian matrices are the J-Hamiltonian matrices

de�ned for the �rst time in [14], and it is one of the original contributions of

this work. In Chapters 3 and Chapter 4 of this thesis the inverse eigenvalue

the respective problems for normal J-Hamiltonian matrices and for normal

J-skewHamiltonian matrices are studied. For the resolution of the normal J-

Hamiltonian matrices case, the structure of this type of matrices is �srtly

analyzed and, then, four methods are presented. The �rst two methods are

general, they give conditions under which the problem is solvable and, among

the solutions normal J-Hamiltonian matrices are found. The third method is

formalized in the Theorem 3.2.2. It provides the conditions under which the

problem has a solution and the in�nite solutions are presented, but with this

method we are not able to obtain all of them. Finally, the last method states

the form of all the solutions. The main result is established in the Theorem

3.2.3. A complete section is dedicated to solve the associated optimization

Procrustes problem in case of the problem admits solution. The main result is

presented in Theorem 3.3.1.
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Below, a summary of the organization of this thesis and a brief description of

its four chapters are presented.

Chapter 1 contains an introduction to the inverse eigenvalue problem, the Pro-

crustes problem, and some other ones studied in the literature. Also, de�nitions,

properties, lemmas, and theorems used throughout this work are presented.

In Chapter 2, the inverse eigenvalue problem for a hermitian re�exive matrix

with respect to a normal {k + 1}-potent matrix is studied, as well as the

associated optimization Procrustes problem. In addition, an algorithm that

solves the Procrustes problem is designed and an example that shows the

performance of the algorithm is given.

The inverse eigenvalue problem for a normal J-Hamiltonian matrix is inves-

tigated in Chapter 3 by using several methods. The associated optimization

Procrustes problem is also considered. As in Chapter 2, an algorithm that

allows us to calculate the solution of the optimization problem is proposed.

Some examples where its performance is showed are provided.

Finally, in Chapter 4, based on the results obtained in Chapter 3, the inverse

eigenvalue problem for normal J-skewHamiltonian matrices is addressed. Fo-

llowing the line of Chapters 2 and Chapter 3, an algorithm that solves the

Procrustes problem is presented and some illustrative examples of application

of the results are presented.

The main contributions obtained in this thesis were published in scienti�c

journals and presented at congresses. They can be seen in [13, 14, 15, 16, 17, 18].
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